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Abstract 

With the wide adoption of electronic health records (EHRs), researchers, as well as large 

healthcare organizations, governmental institutions, insurance, and pharmaceutical 

companies have been interested in leveraging this rich clinical data source to extract 

clinical evidence and develop predictive algorithms. Large vendors have been able to 

compile structured EHR data from sites all over the United States, de-identify these data, 

and make them available to data science researchers in a more usable format. For this 

dissertation, we leveraged one of the earliest and largest secondary EHR data sources and 

conducted three studies of increasing scope.  In the first study, which was of limited 

scope, we conducted a retrospective observational study to compare the effect of three 

drugs on a specific population of approximately 3,000 patients. Using a novel statistical 

method, we found evidence that the selection of phenylephrine as the primary 

vasopressor to induce hypertension for the management of nontraumatic subarachnoid 

hemorrhage is associated with better outcomes as compared to selecting norepinephrine 

or dopamine. In the second study, we widened our scope, using a cohort of more than 

100,000 patients to train generalizable models for the risk prediction of specific clinical 

events, such as heart failure in diabetes patients or pancreatic cancer. In this study, we 

found that recurrent neural network-based predictive models trained on expressive 

terminologies, which preserve a high level of granularity, are associated with better 

prediction performance as compared with other baseline methods, such as logistic 
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regression.  Finally, we widened our scope again, to train Med-BERT, a foundation 

model, on more than 20 million patients’ diagnosis data. Med-BERT was found to 

improve the prediction performance of downstream tasks that have a small sample size, 

which otherwise would limit the ability of the model to learn good representation.  

In conclusion, we found that we can extract useful information and train helpful deep 

learning-based predictive models. Given the limitations of secondary EHR data and 

taking into consideration that the data were originally collected for administrative and not 

research purposes, however, the findings need clinical validation. Therefore, clinical 

trials are warranted to further validate any new evidence extracted from such data sources 

before updating clinical practice guidelines. The implementability of the developed 

predictive models, which are in an early development phase, also warrants further 

evaluation. 
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Chapter 1: Introduction 

1.1. Secondary Use of Electronic Health Records Structured Data 

Ancient Egyptian papyri and inscriptions indicate the use of medical records as early as 

1,600 BC[1,2]; however, the use of paper medical records did not become an established 

practice until the 19th century, when it began in France and Germany[2].  By the early 

90th, with advances in computer technology and advocacy by the Institute of Medicine, 

academic healthcare systems in the United States started to shift from paper-based to 

electronic health records(EHRs)[1,2], which was fostered by government initiatives and 

incentive programs, such as Meaningful Use (MU) by the Centers for Medicare & 

Medicaid Services (CMS) and the Office of the National Coordinator for Health 

Information Technology (ONC) in 2010[3].  

The main purpose of EHR utilization is to provide authorized users with secure access to 

patients’ real-time data to improve the efficiency and the quality of care, including the 

coordination of care while protecting patient privacy. Based on the increasing adoption 

rate of EHR systems in the US hospitals, which reached 84% in 2015[4], healthcare 

organizations and vendors could begin to compile rich clinical data and make them 

available for biomedical informatics researchers to mine them, extract information, and 

create knowledge. In this regard, “secondary” EHR data refer to the clinical data 

warehouses that extract and combine data from different sources and healthcare systems 

and make them useable by researchers.  
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1.1.1. Collaborative initiatives and common data models 

There are several initiatives supported by governmental institutions and non-profit 

organizations to facilitate the wide collection of EHR data from different sites and 

harmonize them through common data models (CDM), in order to support translational 

research[5]. One of the earliest initiatives is the informatics for integrating biology at the 

bedside (i2b2) which started in 2004 as a part of the National Institutes of Health (NIH) 

Roadmap initiative[6]. I2b2 schema offers the flexibility to hold denormalized non-

standard and local data[7]. I2b2 is utilizing the star schema format commonly used in 

retail data warehouses, which is characterized by the large narrow fact tables that include 

all individual observations along with ontology tables that provide definitions such as 

concept_dimension and tables defining the hierarchical arrangements of concepts such as 

modifier_path[8]. Over 200 institutions worldwide are utilizing i2b2 CDM and ancillary 

software[9] for data linkage and harmonization to form large federated data networks that 

can facilitate international clinical research such as the consortium for clinical 

characterization of COVID-19 by EHR (4CE) studies to understand COVID-19 clinical 

trajectories[10,11]. The most widely adopted CDM nowadays is the observational 

medical outcomes partnership (OMOP) CDM developed by the observational health data 

sciences and informatics (OHDSI) consortium[8]. Some of the largest and latest 

collaborative initiatives such as the All of Us research program[12,13] and the national 

COVID cohort collaborative (N3C)[14,15] are following the specifications of the OMOP 

data model. OMOP CDM is optimized for typical observational research purposes as it 
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provides clinical events tables such as condition occurrences, drug exposures, and 

observations, as well as derived elements tables such as condition era and drug era, and 

standardized health economics tables[16]. That’s beside metadata and vocabulary tables 

which include terminology information and concepts relationships[17]. Other 

government-supported initiatives include the electronic medical records and genomics 

(eMERGE) consortium funded and organized by the NIH[18,19], the PCORnet supported 

by the Patient-Centered Outcome Research Institute (PCORI) [20,21], and the biologics 

effectiveness and safety system (BEST) supported by the FDA center for biologics 

evaluation and research (CBER)[22,23].  The majority of such collaborative initiatives 

are providing tools to facilitate data exchange between different CDM, for example, i2b2 

offers a “multi-fact-table querying” feature that can query OMOP and PCORnet 

models[7,24]. 

Similar to the US government-supported initiatives, The UK department of health and 

social care sponsored the clinical practice research datalink (CPRD) initiative through the 

medicines and healthcare products regulatory agency (MHRA) and the national institute 

for health research (NIHR). CPRD collects de-identified patient data from primary care 

practices throughout the UK and links it to other healthcare data sources available 

through the National Health Services (NHS). As appears in Figure 1.1, CPRD is the most 

cited secondary EHR data source in PubMed indexed articles throughout the period from 

2014 to 2019, while the freely available medical information mart for intensive care 

dataset (MIMIC) is the most cited data source in 2020 and 2021. 
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Figure 1.1. PubMed indexed publications per year using MIMIC versus using secondary 

EHR data sources available through collaborative initiatives such as i2b2, OHDSI 

OMOP, PCORnet, and eMERGE. 

 

 

1.1.2. Commercial secondary EHR data sources 

As large EHR vendors such as Cerner[25] and EPIC[26–28] and big insurance companies 

such as Blue Cross Blue Shield (BCBS)[29] envision the powerful impact of big clinical 

data to transform healthcare through data-informed decisions, they started to offer 

clinicians and researchers access to multi-institutional data resources to facilitate clinical 

research using secondary EHR and claims data. However, access to such powerful 

resources is conditional either through sharing data such as joining the Cerner learning 

health network (LHN) or through paying licensed access fees. There are several 

secondary EHR and claims data vendors[30] including the popular IBM MarketScan[31], 

Optum[32], and IQVIA[33]. 
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Cerner HealthFacts®, an earlier version of the current Cerner real-world data (CRWD), is 

the main source for secondary EHR data that we used to extract the cohorts described in 

chapters 2,3, and 4. Cerner HealthFacts® is a database of de-identified structured EHR 

data from approximately 50 million patients from more than 600 hospitals across the 

United States. Available de-identified patient data include diagnosis, medications, 

procedures, laboratory results, and other recorded clinical events as well as patient 

demographics and encounter-level administrative data. For generalizability evaluation of 

Med-BERT described in chapter 4, we used the Truven® claims database, an earlier 

version of the IBM® MarketScan® Research Databases. The Truven® version which we 

used, contains individual-level, de-identified, healthcare claims information from 

employers, health plans, hospitals, and Medicare and Medicaid programs, for the period 

between 2011 and 2015. Although we acknowledge the differences between secondary 

EHR and claims data[34,35], the use of a claims dataset to evaluate the generalizability of 

a foundation model trained on secondary EHR data was appropriate as the foundation 

model was only trained on diagnosis codes which are consistent between EHR and claims 

data, that’s beside the cohort definition was only based on age and diagnoses codes.   

 

1.2. Secondary Use of Structured EHR Data for Observational Studies 

With the increased availability of secondary EHR data sources as described in section 

1.1, hundreds of observational studies were conducted to compare patterns and trends 

between different populations and different interventions[36,37]. However, extracting 

new evidence from secondary EHR data is challenging given the data quality limitations 

of inconsistency, incompleteness, and inaccuracy[38–41]. Therefore, we need to account 
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for the data quality and check for the underlying model assumptions to verify the 

reliability of our findings[42].   

In Chapter 2, we provide an example of how we extracted new evidence from secondary 

EHR data[43]. The research question for this study was raised by neuro-intensivists, who 

note that, although current evidence-based guidelines suggest that maintaining a 

vasopressor-induced elevation in blood pressure, when managing aneurysmal 

subarachnoid hemorrhage (SAH), may reduce the incidence of delayed cerebral ischemia 

(DCI), there is no clear evidence, as described in Chapter 2 sections 2.2. and 2.5, in 

regard to which vasopressor is associated with better outcomes, i.e., reduced long-term 

adverse outcomes and lower mortality risk. Therefore, the main objective of this study 

was to determine the association between the initial vasopressor choice and in-hospital 

mortality of nontraumatic SAH patients, based on a comparison of the three most 

commonly used vasopressors, namely dopamine, norepinephrine, and phenylephrine.  

 

1.3. Secondary Use of Structured EHR Data for Predictive Modeling 

Similar to the increased numbers of retrospective observational studies using secondary 

EHR data sources, there are hundreds of published studies that describe predictive 

models trained on secondary EHR data sources[44–48]. However, the majority of the 

predictive models employ few predictors and do not fully address biases due to training 

data quality issues such as incompleteness[49]. The majority of the recently published 

predictive models are based on machine learning techniques, with approximately 20% 

based on deep learning, as seen in Figure 2.1. In Chapters 3 and 4 we utilized sequential 
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deep learning architectures to train predictive models using tens of thousands of 

categorical predictors. Our proposed models showed improved prediction accuracy and 

generalizability compared to baseline machine methods such as logistic regression. 

 

 

 
 

Figure 1.2. PubMed indexed publications on EHR data based predictive models per year 

 

 

1.3.1. Deep learning for clinical events prediction 

In the last decade, hundreds of articles were published on the development of deep 

learning(DL)-based models that used EHR data in either a structured[50–57] or 

unstructured format[58–61]. Most of these developed models provide promising 

prediction accuracy and demonstrate that DL algorithms outperform other standard 

statistical or machine learning algorithms[62–64]. Such models, however, are rarely 

implemented in practice, and most clinical decision support systems are either rule-based 
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or depend on simple algorithms such as logistic regression, which uses only a certain 

number of features.  

The lack of adoption of DL-based models was justified by the “black box” nature of DL 

algorithms, i.e., the lack of interpretability required by physicians to understand the 

predicted risk scores and to assess their reliability[65–68]. Although many techniques had 

been developed to improve the interpretability/explainability of DL-based models, the 

implementation of such models is still rare[69–72]. Notably, there are other elements to 

be considered in regard to improving the implementability of DL-based predictive 

models.  

In Chapters 3 and 4, we present a sample of our work, in which we demonstrate that DL-

based algorithms have superior performance as compared with other traditional machine 

learning methods. In addition, we address the issue of the generalizability of the trained 

models from a different perspective, which is an important factor in the overall 

implementability of the proposed models.  

 

1.3.2. Terminology Normalization of Clinical Data for EHR Based Studies 

A common obstacle to the evaluation of predictive model generalizability is that clinical 

data at different sites are available in different formats. For example, some sites prefer to 

use SNOMED-CT to record patient diagnoses, while others prefer to use ICD-10-CM 

codes. This can limit the transferability of the trained models between hospitals as well as 

limit further external validation to evaluate their generalizability.  Therefore, there is a need 

to normalize different clinical data types to a common terminology. One way to do so is to 
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map the data to the unified medical language system (UMLS)[73] or another common data 

model[8,74,75]. Other solutions include mapping each clinical data category to the most 

common standard terminology in use for that category, for example, mapping laboratory 

tests to LOINC codes.  

In Chapter 3, we investigated the impact of different transformation methods on the 

performance of logistic regression and DL-based predictive models by comparing the 

prediction discriminative accuracy of the models when trained and evaluated on the same 

patients’ data but in different terminologies. In this study[76], we mapped the diagnosis 

codes recorded in Cerner HealthFacts®, mainly in ICD-9 and ICD-10-CM format, into 

UMLS concept unique identifiers (CUIs)[77], ICD-9[78], ICD-10[78], PheWAS[79], and 

CCS codes in both the single-level[80,81] and the refined version (CCSR)[82]. We 

evaluated the effect of terminology mapping on two different disease prediction tasks. We 

refer to the first task, which was to predict diabetic patient risk to develop heart failure, as 

the DHF task. We refer to the second task, which involved predicting the patient risk of 

being diagnosed with pancreatic cancer in the next visit, as the PaCa task. The results of 

this study helped us to better understand the need for and how to normalize categorical 

clinical data, including diagnoses, medications, and procedures, for predictive modeling. 

1.3.3. Foundation deep learning models for clinical data 

Foundation models, such as bidirectional encoder representations from Transformers 

(BERT), are models trained on broad data at scale such that they can be adapted to a wide 

range of downstream tasks[83]. Such models merge self-supervised learning and transfer-

learning concepts. Transformers proved to be a valid alternative for sequential modeling.  
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Since the end of 2018, after Google released its first pre-trained BERT model, based on 

the transformer structure, transformer-based models have continued to evolve and serve 

as the basis to train large foundation models. 

In Chapter 4, we describe our foundation model, Med-BERT[84], which is trained on 

structured EHR diagnosis data from more than 20 million patients, extracted from Cerner  

HealthFacts®, and how such pre-trained contextualized embedding can improve the 

prediction performance for different downstream tasks. We used the same DHF and PaCa 

prediction tasks as the evaluation downstream tasks. We also used the Truven 

MarketScan™ claims data to evaluate the generalizability of our trained foundation 

model. In addition, we evaluated prediction performance, using multiple metrics, 

including the area under the receiving operating characteristic curve (AUROC), the area 

under the precision-recall curve (AUPRC), sensitivity, specificity, precision, and F1-

score. 

   

1.4. Innovation 

The key innovation of our work involves the use of secondary EHR data for knowledge 

discovery and the development of a highly accurate DL-based model to predict patient risk 

for diseases such as heart failure and pancreatic cancer. We are the first to take advantage 

of access to a large heterogeneous EHR database and to extract a cohort to compare the 

effect of phenylephrine, dopamine, and norepinephrine on nontraumatic SAH patient 

outcomes, using novel statistical methods[85]. Similarly, we are the first to use such a large 

heterogeneous database to train accurate and generalizable DL predictive models[84,86]. 
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Translational research has always been an area in which the major focus was on transferring 

findings from laboratory settings to actual clinical trials in hospital settings. Several 

concerns, however, hinder the feasibility of transferring our findings and trained models to 

the clinical settings for further evaluation. Therefore, in this dissertation, we addressed 

some of the concerns that may hinder further external validation of our trained models. We 

are the first to systematically compare the effect of terminology normalization to coding 

standards with different levels of granularity on the performance of predictive models. We 

are also the first to train a medical foundation model, using structured diagnosis data in 

ICD-9 and ICD-10 codes, which are globally accepted standards, for more than 20 million 

patients. Finally, we are the first to evaluate the generalizability of our trained foundation 

model. Although we did not tackle all of the concerns that hinder the further validation of 

the developed models, we took the first steps.  

 

1.5. Significance 

With the advancement of the science of artificial intelligence and the availability of 

powerful computational resources and large observational healthcare databases, we can 

extract knowledge and develop more accurate, generalizable, and personalized prediction 

models. Our findings on the vasopressor effect on non-traumatic SAH patients’ outcomes 

favored phenylephrine, which is known to be the least potent among the studied 

vasopressors. These findings are promising but require validation through clinical trials, 

after which the clinical practice guidelines should be updated accordingly. We also 

demonstrated the value of utilizing a large heterogenous healthcare database to develop 
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accurate and generalizable predictive models. Our evaluation of the impact of terminology 

normalization on the predictive models’ performance indicated the value of using more 

expressive terminologies with a high level of granularity. The use of data in their raw 

format can achieve good performances, and future researchers can draw upon such raw 

data directly, especially if they have a large sample size. If, however, their methods require 

much lower input dimensions, such as certain statistical algorithms, we recommend the use 

of PheWAS over CCSR or CCS. When integrating with other data modalities, such as 

unstructured text, is desired, we recommended the normalization to UMLS. We 

disseminate the details of our methods, along with our findings and codebase, to facilitate 

the reproducibility of our work and allow further improvement and validation by future 

researchers. Notably, our Med-BERT work demonstrated the value of training large 

foundation models on large heterogeneous healthcare databases. Our publicly available 

pretraining codebase is in use by researchers all over the world to train their own foundation 

models and further evaluate these models on more practical downstream tasks.  
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2.1. Abstract  

Background and Object: Subarachnoid hemorrhage (SAH) is a devastating 

cerebrovascular condition not only due to the effect of initial hemorrhage, but also due to 

the complication of delayed cerebral ischemia. While hypertension facilitated by 

vasopressors is often initiated to prevent delayed cerebral ischemia, which vasopressor is 

most effective in improving outcomes is not known. The objective of this study was to 

determine associations between initial vasopressor choice and mortality in patients with 

non-traumatic subarachnoid hemorrhage. 

Methods: We conducted a retrospective cohort study using a large, national EMR 

Dataset from 2000-2014 to identify patients with a new diagnosis of non-traumatic 

subarachnoid hemorrhage (based on ICD-9 codes) that were treated with vasopressors 

(dopamine, phenylephrine or norepinephrine).  We examined the relationship between the 

initial choice of vasopressor therapy and the primary outcome, which was defined as in-

hospital death or discharge to hospice care.  

Results: In total, 2,634 patients were identified with non-traumatic subarachnoid 

hemorrhage who were treated with a vasopressor. In this cohort, the average age was 56.5 

years, and 63.9% were female. 36.5% of patients developed the primary outcome.  The 

incidence of the primary outcome was higher in those initially treated with either 

norepinephrine (47.6%) or dopamine (50.6%) than with phenylephrine (24.5%). After 

adjusting for possible confounders using propensity score methods, the adjusted odds 

ratio (OR) of the primary outcome was higher with dopamine (OR 2.19, 95% CI: 1.70-

2.81) and norepinephrine (OR 2.24, 95% CI: 1.80-2.80), compared with phenylephrine. 
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Sensitivity analyses using different variable selection procedures, causal inference 

models, and machine learning methods confirmed the main findings.  

Conclusions: In patients with non-traumatic subarachnoid hemorrhage, phenylephrine 

was significantly associated with reduced mortality in SAH patients compared to 

dopamine or norepinephrine. Prospective randomized clinical studies are warranted to 

confirm this finding.  

 

2.2. Introduction 

Aneurysmal subarachnoid hemorrhage (SAH) is a potentially devastating cerebrovascular 

condition due not only to the effect of initial hemorrhage but also the complicated 

treatment regimen required to manage such patients[1]. The incidence of SAH in the 

population has been estimated to be around 14.5 per 100,000 person years with a mean 

age of 55 years[2,3]. As a result of the pathophysiology of this disease and its treatments, 

25-44% of patients who present with SAH die, and half of the survivors are left with 

some degree of neurological deficit[4–6]. The average age of onset for SAH may be 

young, though this particular type of stroke syndrome is associated with traditional risk 

factors, such as hypertension, which predispose patients to active aneurysmal disease[7].  

Substantial resources are dedicated to currently accepted management paradigms, which 

include staffing by neurosurgeons, neurologists, neuro-radiologists, neuro-intensivists, 

neuro-anesthesiologists, and specialized nursing and rehabilitation personnel. Given the 

relatively young age of patients with SAH and associated disability, the health and 

economic burden to the individual can be devastating. 
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One of the complications of SAH that medical management seeks to avoid or minimize is 

delayed cerebral ischemia (DCI), as it is the main source of morbidity following SAH[8]. 

Decreased cerebral perfusion (relative hypotension) and cerebral arterial vasospasm that 

may commonly occur after SAH are felt to be significant contributors to DCI. While 70% 

of SAH patients show signs of radiographic cerebral vasospasm, about 20-30% of SAH 

patients have clinical signs of cerebral vasospasm[9]. The are several proposed 

mechanisms contributing to cerebral vasospasm, including damage to the endothelium, 

smooth muscle contraction, changed vascular responsiveness, and inflammatory changes 

to the vascular wall[9]. Besides the administration of nimodipine prior to clinical 

evidence of cerebral vasospasm, the avoidance of hypovolemia and hypotension are 

accepted as mainstays of therapy when cerebral vasospasm is suspected. Induced 

hypertension to reduce the incidence of DCI was first described in the 1970s and its 

benefit is clinically accepted by many neuro-intensivists[10]. A goal systolic blood 

pressure of 160-180 mmHg is a widely accepted blood pressure target for SAH patient 

treatment following coiling of a cerebral aneurysm; this hemodynamic approach 

combined with avoidance of hypovolemia is commonly described as Hypertensive 

Hypervolemic Therapy (HHT)[11,12]. Recent studies showed that Vasopressor induced 

hypertension is recommended over only fluid regimen[13,14].Dopamine, norepinephrine, 

and phenylephrine are the most commonly accepted drugs to achieve the desired increase 

in blood pressure[15]. Vasopressin is occasionally used, but is not generally accepted as a 

mainstay of therapy[16]. While current guidelines[12] suggest that maintaining an 

elevation in blood pressure when managing aneurysmal SAH may reduce the incidence 
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of DCI, little clinical data exists to demonstrate which vasopressor is most efficacious to 

achieve induced hypertension and ultimately reduce mortality and other long-term 

adverse outcomes. In the absence of clinical trial data, the optimal vasopressor choice is 

based on multiple other factors, including the patient’s hemodynamic status, comorbid 

conditions, and institutional preferences. 

Cerner Health Facts® EMR database comprises de-identified EHR data from over 600 

participating Cerner client hospitals and clinics in the United States including patient 

demographics, encounters, diagnoses, procedures, lab results, medications, vital signs, 

and other clinical observations[17,18]. The large population in this database, 

approximately 50 million patients, allows for performing in-depth studies on rare 

disorders with sufficient power to detect clinically meaningful effect sizes in which 

clinical trials may be difficult to perform. In this study, we queried the Cerner database in 

order to determine the association of vasopressor choice with in-patient mortality. We 

hypothesized that the choice of vasopressor is associated with mortality for SAH patients 

after adjusting for possible confounding factors. 

 

2.3. Methods 

2.3.1. Study design and patient population 

Because of the sensitive nature of the data collected for this study, requests to access the 

dataset from qualified researchers trained in human subject confidentiality protocols may 

be sent to Hulin Wu, PhD at [Hulin.Wu@uth.tmc.edu].  Following institutional IRB 

approval (IRB HSC-MS-18-0124), we used the Cerner Health Facts® EMR database, 
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which consists of EMRs from more than 700 hospitals and clinics that use the Cerner 

Corporation’s electronic health record system. Cerner Health Facts® EMR database 

(version 2015) includes around 50 million unique patients (49,826,219) out of which 

39,017 patients had at least one encounter with one SAH diagnosis identified by ICD-9 

code (430,800.2x, 800.7x, 801.2x, 801.7x, 803.2x, 803.7x, 804.2x, 804.7x, 852.x) with 

17,273 aneurysmal SAH. We excluded all patients younger than 17 years old. A total of 

4,850 patients were administered at least one of the three vasopressors: dopamine, 

phenylephrine, or norepinephrine [National Drug Codes (NDC) for included vasopressors 

are shown in Supplementary Table 1]. If a patient had multiple SAH encounters within 24 

hours of each other, we combined the encounters into a single encounter; otherwise, we 

only used the data from the first SAH encounter per patient in our analysis.  

In this study, we examined the first vasopressor administered to eligible SAH patients. We 

excluded subjects who initiated vasopressor treatment with two vasopressors 

simultaneously (n=40). Among the remaining 4,810 SAH patients, 3,078 (64%) patients 

were prescribed only one of the three vasopressors during the encounter period, 1,437 

(30%) patients received a second vasopressor after the initial vasopressor, and 295 (6%) 

patients were treated with all three vasopressors after the initial vasopressor. We grouped 

the patients into either dopamine, phenylephrine, or norepinephrine groups based on the 

initial vasopressor received, regardless of whether they subsequently received a different 

vasopressor. Among 4,810 eligible SAH patients, 2,176 (45.2%) patients had trauma 

associated SAH (ICD 9 codes: 800.2x, 800.7x, 801.2x, 801.7x, 803.2x, 803.7x, 804.2x, 

804.7x, 852.x) and 2,634 patients had a non-traumatic SAH diagnosis. We analyzed SAH 
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patients and non-traumatic SAH patients separately, which resulted in similar conclusions; 

this report will focus on non-traumatic SAH patients.  

2.3.2. Statistical and causal inference analysis methods 

The primary outcome was in-hospital mortality, defined as in-hospital death or discharge 

to hospice care. We calculated the Charlson Comorbidity Index (CCI) to provide an 

indicator of clinical morbidity across the populations. We also compared descriptive 

statistics for baseline, demographic, comorbidity, and outcome differences among the three 

treatment groups. For continuous variables, we used ANOVA or Kruskal-Wallis test, 

depending on whether the ANOVA assumptions were met. For categorical variables, 

Fisher’s exact test was used. 

As high grade SAH patients have prolonged ICU stays with multiple nosocomial 

complications such as pneumonia, anemia, infection/sepsis, renal failure, myocardial 

infarction, and heart failure (cardiomyopathy), we compared proportions of these 

diagnoses among the treatment groups in a secondary analysis. Additionally, we included 

diabetes and liver disease as they are in general associated with worse outcomes. 

Furthermore, in order to account for patient severity, we included Glasgow Coma Score 

(GCS), which has been shown comparable to Hunt and Hess and World Federation of 

Neurological Surgeons Scales, and a significant factor for predicting severity at 

discharge[19]. 

We used propensity score models to account for potential confounding variables and 

facilitate causal inference between vasopressor treatments and mortality. In a binary 

treatment case, the propensity score is the probability of receiving the treatment 
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conditional on a given set of observed potential confounding factors[20]. This probability 

can be calculated using standard regression techniques (typically logistic regression), 

with the treatment being considered the outcome and the potential confounding factors as 

the predictors. Treated and control subjects with similar estimated values for their 

propensity scores should have, on average, similar sets of covariate factors[21]. We used 

inverse probability weighting (IPW) in the propensity score model, given its well-studied 

benefits[22,23]. We used propensity score matching and generalized gradient boosted 

models (GBM)[24], a machine learning approach based on trees that selects predictive 

variables while higher order variable interactions are automatically taken into account, to 

create the propensity score. Then we used this machine learning approach to estimate the 

average treatment effect (ATE) inverse probability weights to balance treatment groups. 

We estimated propensity score vectors representing the probability of receiving each of 3 

treatments (i.e., the generalized propensity score, GPS) using GBM. The potential 

confounders we included in the propensity model are age, race, marital status, gender, 

GCS, 750 medications (generic names) administered prior to the vasopressor treatment, 

CCI, and total IV-fluid administered throughout the encounter. Also, to account for other 

complications, we adjusted for the 443 diagnoses which were present during admission 

across all patients. Prior to GBM, we conducted variable selection using L1-penalized 

generalized linear models (GLM Lasso)[25] so that the significant confounders 

associated with the choice of vasopressor treatment were identified. We then applied 

GBM to the selected variables, generated the inverse probability weights (where the 

weight is the inverse propensity of the treatment an individual actually received[26,27]) 
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in weighted regression models[24] and estimated ATEs of the vasopressor treatments on 

mortality. 

We assessed the balance achieved through inverse probability weighting by graphical 

representations (Supplementary Figure 1). For each pairwise treatment comparison 

(dopamine vs phenylephrine, dopamine vs norepinephrine, and phenylephrine vs 

norepinephrine), we calculated a standardized mean difference before (unweighted) and 

after implementation of IPW. Then, for each selected confounder we graphed the 

maximum standardized mean difference across the three vasopressor treatment 

comparisons. From these plots, we evaluated the balance of potential confounders between 

the comparison groups.  

2.3.3. Sensitivity analysis 

We conducted several sensitivity analyses to assess the robustness of these results. We used 

multiple logistic regression models to fit the outcome mortality and covariate vasopressors, 

as well as, variables selected using GLM Lasso and stepwise selection[28] based on Akaike 

Information Criterion (AIC)[29]. We further applied other causal inference methods, but 

since the results were consistent and for the sake of brevity, we did not include them here. 

In order to account for baseline blood pressure and heart rate as potential confounders, we 

performed a subgroup analysis limited to only those that had these data available (available 

in 37% of the subjects) and included blood pressure and heart rate in the final outcome 

model. To account for other complications, we also included the same 443 diagnosis 

present on admission as confounders in the model. Furthermore, to adjust the model by 
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initial GCS, we used propensity score matching based on a subgroup of patients (40% of 

non-traumatic cohort) with at least one record of GCS prior to the treatment.  

 

2.4. Results 

Of 2,634 non-traumatic SAH patients, 559 (21.2%), 1,342 (50.9%), and 733 (27.8%) 

were initially treated with dopamine, phenylephrine, and norepinephrine respectively. 

Baseline demographics, characteristics, mortality, and comorbidities are summarized by 

the three treatment groups in Table 2.1.  

Table 2.1: Baseline demographics and clinical characteristics/outcomes of non-traumatic 

aneurysmal SAH patients by vasopressor treatment group.  

Characteristic Total Dopamine Phenylephrine Norepinephrine pValue 

Baseline/demographics      

 No. of patients (%) 2634 (100) 559 (21.2) 1342 (50.9) 733(27.8) <0.001 

 Mean age ± SD, yrs 56.5  

± 14.7 

58.3  

± 15.4 

56.2 

 ± 14.3 

55.7  

± 15.0 
0.003 

 Female sex, % 63.9 65.1 63.6 63.4 0.79 

 Race, %     <0.001 

  White 66.0 66.9 68.0 61.8  

  African American 22.7 22.2 19.7 28.5  

  Other 11.3 10.9 12.4 9.7  

 Mean SBP*  122.4 113.8 126.4  117.6 <0.001 
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Characteristic Total Dopamine Phenylephrine Norepinephrine pValue 

    ± SD  ± 28.9  ± 30.7 ± 27.2  ± 30.1 

 Mean DBP* 

    ± SD 

65.4  

± 16.3 

64.3 

 ± 17.5 

67.0  

± 15.2 

63.2 

 ± 17.6 
0.004 

 Mean HR*  

    ± SD 

84.3  

± 21.9 

84.4 

 ± 24.0 

80.4  

± 18.7 

92.0 

 ± 24.6 
<0.001 

Outcomes/comorbidities      

 Mortality, % 36.5 50.6 24.5 47.6 <0.001 

 Mean LOS†  

    ± SD, days 

17.5 

 ± 19.8 

13.1  

± 15 

19.2 

 ± 15.9 

17.9 

 ± 27.7 
<0.001 

 Pneumonia, % 22.3 16.1 22.1 29.2 <0.001 

 Anemia, % 20.0 17.2 18.8 24.6 0.001 

 Sepsis, % 10.1 7.3 7.5 17.1 <0.001 

 MI, % 6.5 7.5 4.4 9.5 <0.001 

 Acute renal failure, % 9.9 8.9 6.6 17.2 <0.001 

 Pulmonary edema, % 1.3 0.4 1.2 2.0 0.03 

 Heart failure, % 9.4 9.5 7.7 12.4 0.002 

 Diabetes, % 10.8 11.6 9.6 12.4 0.11 

 Liver disease, % 2.1 1.4 1.5 3.5 0.003 

 Mean CCI ± SD 1.8 ± 1.0 1.7 ± 0.9 1.7 ± 1.0 2 ± 1.2 <0.001 

LOS = hospital length of stay. All p values are calculated using an ANOVA or Fisher’s exact test. 

*Baseline blood pressure and heart rate (the last measurement prior to the administration of the 

first vasopressor) were available and analyzed for the 37% available subjects. †For LOS one 

patient is excluded due to incomplete data; medians are 15, 8, 16, and 14, respectively (p < 

0.001). 
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2.4.1. Baseline demographics and vital signs 

The population includes 64% females and the majority (66%) are white race. Patients 

administered dopamine were on average slightly older than those in the other two 

treatment groups (58.3, 56.2 and 55.7 years old for dopamine, phenylephrine, and 

norepinephrine groups, respectively, p=0.003). The phenylephrine group had the largest 

percentage of whites (68%) and the smallest percentage of African-Americans (19.7%) 

among the three groups (p <0.001). The patients in the three treatment groups had 

different average baseline blood pressures and heart rates, where the average heart rates 

were higher in the norepinephrine group, and the average blood pressures were higher in 

the phenylephrine group, compared to that of other two treatment groups (p=0.001, 

0.004). 

2.4.2. Comorbidities and outcomes 

Among 2,634 non-traumatic SAH patients, 59.8% were discharged alive, 36.5% died in 

hospital or discharged to hospice care, and 3.7% had an unknown mortality status. There 

was a markedly lower mortality rate in the phenylephrine group compared to dopamine 

and norepinephrine groups (24.5%, 50.6%, and 47.6%, respectively; p<0.001, Table 2.1). 

The norepinephrine group had a higher burden of comorbidities including CCI, 

pneumonia, anemia, sepsis, myocardial infarction, acute renal failure, and heart failure.  

2.4.3. Glasgow Coma Score (GCS) 

Table 2.2 presents the patient percentages and mortality by treatment group and GCS 

categories for the 980 (40% of non-traumatic SAH) patients with at least one GCS record 

prior to administration of the vasopressors. Patients in the phenylephrine group had more 
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favorable initial GCS scores than those in dopamine and norepinephrine. For example, 

there were a smaller percentage of patients with GCS between 3-5 among the 

phenylephrine group (48.1%) compared to dopamine and norepinephrine (69.9% and 

67.6%, respectively). However, when comparing the treatment groups among each 

subgroup of GCS category, phenylephrine consistently had lower mortality rates. This 

observation was confirmed in propensity-matched sensitivity analysis below.  

Table 2.2: Percentage of patients according to GCS scores in each of the three treatment 

groups and mortality breakdown by treatment group and GCS categories 

 

GCS Score 

 

Treatment Group 3–5 6–8 9–11 12–14 15 Total 

Percentage of patients       

 Dopamine 69.9 13.3 1.8 11.5 3.5 100 

     Norepinephrine 67.6 14.3 4.1 10.2 3.8 100 

 Phenylephrine 48.1 19.7 10.8 17.5 4.0 100 

Mortality rate       

 Dopamine 73.4 40.0 50.0 15.4 25.0 60.2 

 Norepinephrine 69.5 26.7 15.4 6.3 50.0 54.0 

 Phenylephrine 40.6 11.1 4.7 1.0 4.2 22.5 

Weighted averages 55.7 17.5 7.6 3.4 20.0  

All data given as percentages. 
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2.4.4. Vasopressor treatment effects based on causal inference analysis 

Table 2.3 summarizes the results from the propensity score model, and Supplementary 

Figure 1 presents a graphical representation of the balance achieved through IPW. The 

adjusted (controlled for age, race, marital status, and gender) odds for mortality in the 

dopamine and norepinephrine groups were significantly higher than that for the 

phenylephrine group, in both unweighted and propensity weighted models. Specifically, 

propensity adjustment via IPW modestly attenuated the adjusted odds ratio, but mortality 

remain increased for both dopamine and norepinephrine compared with phenylephrine 

(unweighted OR =3.02, 95% CI=[2.42, 3.76]; weighted OR=2.19, 95% CI=[1.70, 2.81]) 

and (unweighted OR=2.63, 95% CI=[2.15, 3.22]; weighted OR=2.24, 95% CI=[1.80, 

2.80]). Furthermore, there was no significant difference between the odds of mortality for 

dopamine and norepinephrine (OR=0.97, 95% CI=[0.75-1.27]).  

Table 2.3: Association of treatment with mortality using a logistic regression model 

(unweighted), and propensity adjustment via IPW (weighted) for nontraumatic 

aneurysmal SAH subjects, adjusted for age, race, marital status, and sex 

  

Unweighted Model Weighted Model 

Comparison 

Deaths/Cohort 

(%) 

OR  

(95% CI) p Value 

OR  

(95% CI) pValue 

Dopamine vs phenylephrine     

 Dopamine 251/492  

(51%) 

3.02  

(2.42–3.76) 
<0.0001 

2.19  

(1.70–2.81) 
<0.001 

Phenylephrine 318/1253  

(25%) 
Ref Ref Ref Ref 
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Unweighted Model Weighted Model 

Comparison 

Deaths/Cohort 

(%) 

OR  

(95% CI) p Value 

OR  

(95% CI) pValue 

Norepinephrine vs phenylephrine     

Norepinephrine 311/672  

(46%) 

2.63  

(2.15–3.22) 
<0.0001 

2.24  

(1.80–2.80) 
<0.001 

Phenylephrine 318/1253  

(25%) 
Ref Ref Ref Ref 

Dopamine vs norepinephrine     

 Dopamine 251/492  

(51%) 

1.15  

(0.91–1.45) 
0.25 

0.97 

 (0.75–1.27) 
0.85 

Norepinephrine 311/672  

(46%) 
Ref Ref Ref Ref 

 

 

2.4.5. Sensitivity analyses  

The vital sign records are not available in the database prior to 2009, and it is the 

hospital’s decision which tables to report to the Cerner database. Hence, important 

baseline measurements such as systolic blood pressure (SBP), diastolic blood pressure 

(DBP), and heart rate (HR) are only available for 37% of patients in our cohort. We 

conducted subgroup analyses using the patients who had available data on baseline DBP, 

SBP, HR, and potential confounders of the treatment outcome association 

(Supplementary Tables 2-3). Accounting for these measurements did not change the 

findings. Furthermore, a subgroup analysis based on 40% of non-traumatic patients with 

at least one GCS record and matched based on GCS, and demographic variables, 

confirmed the results, with OR=4.31, 95% CI=[2.53-7.32] for norepinephrine vs 

phenylephrine,  OR=3.01, 95% CI=[1.07-8.48] for dopamine vs phenylephrine and 
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OR=0.98, 95% CI=[0.39-2.44] for dopamine vs norepinephrine (Supplementary Table 4). 

Supplementary tables 5-7 show that GCS and demographic factors were well balanced 

between each pair of treatments. We confirmed the associations between the initial 

vasopressor and mortality with several causal inference statistical models. For example, 

we conducted pairwise treatment analyses by creating separate propensity score models 

for each group of treatments (i.e., dopamine vs phenylephrine, norepinephrine vs 

phenylephrine, dopamine vs norepinephrine). We also examined whether the percentage 

of subjects that died differed by treatment group in the subgroups of subjects who had at 

least one of three comorbidities: myocardial infarction, acute renal failure, or sepsis 

(Supplementary Table 8).  

 

 

Table 2.4 summarizes the treatment effect on mortality in a logistic regression with two 

underlying variable selection approaches: Stepwise and LASSO. Although in this study 

we are primarily interested in the non-traumatic SAH cohort (2634 patients), we repeated 

the analyses for all SAH patients (4,810 patients, including traumatic SAH patients) and 

for the subgroup of patients with records for DBP, SBP, and HR and for those without 

these vital signs. The results were consistent with our propensity score models. 

Sensitivity analysis showed the OR of mortality for the dopamine versus phenylephrine 

group ranged from [1.54-2.86], which contains our reported point estimate from the full 

sample. No significant difference in the odds of mortality was seen between dopamine 
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and norepinephrine range = [0.86-1.11]. The same results stand when we take into 

account other complications and diagnoses which were present at admission.  

 

 

Table 2.4: Logistic regression for phenylephrine and norepinephrine versus dopamine 

(the reference treatment) adjusted for variables selected using LASSO and stepwise 

methods 

Cohort Dopamine vs Phenylephrine Dopamine vs Norepinephrine 

All SAH Patients   

 LASSO   

  All 2.00 (<0.001) 0.86 (0.16) 

  All w/ BP-HR 2.22 (<0.001) 0.88 (0.55) 

  All w/o BP-HR 1.78 (<0.001) 0.88 (0.34) 

 Stepwise   

  All 1.98 (<0.001) 0.86 (0.14) 

  All w/ BP-HR 2.39 (<0.001) 0.92 (0.7) 

  All w/o BP-HR 1.87 (<0.001) 0.89 (0.37) 

Nontraumatic SAH   

 LASSO   

  Nontraumatic 1.79 (<0.001) 0.86 (0.32) 

  Nontraumatic w/ BP-HR 2.47 (0.004) 1.01 (0.98) 

  Nontraumatic w/o BP-HR 1.54 (0.007) 0.87 (0.46) 

 Stepwise   

  Nontraumatic 1.85 (<0.001) 0.86 (0.3) 

  Nontraumatic w/ BP-HR 2.84 (0.001) 1.11 (0.74) 
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Cohort Dopamine vs Phenylephrine Dopamine vs Norepinephrine 

  Nontraumatic w/o BP-HR 1.60 (0.003) 0.87 (0.44) 

BP = blood pressure. For each model the OR (p value) is given. The analyses are also 

repeated for all SAH patients, for subgroups of patients with baseline blood pressure and 

HR, and those without baseline blood pressure and HR. 

 

 

2.5. Discussion 

Patients who received phenylephrine, dopamine, or norepinephrine as their first or only 

vasopressor had a mortality rate of 24.5%, 47.6%, and 50.6% respectively (Table 1). The 

treatment administered to the most patients was phenylephrine (48%). Importantly, the 

mortality benefit associated with phenylephrine was preserved even when the acute co-

morbidities of acute myocardial infarction, renal failure, and sepsis were included.  

Our data indicates that phenylephrine administered for non-traumatic SAH is associated 

with reduced mortality over other vasopressors, which the investigators found surprising 

due to the sympathomimetic role of phenylephrine in causing vasoconstriction while not 

increasing cardiac output[30]. Some research up to this point suggests phenylephrine is 

not the optimal drug for aneurysmal SAH. In an evaluation by Roy et al, among 63 

patients who developed DCI associated with SAH, phenylephrine was associated with 

worse outcomes[8]. While our population did have a substantial percentage of patients 

who had a change in vasopressor during the same encounter of care (33% of non-

traumatic SAH patients), for the purposes of our analysis we followed the intention to 

treat approach by categorizing each patient to their initial vasopressor administered. 
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Interestingly, Joseph et al analyzed cerebral blood flow using xenon tomography and 

found that cerebral blood flow increased by 75% with phenylephrine, though this study 

did not directly compare phenylephrine to dopamine or norepinephrine[31]. Similarly, 

Muizelaar found increases in cerebral blood flow with phenylephrine administration 

using xenon tracers[32].  

The study population appears to reflect previous studies assessing SAH management; in 

fact the fraction of patients receiving phenylephrine identically matched those reported in 

2011 by Meyer et al when she performed a survey of practicing neuro-intensivists[33]. 

Meyer’s survey had an excellent response rate of 45%. Phenylephrine has several 

attributes which set it apart from norepinephrine and dopamine, including the potential to 

be given peripherally for many hours safely with appropriate concentration and safety 

protocols, thereby avoiding potential delays related to hospital policies preventing 

peripheral administration of dopamine or norepinephrine[34]. As norepinephrine and 

dopamine are recognized to be relatively more potent than phenylephrine, their use may 

potentially lead to blood pressure increases which exceed the endpoint established by the 

neurocritical care team. Such a phenomenon may lead to complications stemming from 

excessive hypertension, such as posterior reversible encephalopathy syndrome (PRES). 

While PRES is noted to be rare, complications from this disease are known to occur and 

may potentially be unrecognized in routine clinical care[35]. Phenylephrine has not been 

associated with changes in ICP, while dopamine is associated with slightly higher ICPs 

than norepinephrine in a small clinical study of head trauma patients where patients were 

switched between norepinephrine and dopamine[36].  
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The trend to refer patients to high volume centers is well founded and rationalized by the 

presence of tertiary and experienced multidisciplinary personnel with a full array of 

interventional capabilities including neuroangiography; the threshold previously described 

is >60 cases per year[37]. We were not able to precisely validate such findings, though 

there was a significant trend favoring care in a more experienced center which supports the 

current health system paradigm (Supplementary Figure 2). 

Limitations to our study include the retrospective nature of the Cerner Health Facts 

database. While our population is relatively large and representative given the incidence 

rate of SAH in USA[2,38,39] and includes granular data of drugs administered, 

functional status upon discharge (modified Ranking, etc.) was not available and such 

outcomes cannot be considered with this dataset. Additionally, while we used the new 

diagnosis of SAH and the concomitant administration of pressors to indicate severe 

disease, we were not able to confirm with imaging whether or not included patients had 

aneurysmal disease. When adding GCS to the propensity score model to account for 

patient severity, IPW did not return a desirable GCS balance among the vasopressor 

treatment groups; hence instead of IPW we used propensity scores to match the subjects 

and obtained satisfactory GCS and other covariate balance. Given that this analysis 

confirmed our primary analyses, we expect that the medication variables and 

demographics probably captured patient severity and factors associated with mortality. 

Finally, the important comorbidities that could be confounders of the treatment-mortality 

relationship, have no time of onset information in the database. Therefore, we cannot 

determine whether comorbidities existed before the administration of vasopressors, or 
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whether they occurred due to the vasopressors or associated complications, and could be 

considered as surrogate outcomes. Hence, we only adjusted for known pretreatment 

medications (surrogates for comorbidities) and demographics in the propensity model. 

Due to potential imprecision in available baseline diagnostic variables for use in the 

propensity models, there is the possibility for unmeasured confounding since the odd 

ratios become more and more attenuated as the adjustment performed becomes more 

stringent, but never to null. This could be a sign of unmeasured confounding, violating 

one of the two fundamental assumptions of propensity scoring. Being able to include 

more pretreatment clinical covariates in the model would further strengthen the analysis. 

Future work includes studying the difference conflicting potential for multi-drug therapy 

versus non-drug pressor therapy 

 

2.6. Conclusion 

Dopamine, phenylephrine, and norepinephrine are frequently administered in the setting of 

high grade SAH. Phenylephrine administration is associated with a substantial reduction 

in mortality among these three agents for patients admitted with a new diagnosis of 

aneurysmal subarachnoid hemorrhage requiring vasopressors. Dopamine usage was 

associated with the highest mortality. Prospective studies are warranted to further evaluate 

these findings.  
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2.8. Supplementary Material 

Supplementary 2 Table 1: National Drug Codes for Vasopressors used for the Study 

National Drug 

Code (NDC) 

Brand Name Generic 

Name 

Strength Route 

24134204 Neo-Synephrine phenylephrine 10 mg/ml injectable 

74180001 Neo-Synephrine phenylephrine 10 mg/ml injectable 

409180001 Neo-Synephrine phenylephrine 10 mg/mL injectable 

364242646 phenylephrine Hydrochloride phenylephrine 10 mg/ml injectable 

517029925 phenylephrine Hydrochloride phenylephrine 10 mg/ml injectable 

517040525 phenylephrine Hydrochloride phenylephrine 10 mg/ml injectable 

641048225 phenylephrine Hydrochloride phenylephrine 10 mg/ml injectable 

641608825 phenylephrine Hydrochloride phenylephrine   injectable 

641614225 phenylephrine Hydrochloride phenylephrine 10 mg/mL injectable 

703163104 phenylephrine Hydrochloride phenylephrine 10 mg/ml injectable 

10019016301 phenylephrine Hydrochloride phenylephrine 10 mg/ml injectable 

10019016312 phenylephrine Hydrochloride phenylephrine 10 mg/ml injectable 

24200009150 phenylephrine Hydrochloride phenylephrine   intravenous 

24200109610 phenylephrine Hydrochloride phenylephrine   intravenous 

52533017112 phenylephrine Hydrochloride phenylephrine 100 

mcg/mL-

NaCl 0.9% 

intravenous 

61553030765 phenylephrine Hydrochloride phenylephrine   intravenous 

61553030772 phenylephrine Hydrochloride phenylephrine     

66647600942 phenylephrine Hydrochloride phenylephrine   intravenous 

66758001604 phenylephrine Hydrochloride phenylephrine 10 mg/mL injectable 
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National Drug 

Code (NDC) 

Brand Name Generic 

Name 

Strength Route 

66758001701 phenylephrine Hydrochloride phenylephrine 10 mg/ml injectable 

409337525 Levophed norepinephrine 1 mg/mL intravenous 

24112302 Levophed Bitartrate norepinephrine 1 mg/ml intravenous 

74144304 Levophed Bitartrate norepinephrine 1 mg/ml intravenous 

247120004 Levophed Bitartrate norepinephrine 1 mg/mL intravenous 

409144304 Levophed Bitartrate norepinephrine 1 mg/mL intravenous 

409337504 Levophed Bitartrate norepinephrine 1 mg/mL intravenous 

61553013461 norepinephrine norepinephrine 4 mg/250 

mL-NaCl 

0.9% 

injectable 

74704101 norepinephrine Bitartrate norepinephrine 1 mg/ml intravenous 

574085410 norepinephrine Bitartrate norepinephrine 1 mg/ml intravenous 

703115303 norepinephrine Bitartrate norepinephrine 1 mg/ml intravenous 

781893285 norepinephrine Bitartrate norepinephrine   intravenous 

24200011610 norepinephrine Bitartrate norepinephrine   injectable 

24200011810 norepinephrine Bitartrate norepinephrine   injectable 

24200111610 norepinephrine Bitartrate norepinephrine 4 mg/250 

mL-NaCl 

0.9% 

injectable 

24200111810 norepinephrine Bitartrate norepinephrine 8 mg/250 

mL-NaCl 

0.9% 

injectable 

36000016210 norepinephrine Bitartrate norepinephrine   intravenous 
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National Drug 

Code (NDC) 

Brand Name Generic 

Name 

Strength Route 

55390000210 norepinephrine Bitartrate norepinephrine 1 mg/ml intravenous 

61553011511 norepinephrine Bitartrate norepinephrine     

61553013411 norepinephrine Bitartrate norepinephrine     

61553015311 norepinephrine Bitartrate norepinephrine     

61553027211 norepinephrine Bitartrate norepinephrine   injectable 

66647615633 norepinephrine Bitartrate norepinephrine   injectable 

66647615733 norepinephrine Bitartrate norepinephrine   injectable 

223748605 dopamine dopamine 80 mg/ml intravenous 

74426501 dopamine Hydrochloride dopamine 80 mg/ml intravenous 

74581916 dopamine Hydrochloride dopamine 40 mg/ml intravenous 

74582001 dopamine Hydrochloride dopamine 40 mg/ml intravenous 

74582010 dopamine Hydrochloride dopamine 40 mg/ml intravenous 

74780824 dopamine Hydrochloride dopamine 5%-80 

mg/100 ml 

intravenous 

74780922 dopamine Hydrochloride dopamine 5%-160 

mg/100 ml 

intravenous 

74780924 dopamine Hydrochloride dopamine 5%-160 

mg/100 ml 

intravenous 

74781022 dopamine Hydrochloride dopamine 5%-320 

mg/100 ml 

intravenous 

74910420 dopamine Hydrochloride dopamine 40 mg/ml intravenous 

186063901 dopamine Hydrochloride dopamine 40 mg/ml intravenous 



 

38 

 

National Drug 

Code (NDC) 

Brand Name Generic 

Name 

Strength Route 

264148255 dopamine Hydrochloride dopamine 5%-160 

mg/100 ml 

intravenous 

264514820 dopamine Hydrochloride dopamine 5%-160 

mg/100 ml 

intravenous 

338100502 dopamine Hydrochloride dopamine 5%-80 

mg/100 ml 

intravenous 

338100702 dopamine Hydrochloride dopamine 5%-160 

mg/100 ml 

intravenous 

338100703 dopamine Hydrochloride dopamine 5%-160 

mg/100 ml 

intravenous 

338100902 dopamine Hydrochloride dopamine 5%-320 

mg/100 ml 

intravenous 

409426501 dopamine Hydrochloride dopamine 80 mg/mL intravenous 

409582001 dopamine Hydrochloride dopamine 40 mg/mL intravenous 

409780822 dopamine Hydrochloride dopamine 5%-80 

mg/100 mL 

intravenous 

409780824 dopamine Hydrochloride dopamine 5%-80 

mg/100 mL 

intravenous 

409780922 dopamine Hydrochloride dopamine 5%-160 

mg/100 mL 

intravenous 

409780924 dopamine Hydrochloride dopamine 5%-160 

mg/100 mL 

intravenous 
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National Drug 

Code (NDC) 

Brand Name Generic 

Name 

Strength Route 

409781022 dopamine Hydrochloride dopamine 5%-320 

mg/100 mL 

intravenous 

409910420 dopamine Hydrochloride dopamine 40 mg/mL intravenous 

517130525 dopamine Hydrochloride dopamine 160 mg/ml intravenous 

517180525 dopamine Hydrochloride dopamine 40 mg/ml intravenous 

517190525 dopamine Hydrochloride dopamine 80 mg/ml intravenous 

590004006 Intropin dopamine 40 mg/ml intravenous 
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Supplementary 2 Table 2: Association of treatment with mortality using logistic 

regression model (unweighted)  and propensity adjustment via inverse probability 

weighting (weighted) for non-traumatic SAH subjects in the subgroup that had baseline 

diastolic blood pressure (DBP), systolic blood pressure (SBP), heart rate (HR) (N=964), 

adjusted for age, race, marital status, gender, DBP, SBP and HR. 

Comparison Deaths/N (%) 

Unweighted model Weighted model 

OR (95% CI) P-value OR (95% CI) P-value 

dopamine vs phenylephrine 

dopamine 48/88 (55) 3.66 (2.26-5.94) <0.0001 3.79 (2.07-6.92) <0.0001 

phenylephrine 129/569 (23) Ref Ref Ref Ref 

norepinephrine vs phenylephrine 

norepinephrine 142/283 (50) 2.83 (2.04-3.94) <0.0001 2.01 (1.40-2.89) 0.0002 

phenylephrine 129/569 (23) Ref Ref Ref Ref 

dopamine vs norepinephrine 

dopamine 48/88 (55) 1.29 (0.78-2.15) 0.3229 1.88 (1.00-3.56) 0.0512 

norepinephrine 142/283 (50) Ref Ref Ref Ref 
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Supplementary 2 Table 3: Association of treatment with mortality using logistic 

regression model (unweighted) and propensity adjustment via inverse probability 

weighting (weighted) for non-traumatic SAH subjects in the subgroup that did not have 

diastolic blood pressure (DBP), systolic blood pressure (SBP), heart rate (HR) (N=1670), 

adjusted for age, race, marital status, and gender. 

  Unweighted model Weighted model 

Comparison Deaths/N OR (95% CI) P-value OR (95% CI) P-value 

dopamine vs phenylephrine 

dopamine 203/404 (50) 2.63 (2.02-3.41) <0.0001 1.83 (1.38-2.43) <0.0001 

phenylephrine 189/684 (28) Ref Ref Ref Ref 

norepinephrine vs phenylephrine 

norepinephrine 169/389 (43) 2.12 (1.62-2.77) <0.0001 1.91 (1.42-2.57) <0.0001 

Phenylephrine 189/684 (28) Ref Ref Ref Ref 

dopamine vs norepinephrine 

dopamine 203/404 (50) 1.24 (0.93-1.65) 0.1363 0.96 (0.70-1.31) 0.7891 

norepinephrine 169/389 (43) Ref Ref Ref Ref 
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Supplementary 2 Table 4: Association of treatment with mortality using logistic 

regression model and propensity adjustment via propensity score matching for non-

traumatic SAH subjects in the subgroup that GCS (Glasgow Coma Score) records(N=980), 

adjusted for age, race, marital status, gender, and GCS.                

Comparison Deaths/N (%) OR (95% CI) p-Value 

Dopamine vs phenylephrine (96 pairs) 

dopamine 52/96 (54) 3.01 (1.07-8.48) 0.036 

phenylephrine 36/96 (38) Ref Ref 

Norepinephrine vs phenylephrine (296 pairs) 

norepinephrine 151/296 (51) 4.31 (2.53-7.32) <0.0001 

phenylephrine 71/296(24) Ref Ref 

Dopamine vs norepinephrine (96 pairs) 

dopamine 52/96(54) 0.98 (0.39-2.44) 0.96 

norepinephrine 49/96 (51) Ref Ref 
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Supplementary 2 Table 5: Distribution comparison of demographic variables and 

Glasgow Coma Score (GCS) after propensity matching between phenylephrine and 

dopamine treatment groups. 

Characteristics phenylephrine Dopamine p-value 

n 96 96 
 

Age (years), mean (SD) 57.88 (15.75) 59.06 (15.17) 0.595 

Race (%) 
  

0.557 

African-American 20 (20.8) 22 (22.9) 

Other 8 ( 8.3) 12 (12.5) 

White 68 (70.8) 62 (64.6) 

Male, n (%) 34 (35.4) 33 (34.4) 1 

Marital Status, n (%) 
  

0.938 

Divorced 8 ( 8.3) 9 ( 9.4) 
 

Married 50 (52.1) 49 (51.0) 

Single 29 (30.2) 27 (28.1) 

Unknown 2 ( 2.1) 4 ( 4.2) 
 

Widowed 7 ( 7.3) 7 ( 7.3) 
 

GCS score, mean (SD) 5.24 (3.79) 5.51 (4.12) 0.636 
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Supplementary 2 Table 6: Distribution comparison of demographic variables and 

Glasgow Coma Score (GCS) after propensity matching between phenylephrine and 

norepinephrine treatment groups. 

Characteristics phenylephrine norepinephrine p-value 

n 296 296 
 

Age (years), mean (SD) 56.40 (15.25) 56.14 (15.68) 0.836 

Race (%)       0.531 

African-American    93 (31.4)     97 (32.8)  

Other    26 ( 8.8)     33 (11.1)  

White   177 (59.8)    166 (56.1)  

Male, n (%)   105 (35.5)    112 (37.8)  0.609 

Marital Status, n (%)       1 

Divorced    29 ( 9.8)     30 (10.1)  

Married   120 (40.5)    120 (40.5)  

Single   109 (36.8)    107 (36.1)  

Unknown    15 ( 5.1)     15 ( 5.1)  

Widowed    23 ( 7.8)     24 ( 8.1)  

GCS score, mean (SD)  5.64 (3.82)  5.46 (3.90) 0.558 
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Supplementary 2 Table 7: Distribution comparison of demographic variables and 

Glasgow Coma Score (GCS) after propensity matching between norepinephrine and 

dopamine treatment groups. 

Characteristics norepinephrine dopamine p-value 

n 96 96 
 

Age (years), mean (SD) 57.95 (16.01) 59.06 (15.17) 0.621 

Race (%)         0.968 

African-American    23 (24.0)     22 (22.9)  

Other    11 (11.5)     12 (12.5)  

White    62 (64.6)     62 (64.6)  

Male, n (%)    27 (28.1)     33 (34.4)  0.436 

Marital Status, n (%)         0.967 

Divorced     9 ( 9.4)      9 ( 9.4)  
 

Married    50 (52.1)     49 (51.0)  

Single    25 (26.0)     27 (28.1)  

Unknown     6 ( 6.2)      4 ( 4.2)  
 

Widowed     6 ( 6.2)      7 ( 7.3)  
 

GCS score, mean (SD)  5.64 (4.17)  5.51 (4.12) 0.835 
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Supplementary 2 Table 8: Mortality by Treatment Class separated by the cumulative 

comorbidity of at least one of the three diseases MI, ARF, or Sepsis. 

Diagnosis dopamine phenylephrine norepinephrine 

MI, ARF, or Sepsis 50.8 21.5 42.7 

None of the three 50.0 41.4 58.5 

 

 

 

Supplementary 2 Table 9: Mortality based on vasopressor choice for patients with only 

one of the three vasopressor prescription 

Vasopressor percentage                     Mortality 

Dopamine 19.1 54.5 

Phenylephrine 52.1 20.0 

Norepinephrine 28.8 46.9 
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Supplementary 2 Table 10: Shows percentage of patients with one, two or three 

different vasopressors within each of the three treatment groups. 

Vasopressor-Class 

Number of Vasopressors 

one two Three 

    Dopamine 60.1 33.3 3.7 

Phenylephrine 68.3 25.8 6.0 

Norepinephrine 69.2 27.8 3.0 
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Supplementary 2 Figure 1: Graphical representation of covariate balance as measured by 

the standardized mean difference (SMD) within the unweighted and weighted data. In both 

plots, the balance achieved through inverse probability weighting is better than the original 

unweighted data.   
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Supplementary 2 Figure 2: Mortality rate vs number of admitted SAH patients by hospital 

showing a negative association (correlation = -0.49, p-value=0.017). Hospitals with fewer 

than 30 subjects were pooled to estimate the mortality rates into the following bins with 

respect to the number of subjects: [1,5), [5,10) ,[10,20), and [20,30). Hospitals with 30 

subjects or more were plotted individually. 
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3.1. Abstract 

Objective: Predictive disease modeling using electronic health record (EHR) data is a 

growing field. Although clinical data in their raw form can be used directly for predictive 

modeling, it is a common practice to map data to standard terminologies to facilitate data 

aggregation and reuse. There is, however, a lack of systematic investigation of how 

different representations could affect the performance of predictive models, especially in 

the context of machine learning and deep learning. 

Methods: We projected the input diagnoses data in the Cerner HealthFacts® database to 

UMLS and five other terminologies, including CCS, CCSR, ICD-9, ICD-10, and PheWAS, 

and evaluated the prediction performances of these terminologies on two different tasks: 

the risk prediction of heart failure in diabetes patients (DHF) and the risk prediction of 

pancreatic cancer (PC). Two popular models were evaluated: logistic regression (LR) and 

a recurrent neural network (RNN).  

Results: For LR, using UMLS delivered the optimal AUROC results in both DHF 

(81.15%) and PC (80.53%) tasks. For RNN, UMLS worked best for PC prediction 

(AUROC 82.24%), second only (AUROC 85.55%) to PheWAS (AUROC 85.87%) for 

DHF prediction.  

Discussion/Conclusion: In our experiments, terminologies with larger vocabularies and 

finer-grained representations were associated with better prediction performances. In 

particular, UMLS is consistently one of the best-performing ones. We believe that our work 

may help to inform better designs of predictive models, although further investigation is 

warranted.   
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3.2. Background 

In the current big data era of biomedical informatics, abundant electronic health record 

(EHR) data are becoming available, leading to the development of predictive modeling 

algorithms. In the past five years, thousands of predictive modeling-related studies have 

utilized a variety of methods, such as logistic regression (LR) or deep learning, to predict 

the patient’s risk of developing such diseases as heart failure[1–5] and pancreatic 

cancer.[6,7] An important, but unaddressed, research question in regard to predictive 

modeling is how to efficiently feed the EHR data to models[8–10].  

Structured diagnosis data in EHR datasets are usually heterogeneous, leading to challenges 

in data analysis, including interpretability and generalizability issues. For example, 

different hospitals and departments use different terminologies; thus, to develop a 

generalizable model, researchers either train the model on all of the different terminologies 

in use or introduce a standardizer that can normalize the data into a single terminology. 

Terminology standards are evolving constantly, and newer versions will introduce 

additional levels of data redundancy. For example, patient diagnosis information was 

commonly stored in the International Classification of Diseases-ninth revision (ICD-9) 

format before 2015, but then, for billing purposes, hospitals had to upgrade it to the tenth 

revision (ICD-10), which introduced a higher level of details. Currently, an even newer 

revision, ICD-11, is being released. Further, in many cases, the coding system in EHRs is 

a mix of multiple ICD terminologies. As a result, it is difficult to organize information 

represented in heterogeneous formats and for models trained on older terminologies (e.g., 

ICD-9 codes) to generalize to new terminologies without proper normalizations.  
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EHR vendors also are introducing internal codes that can be mapped to different standard 

terminologies in a one-to-one manner to facilitate various system functionalities. Using 

such codes for predictive model training may restrict the generalizability of such models 

to vendor-specific solutions or even to a single hospital if the mappings are different 

between sites. In addition, many of the existing terminology mappings are in many-to-

many styles, which might hinder the accuracy and the interpretability of the model. 

Terminology normalization involves assigning a unique standard medical term to a health 

condition.[11] Most terminology mapping and normalization-related studies concern the 

development of mappings between different terminologies,[12–14] the tools developed for 

automated mapping suggestions, or the development of concept embeddings based on 

different terminologies.[15–19] There are, however, several practical questions on 

terminology normalization that have not been addressed. The first is how to find the 

optimal level of granularity required for predictive modeling, assuming that the data source 

is homogeneous. For example, it is not known whether we should use the diagnosis 

information as originally recorded in the dataset or group similar or relevant codes to 

reduce the input dimension.  

The second is how important terminology normalization is when the data source is 

heterogeneous. Rajkomar et al.[10] described the advantage of using the Fast Healthcare 

Interoperability Resources (FHIR) format for interchangeable information representation 

but acknowledged that the limited semantic consistency from unharmonized data may have 

a negative impact on the model performance. In our previous work,[4] we compared the 

use of Clinical Classifications Software (CCS) codes with the raw data from Cerner 
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HealthFacts® and found that grouping diagnosis codes was not helpful, which conflicts 

with the findings of other studies[2,9] that the CCS grouping was helpful. Notably, our 

findings also were supported by those of other studies.[18,20] Unified Medical Language 

System (UMLS) provides a multipurpose knowledge source and attracts more research 

attention, as it includes mappings to almost all clinical terminologies at different 

hierarchical levels.[21] It also has been broadly used in concept normalizations in the 

natural language processing NLP domain;[17,22,23] thus, we selected it as our most 

expressive terminology. 

3.3. Objective 

In this study, our objectives are twofold. The first objective is to compare simply feeding 

the models with the raw data, as they were originally collected, versus preprocessing the 

data when mapping it to a single terminology. The second is to evaluate the performance 

of predictive models using UMLS and five other terminologies commonly used in the 

healthcare analytics domain. We used two clinical prediction tasks: predicting the risk to 

develop heart failure among a cohort of type-II diabetes mellitus (DMII) patients and the 

risk to develop pancreatic cancer. Our study cohorts were extracted from the Cerner 

HealthFacts® database, a de-identified EHR database extracted from over 600 hospitals 

with which Cerner has a data use agreement. The original diagnosis data are coded with a 

unique diagnosis identifier (Cerner-Diagnosis ID) that can be mapped to ICD-9, ICD-10-

CM, or ICD-10-CA codes in a one-to-one manner. For comparison, we further mapped the 

diagnoses codes to six terminologies, including UMLS concept unique identifier 

(CUI)[24], ICD-9[25], ICD-10[25], PheWAS[26], and CCS codes in both the single-
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level[27,28] and its refined version (CCSR).[29] We compared the performances using L2 

penalized LR (L2LR) and a bidirectional recurrent neural network (RNN)-based predictive 

model. 

3.4. Methods 

 

3.4.1. Prediction tasks and cohort description 

We evaluated the use of patients’ diagnosis information in different terminology 

representations on two different prediction tasks. The first task is to predict the 

development of heart failure in patients with DMII after at least one month of their first 

DMII diagnosis. The second task is to predict whether the patient will be diagnosed with 

pancreatic cancer in the next visit. The second task is more like a diagnosis aid, as we did 

not specify a prediction window.  

We extracted our cohorts from the Cerner HealthFacts® dataset v.2017,[30] which 

includes de-identified patient information from more than 600 hospitals for more than a 

15-year period. The full cohort for the heart failure prediction in DMII patients consists of 

70,782 cases and 1,095,412 controls denoted as the DHF full cohort, out of which we 

randomly selected a sample of 60,000 cases and 60,000 controls for terminology 

evaluations further denoted as the DHF cohort. Table 3.5 shows the descriptive analysis of 

the selected sample versus the full cohort. For pancreatic cancer prediction, we found 

11,486 eligible cases in the population who were 45 years or older and did not report any 

other cancer diseases before their first pancreatic cancer diagnosis. From a pool of more 

than 25 million matched controls, we randomly selected 17,919 controls to build our 

pancreatic cancer experimental cohort, which was denoted as the PC cohort. We further 
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randomly split each sample cohort into training, validation, and test sets using the ratio of 

7:1:2.  
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Table 3.5. Description of cohorts. 

 

 

We used the patients’ diagnosis information only before the index visit, which is commonly 

the last eligible visit before prediction, to train the predictive models. Details of the cohorts’ 

composition are presented in Appendix A.  

3.4.2. Diagnosis terminology 

Cerner HealthFacts® v. 2017 includes 17,629 ICD-9 codes, 94,044 ICD-10-CM codes, and 

16,044 ICD-10-CA codes, each of which is mapped to a unique Cerner-Diagnosis ID that 

is used to unify the representation of diagnosis among all hospitals’ diagnoses data within 

the Cerner HealthFacts® database. The patient’s diagnosis information is stored mainly 

through the use of Cerner-Diagnosis ID. The main advantage of using this raw data is that 

they include the information of the original code types used for documentation and can be 

Characteristic  

DHF full cohort 

DHF cohort 

(Study sample) 

PC cohort 

(Study sample) 

Case Controls Case Controls Case Controls 

Cohort size (n) 70,782 1,095,412 60,000 60,000 11,486 17,919 

Male %   49%    47%  49%   46%  47%   43% 

Age (mean (std. dev.)) 70 (12) 60 (14) 70 (12) 60 (14) 69 (19) 63 (13) 

Race       

White (%) 76% 70% 77% 71% 80% 75% 

African American (%) 17% 16% 16% 16% 14% 12% 

Average number of visits 13 16 14 15   7   7 

Average number of codes  28 32 30 31 23 21 
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directly used without any further processing. This dilutes the actual value of the patient 

diagnosis, however, as the same diagnosis may be represented by multiple codes. We also 

included the raw data using the Cerner-Diagnosis ID as a baseline terminology. Figure 3.1 

shows our diagnosis terminology mapping roadmap.  

 

 

Figure 3.2. Terminology conversion roadmap 

 

 

 

We used official resources for code mappings. For example, we used the Center of 

Medicare and Medicaid Services’ (CMS) most recent general equivalence mapping (GEM) 

version 2018[25] to map between ICD-9 and ICD-10 codes. For UMLS mapping, we used 

the UMLS knowledge resources available on the UMLS Terminology Services (UTS) 
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website,[24] and we used the latest version of ICD-9 and ICD-10 to CCS single-level 

mapping available on the Agency of Healthcare Research and Quality (AHRQ) 

website[27,28] as well as the CCS Refined version.[29] For PheWAS mapping, we used 

the Phecode maps available in the PheWAS Catalog.[26] We had to review the mappings 

to the raw data for some typos in the Cerner diagnosis dictionary table that led to ICD-9/10 

codes as not exactly matching the corresponding records in different mapping files, due 

mainly to their missing the last digit, which can be either 0 or 9.  

All of the Cerner-Diagnosis IDs in our cohort were successfully mapped to CCS and ICD-

9 codes, regardless of those that were mapped to ‘noDx’ for no mapping as existing in the 

original mapping files. There were approximately 300 ICD-10 codes in our cohort that 

were not mapped that were associated with approximately 100 UMLS codes. We decided 

to ignore those codes, as they appeared only a maximum of 10 times in our cohort. Details 

of the different terminologies used and the mapping are provided in Appendix B of the 

supplementary materials.  

To understand whether the difference in the predictive model accuracy is due to the 

terminology representation itself or to the information loss induced by the mapping 

process, we focused on the ICD-9/ICD-10 conversion as an example. We converted the 

previously converted ICD-9 codes to ICD-10 and named them ICD-10 revert prime (ICD-

10’). We did the same for the previously converted ICD-10 codes and converted them back 

to ICD-9 and named them ICD-9 revert prime (ICD-9’). For the revert prime mappings, 

we used only the original mapping files provided by CMS without any further review or 
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improvement. For reproducibility, we share our codebase and mappings on 

https://github.com/ZhiGroup/terminology_representation. 

3.4.3. Tasks and models 

We evaluated the usefulness of the terminologies described above for two tasks. The first 

task is the prediction of the DMII patients’ risk to develop heart failure after 30 days from 

their first diabetes diagnosis. The second task is the calculation of the risk score of the 

patient to be diagnosed with pancreatic cancer based on the patient’s history until the most 

recent visit. 

For both tasks, we evaluated two models: L2LR and RNN. LR is a popular model for its 

accuracy and interpretability. The majority of currently implemented predictive models are 

based on LR. We used one-hot encoding for the presence/absence of any diagnosis code as 

input for LR. We used the default LR implementation available in the Scikit-Learn[31] 

package which includes L2 penalty for regularization. We also experimented 

hyperparameter grid search for the L2 penalty. In addition, we evaluated a bidirectional 

RNN.  RNNs are appropriate for modeling the sequential nature of patient medical records 

and have been shown to provide high predictive accuracy in the healthcare 

domain.[1,2,4,32] Following Choi et al.,[2–4,33] we represented a patient record as a 

sequence of visits (encounters) and each encounter as a set of diagnosis codes. We used an 

embedding layer to transform one-hot input diagnosis vectors into dense vectors and then 

used a bidirectional gated recurrent unit (GRU) for propagating information across visits 

and a fully connected layer for the output label. Hyperparameters were chosen by Bayesian 

optimization. This architecture was shown to be very competitive in our previous 
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benchmark.[34] We used our previously published code on 

https://github.com/ZhiGroup/pytorch_ehr. A detailed description of our model 

implementation is available in Appendix C. 

3.4.4. Statistical analysis for model comparison 

We used the area under the receiver operating characteristic curve (AUROC) as the 

evaluation metric for the model prediction accuracy. For deterministic methods, such as 

L2LR, we apply the Delong test[35] to calculate the significance of the difference between 

different models’ AUROC. For probabilistic methods, such as RNN (due to random 

initialization of model parameters), we repeated the analyses for RNN models of each 

terminology 10 times, and multi-group one-way ANOVA tests (unpaired t-tests for two 

groups) were used for comparing the means of each terminology. All-pairwise Tukey-

Kramer analysis was used to identify significant group-wise differences.  

 

3.5. Results 

As noted, the description of both cohorts is presented in Table 3.1. Also as noted, we lost 

some patient information for the incomplete terminology mapping, mainly for the primary 

ICD-10 to 9 code mappings and the reversed prime conversions. Nevertheless, that rarely 

leads to loss of a complete patient sample for the initial rules of the minimum number of 

visits, and original diagnosis codes were redefined before the random sample selection in 

the DHF cohort. Thus, our test set of 24,000 patients remains consistent along with the 

evaluations of all of our models. For the PC cohort, only a couple of patients from our test 

https://github.com/ZhiGroup/pytorch_ehr
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set of 5,881 patients were not included in the ICD-9 mappings; those patients were 

excluded from the reported results. 

As shown in Table 3.6, for the DHF prediction, the test AUROC ranges between 78% and 

81% for L2LR and between 83% and 85% for RNN. For the PC prediction, the test AUROC 

ranges between 77% and 80.5% for L2LR and between 79% and 82.5% for RNN. The 

difference between the RNN and L2LR AUROCs remains nearly the same among all 

diagnosis terminologies, approximately 4.9% on average for DHF and 1.5% for PC. The 

best L2LR models’ AUROC is associated with the use of UMLS-CUI on both tasks, 

whereas single-level CCS shows the worst AUROC in all tasks and models. The findings 

remain consistent even with the DHF full cohort (Appendix D), for which UMLS showed 

the highest AUROC (82%). Also, our results remained consistent using LR with different 

regularization hyperparameters for both L1 and L2 regularizations (Appendix E). 

Using the Delong test to understand the difference in the AUROC significance and with a 

p-value of 0.0024 after Bonferroni correction (Figure 3.2(A)), we find that the UMLS 

results are significantly better than those for the other terminologies except for the raw data 

in PC prediction and PheWAS in DHF prediction. For RNN models, UMLS showed the 

highest AUROC for PC prediction, whereas PheWAS was associated with the best 

AUROC for DHF prediction. These pairwise comparison results are statistically significant 

based on the Tukey-Kramer procedure, as shown in Figure 3.2(B) and Appendix F. We 

train and test the RNN models only once on the DHF full cohort (Appendix D). UMLS 

was the second-best performer, with an AUROC of 85.52%, which is 0.34% less than that 
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of the raw data, which showed the highest AUROC, at 85.86%. The AUROC of PheWAS 

was lower, at 85.07%. 

Table 3.6. Prediction performance of different diagnosis terminologies for the DHF and 

PC tasks 

Diagnosis terminology 

Diabetes heart failure cohort 

(DHF) 

Pancreatic cancer cohort          

(PC) 

Number of 

unique 

codes L2LR RNN 

Number of 

unique codes L2LR RNN 

Raw data  

(Cerner-Diagnosis ID) 

26,427 80.61 85.48 

(0.10) 

13,071 80.30 81.43 

(0.37) 

CCS-single level 284  78.07 82.96 

(0.15) 

253 77.23 79.03 

(0.36) 

CCSR 538 78.87 84.17 

(0.21) 

538 77.92 79.63 

(0.34) 

ICD-9 11,187 80.12 85.20 

(0.13) 

7,055 79.15 80.78 

(0.32) 

ICD-10 22,893 79.78 84.35 

(0.20) 

13,620 78.95 79.27 

(0.44) 

PheWAS 1,820  80.71 85.87 

(0.10) 

1,715 78.82 81.15 

(0.31) 

UMLS CUI 29,491 81.15 85.55 

(0.06) 

14,551 80.53 82.24 

(0.29) 

Note. L2LR and RNN show the average and the standard deviation for AUROC on the test set. 

Bold indicates the values with the highest AUROC per task/model.  
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Figure 3.3. Significance of AUROC difference. (A) Logistic regression pairwise 

AUROC difference significance calculated using Delong test; P values less 

than .0024 are significantly different. (B) For the Tukey-Kramer honest significant 

difference test value, levels not connected by the same letter are significantly different. 

 

The mapping to ICD-9 is always better than mapping to ICD-10, although those differences 

were not significant for L2LR models, based on the Delong test, but were significant for 

RNN models. We hypothesize that the result is due to the majority of the original data’s 

being recorded in ICD-9, and, thus, mapping to ICD-10 will incur a loss of information 

during the terminological translation. We further investigated this loss-in-translation effect 

and report the results in the next section.  

3.5.1. Effect of information loss due to terminology mapping 

Mapping back from earlier converted ICD-10 codes to ICD-9 was associated with clear 

information loss that can be seen in the difference in the number of codes in our cohort; for 

example, our cohort originally had a 26,427-diagnosis code that mapped to a combination 
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of ICD-9 and ICD-10 codes (Table 3.6). Approximately 70% of our patient diagnosis data 

already were coded in ICD-9 codes, so, after mapping the ICD-10 codes to ICD-9 and 

combining the codes with those data originally mapped to ICD-9 codes, we had 11,187 

ICD-9 codes in our cohort. Thus, we can explain the decrease in the number of codes as a 

result of the grouping effect of the lower dimension ICD-9 codes, but, on mapping back to 

ICD-10 codes, the number of codes increases only to 14,644 codes, which is approximately 

50% of the number of original diagnosis codes, or a little higher percentage of the primarily 

converted ICD-10 codes (22,893 codes). Such information loss may explain the significant 

decrease in AUROC, using the ICD-9’ and ICD-10’ sets (Table 3.7). 

 

Table 3.7. Difference in AUROC between primary mapping to ICD-9/10 codes and 

reversed mapping to ICD-9’/10’ codes 

  

Number of 

Codes 

L2LR 

AUROC 

Delong p-

value 

RNN 

AUROC 

Unpaired t-

test p-value 

ICD-9 11,187 80.12 p < 0.0001 85.20 (0.13) p < 0.0001 

ICD-9’    9,063 79.28 84.18 (0.09) 

ICD-10 22,893 79.78 p < 0.0001 84.35 (0.20) p < 0.0001 

ICD-10’ 14,644 79.23 83.12 (0.21) 

 

 

 

3.6. Discussion 

For L2LR models, the results were consistent between the two prediction tasks. UMLS 

showed the best performance, whereas CCS single-level mapping was associated with the 

lowest AUROC on both prediction tasks and on both models, which is consistent with our 
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previous experiments.[4] There were no significant differences between ICD-9 and ICD-

10 code mapping, although ICD-9 mappings are always higher in our experiments. The 

findings remain consistent even when we evaluated the differences using the DHF full 

cohort (Appendix D). There were no significant differences between CCS and CCSR codes 

in PC prediction, but the difference was significant for DHF prediction, which can be 

explained by the larger test set in the DHF cohort. In general, although LR models are not 

longitudinal, they are simple to use and have been the most commonly used models in EHR 

predictive modeling. Our results indicated that UMLS is often the top choice for predictive 

modeling when using LR models in our datasets.  

For RNN models, the results vary between the different prediction tasks or between 

different cohort sizes. Whereas UMLS and PheWAS were the top-performing 

terminologies, their relative rankings change, depending on the tasks. PheWAS was the 

best-performing model for DHF in the selected sample cohort, whereas UMLS was the 

best performing for PC prediction. When evaluated using the DHF full cohort, raw data 

were associated with the best AUROC.   

We note that it is not our main goal to benchmark models for realistic clinical tasks; 

therefore, the performance documented here does not necessarily translate to applicability 

in the real world. For example, PC risk prediction is a notoriously difficult task. Our PC 

performance may be due to biases in the data preparation. Nonetheless, our reported 

AUROCs are consistent with the range reported in previous studies for both DHF 

prediction[1,2,4] and PC prediction.[6,7]  
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We admit that, although the differences among groups are often statistically significant, 

the actual effect sizes are not necessarily large. For RNN models, the maximum difference 

in mean AUROC among UMLS, PheWAS, and raw data in the DHF and the PC cohorts 

were 0.4% and 1% respectively. The lower difference seen in the DHF cohort were owing 

to the larger cohort size, as RNN models can easily overfit on smaller cohorts. Nonetheless, 

the effect of terminologies appears independent of model architecture, and, thus, 

terminology choice has a real impact on predictive modeling. 

Although the choice of model architecture (LR vs. RNN) has a major impact on 

prediction performance, the choice of terminologies also has a small but significant 

impact. Moreover, this impact is on top of the performance difference for model 

architectures. Therefore, terminology choice is a decision that has real-world impact. 

To understand the key factors of terminologies that have an impact on prediction 

performance, we look at the characteristics of the best- and the worst-performing 

terminology mappings. There are two factors related to terminology mapping’s influence 

on the accuracy of clinical prediction models from EHRs: quality of the terminology and 

the quality of mapping. Although mapping to more expressive terminology is a common 

practice for expressive deep-learning models, it is common for traditional machine-

learning methods, such as logistic regression, to reduce dimensionality in search of a 

parsimonious model. Our results showed that, for both L2LR and RNN, large vocabulary 

sizes are associated with better performance. UMLS showed both the best performance in 

logistic regression models and high performance with deep-learning models; it is the 

vocabulary with the highest number of codes and has the advantage of better semantic 
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consistency and hierarchical relationships. Surprisingly, PheWAS, with a vocabulary size 

of only 1,820, showed good performance compared to other terminologies with higher 

levels of granularity. This can be attributed to the careful definitions of the mapping, as it 

was revised based on statistical co-occurrence, code frequency, and human 

review[12,13,26]. While the performance of the CCS- and CCSR-trained models were 

suboptimal during our experiments - mainly due to their smaller vocabulary sizes (284 and 

538, respectively) - they may be still a good choice in practice due to their human 

readability. Not surprisingly, the use of raw data provides one of the best results as 

compared to other terminology-mapping exercises. Such a conclusion can give us 

assurance that models can learn from the current data without any further preprocessing. 

We can explain the good performance of the raw data-based models through two factors. 

First, the original coding type includes a level of important information for our prediction 

tasks. Second, the preprocessing and mapping exercise, although of high quality and 

including attention to detail, introduces some noise that may have impact on the model’s 

learning ability. In our study, the raw data are represented by the Cerner-Diagnosis ID that 

maps to different terminologies, such ICD-9 and ICD-10.  

Mapping structured raw data to UMLS-CUI can lead to better integration with diagnosis 

information extracted from the unstructured text as well as data recorded in other 

terminologies, such as SNOMED-CT. Further, it will be easier to embed knowledge about 

relationships between different clinical entities, including diseases, medications, 

procedures, laboratory tests, and so forth. 
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There are several limitations to this study. The first is the lack of measurement of the 

quality of the codes’ mapping. We had observed a few incorrect ICD-9/ICD-10 codes in 

the Cerner diagnosis dictionary table, which could be due to data-entry typos. In addition, 

as we kept the hierarchical mapping, especially when using the UMLS codes, the one-to-

many mappings of codes may require extra scrutiny. The second is that the prediction labels 

are derived from the raw data that are coded in either ICD-9 or ICD-10. This is reflected 

by the superior performance of ICD-9 over ICD-10, as the majority of data were coded in 

ICD-9. In addition, this may create a bias that favors ICD-9 or ICD-10 over other 

terminologies. The third is that our findings are shown to be valid for only the tested 

terminologies, tasks, models, and data sets. The generalizability of our results to other 

scenarios warrants further study. The fourth is that, for the sake of simplicity, we focused 

on only a single element of the EHR data: the diagnosis information. Future work that 

evaluates the terminology representation on other elements, including medication, 

procedures, and laboratory tests, as well as the interactions between the terminology of 

those elements is warranted. We also plan to evaluate the same on different tasks to validate 

the generalizability of our conclusion. 

 

3.7. Conclusion 

Through benchmarking, we found that the normalization of EHR diagnosis data to the 

UMLS standard was the best (or second best) performing among tested terminologies for 

both prediction tasks and both prediction models. For research purposes or local model 

development, raw data, when the sample size is large enough, are often sufficient to 
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achieve decent accuracy. If there is a need for diagnosis code grouping for dimension 

reduction, however, PheWAS, with fewer than 2,000 codes, is the best option. The 

quality of mapping had an impact on our study findings. In our data set, ICD-9 had better 

results did than ICD-10 mainly because a larger proportion of the raw data was coded in 

ICD-9.  

For a real-world project, when generalizability is a priority and the quality of terminology 

mapping is assured, we recommend normalization of terminologies to an expressive 

common terminology, such as UMLS.  Due to information loss in translation in existing 

mapping tools, however, evaluation of mapping quality may be needed before determining 

the optimal target terminology for predictive modeling. 
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3.9. Supplementary Material 

Appendix A. Cohort Definitions 

We extracted our cohort from the Cerner Health Facts® dataset[26] which includes de-

identified patient information from more than 600 hospitals for more than fifteen years 

period. 

I) Diabetes Heart Failure Cohort (DHF) 

The first prediction task is to predict diabetes patient risk to develop heart failure after at 

least one month from their diabetes diagnosis. We first identified patients who reported 

type II Diabetes Mellitus (DM II) for at least two encounters using their diagnosis ICD-

9/10 codes, we excluded patients who reported any other form of diabetes including 

gestational or secondary DM from our cohort in order to avoid any chance of 

mislabeling.  
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Supplementary 3 Figure 3: Flowchart for DHF cohort definition 

 

For Cases, we identified patients with incidences of heart failure (HF) reported at least 30 

days after their first DMII encounter and have at least two encounters with an HF ICD 

code. Cases should have at least two encounters with HF related ICD9 or ICD10 codes 

using the following condition: ICD-9_codes like '428%' or ICD-9_codes in ('404.03', 

'404.13', '402.11', '404.11', '402.01', '404.01', '402.91', '398.91', '404.93', '404.91') or ICD-

10_codes like 'I50%' or or ICD-10_codes in ('I11.0', 'I09.81', 'I13.2', 'I97.13', 'I97.131', 

'I13.0', 'I97.130'). 
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Further data cleaning, include the exclusion of patients with incorrect data, for example, 

patients who were recorded as expired in the middle of their encounters or had encounters 

with admission date after the discharge date. As a result, we had a full cohort of 70,782 

cases and 1,095,412 Controls, out of which we randomly selected a sample of 60,000 

cases and 60,000 controls for this study. Further details for cohort extraction in the chart 

below. For this study purpose as we focus on comparing different terminology 

normalization of diagnosis information using the same training and test sets. We 

restricted our sample to have at least two visits and no more than a hundred visits, and to 

have at least three Cerner diagnosis codes and no more than two hundred unique Cerner 

diagnosis code in their full history. Table 3.1 is showing the descriptive analysis of both 

full cohort and selected sample. 

II)  Pancreatic cancer cohort (PC)  

Using ICD-9 codes starting with 157 and ICD-10 codes starting with C25, we originally 

identified around 45,000 pancreatic cancer (PC) patients out of which 11,486 cases, who 

are 45 years or older and didn’t report any other cancer disease before their first 

pancreatic cancer diagnosis were eligible for inclusion in this cohort. Further details of 

the cohort definition in the figure below 
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Supplementary 3 Figure 4: Flowchart for PC cohort definition 
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Appendix B. Terminology mappings 

I) Mapping between ICD-10 and ICD-9  

It is a common belief that, for semantic consistency, mapping to a single coding system 

should be a good practice[16]. The most commonly used terminologies in clinical practice, 

for billing purposes, are ICD-9 and ICD-10. We assumed that mapping from ICD-10 to 

ICD-9 codes should provide a more compact representation with a relatively fewer number 

of codes and should be easy to map, but the performance may be compromised by the 

associated information loss. On the other hand, if mapping from ICD-9 to ICD-10, while 

keeping the level of granularity, the accuracy of the super-resolution mapping remains 

questionable. 

The Center of Medicare and Medicaid Services(CMS) provides good tools to map ICD-9 

to ICD-10 and vice versa. So we downloaded the most recent general equivalence mapping 

(GEM) version 2018 from the CMS website[20]. We used both the ICD-10 to ICD-9 and 

ICD-9 to ICD-10 files, we mapped those to our Cerner diagnosis table, except for those 

codes that are explicitly documented as ‘NoDx’ in the mapping column which is around 

350 on both sides. All the ICD-9 codes used in our cohort were perfectly mapped to ICD-

10 codes. On the other side, mapping ICD-10 to ICD-9  was not as perfect as we originally 

assumed, there were around 300 ICD-10 codes in our data were not mapped to a 

corresponding ICD-9 code. We decided to ignore those codes as they were appearing for a 

maximum of 10 times in our cohort.  In order to understand if the difference in the 

predictive model accuracy using the ICD-9 or ICD-10 codes is due to the terminology 

representation itself or due to the information loss induced by the mapping process, we 
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simply converted the previously converted ICD-9 codes to ICD-10 and named it ICD-10’ 

and did the same for the previously converted ICD-10 codes and converted them back to 

ICD-9’. For that revert prime mapping, we used only the original mapping files provided 

by CMS without any further review or improvement.  

II) Unified Medical language systems  

Unified Medical language systems (UMLS) is a very effective tool when collecting clinical 

data from different resources like literature, clinical notes, EHR structured data, insurance, 

and billing information, as it integrates key medical terminology and coding standards, like 

SNOMED-CT, ICD-9/10, RxNorm, Loinc, and MESH terms. In order to test the model 

performance using UMLS codes, we downloaded the UMLS knowledge sources[21] and 

mainly use the information available at the MRSTY and MRCONSO data files. We 

extracted the UMLS_CUI, ICD Code, ICD Type from the MRCONSO file. We considered 

expanding the ICD code hierarchy for the entries that appear in MRCONSO as an interval 

of ICD codes. In order to avoid confusion between diagnoses and procedures codes that 

might overlap, we added the Semantics column to using the MRSTY file. Finally, we used 

the UMLS-CUI to ICD-9 and 10 codes to map it to the original Cerner diagnosis id. There 

were only a hundred Cerner diagnosis id not mapped to UMLS-CUI, but each of those 

codes appeared at maximum three times in our cohort so we decided to ignore those.  

III) Clinical Classification Software 

Unlike UMLS, the Clinical Classification Software (CCS) codes provided by the agency 

of healthcare research and quality (AHRQ) as a part of the Healthcare Cost and Utilization 

Project (HCUP), maps ICD-9 /10 codes to a higher level of details. Original CCS used to 
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have two formats, a single level and a multilevel. Both have nearly the same number of 

codes around 284, but the multilevel includes more hierarchical information. For 

simplicity, we decided to use the single level CCS mappings especially it perfectly matches 

both ICD-9 and ICD-10 codes which is not the case with the multilevel mapping as the 

mapping to ICD-10 was replaced by the CCS Refined  (CCSR) version. For our mapping, 

we used the latest version of ICD-9 to CCS mapping and the ICD-10 to CCS mapping 

available on the AHRQ website[23,24]. Additionally, we evaluated the refined CCSR 

version[25] which aggregates more than 70,000 ICD-10 codes to around 540 CCSR codes.  

IV) The Phenome-wide association studies  

The Phenome-wide association studies (PheWAS) defined around 1866 Phecode that 

represents mainly diseases. Those codes are following the three-digit grouping of the 

ICD-9 codes. PheWAS code grouping has been revised based on statistical co-

occurrence, code frequency, and human review[22]. We downloaded the Phecode map 

with ICD-9, ICD-10, and ICD10-CM codes and used it to map the raw data to the 

PheWAS codes.  
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Appendix C. Recurrent Neural Network model architecture 

Recurrent Neural Network (RNN) models are appropriate for modeling the sequential 

nature of patient medical records and have been shown to provide high predictive 

accuracy in the healthcare domain. 

 

Supplementary 3 Figure 5: RNN based model training 

 

As appears in Supplementary Figure 3, we represented a patient record as a sequence of 

visits and each visit as a set of clinical codes. In this study, we only used ‘diagnosis’ data 

for terminology comparison. Our codebase available on 

https://github.com/ZhiGroup/pytorch_ehr facilitates the evaluation of different RNN 

based models architectures. 

For RNN evaluation in this study, we used a basic single layer bi-directional gated 

recurrent unit (GRU) with a hidden dimension of 64. Our input is structured as mini-

batches each of 128 patients, each patient is a sequence of visits where each visit is the 

https://github.com/ZhiGroup/pytorch_ehr
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sum of the diagnosis codes embeddings vectors within this visit. We also included the 

time difference between visits and fed to the model as appear in Supplementary Figure 3. 

For comparison purposes, We fixed the hyperparameters for all experiments, we used 

equal embedding and hidden dimensions of 64. We used Adamax optimizer with a 

learning rate of 0.01 and an L2 penalty of 0.00001. 
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Appendix D. Diabetes Heart Failure full Cohort Results 

The Diabetes Heart Failure (DHF) full cohort is an unbalanced set and it doesn’t include 

any restrictions on the maximum number of codes or visits per patient. 

Supplementary 3 Table 11: LR and RNN results of DHF full cohort 

Diagnosis Terminology Number of 

unique codes 

L2LR RNN 

Raw Data  (ICD-9 + ICD-10) 26,427 81.49 85.86 

CCS – Single Level 284 77.75 81.97 

CCSR 538 78.92 83.02 

ICD-9 11,187 80.87 85.20 

ICD-10 22,893 80.67 84.2 

PheWAS 1,820 80.69 85.07 

UMLS CUI 29,491 81.96 85.52 
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Appendix E. DHF LR Additional Results  

We run different variations of LR models on the DHF cohort to further validate our 

findings. The penalty parameters tuning was done using the grid search cross-validation 

model selection function from the Scikit-learn package (GridSearchCV). 

Supplementary 3 Table 12: Results of different variations of LR models the DHF 

cohort 

 Diagnosis Terminology LR 

(No Penalty) 

L1LR 

(C=0.1) 

L2LR 

(Tuned) 

L2LR* 

(C =1) 

Raw Data   

(ICD-9 + ICD-10 ) 

78.93% 82.30% 82.28% 
(C=0.01) 

80.61% 

CCS-single level 78.07% 78.09% 78.07% 
(C=0.01) 

 

78.07% 

CCSR 78.86% 78.90% 78.92% 
(C=0.1) 

  

78.87% 

ICD-9 79.12% 81.56% 81.64% 
(C=0.1) 

 

80.12% 

ICD-10 78.53% 81.24% 81.04% 
(C=0.1) 

  

79.78% 

PheWAS 80.63% 81.09% 81.11% 
(C=0.01) 

 

80.71% 

UMLS CUI 81.12% 82.81% 82.88% 
(C=0.01) 

81.15% 

Where C is the inverse of the regularization strength associated with the best performance based 

on cross-validation results. * L2LR with C=1 is the default parameter used in this study 

The best L1 penalty hyperparameter was consistent among all terminologies (C=0.1), 

while the L2 penalty hyperparameter varied among different terminologies. UMLS 

showed the best performance among all tested variations. 
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Appendix F. Statistical Significance using Tukey-Kramer HSD 

Below are the pairwise significance for RNN models for both cohorts 

I) DHF Cohort  alpha=0.05 

Level - Level Diff. Std 

Err 

Diff 

Lower 

CL 

Upper 

CL 

p-Value 

 

PHEWAS CCS 0.0291 0.0007 0.0271 0.0311 <.0001* 
 

UMLS CCS 0.0259 0.0007 0.0239 0.0279 <.0001* 
 

Raw CCS 0.0251 0.0007 0.0231 0.0271 <.0001* 
 

ICD9 CCS 0.0224 0.0007 0.0204 0.0243 <.0001* 
 

PHEWAS CCSR 0.0170 0.0007 0.0150 0.019 <.0001* 
 

PHEWAS ICD10 0.0152 0.0007 0.0133 0.0172 <.0001* 
 

ICD10 CCS 0.0139 0.0007 0.0119 0.0158 <.0001* 
 

UMLS CCSR 0.0138 0.0007 0.0118 0.0158 <.0001* 
 

Raw CCSR 0.0131 0.0007 0.0111 0.0150 <.0001* 
 

CCSR CCS 0.0121 0.0007 0.0101 0.0141 <.0001* 
 

UMLS ICD10 0.0120 0.0007 0.0101 0.0140 <.0001* 
 

Raw ICD10 0.0113 0.0007 0.0093 0.0133 <.0001* 
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ICD9 CCSR 0.0103 0.0007 0.0083 0.0123 <.0001* 
 

ICD9 ICD10 0.0085 0.0007 0.0065 0.0105 <.0001* 
 

PHEWAS ICD9 0.0067 0.0007 0.0047 0.0087 <.0001* 
 

PHEWAS Raw 0.004 0.0007 0.002 0.006 <.0001* 
 

UMLS ICD9 0.0035 0.0007 0.0015 0.0055 <.0001* 
 

PHEWAS UMLS 0.0032 0.0007 0.0012 0.0052 0.0001* 
 

Raw ICD9 0.0028 0.0007 0.0008 0.0048 0.0014* 
 

ICD10 CCSR 0.0018 0.0007  -0.0002 0.0038 0.1087 
 

UMLS Raw 0.0008 0.0007 -0.001 0.0027 0.9013 
 

 

II) PC  Cohort alpha=0.05 

Level  - Level Difference Std Err 

Dif 

Lower 

CL 

Upper CL p-Value  

UMLS CCS 0.0321966 0.0015791 0.027387 0.0370060 <.0001* 
 

UMLS ICD10 0.0297051 0.0015791 0.024896 0.0345145 <.0001* 
 

UMLS CCSR 0.0261337 0.0015791 0.021324 0.0309430 <.0001* 
 

Raw CCS 0.0240043 0.0015791 0.019195 0.0288137 <.0001* 
 

Raw ICD10 0.0215128 0.0015791 0.016703 0.0263221 <.0001* 
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PheWAS CCS 0.0212722 0.0015791 0.016463 0.0260815 <.0001* 
 

PheWAS ICD10 0.0187807 0.0015791 0.013971 0.0235900 <.0001* 
 

Raw CCSR 0.0179414 0.0015791 0.013132 0.0227507 <.0001* 
 

ICD9 CCS 0.0175817 0.0015791 0.012772 0.0223911 <.0001* 
 

PheWAS CCSR 0.0152092 0.0015791 0.010400 0.0200186 <.0001* 
 

ICD9 ICD10 0.0150902 0.0015791 0.010281 0.0198996 <.0001* 
 

UMLS ICD9 0.0146149 0.0015791 0.009806 0.0194242 <.0001* 
 

ICD9 CCSR 0.0115188 0.0015791 0.006709 0.0163281 <.0001* 
 

UMLS PheWAS 0.0109244 0.0015791 0.006115 0.0157338 <.0001* 
 

UMLS Raw 0.0081923 0.0015791 0.003383 0.0130017 <.0001* 
 

Raw ICD9 0.0064226 0.0015791 0.001613 0.0112319 0.0025* 
 

CCSR CCS 0.0060629 0.0015791 0.001254 0.0108723 0.0051* 
 

PheWAS ICD9 0.0036905 0.0015791  -0.00112 0.0084998 0.2432 
 

CCSR ICD10 0.0035714 0.0015791  -0.00124 0.0083808 0.2788 
 

Raw PheWAS 0.0027321 0.0015791  -0.00208 0.0075415 0.5989 
 

ICD10 CCS 0.0024915 0.0015791  -0.00232 0.0073009 0.6967 
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4.1. Abstract 

Deep learning (DL) based predictive models from electronic health records (EHRs) 

deliver impressive performance in many clinical tasks. Large training cohorts, however, 

are often required by these models to achieve high accuracy, hindering the adoption of 

DL-based models in scenarios with limited training data. Recently, bidirectional encoder 

representations from transformers (BERT) and related models have achieved tremendous 

successes in the natural language processing domain. The pre-training of BERT on a very 

large training corpus generates contextualized embeddings that can boost the 

performance of models trained on smaller datasets. Inspired by BERT, we propose Med-

BERT, which adapts the BERT framework originally developed for the text domain to 

the structured EHR domain. Med-BERT is a contextualized embedding model pre-trained 

on a structured EHR dataset of 28,490,650 patients. Fine-tuning experiments showed that 

Med-BERT substantially improves the prediction accuracy, boosting the area under the 

receiver operating characteristics curve (AUC) by 1.21-6.14% in two disease prediction 

tasks from two clinical databases. In particular, pre-trained Med-BERT obtains promising 

performances on tasks with small fine-tuning training sets and can boost the AUC by 

more than 20% or obtain an AUC as high as a model trained on a training set 10 times 

larger, compared with deep learning models without Med-BERT. We believe that Med-

BERT will benefit disease-prediction studies with small local training datasets, reduce 

data collection expenses, and accelerate the pace of artificial intelligence aided 

healthcare. 
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4.2. Introduction 

Artificial intelligence (AI)-aided disease prediction has undergone considerable 

development in recent years[1-3]. At present, it can improve the precision of diagnosis, 

enable disease prevention by early warning, streamline clinical decision making, and 

reduce healthcare costs[4-7]. Powerful AI tools, advanced conventional machine 

learning[8-10], and deep-learning[11-14] approaches also have been widely applied in 

clinical predictive modeling and have gained numerous successes. Given enough training 

samples, deep-learning models can achieve comparable or even better performance than 

domain experts in the diagnosis of certain diseases[15-19]. One prerequisite of typical 

deep-learning-based methods is the availability of large and high-quality annotated 

datasets, which are used to model the underlying complex semantics of the input domain 

as much as possible and to avoid under-fitting of model training[20 21]. Big EHR data, 

however, often are not accessible for numerous reasons, including the limited number of 

cases for new or rare conditions; difficulty in data cleaning and annotation, especially if 

collected from different sources; and governance issues that hinder the data 

acquisition[22].  

Transfer learning was developed to address the issue whereby some representations were 

first pre-trained on large volumes of unannotated datasets and then further adapted to 

guide other tasks[23]. A recent trend in transfer learning is to use self-supervised learning 

over large general datasets to derive a general-purpose pre-trained model that captures the 

intrinsic structure of the data, which can be applied to a specific task with a specific 

dataset by fine-tuning. This pre-training-fine-tuning paradigm has been proven to be 
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extremely effective in natural language processing (NLP)[24-30] and, recently, computer 

vision[31 32]. Bidirectional encoder representations from transformers (BERT) is one of 

the most popular models for handling sequential inputs, e.g., text, with numerous 

variations[33-40]. BERT also has been embraced by the clinical domain[33 34 41]. 

However, these models were pre-trained on clinical text and are only for clinical NLP 

tasks.  

Structured EHR, as a primary input source for disease prediction, offers rich and well-

structured information that reflects the disease progression of each patient and is one of 

the most valuable resources for health data analysis[42 43]. Adapting the transfer 

learning framework to structured EHR is a natural idea based on the analogy between 

natural language text and EHR, i.e., both are sequential modalities for tokens from a large 

vocabulary. However, a one-to-one mapping between the elements of natural language 

and structured EHR is not available.  

There is a growing literature on transfer learning for EHR. Some researchers directly 

repurpose internal layers of trained deep models (e.g., RNN) for an existing task to a new 

task[44] but these transfer learning might be too tightly coupled with specific tasks and 

its generalizability has not been well established. For the pre-training style transfer 

learning, previous studies on structured EHR showed some successes[45 46] but they 

mainly focused on static embeddings such as word2vec[24] and GloVe[47], which failed 

to capture deep context information. 

In this work, we choose the BERT framework, including its architecture and its training 

methodology, for training models on large EHR data. Notably, other contextualized pre-
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trained embedding frameworks from the NLP domain, such as ULMFiT[48] and 

ELMo[49], could also be tested in the EHR domain. However, we choose BERT in this 

work because it is widely adopted with proven success.   

To the best of our knowledge, there are only two relevant studies in the literature of the 

clinical domain: BEHRT[50] and G-BERT[51]. These models, however, have the 

following limitations. BEHRT aims to develop pre-trained models to predict the 

existence of any medical codes in certain visits. It uses positional embeddings to 

distinguish different visits and adds an age layer to imply temporal orders. The authors’ 

definition of the area under receiver operating characteristics (AUC), however, was a 

non-standard one, making it difficult to compare their results with previous studies. G-

BERT applied a graph neural network (GNN) model to expand the context of each 

clinical code through ontologies and jointly trained the GNN and BERT embeddings. It 

modified the masked language model (Masked LM) pre-training task into domain-

specific ones, including maximizing the gap between the existing and non-existing codes 

and using different types of codes to predict each other. However, G-BERT’s inputs are 

all single-visit samples, which are insufficient to capture long-term contextual 

information in EHR. In addition, the size of their pre-training dataset is not large, making 

it difficult to evaluate its full potential. Furthermore, neither BEHRT nor G-BERT uses 

disease-prediction tasks as the evaluation of their pre-trained model by fine-tuning.  

To alleviate the aforementioned issues and to evaluate a pre-trained contextualized 

embedding model specific to disease prediction, we designed Med-BERT, an adaption of 

the BERT methodology for the structured EHR modality. Med-BERT is trained on 
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structured diagnosis data coded using the International Classification of Diseases (ICD) 

codes, unlike the original BERT and most of its variations that were trained on free text. 

Note that we can also include other types of codes such as medications and laboratory 

tests, and we leave its investigation as future work.  

We compare Med-BERT with BEHRT and G-BERT in Table 4.1. Remarkably, Med-

BERT has a much larger vocabulary and a much larger pre-training cohort than the other 

two models, which help to provide a reality check of EHR BERT-based models. The 

larger cohort size and longer visit sequences in Med-BERT’s pre-training set will greatly 

benefit the model in learning more comprehensive contextual semantics. We also believe 

that, by using a large and publicly accessible vocabulary, i.e., ICD-9 and ICD-10, and 

pre-training the model on a multi-institutional dataset (Cerner), Med-BERT will likely be 

easily deployable to different institutions and clinical scenarios. Further, among all these 

pre-trained models, only Med-BERT has been successfully cross-tested by a fine-tuning 

task on an external data source (Truven). 

 

Table 4.8: Comparison of Med-BERT with BEHRT and G-BERT from multiple 

perspectives. 

Criteria BEHRT G-BERT Med-BERT 

Type of input 

code 

Caliber code for 

diagnosis 

developed by a 

college in London 

Selected ICD-9 

code for diagnosis 

+ ATC code for 

medication  

ICD-9 + ICD-10 code for 

diagnosis 

Vocabulary size 301 <4K 82K 
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Pre-training data 

source 

CPRD (primary 

care data)61 

MIMIC III (ICU 

data)62 

Cerner HealthFacts 

(general EHR) 

 

Input structure Code + visit + age 

embeddings 

Code embeddings 

from ontology + 

visit embeddings 

Code + visit + code 

serialization embeddings 

Pre-training 

sample unit 

Patient’s visit 

sequence 

Single visit  Patient’s visit sequence 

Total number of 

pre-training 

patients 

1.6M 20K  20M 

Average number 

of visits for each 

patient for pre-

training 

Not reported but > 

5 

<2 8 

Pre-training task Masked LM Modified Masked 

LM  

Masked LM + prediction 

of prolonged length of 

stay in hospital  

Evaluation task Diagnosis code 

prediction in 

different time 

windows 

Medication code 

prediction 

Disease predictions 

according to strict 

inclusion/exclusion 

criteria 

Total number of 

patients in 

evaluation tasks  

699K, 391K, and 

342K for different 

time windows 

7K 50K, 20K, and 20K for 

three task cohorts 

 

 

Similar to BEHRT and G-BERT, Med-BERT made several modifications to the overall 

BERT methodology to fit the EHR data modality. Med-BERT used code embeddings to 

represent each clinical code, visit embeddings to differentiate visits, and the transformer 

structure to capture the inter-correlations between codes. Within each visit, we defined 

serialization embeddings to denote the relative order of each code, whereas neither 
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BEHRT nor G-BERT introduced code ordering within a visit. In addition, we designed a 

domain-specific pre-training task prediction of prolonged length of stay in hospital 

(Prolonged LOS), which is a popular clinical problem that requires contextual 

information modeling to evaluate the severity of a patient’s health condition according to 

the disease progression and requires no human annotation. We expect that the addition of 

this task can help the model to learn more clinical and more contextualized features for 

each visit sequence and facilitate certain tasks. 

The usefulness of the pre-trained Med-BERT was evaluated by fine-tuning on the 

following two disease-prediction tasks: the prediction of heart failure among patients 

with diabetes (DHF) and the prediction of onset of pancreatic cancer (PaCa), using three 

patient cohorts from two different EHR databases, Cerner Health Facts® and Truven 

Health MarketScan®. These tasks are different from the pre-training prediction tasks 

(Masked LM and Prolonged LOS) and, thus, are good evaluation tasks to test the 

generalizability of the pre-trained model. In addition, we chose these tasks because they 

capture more complexity than merely the existence of certain diagnosis codes, and are 

based on established phenotyping algorithms that further integrate multiple pieces of 

information beyond diagnosis codes, such as constraints on time window, diagnosis 

occurrence times, medications, and laboratory test values.  

Fine-tuning experiments were conducted for the following purposes: (1) to test the 

performance gains by adding Med-BERT on three state-of-the-art predictive models; (2) 

to compare Med-BERT with a pre-trained non-contextualized embedding, the clinical 
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word2vec-style embedding[52]; and (3) to see how much Med-BERT would contribute to 

disease predictions with different fine-tuning training sizes.  

 

Our primary contributions are summarized as follows: 

1. This work is the first proof-of-concept demonstration that a BERT-style model for 

structured EHR can deliver a meaningful performance boost in real-world-facing 

predictive modeling tasks.  

2. We innovatively designed a domain-specific cross-visit pre-training task that is 

prevalent among EHR data and is effective in capturing contextual semantics. 

3. This work is the first demonstration of significantly boosted performance over 

state-of-the-art methods on multiple clinical tasks with phenotyped cohorts.  

4. This work is the first that presents the generalizability of EHR BERT models by 

boosting the performance in a dataset (Truven) other than the training dataset 

(Cerner).  

5. The performance boost of Med-BERT is observed across all sample sizes, 

demonstrating the enabling power of pre-trained models for clinical tasks for which 

only limited training data are available.  

6. We provided a visualization tool to demonstrate the dependency semantics in 

EHRs, facilitating the interpretability of the model. 

7. We made our pre-trained models and code available, enabling its applications by 

other researchers. 
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4.3. Methods 

4.3.1. Cohort Definition 

4.3.1.1. Med-BERT pre-training cohort  

Cerner Health Facts® (version 2017) is a de-identified EHR database that consists of over 

600 hospitals and clinics in the United States. It represents over 68 million unique patients 

and includes longitudinal data from 2000 to 2017. The database consists of patient-level 

data, including demographics, encounter meta-information, diagnoses, procedures, lab 

results, medication orders, medication administration, vital signs, microbiology, surgical 

cases, other clinical observations, and health systems attributes. Data in Health Facts® are 

extracted directly from the EMRs of hospitals with which Cerner has a data use agreement. 

Encounter meta-information includes the identification of pharmacy, clinical and 

microbiology laboratory, and admission and billing information from affiliated patient care 

locations. All admissions, medication orders and dispensing, laboratory orders, and 

specimens are date and time-stamped, providing a temporal relationship between treatment 

patterns and clinical information. The Cerner Corporation has established Health Insurance 

Portability and Accountability Act-compliant operating policies to establish de-

identification for Health Facts®. 

During the data preprocessing phase for pretraining, for each patient in the cohort, we 

organized the visits in a temporal order and ranked the diagnosis codes within each visit 

according to three criteria: (1) the diagnosis was flagged as present on admission; (2) the 

diagnosis was captured during the visit (e.g., hospitalization) or only at the billing phase; 

and (3) the diagnosis priority is provided by the Cerner database, indicating some priorities 
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of the diagnoses, e.g., principal/secondary diagnosis (the priority is provided by the 

database, but it might not be a perfect priority ranking) 

For each visit, we extracted the diagnosis codes (represented by ICD, Ninth Revision, 

Clinical Modification (ICD-9) and ICD, Tenth Revision, Clinical Modification (ICD-10)) 

and the length of stay in hospital. We then ranked the codes in each visit according to the 

above three criteria and determined the order by using (1) _
> (2) _

> (3) in sequence. We 

observed only very limited performance gains, however, by adding the code order during 

the evaluation, compared with randomly scattering the codes. Hence, we set it as a 

placeholder here and assume that more effective orders could be defined in the future. 

Patients with fewer than three diagnosis codes in their records as well as those with wrong 

recorded time information, e.g., discharge date before admission date, were removed from 

the population. In total, we had 28,490,650 unique patients (Figure 4.1), which were further 

separated into training, valid, and testing sets by the ratio of 7:1:2 on both the pre-training 

and evaluation phases.  

 

 

Figure 4.4. Selection pipeline for the pre-training cohort. 
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4.3.1.2. Diabetes heart failure cohort (DHF) 

We originally identified 3,668,780 patients with at least one encounter with a diabetes 

diagnosis, based on the associated ICD-9/10 codes. We decided to exclude patients with 

any history of diabetes insipidus, gestational diabetes, secondary diabetes, neonatal 

diabetes mellitus, or type I diabetes mellitus (DM) from our cohort, as we focus on patients 

with type II DM and need to avoid any chance of wrong coding, taking into consideration 

that most of the EHR data are based on user manual entries and that there is a high 

associated chance of data entry mistakes. For the same reason, we decided to include 

patients who have more than one encounter with a diabetes diagnosis code. In addition, for 

type II DM patients, we verified that the patients’ A1C reading is >6.5 or that they are 

taking an antidiabetic agent, including metformin, chlorpropamide, glimepiride, glyburide, 

glipizide, tolbutamide, tolazamide, pioglitazone, rosiglitazone, sitagliptin, saxagliptin, 

alogliptin, linagliptin, repaglinide, nateglinide, miglitol, acarbose, or insulin. 

For these cases, we identified patients with incidences of heart failure (using ICD-9 code 

equivalents, such as 428, or in 404.03, 404.13, 402.11, 404.11, 402.01, 404.01, 402.91, 

398.91, 404.93, and 404.91, or ICD-10 code equivalents, such as I50%, or in I11.0, I09.81, 

I13.2, I97.13, I97.131, I13.0, and I97.130). In addition, we verified that the eligible cases 

are either prescribed a diuretic agent, had high B-type natriuretic peptide (BNP) or had 

been subjected to relevant procedures, including dialysis or an artificial heart-associated 

procedure following63. We included only those patients who reported heart failure (HF) at 

least 30 days after their first encounter with a type II DM code and excluded patients with 

only one HF encounter. 
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Further data cleaning included the exclusion of patients with incorrect or incomplete data, 

for example, patients who were recorded as expired in between their first encounter and 

our event (first HF encounter for cases or last encounter for controls) as well as patients 

who are younger than 18 years old at their first diabetes diagnosis. The final cohort is 

shown in Supplementary Figure 1 and includes 39,727 cases and 632,920 controls.  

4.3.1.3. Pancreatic cancer cohort (PaCa) 

Using ICD-9 codes that start with 157 and ICD-10 codes that start with C25, we originally 

identified around 45,000 pancreatic cancer patients from the Cerner HealthFacts dataset, 

of which 11,486 cases of individuals of 45 years or older did not report any other cancer 

disease before their first pancreatic cancer diagnosis were eligible for inclusion in this 

cohort. Further details of the cohort definition are shown in Supplementary Figure 2. 

Similarly, we extracted a PaCa cohort from Truven Health MarketScan® Research 

Databases for evaluation purposes. The Truven Health MarketScan® Research Databases 

(version 2015) are a family of research data sets that fully integrate de-identified patient-

level health data (medical, drug, and dental), productivity (workplace absence, short- and 

long-term disability, and workers’ compensation), laboratory results, health risk 

assessments, hospital discharges, and electronic medical records into datasets available for 

healthcare research. It captures person-specific clinical utilization, expenditures, and 

enrollment across inpatient, outpatient, prescription drug, and carve-out services. The 

annual medical databases include private-sector health data from approximately 350 

payers. Historically, more than 20 billion service records are available in the MarketScan 

databases. These data represent the medical experience of insured employees and their 
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dependents for active employees, early retirees, Consolidated Omnibus Budget 

Reconciliation Act (COBRA) continuees, and Medicare-eligible retirees with employer-

provided Medicare Supplementary plans. Most of the diagnosis codes in Truven are ICD-

9 codes, as the version of the database that we used is 2015, but the implementation of 

ICD-10 started in October 201564. 

4.3.1.4. On Ethical Data Use Related to this Manuscript 

The IBM® MarketScan® Research Databases (Formerly, Truven®) contain individual-

level, de-identified, healthcare claims information from employers, health plans, 

hospitals, and Medicare and Medicaid programs. The data in Health Facts® are extracted 

directly from the EMR of hospitals with which Cerner has a data use agreement. Both 

IBM and Cerner Corporation have established Health Insurance Portability and 

Accountability Act-compliant operating policies to establish de-identification 

for IBM® MarketScan® Research Databases and Health Facts®. The use 

of IBM®MarketScan® Research Databases and Cerner Health Facts® mandates 

compliance with all vendor contractual obligations; of specific ethical relevance is the 

legally binding directive that no user of these data may attempt to re-identify the de-

identified data. As an additional safeguard, at an institutional level, UTHealth researchers 

employing the IBM® MarketScan® Research Databases and Cerner Health Facts® for 

their studies are subject to oversight and approval by the Committee for the Protection of 

Human Subjects (UTHSC-H IRB) under protocol HSC-SBMI-13-0549. The use of the 

IBM® MarketScan® Research Databases and Cerner Health Facts®  for this study is 
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covered by the approval by the Committee for the Protection of Human Subjects 

(UTHSC-H IRB) under protocol HSC-SBMI-13-0549. 

4.3.1.5. Data Availability  

The data that supports the findings of this study are available from the Data Service 

office at the University of Texas Health Science Center at Houston School of Biomedical 

Informatics (SBMI) but restrictions apply to the availability of these data, which were 

used under license from the data provider.  

 

4.3.2. The Data Modality of Structured EHR  

We define structured EHR data of each patient as a sequence of visits, each as a list of 

codes. This is a classic formulation commonly used in the literature[53-56]. The codes 

within a visit can be either ordered or unordered. If unordered, the EHR data for each 

patient can be reduced to a sequence of sets. The Med-BERT framework can handle both 

ordered and unordered codes inside a visit. In this paper, we have access to the priority of 

the diagnosis codes as coded by billers, e.g., the primary diagnosis is mostly assigned the 

first priority followed by the second most important diagnosis and so on, and thus we 

encode that information to introduce order. 

Both structured EHR and natural language text are sequential data with tokens. 

Therefore, the data modality of EHR is similar to text in many ways. However, EHR data 

has distinct characteristics (Figure 4.2). A direct comparison between the data modalities 

of the structured EHR data with the natural language text is shown in Table 4.2. 
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Table 4.9: Comparison of characteristics of EHR data versus Natural language data 

Criteria Natural language EHR 

Token 

granularity 

The basic token is a word, which 

is a compressed semantic unit in 

language and can express some 

basic meaning. But in many 

cases, an integrated semantic unit 

(e.g., a named entity or a 

prepositional phrase) requires the 

combination of multiple tokens. 

The basic token is a clinical code, 

which can represent an integrated 

semantic unit, e.g., a disease 

description, a drug, or a procedure.  

Syntactic: 

Hierarchical 

structure 

A paragraph (document) contains 

multiple sentences, and a 

sentence contains multiple 

words. 

More complex, a patient’s 

information contains multiple visits, 

and a visit contains multiple codes 

of different categories.  

Syntactic: 

Sequential 

order 

Simple and clear. The visits are sorted sequentially 

according to time but the codes 

within a visit may be unordered or 

with certain prioritized orders.  

Semantic Dependency relations among 

sentences (e.g. discourse 

relations) as well as words within 

each sentence (e.g. syntactic 

dependency, semantic roles) are 

clear. 

Dependency relationships are not 

always clear, e.g., adjacent visits 

may be of little relevance owing to 

large time intervals. 

Time 

interval 

Regular, one between adjacent 

words. 

Usually no explicit intervals 

between codes, and irregular 

intervals between adjacent visits. 

Data 

completeness 

Relatively complete for regular 

texts such as written language. 

Usually incomplete and sometimes 

erroneous due to the nature of EHR. 
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Criteria Natural language EHR 

Sequence 

length 

Within a relatively narrow range: 

The maximum sequence length 

of words in a sentence rarely 

reaches a hundred.  

More variable: A patient's medical 

records can include anywhere from 

one to hundreds of visits. In a single 

visit, a patient can have hundreds of 

medical codes.  

 

 

 

 
Figure 4.5. An example of structured EHR data of a hypothetical patient as it would be 

available from a current EHR system (e.g., Cerner or Truven) 

 

4.3.3. Med-BERT Architecture 

In this work, we utilized essentially the same transformer architecture as that in the 

original BERT paper[57], including multi-level embeddings and bidirectional 

transformers. We also adopted similar pre-training techniques (same loss function on 

masking and classification pre-training tasks). Still, given the semantic differences 

between EHR and text, adapting the BERT methodology to structured EHR is non-trivial. 

For example, while the input modality of the original BERT was a 1-D sequence of 
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words, our input modality is structured EHR which is recorded in a multilayer and multi-

relational style. There are no clear rules on how to flatten the structured EHR into a 1-D 

sequence and how to encode the “structures” of the structured EHR in the BERT 

transformer architecture. In addition, it is unclear how to organize the EHR data 

efficiently to match the structured inputs of a pre-trained model such as BERT, and what 

are the appropriate domain-specific tasks for pre-training.  

Figure 4.3 introduced our design of the Med-BERT embedding layers to accommodate 

the new modality. Specifically, three types of embeddings were taken as inputs for Med-

BERT. These embeddings were projected from diagnosis codes, the order of codes within 

each visit, and the position of each visit and named, respectively, code embeddings, 

serialization embeddings, and visit embeddings. Code embeddings are the low-

dimensional representations of each diagnosis code; serialization embeddings denote the 

relative order, in our case, the priority order, of each code in each visit; and visit 

embeddings are used to distinguish each visit in the sequence.  

 

 

 
Figure 4.6. Med-BERT structure. 
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Unlike BERT, we did not use the specific tokens [CLS] and [SEP] at the input layer. Our 

choice is mainly due to the differences in the input formats of EHR and text. In BERT, 

only two adjacent sentences are fed for each input sample, and the token [SEP] serves as 

a separator of the two sentences for the pre-training task of next sentence prediction. Next 

sentence prediction, however, was not involved in our tasks (as explained in the next 

subsection). We reasoned that the visit embeddings can separate well each visit and that 

adding [SEP] would only be redundant. In BERT, the token [CLS] was used mainly to 

summarize the information from the two sentences. However, EHR sequences are usually 

much longer; e.g., a sequence may contain 10 or more visits, and simply using one 

summarization token will inevitably lead to information loss. Therefore, for the 

classification tasks, either our prolonged LOS pre-training task or the downstream 

disease-prediction tasks, where the information of a long-range sequence is usually 

needed, we added a feed-forward layer (FFL) to the sum of the output from all of the 

codes within visits to represent a sequence, instead of using only a single token. Of 

course, it is also possible to use an RNN prediction layer instead of a simple FFL on top 

of Med-BERT. 

 

4.3.4. Pre-training Med-BERT 

We utilized the same optimization algorithm and recommended hyperparameters (See 

Implementation Details) of the original BERT model[57] during our Med-BERT pre-

training phase. We trained the parameters of the Med-BERT model parameters on the 

diagnosis information of a cohort of 20 million patients using the following tasks. 
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4.3.4.1. Masked Language Model (Masked LM) 

This task was directly inherited from the original BERT paper, which was used to predict 

the existence of any code, given its context. In detail, there was an 80% chance that a 

code was replaced by [MASK], a 10% chance that the code was replaced by a random 

code, and another 10% chance that it was kept unchanged. This task is the core of the 

contextualized embedding model. 

4.3.4.2. Prediction of Prolonged Length of Stay (Prolonged LOS) in Hospital 

For the classification task, instead of using the question-answer pairs as in BERT, we 

decided to choose a clinical problem with a relatively high prevalence in our pre-training 

dataset and one that is not disease-specific to ensure better generalizability of our pre-

trained model. The three most commonly used quality-of-care indicators, mortality, early 

readmission, and prolonged length of stay in hospital (LOS), were selected and tested. 

Through comparison, we found that the mortality and the early readmission tasks are 

relatively easy: the model quickly converges to >99% accuracy. Therefore, we chose 

prolonged LOS, the task of assessing each patient for whether an incident of prolonged 

hospital visit (LOS >7 days) had ever occurred throughout the entire EHR sequence of 

the patient, as a pre-training task. We used this simplified version of prolonged LOS 

prediction by targeting at the patient level rather than the visit level to reduce the pre-

training complexity. Also, similar to the Masked LM task, we are not aiming to define a 

real future predicting task during the pre-training phase.  

We found that the prolonged LOS task for pre-training leverages the bidirectional 

structure of Med-BERT. A prolonged LOS not only reflects the patient’s health status 
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recorded in the past visits but also has an impact on the subsequent visits. On the other 

hand, tasks such as disease onset prediction or mortality always will be terminated at the 

last visit of the patient sequence, the input data of which can be constructed in only one 

direction.  

4.3.5. Applying Med-BERT for Downstream Prediction Tasks by Fine-tuning 

Med-BERT, similar to BERT, follows the pre-training-fine-tuning paradigm. The pre-

trained model itself only generates contextualized embedding for each input token. The 

model outputs a general purpose embedding and does not directly output any prediction 

labels. For any specific downstream prediction task, a classification layer (prediction 

head) needs to be added on top of the Med-BERT model. One can use a simple prediction 

head such as FFL on top of the sequential output from the final Med-BERT layer. For 

EHR predictive models, a commonly used prediction head is the RNN rolling over the 

output of token embeddings. 

During fine-tuning, following the original BERT, we attached a prediction head on top of 

the Med-BERT architecture. The parameters of the Med-BERT part were loaded and 

initialized from the pre-trained model, and then the parameters of both the Med-BERT 

part and the prediction head were updated by gradient descent. The input of the model 

was data from a disease-specific training cohort, which we referred to as the fine-tuning 

cohort. To understand the added values by the pre-trained Med-BERT (especially the 

usefulness of big training data), we compared the results of fine-tuning the pre-trained 

model and the un-trained model (same architecture with a randomly initialized 

token+segment+position embedding layers and the multi-head transformer layers). All 
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models were fine-tuned on a validation set (part of the fine-tuning cohort) and the 

reported numbers are the results on the test set. 

4.3.6. Evaluation of Med-BERT  

We conducted evaluations on two disease-prediction tasks on three cohorts from two 

databases. The two tasks are heart failure in diabetes patients (DHF) and pancreatic 

cancer (PaCa). We used Cerner for both tasks, forming the DHF-Cerner and PaCa-

Cerner cohort; and used Truven for only the pancreatic cancer prediction task, forming 

the PaCa-Truven cohort, for generalizability evaluation. The detailed cohort definitions 

are presented in the Methods section. Unlike BEHRT and G-BERT, whose evaluation 

tasks are simply the prediction of certain codes which are similar to the tasks in pre-

training, our definition of disease prediction tasks is more complex, as it requires the 

phenotyping from multiple perspectives, e.g., the existence of certain diagnosis codes, 

drug prescriptions, procedures, laboratory test results, and, sometimes, the frequency of 

events in predefined time windows. Therefore, we claim that our evaluation tasks are 

more realistic (compared with BEHRT) and more helpful in establishing the 

generalizability of Med-BERT.  

For all three tasks, we conducted three experiments: (1) Ex-1: to evaluate how Med-

BERT can contribute to state-of-the-art methods; (2) Ex-2: to compare Med-BERT with 

one state-of-the-art static clinical word2vec-style embedding, t-W2V (trained on the full 

Cerner cohort)[52]; and (3) Ex-3: to investigate how much the pre-trained model can help 

in transfer learning with various training sample sizes. 
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For each fine-tuning task, we randomly selected a subset of the original cohort and 

further split it into training, validation, and testing sets with the ratio of 7:1:2. Since we 

have enough patients that are not included in the pre-training, we prioritized the 

assignment of samples to the test set to ensure that our test sets did not include any 

patient previously included in the Med-BERT pre-training set. For performance 

measurement, we used the area under the receiver operating characteristics curve (AUC) 

as our primary evaluation metric, which has been widely adopted by many previous 

studies of disease prediction[14 53 58]. Additional performance evaluation metrics are 

reported in Supplementary Table 1 and Supplementary Table 2.  

For Ex-1, to evaluate the augmented power of pre-trained Med-BERT on top of state-of-

the-art base models, we compare the performances of the base models only and the 

performance of the base models on top of Med-BERT. We use GRU[59], Bi-GRU[60], 

and RETAIN[53] as our base recurrent neural networks (RNN) models. While GRUs 

were shown to be very competitive baseline models, we also included RETAIN, a 

popular disease prediction model with double GRUs with attention. We also presented 

the results by using Med-BERT only; i.e., only FFL was added on top of the last layer of 

Med-BERT. This Med-BERT only model will provide an evaluation beyond RNN-based 

models. In addition, to evaluate the effect of pre-training using big data, we compare the 

performance of pre-trained Med-BERT with the untrained Med-BERT architecture. For 

the sake of completeness, we also included L2 regularized Logistic Regression (L2LR) 

and Random Forest (RF), two popular non-deep learning methods, using standard multi-

hot input format, as baseline models. 
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For Ex-2, to compare Med-BERT against static embeddings, we chose the t-W2V model. 

Our decision to use t-W2V to represent non-contextualized static embeddings was based 

on a previous study[61] where different static embedding techniques including 

word2vec[24], fasttext[62], and pointwise positive mutual information-singular value 

decomposition (PPMI-SVD)[63] were compared and t-W2V was found to perform best 

in the evaluated disease prediction task. Notably, Glove[64] is a competent alternative of 

word2vec (w2c) for static EHR concept embedding but it was documented as having a 

comparable performance with w2c. Therefore, we selected t-W2V as our baseline for 

static embedding for the sake of convenience.  

For Ex-3, to evaluate the value-added of Med-BERT with various fine-tuning training 

sizes, we selected samples with increasing sizes from the training data for each cohort for 

fine-tuning.  Intuitively, the pre-trained model would be more helpful when the training 

size is smaller, as it helps inject a broader scope of knowledge.  

For Ex1 and Ex2, where we used the full finetuning training cohorts, we reported the 

average AUC and standard deviation for each model, based on 10 runs with randomly 

initialized prediction head weights. For all iterations in Ex3, we conducted a random 

bootstrap sampling 10 times and reported the average AUC and standard deviation for 

each cohort.   

4.3.7. Implementation Details 

For the transformer architecture of Med-BERT, we used 6 layers, 6 attention heads, and a 

hidden dimension of 192 (L=6, H=192, A=6). We set the feed-forward/filter size to be 

64.  
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For pre-training, we set the maximum sequence length as 512 tokens. We masked one 

diagnosis code per patient during Masked LM. We used the default BERT optimizer, 

AdamWeight decay optimizer. We used the recommended learning rate of 5e-5, and a 

dropout rate of 0.1. We used the TensorFlow code of the original BERT from 

https://github.com/google-research/bert (February 2019 version). We used a single 

Nvidia Tesla V100 GPU of 32GB graphics memory capacity, and we trained the model 

for a week for more than 45 million steps, for which each step consists of 32 patients 

(batch size).  

Before fine-tuning, we first converted the pre-trained model to the PyTorch version, 

using the HuggingFace package (version 2.3)[65]. For fine-tuning, we utilized our 

established codebase https://github.com/ZhiGroup/pytorch_ehr for the implementation of 

BERT_only, GRU, bi-GRU, and RETAIN models with minor modification to implement 

multi-layer embeddings instead of visit-level embeddings. We used the Adam optimizer 

and a learning rate of 1e-5 for most of the models except for unidirectional GRU with 

static embedding for which a learning rate of 0.001 was associated with the best results. 

For the evaluation tasks, we used Nvidia GeForce RTX 2080 Ti GPUs of 12GB memory.  

For L2LR and RF, we used the scikit-learn package version 0.24. We used the default 

hyperparameters for both the logistic regression and the random forest classifiers. 

4.3.8. Code Availability  

To facilitate reproducibility and benefit other EHR-based studies, we shared our source 

code as well as our visualization tool on https://github.com/ZhiGroup/Med-BERT. The 

https://github.com/ZhiGroup/pytorch_ehr
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pre-trained models are available from the authors upon request and with permission 

of the SBMI Data Service office.   

4.4. Results 

4.4.1. Data Source 

We extracted our cohorts from two databases: Cerner Health Facts® (Cerner) and Truven 

Health MarketScan® (Truven). We defined one cohort for Med-BERT pre-training from 

Cerner and three phenotyped cohorts for fine-tuning, two of which were from Cerner 

(DHF-Cerner and PaCa-Cerner) and one from Truven (PaCa-Truven). The descriptive 

analysis of the cohorts is shown in Table 4.3. See Methods: Cohort definition for details. 

 

Table 4.10. Descriptive analysis of the cohorts. 

                                                    

Characteristic 

Pre-training DHF-

Cerner 

PaCa-

Cerner 

PaCa-

Truven 

Cohort size (n) 28,490,650 672,647 29,405 42,721 

Percent of Patients with 

the event1 

15% 14% 0.07% 0.06% 

Average Age on 

last/index encounter (std) 
41 61 65 63 

Gender - Male (%) 45% 47% 45% 48% 

Race: 

White (%) 

African American (%) 

Asian / Pacific Islander 

(%) 

African American (%) 

 

68% 

15% 

2% 

2% 

 

72% 

16% 

2% 

2% 

 

77% 

13% 

2% 

1% 

 

 

NA 
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Average number of visits 

per patient 

8 17 7 19 

Average number of codes 

per patient 

15 33 14 18 

Vocabulary size 82,603 26,427 13,071 7,002 

ICD-10 codes (%) 33.8% 13.3% 20.7% 0% 

1The event for pretraining is a prolonged hospitalization >7 days. The event for PaCa-

Cerner and PaCa-Truven is the diagnosis of pancreatic cancer, the event for DHF-

Cerner is the development of heart failure for diabetic patients 

 

 

4.4.2. Performance Boost of Med-BERT on Fine-tuning Tasks 

Table 4.4 presents the AUCs for Ex-1 on the three fine-tuning evaluation tasks. 

The trends of additional performance evaluation metrics (Supplementary Table 1 and 

Supplementary Table 2) are largely consistent with that of AUC shown in Table 4.4 and 

Figure 4.4. For DHF-Cerner, it is notable that Bi-GRU+Med-BERT and RETAIN+Med-

BERT obtain the best results and perform comparably, followed by Med-BERT_only and 

GRU+Med-BERT. For each base model, adding t-W2V (except GRU) will generally 

achieve better results, but adding Med-BERT improves the results much further. It is 

remarkable that those powerful deep-learning based models, such as GRU, Bi-GRU, and 

RETAIN that already obtain over 0.83 on AUC with relatively large training data, e.g., 

50K samples, adding Med-BERT still makes a considerable performance boost.  
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Table 4.11. Average AUC values and standard deviations (in parentheses) for the 

different methods for the three evaluation tasks. 

Model DHF-Cerner PaCa-Cerner PaCa-Truven 

GRU 83.93 (0.13) 78.26 (0.84) 78.17 (0.21) 

GRU+t-W2V 83.95 (0.24) 80.08 (1) 77.54 (0.27) 

GRU+Med-BERT 85.14 (0.06) 82.13 (0.24) 80.37 (0.12) 

Bi-GRU 82.82 (0.17) 76.09 (0.61) 76.79 (0.29) 

Bi-GRU+t-W2V 84.23 (0.06) 79.35 (0.27) 77.44 (0.22) 

Bi-GRU+Med-BERT 85.39 (0.05) 82.23 (0.29) 80.57 (0.21) 

RETAIN 83.28 (0.16) 79.68 (0.32) 78.02 (0.19) 

RETAIN+t-W2V 84.98 (0.02) 81.8 (0.17) 79.46 (0.18) 

RETAIN+Med-BERT 85.33 (0.09) 81.3 (0.55) 79.98 (0.17) 

Med-BERT_only (FFL) 85.18 (0.12) 81.67 (0.31) 79.98 (0.26) 

untrained Med-BERT only 82.76 (0.13) 75.16 (0.77) 75.9 (0.18) 

Logistic Regression (LR)1 81.01 (0) 79.94 (0) 77.28 (0) 

Random Forest (RF) 1 81.88 (0.08) 79.48 (0.31) 77.00 (0.12) 

 
1LR and RF input is one hot representation while other models using embeddings. 
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For PaCa-Cerner, similar trends also were observed, whereby Bi-GRU+Med-BERT, 

Med-BERT_only, and GRU+Med-BERT generally outperform methods without Med-

BERT and adding Med-BERT enhanced the AUCs of the base models by 1.62–6.14%. 

For PaCa-Truven, the best AUC was obtained by GRU+Med-BERT, whereas the other 

Med-BERT-related models also have better results than those without Med-BERT. On 

this Truven dataset, we still observe performance gains of 1.96–3.78%, although the 

average improved AUCs appear to be a bit lower than those on PaCa-Cerner. 

Nevertheless, it is reassuring to see that Med-BERT can be generalized well to a different 

dataset whose data distributions might be quite different from Cerner, the one it was pre-

trained on.  

As an ablation experiment, we also made a comparison between the result of pre-trained 

Med-BERT and that of untrained Med-BERT, where “untrained” means we did not feed 

the model with large EHR for a self-supervised pre-training but only took advantage of 

its structure. Table 4.4 shows that untrained Med-BERT performs much worse than Med-

BERT only and does not even outperform the baseline method of logistic regression for 

PaCa prediction tasks. Therefore, we can conclude that the pre-training phase plays a 

more important role for the boosted performance. Cases where untrained Med-BERT 

does not outperform the baseline logistic regression are likely due to overfitting, although 

we used the standard practice of both early stopping and dropout to reduce the likelihood 

of overfitting during the model training. This is possibly due to the fact that the untrained 

Med-BERT is an over-parameterized model (around 17 million parameters) with a huge 
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number of configurations, so it might overfit to the training data[66]. On the other hand, 

the pre-trained model started with a good configuration that is robust to a very large data 

set for the pre-training, and thus is likely to generalize well. 

It is a standard practice that the pre-trained BERT model is not used on its own for 

prediction, rather a prediction head is needed for the fine-tuning tasks[57]. Since Med-

BERT is an unsupervised pre-training model, fine-tuning should be done with certain 

configurations for different tasks, especially on the input data formats. However, in Table 

4.4, we observed that a Med-BERT model with only an FFL on top of the last layer 

(Med-BERT_only (FFL)) can also obtain competitive performances. 

In Figure 4.4 we show how much Med-BERT can help boost the prediction performance 

of the base deep-learning models by incorporating contextual information through pre-

training. In the line chart of DHF-Cerner, we notice that, without Med-BERT, it is 

difficult for GRU only to have an AUC exceeding 0.65 when given fewer than 1,000 

training samples. The addition of Med-BERT, however, greatly increases the AUCs by 

about 20% and helps the model to reach 0.75, even when training on 500 samples. For 

Bi-GRU, considerable improvements also can be observed, but they are not as high as 

those for GRU. For RETAIN, Med-BERT seems to be more helpful when the training set 

contains more than 500 samples.  
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Figure 4.4. Comparison of prediction AUC for the test sets by training on different sizes 

of data on various Cohorts between the methods with or without the pre-trained Med-

BERT layer. Logistic regression (LR) results are included as a baseline. (a) Cohort: DHF-
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Cerner, Method: GRU; (b) Cohort: DHF-Cerner, Method: bidirectional GRU; (c) Cohort: 

DHF-Cerner, Method: RETAIN; (d) Cohort: PaCa-Cerner, Method: GRU; (e) Cohort: 

PaCa-Cerner, Method: bidirectional GRU; (f) Cohort: PaCa-Cerner, Method: RETAIN; 

(g) Cohort: PaCa-Truven, Method: GRU; (h) Cohort: PaCa-Truven, Method: 

bidirectional GRU; (i) Cohort: PaCa-Truven, Method: RETAIN. The shadows indicate 

the standard deviations. 

 

 

For PaCa-Cerner, large improvements by adding Med-BERT to GRU and Bi-GRU were 

demonstrated for almost all training sizes. In particular, for Bi-GRU, Med-BERT enables 

the AUC to reach 0.75 when training on only 300 samples. The charts for PaCa-Truven 

show similar trends, but the overall AUC values are lower compared to those on PaCa-

Cerner when training on smaller sample sizes. 

Logistic regression, a popular non-DL machine learning algorithm, serves consistently as 

a competitive baseline model, especially on small datasets. Indeed, for smaller training 

sizes as 500 or less in our experiment, L2LR (L2 regularized logistic regression) showed 

decent performances. However, Med-BERT outperforms L2LR in all prediction tasks 

when the sample size is over 1,000.  

4.4.3. Visualization of Attention Patterns in Med-BERT 

Med-BERT not only offers improvement for prediction accuracy but also enables 

prediction interpretation. It is interesting and meaningful to explore how the pre-trained 

model has learned using the complex structure and a huge volume of data. We show 

several examples of how codes are connected with each other according to the attention 

weights from the transformer layers, the core component of Med-BERT. 
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The bertviz tool[66] was adapted and improved to better visualize the attention patterns 

in each layer of the pre-trained model. We added "SEP" tokens between visits only for 

visualization purposes. We observed distinct patterns in different layers of the model. In 

the pre-trained model, among the six layers of the BERT transformer model, the 

connections of the first two layers are mostly syntactic, some attention heads are 

restricted within a visit, and some point to the same codes across different visits. In the 

middle two layers, some medically meaningful attention patterns that capture contextual 

and visit-dependent information emerge. For the final couple of layers, the attention 

patterns become diffused and difficult to interpret. 

Figure 4.5 is an example of the same code in different visits, showing different attention 

patterns. This demonstrates the ability of Med-BERT to learn contextualized 

representations. The earlier code for type 2 diabetes mellitus focuses mainly on the code 

for the long-term use of insulin within the same visit, but the later diabetes code focuses 

on the insulin code, both in the current and the previous visits. This could potentially 

indicate that the model learns the temporal relationship between visits through the 

segment embedding. More examples are provided in Supplementary Figure 3. 
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Figure 4.5. Example of different connections of the same code, “type 2 diabetes 

mellitus,” in different visits. 

 

 

The attention patterns of the fine-tuned model are different. The fine-tuned models 

express distinct task-dependent patterns across different layers, showing the 

generalizability and adaptability of the model for learning different levels of knowledge 

in real-world scenarios.  Figure 4.6 provides an example of the Med-BERT model fine-

tuned on the DHF-Cerner dataset with attention converging onto several related codes in 

the second layer. Figure 4.7 is an example of the attention pattern in the fourth layer of 

the Med-BERT model fine-tuned on the PaCa-Cerner dataset, capturing the relevant 
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correlation between diagnosis codes. Additional visualization patterns can be seen in the 

Supplementary Figure 3. We believe that these kinds of visualization patterns can help us 

to better understand the inner mechanism of the neural network model and to build 

trusting and better communications of health information.  

 
Figure 4.6. Example of the dependency connections in the DHF-Cerner cohort. 

 

 

 
  

Figure 4.7. Example of the dependency connections in the PaCa-Cerner cohort. 
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4.5. Discussion 

Med-BERT shows its power in helping to improve the prediction performance on 

multiple tasks with different configurations, and it is particularly effective in the 

“extreme transfer learning” paradigms, i.e., fine-tuning on only several hundreds of 

samples. Deep-learning-based predictive models usually require at least thousands of 

samples. These models need to learn complex semantics through feeding samples that 

convey different underlying disease progressions and variational context information so 

that they can be capable of dealing with intricate unseen cases. However, most deep-

learning algorithms are insufficient in modeling the data comprehensively due to their 

limitation in an in-depth understanding of the inputs. Pre-trained models can well address 

this issue by using more sophisticated structures to better capture the complex semantics 

of inputs, behaving as a knowledge container, and injecting the knowledge into new 

tasks. Similar to pre-trained models on other domains, Med-BERT, by using its 

bidirectional transformer and deep structure as well as big data, also have been shown in 

this study to be extremely helpful when transferring to new tasks.  

Masked LM and Prolonged LOS were designed and included to reinforce the modeling of 

contextual information and to help collect sequential dependencies. Labels for both can 

be generated in an unsupervised way, i.e., without human annotations. In Masked LM, 

the goal is to predict a masked code using the sequential information from the forward 

and the backward directions. In Prolonged LOS, the goal is to determine whether a 

patient is associated with any visit that is a prolonged stay, which also relies on 

cumulative contexts. We believe that, by including the prediction tasks from both the 
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code level and the patient (sequence) level, Med-BERT can further strengthen the 

representation learning of EHR sequences from different granularities.  

Intuitively, a better parameter initialization of deep-learning models could lead to better 

performance and faster convergence. However, these benefits would gradually diminish 

with the growth of training samples. We consider 50K and 20K as acceptable scales of 

samples for training satisfactory (converging) deep-learning models. When we added 

Med-BERT, however, considerable improvements also could be observed. For example, 

RETAIN obtains satisfactory performances on all the three tasks, but adding Med-BERT 

brings further improvements by 1.62–2.05%. In addition, for GRU and Bi-GRU, whose 

model structures are simpler than that of RETAIN, the improvements can be much larger, 

which bring these simple models to a comparable level of or even better than RETAIN. 

Further, according to the results of Med-BERT_only, which also achieves good 

performance, we may conclude that Med-BERT will potentially release researchers from 

developing complex models for disease-prediction problems. 

Similar to Med-BERT, static embedding method t-W2V also can serve as a good 

performance booster to the base deep-learning models. However, the improvements of t-

W2V are smaller compared to Med-BERT in most cases. A probable explanation is that 

t-W2V has limitations in modeling long-sequential information, considering its shallow 

structure and the limited size of the context window which cannot be guaranteed to act 

well in all situations.  

In practice, Med-BERT will significantly help to reduce the burden of data labeling, 

which can be seen through comparing the sizes of training samples required to achieve 
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certain AUC levels. Ex-3 proved the effectiveness of transferring Med-BERT into 

realistic disease-prediction tasks. Most of the charts in Figure 4.4 reflect that Med-BERT 

can substantially boost the performance of base models on small samples. For example, 

in the first sub-chart of PaCa-Cerner in Figure 4.4, if we draw a horizontal line across the 

y-tick of 0.75, we will see a requirement of 1,000 samples for GRU+Med-BERT and 

over 10,000 samples for GRU only. Similarly, we can see the Bi-GRU+Med-BERT 

trained on 5,000 samples can provide slightly better performance than Bi-GRU only 

trained on more than 50,000 samples as appears in Supplementary Table 2-A. 

Thus, Med-BERT brought the model performance on par with a training set almost 10 

times larger. The data acquisition cost of these over 9,000 samples, which sometimes can 

be quite expensive, will be substantially saved by using Med-BERT. In this situation, 

with Med-BERT, researchers and clinicians are able to quickly get a general and 

acceptable understanding of the progressions of new diseases before collecting enough 

annotated samples. 

Admittedly, although Med-BERT empowers deep-learning models throughout all 

training sample sizes tested, Med-BERT powered models still do not outperform the non-

deep learning baseline model logistic regression (LR) for the smallest training sample 

sizes (n<500). This is consistent with the literature that LR remains a competitive 

predictive model for small training sample sizes in a number of studies[14]. LR benefits 

from its simple and shallow structure, which is much easier to fit based on even only a 

few samples compared with the complex structure and immense parameter space of deep-

learning models. However, this advantage is gradually weakened as the training size 
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grows. Therefore, for practice, we would recommend the use of Med-BERT fine-tuning 

for the scenarios where the training sample size is sufficiently large (e.g. n>500).  

The vocabulary of the current version of Med-BERT is the union of ICD-9 and ICD-10 

codes with 82,000 tokens. Compared with BEHRT and G-BERT, our vocabulary has 

broader coverage and is widely adopted in practice. We believe that it will greatly 

facilitate the transferability of the model, as ICD is a global health information standard 

recommended by the World Health Organization and is used by different institutions 

from over 100 countries around the world. This can be demonstrated in our PaCa-Truven 

evaluation, in which we tested our models’ efficacy using a cohort extracted from a 

health insurance dataset. 

In this work, we chose BERT, an advanced contextualized embedding methodology in 

NLP, for EHR modality. However, there are alternative ideas: such as ULMFiT[48], 

ELMo[49] GPTs[28 67 68], etc. It is probably necessary to evaluate these alternatives for 

pre-training and fine-tuning on EHR. We will leave it as future work. 

There are still several limitations of the current work. First, we used only the diagnosis 

information in the ICD format. Second, we did not include the length of time intervals 

between visits in this study, which may cause some temporal information loss. Third, we 

did not fully explore the order of concepts within each visit, and the current setting based 

on code priorities might not be sufficiently reliable. In the future, more research on 

designing different pre-training tasks will be conducted, and different types of fine-tuning 

tasks beyond disease prediction also will be tested. We also plan to include other sources, 

such as time, medications, procedures, and laboratory tests, as inputs of Med-BERT. In 
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addition, task-specific visualizations and interpretations are other areas that we plan to 

explore. 

In conclusion, we proposed Med-BERT, a contextualized embedding model pre-trained 

on a large volume of structured EHR data, and further evaluated the model in disease-

prediction tasks. Domain-specific input formats and pre-trained tasks were designed. 

Extensive experiments demonstrated that Med-BERT has the capacity to help boost the 

prediction performance of baseline deep-learning models on different sizes of training 

samples and can obtain promising results. The visualization module enabled us to look 

deeper into the underlying semantics of the data and working mechanisms of the model, 

in which we observed meaningful examples. Those examples were further verified by 

clinical experts, indicating that Med-BERT can capture the semantics among EHRs 

during both pre-training and fine-tuning. Methodologically, our work establishes the 

feasibility and usefulness of contextualized embedding of structured EHR data. 

Practically, our pre-trained model enables training powerful deep learning predictive 

models with limited training sets.  
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4.7. Supplementary material 

 

Supplementary 4 Figure 6. Flowchart for the DHF cohort definition. 

 

 

Supplementary 4 Figure 7. Flowchart for the PaCa cohort definition. 
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Supplementary 4 Figure 8. Attention connections from the first three transformer layers 

(a top-down direction) of a sample patient sequence. In the first layer, several heads show 

short-range attention patterns, and each token attends mainly to the nearby tokens that are 

within the same visit. In the second layer, some attention heads learn to make the 

correspondence between the same tokens. The third layer has the most interpretable 

patterns. A token in the third layer will focus strongly on other relevant tokens but mostly 

within the same visit. After the third layer, the attention becomes more diffuse and less 

explainable; however, there are still some heads that show long-range attention patterns. 
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Supplementary 4 Table 1: Additional benchmark results. 

Supplementary 4 Table 1A: Average values and standard deviations (in parentheses) of 

additional evaluation metrics for DHF prediction 

Model 

Validation 

AUC AUPRC Sensitivity Specificity 

Precision 

(PPV) 

F1-

score 

GRU 

84.22 

(0.09) 

82.07 

(0.19) 

78.26 

(4.37) 

73.28 

(4.35) 

74.53 

(2.16) 

76.22 

(1.1) 

GRU+t-W2V 

84.25 

(0.15) 

82.23 

(0.26) 

78.18 

(3.41) 

73.39 

(3.28) 

74.51 

(1.5) 

76.23 

(0.85) 

GRU+Med-BERT 

85.29 

(0.12) 

83.44 

(0.13) 

81.25 

(1.64) 

72.37 

(2.09) 

74.47 

(1.06) 

77.69 

(0.25) 

Bi-GRU 

83.04 

(0.18) 

81.32 

(0.18) 

77.07 

(1.15) 

72.72 

(1.14) 

73.68 

(0.56) 

75.33 

(0.34) 

Bi-GRU+t-W2V 

84.59 

(0.12) 

82.66 

(0.1) 

80.60 

(1.50) 

71.70 

(1.53) 

73.85 

(0.7) 

77.06 

(0.34) 

Bi-GRU+Med-BERT 

85.39 

(0.07) 

83.87 

(0.05) 

79.51 

(2.50) 

75.21 

(2.53) 

76.12 

(1.3) 

77.74 

(0.56) 

RETAIN 

83.44 

(0.25) 

81.35 

(0.16) 

77.20 

(0.62) 

73.70 

(0.63) 

74.41 

(0.33) 

75.77 

(0.21) 

RETAIN+t-W2V 

85.17 

(0.06) 

83.34 

(0.05) 

79.79 

(0.78) 

73.76 

(0.85) 

75.08 

(0.43) 

77.36 

(0.16) 

RETAIN+Med-BERT 

85.36 

(0.11) 

83.63 

(0.11) 

78.07 

(2.73) 

76.09 

(2.49) 

76.44 

(1.26) 

77.2 

(0.74) 

Med-BERT_only (FFL) 

85.25 

(0.14) 

83.67 

(0.18) 

78.09 

(3.83) 

75.87 

(3.82) 

76.35 

(2.01) 

77.12 

(0.88) 

untrained Med-BERT 

only 

83.10 

(0.22) 

81.15 

(0.17) 

76.67 

(2.73) 

72.94 

(2.37) 

73.78 

(1.03) 

75.15 

(0.81) 

Logistic Regression 

(LR)* 

81.22 

 (0) 

78.52  

(0) 

77.12 

 (0) 

70.83 

 (0) 

72.36 

 (0) 

74.66  

(0) 

Random Forest (RF)* 

81.91 

(0.35) 

79.89 

(0.17) 

77.51 

(0.11) 

70.94 

(0.43) 

72.54 

(0.28) 

74.94 

(0.15) 
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Supplementary 4 Table 1B: Average values and standard deviations (in parentheses) of 

additional evaluation metrics for PaCa prediction using Cerner cohort 

 

Model 

Validation 

AUC AUPRC Sensitivity Specificity 

Precision 

(PPV) 

F1-

score 

GRU 

81.63 

(0.30) 

71.40 

(0.90) 

58.42 

(2.53) 

83.54 

(2.61) 

62.76 

(2.99) 

60.41 

(0.98) 

GRU+t-W2V 

83.41 

(0.13) 

72.18 

(1.22) 

58.27 

(4.40) 

84.41 

(5.14) 

64.53 

(5.43) 

60.92 

(1.63) 

GRU+Med-BERT 

84.06 

(0.21) 

74.84 

(0.19) 

64.52 

(1.71) 

82.86 

(1.63) 

63.99 

(1.61) 

64.22 

(0.4) 

Bi-GRU 

79.65 

(0.56) 

69.05 

(0.56) 

57.09 

(1.67) 

82.36 

(1.27) 

60.41 

(1.22) 

58.67 

(0.74) 

Bi-GRU+t-W2V 

82.75 

(0.12) 

71.98 

(0.35) 

59.49 

(1.36) 

84.53 

(1.02) 

64.45 

(1.08) 

61.85 

(0.44) 

Bi-GRU+Med-BERT 

84.32 

(0.13) 

75.08 

(0.36) 

63.82 

(2.75) 

83.59 

(2.81) 

64.89 

(2.86) 

64.25 

(0.69) 

RETAIN 

80.99 

(0.32) 

72.02 

(0.30) 

52.78 

(1.76) 

88.35 

(0.79) 

68.1 

(1.03) 

59.45 

(1.04) 

RETAIN+t-W2V 

84.60 

(0.18) 

74.88 

(0.20) 

61.98 

(1.62) 

85.86 

(1.43) 

67.42 

(1.71) 

64.55 

(0.61) 

RETAIN+Med-BERT 

83.34 

(0.13) 

71.78 

(3.10) 

59.24 

(9.26) 

84.94 

(6.43) 

66.36 

(6.51) 

61.71 

(2.43) 

Med-BERT_only 

(FFL) 

83.96 

(0.23) 

73.91 

(0.53) 

65.03 

(4.80) 

80.53 

(5.27) 

61.79 

(5.04) 

63.03 

(0.43) 

untrained Med-BERT 

only 

79.56 

(0.57) 

67.97 

(0.91) 

54.81 

(4.19) 

82.01 

(4.61) 

59.47 

(4.61) 

56.78 

(1.38) 

Logistic Regression 

(LR) 

79.45 

 (0) 

73.59 

 (0) 

56.82 

 (0) 

89.49 

 (0) 

71.79 

 (0) 

63.43 

 (0) 

Random Forest (RF) 

79.05 

(0.08) 

65.65 

(0.33) 

63.83 

(0.27) 

79.96 

(0.53) 

59.99 

(0.66) 

61.85 

(0.40) 
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Supplementary 4 Table 1C: Average values and standard deviations (in parentheses) of 

additional evaluation metrics for PaCa prediction using Truven cohort 

 

Model 

Validation 

AUC AUPRC Sensitivity Specificity 

Precision 

(PPV) 

F1-

score 

GRU 

77.31 

(0.35) 

68.93 

(0.19) 

49.54 

(4.02) 

88.06 

(2.67) 

68.2 

(2.92) 

57.2 

(1.61) 

GRU+t-W2V 

77.19 

(0.28) 

67.90 

(0.33) 

43.30 

(4.78) 

90.98 

(2.16) 

71.35 

(2.82) 

53.64 

(2.99) 

GRU+Med-BERT 

79.33 

(0.17) 

71.21 

(0.28) 

56.81 

(2.00) 

86.07 

(1.32) 

67.56 

(1.31) 

61.68 

(0.66) 

Bi-GRU 

76.66 

(0.21) 

66.87 

(0.32) 

46.65 

(0.81) 

88.61 

(0.63) 

67.61 

(1.05) 

55.2 

(0.58) 

Bi-GRU+t-W2V 

77.21 

(0.29) 

67.35 

(0.27) 

46.63 

(1.81) 

89.38 

(1.07) 

69.17 

(1.36) 

55.67 

(0.93) 

Bi-GRU+Med-BERT 

79.45 

(0.22) 

71.54 

(0.45) 

56.80 

(1.50) 

86.02 

(0.96) 

67.45 

(0.99) 

61.65 

(0.54) 

RETAIN 

77.80 

(0.20) 

68.93 

(0.35) 

45.74 

(0.63) 

90.24 

(0.54) 

70.5 

(0.96) 

55.48 

(0.4) 

RETAIN+t-W2V 

79.58 

(0.29) 

70.36 

(0.34) 

51.41 

(0.90) 

88.76 

(0.48) 

69.99 

(0.61) 

59.27 

(0.49) 

RETAIN+Med-BERT 

79.20 

(0.16) 

69.39 

(0.97) 

33.43 

(8.33) 

95.49 

(2.83) 

80.56 

(5.16) 

46.4 

(7.02) 

Med-BERT_only 

(FFL) 

79.26 

(0.19) 

71.16 

(0.59) 

50.68 

(5.43) 

88.78 

(3.33) 

70.33 

(4.23) 

58.55 

(2.45) 

untrained Med-BERT 

only 

75.89 

(0.49) 

65.56 

(0.52) 

47.75 

(5.50) 

86.23 

(3.68) 

64.34 

(3.16) 

54.5 

(2.26) 

Logistic Regression 

(LR) 

77.11 

 (0) 

67.33 

 (0) 

45.52 

 (0) 

89.17 

 (0) 

68.16 

 (0) 

54.58 

 (0) 

Random Forest (RF) 

76.36 

(0.07) 

64.62 

(0.23) 

43.28 

(0.34) 

89.71 

(0.17) 

68.17 

(0.52) 

52.94 

(0.41) 
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Supplementary 4 Table 2: Additional performance results 

Supplementary 4 Table 2A. Experiement 3 - Additional Metrics for DHF prediction 

evalution using smaller training set size 

Threshold used for Sensitivity, Specificity, Precision and F1-score is 0.5 

 

M
o

d
el

 

Training 

Set size 

TEST 

AUC 

Validation 

AUC 
AUPRC 

Sensitiv

ity 

Specific

ity 

Precision 

(PPV) 

F1-

score 

G
R

U
 

100 56.24 

(3.65) 

65.52 

(24.07) 

54.78 

(3.42) 

58.08 

(8.72) 

51 

(10.08) 

54.18 

(3.31) 

55.74 

(4.16) 

200 
62.31 

(3.87) 

70.79 

(12.39) 

60.73 

(3.36) 

60.62 

(6.09) 

57.75 

(7.07) 

58.83 

(3.06) 

59.55 

(3.48) 

300 
63.67 

(4.32) 

69.79 

(9.37) 

61.67 

(3.83) 

61.94 

(6.07) 

58.26 

(7.56) 

59.7 

(3.63) 

60.62 

(3.66) 

400 
64.34 

(4.26) 

68.52 

(5.67) 

62.26 

(4.25) 

58.77 

(4.52) 

62.09 

(6.13) 

60.7 

(3.41) 

59.62 

(3.19) 

500 
67.29 

(2.13) 

70.88 

(6.25) 

65.27 

(1.92) 

61.1 

(5.71) 

64.22 

(5.22) 

62.95 

(2.15) 

61.85 

(2.97) 

1000 
68.74 

(1.43) 

70  

(4.82) 

66.53 

(1.54) 

64.18 

(6) 

62.82 

(5.89) 

63.26 

(1.92) 

63.52 

(2.46) 

2000 
72.62 

(1.03) 

74.1 

(4.03) 

70.27 

(0.96) 

67.89 

(2.06) 

65.49 

(3.28) 

66.14 

(1.45) 

66.97 

(0.66) 

5000 
77.24 

(0.58) 

78.23 

(1.07) 

74.48 

(0.5) 

71.5 

(5.88) 

69.69 

(4.72) 

70.17 

(1.55) 

70.66 

(2.16) 

10000 
79.51 

(0.63) 

80.11 

(1.32) 

76.92 

(0.85) 

73.05 

(4.94) 

72.17 

(4.39) 

72.37 

(1.82) 

72.57 

(1.64) 

Full Cohort 

(50750) 

83.93 

(0.13) 

84.22 

(0.09) 

82.07 

(0.19) 

78.26 

(4.37) 

73.28 

(4.35) 

74.53 

(2.16) 

76.22 

(1.1) 

G
R

U
+

M
e
d

-B
E

R
T

 

100 62.21 

(7.12) 

71.1 

(14.17) 

60 

(6.99) 

65.58 

(39.99) 

42.27 

(38.69) 

50.43 

(19.05) 

50.45 

(27.67) 

200 
68.19 

(7.47) 

78.01 

(9.82) 

65.62 

(6.79) 

28.21 

(33.51) 

86.43 

(16.3) 

57.96 

(21.78) 

29.7 

(32.39) 

300 
69.18 

(7.3) 

73.69 

(10.49) 

65.67 

(7.29) 

75.08 

(30.49) 

44.23 

(38.81) 

59.25 

(9.88) 

61.28 

(21.39) 

400 
72.76 

(3.97) 

78.67 

(6.02) 

69.72 

(4.35) 

47.73 

(31.95) 

77.73 

(17.05) 

69.57 

(5.55) 

48.87 

(29.09) 

500 
75.24 

(2.56) 

79.11 

(4.91) 

71.96 

(2.29) 

73.76 

(10.13) 

62.18 

(17.56) 

67.2 

(6.19) 

69.53 

(3.22) 

1000 
77.63 

(1.22) 

76.6 

(3.87) 

74.55 

(1.13) 

74.93 

(2.82) 

67.66 

(3.19) 

69.71 

(1.62) 

72.18 

(1.21) 

2000 
79.92 

(0.42) 

80.43 

(2.74) 

77.51 

(0.55) 

75.31 

(2.95) 

70.37 

(3.41) 

71.65 

(1.61) 

73.37 

(0.69) 

5000 
81.76 

(0.34) 

81.92 

(1.42) 

79.36 

(0.52) 

78.61 

(2.49) 

69.76 

(2.45) 

72.07 

(1.04) 

75.16 

(0.66) 
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M
o

d
el

 

Training 

Set size 

TEST 

AUC 

Validation 

AUC 
AUPRC 

Sensitiv

ity 

Specific

ity 

Precision 

(PPV) 

F1-

score 

10000 
83.08 

(0.24) 

83.5 

(1.22) 

81.01 

(0.31) 

79.32 

(1.9) 

71.16 

(2.28) 

73.18 

(1.07) 

76.1 

(0.37) 

Full Cohort 

(50750) 

85.14 

(0.06) 

85.29 

(0.12) 

83.44 

(0.13) 

81.25 

(1.64) 

72.37 

(2.09) 

74.47 

(1.06) 

77.69 

(0.25) 

B
i-

G
R

U
 

100 52.04 

(3.44) 

54.83 

(21.76) 

51.73 

(2.92) 

54.34 

(27.3) 

48.41 

(26.9) 

51.24 

(2.44) 

49.02 

(16.09) 

200 
58.24 

(3.43) 

67.59 

(7.24) 

56.43 

(2.67) 

51.89 

(16.31) 

59.46 

(12.33) 

55.78 

(1.97) 

52.44 

(10.56) 

300 
56.96 

(5.72) 

61.76 

(14.29) 

55.36 

(5.21) 

59.42 

(17.69) 

50.13 

(18.55) 

54.54 

(3.91) 

55.35 

(10.09) 

400 
65.03 

(4.94) 

70.22 

(10.63) 

61.92 

(4.49) 

61.26 

(6.88) 

60.18 

(7.57) 

60.56 

(3.68) 

60.69 

(4.08) 

500 
68.24 

(5.87) 

70.51 

(8.77) 

65.39 

(5.36) 

61.76 

(13.31) 

64.48 

(5.31) 

62.86 

(3.76) 

61.82 

(8.77) 

1000 
74.89 

(0.67) 

72.33 

(3.93) 

72.7 

(1.05) 

70.2 

(2.91) 

66.32 

(2.54) 

67.4 

(0.81) 

68.73 

(1.08) 

2000 
76.66 

(0.46) 

78.54 

(3.89) 

74.75 

(0.5) 

70.79 

(1.69) 

69.02 

(1.91) 

69.38 

(0.93) 

70.06 

(0.67) 

5000 
78.66 

(0.41) 

79.71 

(1.14) 

77.03 

(0.53) 

73.06 

(1.9) 

69.58 

(1.99) 

70.43 

(0.86) 

71.7 

(0.57) 

10000 
80.36 

(0.31) 

80.72 

(1.31) 

78.68 

(0.33) 

74.58 

(1.67) 

71.15 

(1.28) 

71.92 

(0.52) 

73.21 

(0.67) 

Full Cohort 

(50750) 

82.82 

(0.17) 

83.04 

(0.18) 

81.32 

(0.18) 

77.07 

(1.15) 

72.72 

(1.14) 

73.68 

(0.56) 

75.33 

(0.34) 

B
i-

G
R

U
+

M
e
d

-B
E

R
T

 

100 60.44 

(8.88) 

59.43 

(17.91) 

57.24 

(7.71) 

64.09 

(42.77) 

44.24 

(39.98) 

50.74 

(10.71) 

49.12 

(28.56) 

200 
74.44 

(3.09) 

81.64 

(10.38) 

71.26 

(3.61) 

59.09 

(28.99) 

72.01 

(16.31) 

69.44 

(4.27) 

58.15 

(24.11) 

300 
76 

(3.59) 

77.19 

(8.64) 

72.97 

(4.21) 

66.84 

(24.67) 

70.03 

(13.24) 

72.3 

(10.12) 

64.17 

(22.67) 

400 
75.85 

(3.5) 

79.73 

(5.3) 

73.07 

(4.12) 

62.58 

(33.76) 

67.1 

(26.57) 

68.49 

(9.81) 

57.27 

(29.63) 

500 
77.92 

(1.04) 

79.48 

(6.68) 

74.99 

(0.9) 

69.65 

(17.45) 

70.91 

(8.77) 

71.15 

(3.49) 

68.5 

(12.69) 

1000 
80.14 

(0.85) 

78.99 

(4.03) 

77.88 

(0.72) 

76.57 

(2.43) 

68.92 

(3.37) 

71.01 

(1.69) 

73.64 

(0.65) 

2000 
81.61 

(0.49) 

82.02 

(2.46) 

79.55 

(0.71) 

74.26 

(2) 

73.47 

(1.95) 

73.52  

(1) 

73.86 

(0.71) 

5000 
83.12 

(0.27) 

83.37 

(1.54) 

81.21 

(0.3) 

77.17 

(1.91) 

73.05 

(1.59) 

73.95 

(0.72) 

75.51 

(0.64) 

10000 
83.94 

(0.16) 

84.15 

(1.06) 

82.17 

(0.16) 

78.79 

(2.5) 

72.78 

(2.31) 

74.18 

(1.05) 

76.38 

(0.68) 
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M
o

d
el

 

Training 

Set size 

TEST 

AUC 

Validation 

AUC 
AUPRC 

Sensitiv

ity 

Specific

ity 

Precision 

(PPV) 

F1-

score 

Full Cohort 

(50750) 

85.39 

(0.05) 

85.39 

(0.07) 

83.87 

(0.05) 

79.51 

(2.5) 

75.21 

(2.53) 

76.12 

(1.3) 

77.74 

(0.56) 

R
E

T
A

IN
 

100 
58.75 

(8.01) 

70.28 

(20.26) 

56.13 

(6.8) 

56.67 

(27.96) 

54.51 

(23.81) 

55.69 

(8.54) 

52.95 

(14.8) 

200 
66.94 

(6.04) 

75.83 

(12.86) 

63.27 

(6.06) 

51.74 

(21.84) 

69.76 

(17.61) 

64.55 

(6.8) 

54.46 

(13.97) 

300 
74.04 

(1.53) 

79.36 

(8.61) 

71.23 

(2.23) 

46.6 

(23.14) 

80.09 

(13.58) 

72.55 

(6.01) 

52.65 

(16.74) 

400 
71.88 

(4.19) 

72.93 

(7.49) 

68.91 

(4.78) 

55.42 

(22.33) 

72.34 

(15.15) 

67.92 

(6.11) 

58.04 

(14.28) 

500 
74.02 

(1.13) 

79.37 

(6.39) 

70.96 

(1.85) 

56.28 

(25.6) 

73.02 

(17.42) 

70.51 

(6.8) 

58 

(16.37) 

1000 
74.29 

(2.21) 

76.04 

(1.91) 

71.59 

(2.62) 

61.94 

(13.33) 

72.31 

(9.68) 

69.64 

(4.13) 

64.52 

(7) 

2000 
75.43 

(1.44) 

76.16 

(2.68) 

72.88 

(1.7) 

60.05 

(15.83) 

74.65 

(9.82) 

70.98 

(3.36) 

63.55 

(9.58) 

5000 
79.47 

(0.33) 

79.39 

(1.29) 

77.41 

(0.39) 

74.75 

(2.28) 

69.52 

(2.28) 

70.87 

(0.95) 

72.73 

(0.71) 

10000 
80.84 

(0.32) 

81.27 

(1.18) 

78.92 

(0.36) 

75.45 

(1.39) 

71.29 

(1.6) 

72.26 

(0.77) 

73.81 

(0.38) 

Full Cohort 

(50750) 

83.28 

(0.16) 

83.44 

(0.25) 

81.35 

(0.16) 

77.2 

(0.62) 

73.7 

(0.63) 

74.41 

(0.33) 

75.77 

(0.21) 

R
E

T
A

IN
+

M
e
d

-B
E

R
T

 

100 63.53 

(4.91) 

80.16 

(13.14) 

60.44 

(5.45) 

47.29 

(49.01) 

56.69 

(47.55) 

45.35 

(25.99) 

34.78 

(33.34) 

200 
70.89 

(4.24) 

81.44 

(9.7) 

67.6 

(4.58) 

62.34 

(36.47) 

59.18 

(30.44) 

58.12 

(22.43) 

54.44 

(25.57) 

300 
73.49 

(6.46) 

77.22 

(7.27) 

70.5 

(6.49) 

43.83 

(35.27) 

76.91 

(22.42) 

71.76 

(10.6) 

43.93 

(29.78) 

400 
76.37 

(2.96) 

78.24 

(5.23) 

72.99 

(3.94) 

73.89 

(11.69) 

63.67 

(19.74) 

68.31 

(6.31) 

70.1 

(3.43) 

500 
76.5 

(2.91) 

79.55 

(5.74) 

73.35 

(3.51) 

41.1 

(24.07) 

84.79 

(13.26) 

76.61 

(7.25) 

48.6 

(19.6) 

1000 
77.88 

(2.85) 

79.37 

(3.6) 

74.03 

(3.41) 

72.95 

(7.46) 

68.79 

(10.58) 

70.5  

(4.7) 

71.28 

(2.26) 

2000 
80.55 

(1.09) 

80.56 

(2.06) 

77.29 

(1.83) 

68.87 

(6.22) 

76.38 

(4.51) 

74.48 

(2.19) 

71.34 

(2.83) 

5000 
82.96 

(0.35) 

83.41 

(1.15) 

80.63 

(0.59) 

76.35 

(2.31) 

73.97 

(2.01) 

74.42 

(0.94) 

75.34 

(0.72) 

10000 
83.92 

(0.16) 

84.06 

(0.86) 

81.95 

(0.22) 

77.74 

(2.56) 

73.82 

(2.4) 

74.67 

(1.15) 

76.14 

(0.67) 

Full Cohort 

(50750) 
85.33 

(0.09) 

85.36 

(0.11) 

83.63 

(0.11) 

78.07 

(2.73) 

76.09 

(2.49) 

76.44 

(1.26) 

77.2 

(0.74) 
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M
o

d
el

 

Training 

Set size 

TEST 

AUC 

Validation 

AUC 
AUPRC 

Sensitiv

ity 

Specific

ity 

Precision 

(PPV) 

F1-

score 

L
o
g
is

ti
c 

R
eg

re
ss

io
n

 (
L

R
)*

 
100 

72.49 

(2.16) 

68.75 

(16.44) 

70.43 

(2.09) 

71.57 

(9.7) 

61.54 

(9.25) 

65.13 

(2.52) 

67.78 

(3.81) 

200 
74.05 

(0.44) 

76.06 

(9.62) 

71.6 

(0.45) 

70.3 

(4.29) 

65.37 

(3.62) 

66.85 

(1.08) 

68.44 

(1.63) 

300 
75.06 

(0.78) 

76.01  

(8) 

72.91 

(0.82) 

70.69 

(3.37) 

66.6 

(2.97) 

67.75 

(1.16) 

69.13 

(1.35) 

400 
75.68 

(0.76) 

74.33 

(8.35) 

73.4 

(1.09) 

69.59 

(3.57) 

68.7 

(3.77) 

68.86 

(1.55) 

69.15 

(1.22) 

500 
76.03 

(0.89) 

76.21 

(6.15) 

73.48 

(1.06) 

72.03 

(2.76) 

66.84 

(3.19) 

68.33 

(1.49) 

70.08 

(0.9) 

1000 
76.54 

(0.68) 

75.51 

(3.46) 

74.06 

(0.65) 

71.4 

(2.06) 

68.1 

(2.49) 

68.95 

(1.23) 

70.13 

(0.88) 

2000 
77.15 

(0.68) 

77.93 

(3.63) 

74.67 

(0.85) 

71.4 

(2.06) 

69.33 

(1.36) 

69.75 

(0.58) 

70.55 

(0.99) 

5000 
78.28 

(0.37) 

78.4 

(2.16) 

75.93 

(0.44) 

72.47 

(1.27) 

70.29 

(0.71) 

70.73 

(0.35) 

71.58 

(0.66) 

10000 
79 

(0.18) 

79.33 

(0.93) 

76.47 

(0.23) 

74.06 

(0.74) 

69.84 

(0.61) 

70.87 

(0.31) 

72.43 

(0.34) 

Full Cohort 

(50750) 

81.01 

(0) 

81.22  

(0) 

78.52 

(0) 

77.12 

(0) 

70.83 

(0) 

72.36 

 (0) 

74.66 

(0) 

 

 

 

 

Supplementary 4 Table 2B. Experiement 3 - Additional Metrics for PaCa-Cerner 

prediction evalution using smaller training set size 

 

Threshold used for Sensitivity, Specificity, Precision and F1-score is 0.5 

 

M
o
d

el
 

Training 

Set size 

TEST 

AUC 

Validation 

AUC 
AUPRC 

Sensiti

vity 

Specifi

city 

Precision 

(PPV) 

F1-

score 

G
R

U
 

100 

50.16 

(2.88) 

73.2 

(13.19) 

34.47 

(3.26) 

22.76 

(16.48) 

80.74 

(15.01) 

35.63 

(3.66) 

24.38 

(13.91) 

200 

56.59 

(3.64) 

70.43 

(10.56) 

41.46 

(4.39) 

42.49 

(14.27) 

69.23 

(13.15) 

40.25 

(4.61) 

39.52 

(9.9) 

300 

55.64 

(3.86) 

68.85 

(5.42) 

40.88 

(4.89) 

36.48 

(15.51) 

73.89 

(12.78) 

40.21 

(3.58) 

35.9 

(11.8) 

400 

57.79 

(3.06) 

67.77 

(10.9) 

42.56 

(3.81) 

42.36 

(9.67) 

70.26 

(7.94) 

40.39 

(3.56) 

40.75 

(5.47) 

500 

58.53 

(1.67) 

67.04 

(6.47) 

43.04 

(1.88) 

43.61 

(8.31) 

70.02 

(8.05) 

41.09 

(3.02) 

41.73 

(4.15) 
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M
o

d
el

 

Training 

Set size 

TEST 

AUC 

Validation 

AUC 
AUPRC 

Sensiti

vity 

Specifi

city 

Precision 

(PPV) 

F1-

score 

1000 

60.64 

(2.07) 

69.24 

(3.59) 

47.2 

(1.9) 

44.2 

(5.59) 

72.33 

(4.88) 

43.09 

(2.99) 

43.44 

(3.24) 

2000 

65.17 

(1.04) 

70.89 

(4.31) 

53.54 

(1.69) 

52.45 

(4.18) 

70.37 

(4.55) 

45.64 

(2.29) 

48.66 

(1.56) 

5000 

70.64 

(1.94) 

75.55 

(2.33) 

61.86 

(2.28) 

52.2 

(7.42) 

78.61 

(4.53) 

53.75 

(2.23) 

52.59 

(3.18) 

10000 

75.38 

(1.28) 

79.33 

(1.27) 

68.21 

(1.32) 

54.4 

(5.91) 

83.39 

(4.7) 

61.31 

(4.67) 

57.26 

(1.94) 

Full Cohort 

(19250) 

78.26 

(0.84) 

81.63 

(0.3) 

71.4 

(0.9) 

58.42 

(2.53) 

83.54 

(2.61) 

62.76 

(2.99) 

60.41 

(0.98) 

G
R

U
+

M
e
d

-B
E

R
T

 

100 

56.89 

(7.3) 

73.78 

(17.02) 

36.65 

(5.53) 

23.8 

(40.9) 

76.64 

(41.1) 

24.95 

(19.48) 

14.6 

(20.13) 

200 

66.67 

(4.51) 

72.71 

(8.9) 

48.29 

(6.68) 

13.03 

(31.15) 

89.49 

(31.11) 

36.05 

(35.04) 

9.83 

(17.92) 

300 

68.74 

(5.94) 

77.36 

(11.94) 52 (7.8) 

36.25 

(41.26) 

73.91 

(39.85) 

50.07 

(34.92) 

27.08 

(23.76) 

400 

71.99 

(6.7) 

73.58 

(7.04) 

57.57 

(9.93) 

47.39 

(26.63) 

77.5 

(28.67) 

53.21 

(23.31) 

45.49 

(17.36) 

500 

74.19 

(1.69) 

77.79 

(7.43) 

61.4 

(2.96) 

38.51 

(22.09) 

87.06 

(13.06) 

68.65 

(15.93) 

42.68 

(17.01) 

1000 

76.08 

(1.54) 

80.11 

(3.93) 

63.46 

(2.8) 

52.34 

(24.16) 

79.71 

(11.67) 

52.45 

(21.28) 

49.45 

(20.05) 

2000 

77.76 

(1.55) 

79.7 

(2.68) 

65.51 

(2.43) 

52.77 

(12.82) 

83.89 

(7.47) 

62.4 

(6.07) 

55.69 

(6.15) 

5000 

79.86 

(0.31) 

82.5 

(1.91) 

69.78 

(1.24) 

65.88 

(3.34) 

77.67 

(3.14) 

58.31 

(2.33) 

61.75 

(0.43) 

10000 

81.05 

(0.22) 

82.92 

(0.9) 

72.81 

(0.51) 

66.95 

(2.73) 

78.31 

(2.99) 

59.39 

(2.3) 

62.86 

(0.51) 

Full Cohort 

(19250) 

82.13 

(0.24) 

84.06 

(0.21) 

74.84 

(0.19) 

64.52 

(1.71) 

82.86 

(1.63) 

63.99 

(1.61) 

64.22 

(0.4) 

B
i-

G
R

U
 

100 

51.31 

(3.39) 

54.54 

(11.33) 

33.88 

(2.3) 

41.8 

(21.32) 

61.12 

(21.84) 

33.95 

(3.15) 

35.37 

(7.93) 

200 

49.78 

(4.08) 

52.19 

(12.94) 

32.78 

(3.08) 

40.44 

(23.04) 

58.7 

(26.69) 

33.03 

(4.04) 

32.65 

(9.77) 

300 

51.75 

(4.33) 

60.1 

(10.63) 

34.74 

(4.02) 

24.23 

(23.16) 

78.98 

(24.35) 

37.52 

(7.09) 

24.15 

(13.48) 

400 

54.86 

(4.4) 

59.55 

(11.64) 

37.68 

(5.29) 

42.58 

(20.52) 

64.1 

(23.65) 

38.23 

(6.39) 

37.12 

(8.09) 

500 

54.1 

(5.77) 

60.01 

(10.33) 

37.57 

(6.25) 

19.83 

(18.7) 

85.85 

(16.72) 

42.52 

(7.44) 

22.26 

(15.59) 

1000 

65.58 

(2.59) 

69.59 

(5.23) 

52.48 

(3.45) 

46.46 

(3.28) 

76.44 

(4.68) 

48.54 

(4.67) 

47.34 

(2.95) 

2000 

68.44 

(1.67) 

73.07 

(3.63) 

57.15 

(3.09) 

46.93 

(8.5) 

79.76 

(6.1) 

52.97 

(4.24) 

49.04 

(4.68) 
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M
o

d
el

 

Training 

Set size 

TEST 

AUC 

Validation 

AUC 
AUPRC 

Sensiti

vity 

Specifi

city 

Precision 

(PPV) 

F1-

score 

5000 

72.03 

(0.7) 

76.16 

(2.57) 

62.94 

(1.1) 

52.77 

(2.98) 

79.65 

(2.57) 

55.09 

(2.04) 

53.82 

(1.25) 

10000 

74.6 

(0.63) 77 (0.92) 

66.74 

(0.67) 

56.76 

(2.16) 

80.07 

(1.2) 

57.29 

(0.81) 

57 

(0.96) 

Full Cohort 

(19250) 

76.09 

(0.61) 

79.65 

(0.56) 

69.05 

(0.56) 

57.09 

(1.67) 

82.36 

(1.27) 

60.41 

(1.22) 

58.67 

(0.74) 

B
i-

G
R

U
+

M
e
d

-B
E

R
T

 

100 

56.23 

(7.13) 

75.83 

(18.61) 

37.31 

(6.72) 

12.45 

(31.06) 

88.31 

(31.19) 

28.32 

(33.26) 

8.58 

(16.26) 

200 

66.49 

(6.99) 

78.29 

(9.58) 

50.56 

(10.61) 

9.5 

(14.68) 

96.34 

(7.03) 

42.73 

(41.03) 

12.85 

(17.66) 

300 

74.17 

(2.94) 

80.37 

(9.27) 

61.75 

(3.8) 

32.64 

(18.7) 

92.09 

(7.44) 

73.95 

(13.84) 

40.4 

(17.78) 

400 

75.29 

(3.15) 

78.57 

(4.85) 

63.06 

(4.57) 

34.76 

(24.46) 

90.4 

(9.61) 

64.98 

(26.96) 

39.38 

(22.95) 

500 

75.43 

(1.82) 

77.77 

(7.21) 

63.12 

(3.89) 

45.7 

(18.08) 

84.81 

(11.31) 

65.31 

(14.59) 

49.33 

(11.35) 

1000 

76.93 

(2.51) 80.94 (4) 

65.83 

(3.68) 

45.97 

(26.37) 

84.96 

(10.88) 

69.28 

(18.32) 

46.27 

(23.29) 

2000 

79.02 

(1.06) 

80.66 

(2.34) 

69.39 

(1.03) 

60.13 

(8.07) 

80.52 

(7.71) 

60.77 

(7.26) 

59.58 

(2.06) 

5000 

80.92 

(0.48) 

83.32 

(1.55) 

72.37 

(0.53) 

64.38 

(2.54) 

80.29 

(2.72) 

60.74 

(2.26) 

62.43 

(0.68) 

10000 

81.52 

(0.32) 

83.35 

(0.86) 

73.89 

(0.25) 

63.55 

(2.29) 

82.63 

(2.26) 

63.39 

(2.24) 

63.4 

(0.52) 

Full Cohort 

(19250) 

82.23 

(0.29) 

84.32 

(0.13) 

75.08 

(0.36) 

63.82 

(2.75) 

83.59 

(2.81) 

64.89 

(2.86) 

64.25 

(0.69) 

R
E

T
A

IN
 

100 

51.91 

(4.01) 

63.7 

(21.91) 

35.79 

(3.3) 

49.97 

(8.07) 

52.57 

(5.29) 

33.03 

(2.55) 

39.64 

(4.24) 

200 

51.36 

(6.91) 

55.23 

(6.35) 

35.52 

(4.81) 

41.52 

(18.56) 

62.78 

(14.49) 

34.55 

(4.94) 

36.14 

(8.55) 

300 

55.5 

(5.12) 

61.78 

(13.5) 

40.48 

(5.85) 

45.49 

(13.47) 

63.99 

(14.95) 

38.63 

(5.81) 

40.33 

(5.72) 

400 

55.62 

(7.58) 

66.65 

(9.5) 

40.74 

(6.7) 

27.77 

(15.33) 

83.06 

(10.29) 

44.35 

(8.79) 

32.23 

(10.35) 

500 

57.58 

(9.69) 

64.82 

(11.11) 

42.22 

(8.1) 

39.1 

(15.49) 

73.58 

(13.64) 

42.42 

(9.82) 

39.1 

(10.57) 

1000 

66.03 

(4.87) 

71.89 

(4.48) 

53.8 

(6.15) 

38.09 

(9.63) 

85.79 

(5.56) 

56.44 

(5.83) 

44.68 

(7.02) 

2000 

71.24 

(3.78) 

73.45 

(3.28) 

61.61 

(4.36) 

41.4 

(5.86) 

88.32 

(2.45) 

62.67 

(3.48) 

49.6 

(4.81) 

5000 

76.5 

(0.48) 

78.73 

(1.6) 

68.59 

(0.69) 

49.28 

(3.17) 

88.03 

(2.4) 

66.25 

(3.07) 

56.38 

(1.37) 

10000 

78.43 

(0.41) 

79.87 

(0.69) 

70.77 

(0.39) 

50.76 

(2.28) 

89.05 

(1.49) 

68.7 

(2.12) 

58.31 

(0.99) 
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M
o

d
el

 

Training 

Set size 

TEST 

AUC 

Validation 

AUC 
AUPRC 

Sensiti

vity 

Specifi

city 

Precision 

(PPV) 

F1-

score 

Full Cohort 

(19250) 

79.68 

(0.32) 

80.99 

(0.32) 

72.02 

(0.3) 

52.78 

(1.76) 

88.35 

(0.79) 

68.1 

(1.03) 

59.45 

(1.04) 

R
E

T
A

IN
+

M
e
d

-B
E

R
T

 

100 

58.49 

(9.49) 

74.02 

(12.18) 

39.89 

(9.18) 

42.82 

(42.12) 

62.22 

(39.31) 

26.74 

(15.61) 

28.03 

(22.95) 

200 

59.58 

(8.6) 

71.51 

(12.05) 

40.49 

(7.87) 

4.13 

(8.62) 

97.75 

(4.93) 

30.31 

(35.37) 

5.77 

(11.6) 

300 

60.61 

(8.26) 

71.82 

(12.36) 

42.78 

(9.97) 

10.33 

(19.24) 

92.61 

(14.3) 

44.82 

(40.39) 

10.52 

(16.85) 

400 

69.3 

(6.45) 

78.19 

(8.32) 

53.11 

(8.22) 

6.09 

(17.35) 

98.25 

(5.43) 

33.19 

(44.03) 

6.84 

(17.95) 

500 

74.01 

(2.6) 

79.56 

(6.57) 

59.56 

(3.64) 

14.1 

(19.42) 

96.61 

(6.85) 

57.46 

(41.8) 

18.38 

(20.93) 

1000 

76.35 

(1.21) 

79.61 

(3.59) 

63.92 

(2.28) 

20.49 

(17.97) 

96.13 

(7.29) 

85.52 

(14.21) 

28.16 

(18.37) 

2000 

78.12 

(1.18) 

80.54 

(1.99) 

65.74 

(2.77) 

33.69 

(14.33) 

93.59 

(7.41) 

77.44 

(11.28) 

44.05 

(11.49) 

5000 

79.7 

(0.62) 

82.46 

(1.29) 

68.25 

(1.27) 

35.12 

(8.17) 

95.41 

(2.43) 

79.69 

(5.43) 

47.92 

(6.91) 

10000 

80.36 

(0.32) 

83.08 

(0.99) 

69.43 

(1.46) 

41.82 

(5.7) 

93.96 

(2.14) 

77.24 

(4.36) 

53.84 

(4.2) 

Full Cohort 

(19250) 

81.3 

(0.55) 

83.34 

(0.13) 

71.78 

(3.1) 

59.24 

(9.26) 

84.94 

(6.43) 

66.36 

(6.51) 

61.71 

(2.43) 

L
o

g
is

ti
c 

R
eg

re
ss

io
n

 (
L

R
)*

 

100 

64.93 

(3.83) 

76.39 

(16.16) 

53.37 

(3.28) 

35.43 

(7.86) 

87.62 

(7.8) 

60.78 

(10.26) 

43.41 

(4.3) 

200 

70.68 

(2.2) 

71.35 

(10.96) 

59.69 

(2.01) 

45.3 

(6.91) 

87.18 

(3.47) 

62.94 

(3.45) 

52.24 

(3.94) 

300 

70.59 

(1.56) 

71.78 

(8.16) 

60.71 

(1.59) 

44.89 

(4.4) 

87.68 

(3.29) 

63.71 

(4.35) 

52.39 

(2.29) 

400 

71.55 

(1.43) 

71.02 

(5.44) 

61.85 

(1.46) 

46.48 

(3.65) 

87.99 

(3.01) 

65.04 

(4.02) 

53.99 

(1.33) 

500 

71.47 

(1.69) 

69.66 

(5.23) 

61.85 

(1.51) 

46.59 

(3.44) 

87.62 

(3.3) 

64.44 

(4.48) 

53.85 

(1.47) 

1000 

73.7 

(0.81) 

75.23 

(3.78) 

65.02 

(0.73) 

51.32 

(3.04) 

87.01 

(2.26) 

65.26 

(2.74) 

57.33 

(1.01) 

2000 

75.04 

(1.16) 

75.51 

(2.76) 

67.33 

(1.21) 

52.66 

(1.31) 

87.66 

(1.12) 66.81 (2) 

58.88 

(1.19) 

5000 

76.91 

(0.6) 

77.72 

(2.59) 

69.99 

(0.45) 

54.62 

(1.29) 

88.06 

(0.84) 

68.31 

(1.15) 

60.69 

(0.69) 

10000 

78.63 

(0.3) 

78.72 

(1.01) 

72.18 

(0.26) 

55.49 

(0.94) 

89.21 

(0.59) 

70.78 

(0.91) 

62.2 

(0.48) 

Full Cohort 

(19250) 

79.94 

(0) 79.45 (0) 

73.59 

(0) 

56.82 

(0) 

89.49 

(0) 71.79 (0) 

63.43 

(0) 
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Supplementary 4 Table 2C. Experiement 3 - Additional Metrics for PaCa-Truven 

prediction evalution using smaller training set size 

 

Threshold used for Sensitivity, Specificity, Precision and F1-score is 0.5 

 

 

M
o

d
el

 

Training 

Set size 

TEST 

AUC 

Validation 

AUC 
AUPRC 

Sensitiv

ity 

Specific

ity 

Precision 

(PPV) 

F1-

score 

G
R

U
 

100 

55.23 

(4.18) 

73.49 

(15.84) 

38.39 

(4.07) 

26.27 

(5.88) 

79.69 

(4.48) 

39.79 

(4.44) 

31.39 

(5.19) 

200 

59.04 

(3.76) 

69.82 

(6.92) 

42.00 

(3.78) 

33.52 

(12.19) 

78.09 

(6.81) 

42.99 

(3.74) 

36.65 

(10.55) 

300 

61.33 

(3.79) 

71.51 

(10.05) 

44.16 

(4.17) 

34.47 

(13.24) 

79.93 

(7.37) 

46.11 

(3.07) 

38.12 

(11.19) 

400 

62.43 

(3.26) 

71.22 

(10.08) 

45.80 

(3.54) 

37.04 

(7.83) 

79.33 

(4.89) 

47.88 

(3.99) 

41.33 

(5.52) 

500 

65.24 

(1.64) 

68.51 

(7.23) 

50.05 

(2.37) 

40.91 

(3.97) 

79.30 

(4.90) 

50.7 

(3.67) 

45.00 

(1.32) 

1000 

67.32 

(1.06) 

69.98 

(3.55) 

52.65 

(1.83) 

43.43 

(7.27) 

79.73 

(6.00) 

52.72 

(2.88) 

47.15 

(3.19) 

2000 

70.45 

(1.07) 

69.56 

(3.38) 

57.12 

(1.52) 

47.44 

(7.99) 

79.76 

(5.98) 

55.11 

(3.79) 

50.38 

(3.61) 

5000 

73.15 

(1.50) 

72.81 

(2.87) 

62.16 

(1.61) 

46.61 

(7.15) 

84.17 

(5.49) 

61.04 

(5.31) 

52.2 

(3.45) 

10000 

75.95 

(0.54) 

74.41 

(2.12) 

65.53 

(0.74) 

45.58 

(3.67) 

88.08 

(2.04) 

66.29 

(2.39) 

53.87 

(2.13) 

Full Cohort 

(23609) 

78.17 

(0.21) 

77.31 

(0.35) 

68.93 

(0.19) 

49.54 

(4.02) 

88.06 

(2.67) 

68.2 

(2.92) 

57.2 

(1.61) 

G
R

U
+

M
e
d

-B
E

R
T

 

100 

53.72 

(5.74) 

61.24 

(21.96) 

36.85 

(4.00) 

49.76 

(52.06) 

50.57 

(51.8) 

24.41 

(17.23) 

25.63 

(26.23) 

200 

59.88 

(6.13) 

71.19 

(13.57) 

42.5 

(6.08) 

20.89 

(41.57) 

79.77 

(41.76) 

20.79 

(24.2) 

11.80 

(20.95) 

300 

63.49 

(7.62) 

73.48 

(11.09) 

46.18 

(7.97) 

10.9 

(30.78) 

89.42 

(31.12) 

27.41 

(35.66) 

6.86 

(15.76) 

400 

66.2 

(6.15) 

73.58 

(6.13) 

49.53 

(8.56) 

17.24 

(22.9) 

93.11 

(10.54) 

42.30 

(33.99) 

20.00 

(23.31) 

500 

69.06 

(8.53) 

75.85 

(10.5) 

55.47 

(9.56) 

16.47 

(22.38) 

94.29 

(10.29) 

54.48 

(33.29) 

19.84 

(21.38) 

1000 

73.81 

(0.92) 

73.21 

(4.71) 

61.35 

(1.83) 

21.37 

(21.54) 

94.09 

(8.77) 

54.53 

(32.94) 

26.81 

(22.6) 

2000 

75.75 

(0.72) 

75.51 

(3.04) 

64.32 

(1.39) 

20.15 

(15.68) 

96.53 

(4.03) 

83.46 

(11.69) 

28.71 

(19.02) 

5000 

77.9 

(0.35) 

76.7 

(2.39) 

67.75 

(0.64) 

40.41 

(11.99) 

91.48 

(4.56) 

73.15 

(7.47) 

50.31 

(9.72) 
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M
o

d
el

 

Training 

Set size 

TEST 

AUC 

Validation 

AUC 
AUPRC 

Sensitiv

ity 

Specific

ity 

Precision 

(PPV) 

F1-

score 

10000 

79.1 

(0.24) 

77.65 

(1.68) 

69.43 

(0.49) 

52.73 

(4.68) 

87.09 

(2.77) 

67.86 

(2.82) 

59.13 

(2.02) 

Full Cohort 

(23609) 

80.37 

(0.12) 

79.33 

(0.17) 

71.21 

(0.28) 

56.81 

(2.00) 

86.07 

(1.32) 

67.56 

(1.31) 

61.68 

(0.66) 

B
i-

G
R

U
 

100 

50.45 

(1.94) 

59.66 

(17.95) 

34.23 

(1.32) 

37.54 

(21.46) 

62.66 

(23.22) 

34.65 

(1.8) 

32.97 

(9.44) 

200 

50.43 

(1.59) 

51.92 

(15.51) 

34.19 

(1.12) 

28.1 

(21.16) 

72.21 

(21.78) 

34.74 

(1.91) 

27.44 

(10.94) 

300 

52.6 

(2.02) 

55.37 

(11.29) 

35.78 

(1.64) 

22.88 

(12.28) 

79.02 

(12.34) 

36.72 

(2.82) 

26.2 

(8.54) 

400 

55.05 

(4.58) 

58.98 

(10.97) 

37.94 

(3.90) 

19.22 

(13.51) 

83.99 

(14.00) 

40.2 

(6.02) 

23.33 

(9.85) 

500 

53.46 

(5.97) 

58.58 

(8.37) 

36.83 

(5.14) 

37.72 

(22.29) 

64.99 

(25.26) 

38.61 

(7.72) 

33.66 

(10.3) 

1000 

62.15 

(7.57) 

64.33 

(9.19) 

46.09 

(7.94) 

34.61 

(16.91) 

78.88 

(19.14) 

48.57 

(9.66) 

37.78 

(10.80) 

2000 

70.18 

(0.99) 

69.87 

(3.19) 

55.6 

(1.39) 

41.12 

(4.45) 

84.21 

(3.05) 

57.32 

(2.64) 

47.65 

(2.64) 

5000 

73.36 

(0.50) 

73.12 

(2.56) 

60.95 

(0.76) 

41.75 

(1.89) 

87.38 

(1.17) 

62.82 

(1.41) 

50.12 

(1.16) 

10000 

74.74 

(0.50) 

74.29 

(1.69) 

63.64 

(0.70) 

44.96 

(2.12) 

87.2 

(0.86) 

64.16 

(0.87) 

52.84 

(1.40) 

Full Cohort 

(23609) 

76.79 

(0.29) 

76.66 

(0.21) 

66.87 

(0.32) 

46.65 

(0.81) 

88.61 

(0.63) 

67.61 

(1.05) 

55.2 

(0.58) 

B
i-

G
R

U
+

M
e
d

-B
E

R
T

 

100 

54.57 

(7.05) 

56.85 

(18.97) 

37.58 

(5.96) 

20.9 

(34.83) 

78.47 

(35.71) 

22.74 

(20.78) 

14.5 

(20.11) 

200 

59.54 

(4.48) 

63.22 

(14.21) 

41.62 

(3.61) 

0.88 

(2.78) 

99.54 

(1.47) 

4.91 

(15.54) 

1.49 

(4.71) 

300 

67.78 

(4.43) 75.3 (8.9) 

51.37 

(5.42) 

13.02 

(20.18) 

95.33 

(7.93) 

29.88 

(32.71) 

15.49 

(22.68) 

400 

67.54 

(5.4) 

73.05 

(8.54) 

51.02 

(7.00) 

12.24 

(18.47) 

95.78 

(7.31) 

43.37 

(39.43) 

15.33 

(20.86) 

500 

70.7 

(4.49) 

75.78 

(8.35) 

56.25 

(6.32) 

26.65 

(22.73) 

90.8 

(9.85) 

63.59 

(26.98) 

31.18 

(22.98) 

1000 

74.03 

(1.22) 

74.16 

(4.73) 

60.89 

(2.26) 

12.1 

(10.1) 

98.27 

(1.78) 

65.38 

(35.03) 

19.38 

(15.2) 

2000 

76.07 

(0.47) 

75.9 

(3.42) 

64.04 

(1.09) 

33.77 

(15.03) 

92.2 

(5.29) 

72.59 

(8.26) 

43.19 

(14.5) 

5000 

77.94 

(0.25) 

76.92 

(2.26) 

67.23 

(0.62) 

47.16 

(5.6) 

88.4 

(2.89) 

67.92 

(3.29) 

55.33 

(3.17) 

10000 

79.25 

(0.22) 

77.88 

(1.72) 

69.42 

(0.81) 

56.75 

(3.36) 

84.56 

(2.17) 

65.33 

(1.9) 

60.64 

(1.19) 

Full Cohort 

(23609) 

80.57 

(0.21) 

79.45 

(0.22) 

71.54 

(0.45) 

56.8 

(1.5) 

86.02 

(0.96) 

67.45 

(0.99) 

61.65 

(0.54) 
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M
o

d
el

 

Training 

Set size 

TEST 

AUC 

Validation 

AUC 
AUPRC 

Sensitiv

ity 

Specific

ity 

Precision 

(PPV) 

F1-

score 

R
E

T
A

IN
 

100 

51.73 

(3.01) 

57.5 

(19.24) 

34.78 

(2.08) 

45.47 

(11.36) 

57.19 

(10.29) 

35.15 

(2.35) 

39.13 

(4.73) 

200 

54.57 

(4.3) 61.01 (15) 

37.61 

(3.37) 

17.43 

(11.76) 

85.71 

(14.16) 

42.05 

(6.33) 

22 

(9.60) 

300 

54.14 

(3.47) 

57.1 

(10.46) 

37.58 

(3.22) 

17.82 

(15.40) 

85.3 

(16.33) 

43.92 

(7.97) 

21.22 

(11.3) 

400 

53.88 

(6.08) 

59.6 

(9.87) 

37.07 

(5.46) 

25.99 

(13.39) 

76.94 

(14.96) 

39.78 

(9.64) 

28.3 

(11.29) 

500 

57.65 

(4.69) 

67.11 

(7.61) 

40.42 

(4.27) 

17.1 

(17.65) 

87.22 

(16.85) 

47.75 

(9.84) 

20.12 

(12.92) 

1000 

57.91 

(6.54) 

63.56 

(7.1) 

41.6 

(6.88) 

16.67 

(13.04) 

89.49 

(12.34) 

50.36 

(12.54) 

21.85 

(12.95) 

2000 

69 

(2.72) 

69.37 

(4.18) 

54.04 

(3.31) 

27.32 

(10.28) 

91.76 

(4.01) 

63.68 

(3.31) 

36.88 

(11.02) 

5000 

73.59 

(0.68) 

74.32 

(1.63) 

61.07 

(1.38) 

38.62 

(2.20) 

89.94 

(0.68) 

66.19 

(0.82) 

48.75 

(1.8) 

10000 

75.75 

(0.46) 

75.77 

(0.87) 

64.96 

(0.6) 

42.3 

(0.92) 

89.84 

(0.68) 

67.99 

(1.35) 

52.14 

(0.77) 

Full Cohort 

(23609) 

78.02 

(0.19) 

77.8 

(0.20) 

68.93 

(0.35) 

45.74 

(0.63) 

90.24 

(0.54) 

70.5 

(0.96) 

55.48 

(0.40) 

R
E

T
A

IN
+

M
e
d

-B
E

R
T

 

100 

55.72 

(3.99) 

68.33 

(8.82) 

38.61 

(2.99) 

26.96 

(43.41) 

73.78 

(42.37) 

18.61 

(19.8) 

15.24 

(23.62) 

200 

59.63 

(7.48) 

71.06 

(11.55) 

42.84 

(7.60) 

15.59 

(33.72) 

84.51 

(33.86) 

17.42 

(24.06) 

9.91 

(19.05) 

300 

61.36 

(7.58) 

69.63 

(9.67) 

46.38 

(8.38) 

6.55 

(20.24) 

93.18 

(21.34) 

22.4 

(33.70) 

4.58 

(13.59) 

400 

67.47 

(6.21) 

72.17 

(6.93) 

52.37 

(8.11) 

3.59 

(11.24) 

96.93 

(9.67) 

27.05 

(41.06) 

3.71 

(11.48) 

500 

67.39 

(6.23) 

75.13 

(3.97) 

52.05 

(7.60) 

4.9 

(8.76) 

98.69 

(2.71) 

36.52 

(40.45) 

7.67 

(12.74) 

1000 

71.26 

(4.87) 

71.55 

(5.03) 

57.69 

(6.84) 

7.71 

(9.43) 

98.07 

(3.78) 

48.48 

(44.4) 

12.18 

(14.36) 

2000 

75.67 

(0.73) 

75.23 

(3.59) 

63.46 

(1.51) 

0.49 

(1.07) 100 (0) 30 (48.30) 

0.96 

(2.07) 

5000 

77.91 

(0.25) 

77.3 

(2.11) 

67.27 

(0.42) 

9.23 

(9.25) 

99.38 

(1.27) 

94.66 

(6.4) 

15.46 

(13.67) 

10000 

78.85 

(0.24) 

77.45 

(1.28) 

68.59 

(0.48) 

17.2 

(7.57) 

98.71 

(1.18) 

89.82 

(6.02) 

27.98 

(10.24) 

Full Cohort 

(23609) 

79.98 

(0.17) 

79.2 

(0.16) 

69.39 

(0.97) 

33.43 

(8.33) 

95.49 

(2.83) 

80.56 

(5.16) 

46.4 

(7.02) 

L
o
g

is
ti

c 

R
eg

re
ss

io
n

 

(L
R

)*
 

100 

67.44 

(2.77) 

67.28 

(13.72) 

51.77 

(2.96) 

25.99 

(9.85) 

90.43 

(5.27) 

59.31 

(4.53) 

34.9 

(8.58) 

200 

69.74 

(1.15) 

73.98 

(13.98) 

54.83 

(1.55) 

33.08 

(9.3) 

88.59 

(4.48) 

60.63 

(3.92) 

41.75 

(8.16) 
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M
o

d
el

 

Training 

Set size 

TEST 

AUC 

Validation 

AUC 
AUPRC 

Sensitiv

ity 

Specific

ity 

Precision 

(PPV) 

F1-

score 

300 

70.98 

(1.16) 

70.91 

(6.95) 

56.66 

(1.61) 

36.56 

(3.57) 

87.9 

(2.22) 

60.85 

(2.74) 

45.52 

(2.5) 

400 

70.56 

(1.42) 

72.32 

(6.97) 

56.08 

(1.36) 

39.36 

(5.46) 

85.99 

(3.37) 

59.26 

(2.99) 

47 

(3.10) 

500 

71.28 

(1.36) 

74.45 

(3.31) 

57.4 

(1.77) 

40.94 

(3.88) 

86.19 

(2.17) 

60.34 

(2.48) 

48.64 

(2.5) 

1000 

71.98 

(0.86) 

72.79 

(3.97) 

58.84 

(1.20) 

43.25 

(2.92) 

85.59 

(1.62) 

60.53 

(1.48) 

50.37 

(1.73) 

2000 

73.38 

(0.56) 

72.55 

(3.1) 

61.36 

(0.61) 

46.67 

(2.09) 

85.21 

(0.97) 

61.67 

(0.66) 

53.1 

(1.24) 

5000 

74.58 

(0.51) 

74.26 

(1.71) 

63.69 

(0.51) 

46.02 

(0.62) 

87.04 

(0.58) 

64.4 

(1.10) 

53.68 

(0.65) 

10000 

75.72 

(0.43) 

75.5 

(1.13) 

65.33 

(0.46) 

46.23 

(1.12) 

87.81 

(0.58) 

65.9 

(0.90) 

54.33 

(0.81) 

Full Cohort 

(23609) 

77.28 

(0) 77.11 (0) 

67.33 

(0) 

45.52 

(0) 

89.17 

(0) 68.16 (0) 

54.58 

(0) 
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Chapter 5: Conclusions, Discussions, and Recommendations 

5.1. Use of secondary EHR data for evidence-based medicine 

Secondary EHR and claims data are rich sources of patients’ clinical data. As biomedical 

researchers, we can extract knowledge and train useful machine learning models to 

predict different types of clinical events, taking into consideration the common quality 

issues associated with such data. A comprehensive understanding of the flow of the data 

from the point at which it was created at the healthcare site until our access to it is a key 

success factor in the majority of studies that use secondary clinical data. Such knowledge 

can help us to make informed decisions on the relevance of the data for answering the 

proposed research question and can guide the data extraction and preparation efforts. The 

information that we need to know includes:  

- How the data were entered by the clinical staff into the EHR. 

- When the data are recorded in the system versus the dates inserted manually. 

- How the billing department reviews and assigns billing codes, and the frequency 

of reviewing and transmitting claims.  

- How data providers collect the data from different sites and how they combine, 

clean, and de-identify the data.   

A clear understanding of the research question and the prediction task as well as the 

nature of the data are needed for a good study design. As presented in Chapter 2, the 

main purpose of the study was to compare the three most commonly used vasopressors, 
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namely dopamine, norepinephrine, and phenylephrine, and their associations with the in-

hospital mortality of nontraumatic SAH patients. Out of the originally identified 39,000 

SAH patients, our study considered the data of only 4,810 SAH patients after applying 

conservative exclusion criteria to ensure that the study cohort data are of sufficient 

quality based on the nature of the clinical problem. In addition, we used mainly causal 

inference analysis and propensity score models to account for potential confounding 

factors. We also followed a similar strategy in a later study to understand the effect of 

Tocilizumab on the in-hospital mortality or need for the intubation of COVID-19 patients 

[87]. Given that the data were not originally collected for these research purposes (they 

were collected mainly for billing purposes), the findings from such retrospective cohort 

observational studies, using secondary EHR data, need to be further validated through 

clinical trials. 

In Chapters 3 and 4, we focused on training predictive models for clinical events, such as 

predicting a patient’s risk of being diagnosed with pancreatic cancer (PaCa) or a diabetic 

patient’s risk of developing heart failure (DHF), based on all historical clinical data 

available at the time of prediction. We compared machine learning and DL methods to 

train such predictive models converting all input data to a categorical format in a way that 

can reduce the risk of common data issues, such as missing or implausible data[88]. In 

Chapter 4, we applied a more conservative phenotyping algorithm for the definition of 

diabetic and heart failure patients. We found that, even as the eligible cohort size 

becomes reduced by about 40%, the performance of the trained model was not severely 

affected. For example, the logistic regression model AUC using raw diagnosis data as 



 

164 

 

shown in chapter 3 table 2 was 80.6% while in chapter 4 table 4 the logistic regression 

model AUC for the DHF task is 81.0%. Notably, as stated in both chapters, DL-based 

algorithms were commonly associated with higher prediction accuracy as compared to 

traditional machine learning models.  

Although we can somewhat open the black-box and visualize the correlation between 

different clinical codes at each layer in the model architecture and the final prediction, as 

we demonstrated in Chapter 4, it is not wise at this stage in the research process to use 

such correlations as clinical evidence or a method to identify clinical risk factors. The 

evaluation of the explanations of DL-based models is challenging because the currently 

available methods are providing sample (patient) level explanations rather than 

population-level explanations. Future work to improve the explainability of DL-based 

models and to describe coherent and feasible methods to clinically evaluate such 

explanations is warranted.  

  

5.2. Sequential Deep Learning Modeling using EHR data 

In Chapters 3 and 4, we used two different baseline DL methods for modeling sequential 

EHR data, RNN and Med-BERT. 

5.2.1. Recurrent neural network-based models 

RNN is known for its ability to learn from sequential information; it maps perfectly the 

structure of the patient health record, which consists of a sequence of visits, with each visit 

is rich in data[89,90]. For RNN models, we first embed our input information into lower 

dimension vectors for computational efficiency and better data representation learning. 
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That embedding layer will be fed into the RNN layer(s), which will build the model 

learning from the patients’ sequential visits information. We then feed the final layer of 

RNN to a fully connected layer with a sigmoid function to predict the probability of the 

clinical event.  

RNN models are known to have multiple hyperparameters that can have an impact on the 

training quality of the model. In earlier research[90,91], we found that a single-layer 

RNN-based model, using a gated recurrent unit cell structure and careful selection of 

hyperparameters, can achieve equivalent or even sometimes better results as compared to 

a more complicated architecture. Therefore, we used the Bayesian optimization 

search[92] to determine the best hyperparameters, given our data source and prediction 

task, and used those hyperparameters in the majority of the experiments, as explained in 

Chapter 3.  A key advantage of this simple model architecture is the small number of 

parameters that can contribute to better efficiency as we focus on the implementability of 

the proposed model. 

5.2.2. Transformers 

Transformers proved to be a valid alternative for sequential modeling. Since the end of 

2018, after Google released its first pre-trained BERT model, based on the transformer 

structure, transformer-based models have continued to evolve. In Med-BERT, as explained 

in Chapter 4, we trained a BERT-like- model on diagnosis data of more than 20 million 

patients, and the very first version was able to improve the prediction accuracy when fine-

tuned to predict patient risk to develop a specific disease, such as heart failure or pancreatic 

cancer. In addition to the limitations described in Chapter 4, a drawback of Med-BERT is 



 

166 

 

the high number of parameters, which makes the model size reach over 60 MB, while the 

RNN-based model does not exceed 10 MB when trained on the same data. We are currently 

evaluating newer transformers architectures, such as Distill-BERT and ALBERT, and 

linear transformers, such as Luna, which provide better prediction accuracy in the NLP 

domain while providing better computational efficiency with a smaller number of 

parameters, lower memory consumption, and much shorter running time. We are also 

training a more comprehensive version of Med-BERT that can consider additional clinical 

events, such as medications and procedures. The initial results show a slight improvement 

in the performance and efficiency of ALBERT-based Med-BERT; however, this study is 

still in progress.    

5.2.3. Model explainability 

There are two popular mechanisms to interpret or explain the sequential DL architectures 

predictions, namely attention and attribution mechanisms. In Chapter 4, we used code-level 

attentions to visualize the relations between different clinical codes at each layer. In an 

earlier study[86], we evaluated the generalizability of an RNN-based model architecture, 

RETAIN[89], which uses the attention mechanism to calculate the contribution score for 

each clinical code at each visit. We found, however, that adding more trainable model 

parameters could have an impact on the efficiency of the model. Therefore, in our latest 

work[93], we used an attribution mechanism, such as integrated gradients, to provide a 

contribution score for each code at each visit for the final prediction. Attribution-based 

explanations can be independently calculated upon request, without the need to add more 

trainable parameters to the prediction model. As we discussed, a major limitation of both 



 

167 

 

mechanisms is the difficulty to clinically evaluate the calculated contribution of each 

medical code toward personalized predictions, which should be addressed in future 

research. First, we will need to compare the contribution scores for each code-visit level, 

using the different attribution techniques available in the CAPTUM [94] package, such as 

DeepLift [71,95] or SHAP[96], or an attention mechanism, such as RETAIN [70,96,97]. 

Second, we will need to evaluate how meaningful the explanations are to clinicians. 

 

5.3. Contribution to Science 

In this dissertation, we presented three studies in which we leveraged one of the earliest 

and largest secondary EHR data source, namely Cerner HealthFacts®. In the first study 

presented in Chapter 2, we conducted a retrospective observational study on 

approximately 3,000 nontraumatic SAH patients, which was the largest cohort used to 

compare the choice of the initial vasopressor associations with the outcomes of 

nontraumatic SAH patients, at the study time. Using a novel statistical method, we found 

evidence that the selection of phenylephrine as the primary vasopressor to induce 

hypertension for the management of nontraumatic SAH is associated with better 

outcomes as compared to selecting norepinephrine or dopamine. In the second study 

presented in Chapter 3, we used two large case-control cohorts to train generalizable 

models for the risk prediction of specific clinical events, such as heart failure in diabetes 

patients or pancreatic cancer. The first cohort consisted of approximately 30,000 patients 

for the PaCa prediction task, including more than 10,000 PaCa patients, and the second 

cohort consisted of 120,000 diabetic patients with 50% of them developed heart failure at 
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least 30 days after their first DMII diagnosis. Besides the phenotyping algorithms and the 

terminology mapping methods which we shared in the supplementary material (section 

3.9), we were the first to show that training machine learning and deep learning models 

on diagnosis information as originally recorded or mapped to expressive terminologies, 

which preserve a high level of granularity, were associated with better prediction 

performance as compared with models trained on diagnosis information mapped to lower 

dimension terminologies that have only a few hundreds of codes. Additionally, we 

proved that RNN based models were providing better prediction performance as 

compared to baseline machine learning methods, such as logistic regression, especially 

when trained on large cohorts.  Finally, in our third study described in Chapter 3, we 

presented Med-BERT, the first foundation model trained on structured diagnosis data for 

more than 20 million patients that are coded in the standard ICD-9 and ICD-10 format. 

Med-BERT was found to improve the prediction performance of downstream tasks that 

have a small sample size, which otherwise would limit the ability of the model to learn 

good representation. In conclusion, we found that we can extract useful information and 

train helpful deep learning-based predictive models using a rich secondary EHR data 

source, however, the findings need clinical validation.  

 

 

5.4. In-progress Work and Future Directions 

Shiffman et al.[98,99] defined the implementability for clinical guidelines, as the set of 

characteristics that predict ease of use or determine the key obstacles for guideline 

implementation. Similarly, we define implementability in the context of artificial 
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intelligence and predictive modeling of clinical events, as the feasibility assessment of the 

developed predictive model to demonstrate whether the model can be further evaluated in 

clinical settings. Therefore, along with subject matter experts, we are working on 

establishing a framework that defines the factors associated with the implementability of 

DL-based predictive models (Table 5.1) and that describes how we, as biomedical data 

science researchers, can consider the implementability evaluation during our research 

projects design.  

Table 5.1. Deep learning based models Implementability evaluation factors. 

Implementability 

Factors 

Definition Evaluation Criteria 

Performance  How far predictions deviate 

from actual observation on a 

testing dataset 

 

Discriminative accuracy, 

model calibration, and 

meaningful metrics: 

AUROC, AUPRC, 

sensitivity, specificity, 

PPV,..etc 

 

Transparency 

 

How a given technology reached 

a certain decision 

 

input features contribution 

scores to facilitate clinical 

validation, TRIPOD 

Generalizability 

 

The ability of the model, after 

being trained to digest new data 

and make accurate predictions 

regardless of the setting or the 

population 

 

External validation, 

reproducibility, scalability, 

fairness, adaptability 

Data Mechanics How data can flow between 

systems and computational 

infrastructures 

Data extraction, 

standardization, and 

preprocessing steps 

 

Efficiency The amount of time and 

computational resources 

required by the model to work 

properly 

 

model size, running time, 

and associated cost of 

running 
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Data Privacy 

 

Models should avoid using any 

protected health information 

(PHI) 

Amount of PHI data 

required by the model 

 

While a comprehensive evaluation plan needs to be agreed on during the early phase of 

prediction task definition, we propose six factors that need to be considered in the 

evaluation of the implementability of a predictive model, based on our proposed 

framework. Those factors are: prediction performance, transparency, generalizability, data 

mechanics, efficiency, and data privacy. In the following sections, I briefly describe each 

factor and demonstrate by example, either from Chapters 3 and 4 or from our latest 

published work (CovRNN)[93], how to consider such factors during the model’s early 

development phase. Prior to that, I describe our Pytorch_EHR framework, which we 

established based on our research. Our CovRNN paper, in which we adopted the latest 

version of Pytorch_EHR, is the first to consider all six factors. A full evaluation of our 

approach, however, is still needed. 

5.4.1. Pytorch_ehr framework to train and evaluate an implementable deep learning 

predictive model 

Based on our previously described work, we established a framework to train and 

evaluate DL-based models to predict different types of clinical events, as seen in Figure 

5.1. The framework involves the data preparation flow (highlighted in green), which 

includes the definitions of the prediction task and evaluation plan, which guide the 

definition of the cohort characteristics and labeling, later dividing into training and 

evaluation test sets. Once the cohort is defined and our eligible patients are identified, we 

start the process of raw data extraction, applying terminology normalization if needed, 
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and, later, we preprocess the data to become in the input format that can be efficiently 

consumed by the model. The first layer of the model is the embedding layer, which can 

be randomly initialized or initialized from a pre-trained static or a contextualized 

embedding, such as Med-BERT. The feature representations trained/fine-tuned in the 

embedding layer, along with time information or other continuous data variables, are then 

fed into the core model architecture, which can be as simple as a linear layer or a more 

complicated RNN model, to achieve a binary classification or a survival prediction. In 

addition to the basic predictive model training module, we included three ancillary 

modules. First is the explainability module, which currently uses the integrated gradient 

technique. Second is a multimetric performance evaluation module, which includes 

functions to find the recommended threshold for classification when using unbalanced 

datasets as well as functions to calculate various evaluation metrics, such as specificity at 

95% sensitivity, sensitivity at the best/recommended threshold value, AUROC and 

AUPRC for binary predictions, and the concordance index (c-index) for survival, of 

interest to clinicians. This module also includes several informative plots, such as the 

calibration plot and stratified Kaplan-Meier (KM) curves, based on the predicted survival 

probabilities. Third is a subgroup analysis module that can be used to calculate the model 

performance for different subgroups based on their demographics, location, or common 

comorbidities. 

For reproducibility and further evaluation by researchers, we share our codebase as an 

open-source repository at https://github.com/ZhiGroup/pytorch_ehr. In addition, an end-

to-end tutorial, using an MIMIC IV database and Google collaboration workbooks, is 
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available through the https://github.com/ZhiGroup/pytorch_ehr/tree/ACM_BCB-Tutorial, 

which was used during our tutorial presentation at the 2021 ACM BCB conference. 

 

 

Figure 5.1. Pytorch_EHR Framework 

 

 

5.4.2. Implementability evaluation factors 

5.4.2.1. Prediction Performance 

We define prediction performance as how far predictions deviate from observation in a 

testing dataset. Prediction performance is the most commonly reported evaluation result, 

and the AUROC, which represents the discriminative accuracy of the proposed models, 

especially those based on classification methods, is the most commonly reported metric. 

In our proposed framework, there is a multi-metric performance evaluation module to 

facilitate the calculation of clinically relevant metrics based on the prediction task. As an 

example, in Chapter 4 and in our latest study[93], we utilized this module to report the 

model’s AUROC, AUPRC, and specificity at 95% sensitivity, as well as the sensitivity, 

specificity, and F1 score at the recommended thresholds. These recommended thresholds 
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were defined as the thresholds that achieve the best balance between the models’ 

sensitivity and specificity using the validation set. We also plotted the calibrations curves 

as well as the stratified KM curves for low, medium, and high-risk groups, using the 

survival models.  

5.4.2.2. Transparency 

We define transparency as the detailed explanation of how a given technology reaches a 

certain decision. Transparency is the most common principle seen in all 

responsible/ethical AI frameworks. To evaluate the transparency of the proposed models, 

we need to explain the model predictions and to transparently report our study design, 

including the cohort definition and labeling criteria as well as our results. As seen in the 

section with the definition of cohorts in Chapters 2, 3, and 4 and the referenced 

supplementary material, we explain the details of our phenotyping algorithms and share 

our inclusion and exclusion criteria to enable reproduction and further evaluation of our 

work. Allowing that using the TRIPOD assessment checklist can help researchers to 

transparently report the study design and findings, our framework offers an explainability 

module to explain the DL model prediction, using an attribution mechanism known as 

integrated gradients. As an example, in our latest study[93], we included a sample 

patient-visit-level explanation and our reported TRIPOD assessment in the 

supplementary material. 

5.4.2.3. Generalizability 

We define generalizability as the ability of the model, after being trained to digest new 

data and make accurate predictions, regardless of the setting or population. To evaluate 
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the generalizability of the model, we present three recommendations. The first is to 

predefine a multi-level evaluation plan and, accordingly, define the evaluation test sets in 

an early phase of the study design. Such test sets need to be from different sources and of 

different sizes and complexity. The second is the use of different data sources to evaluate 

the transferability of the trained models and, accordingly, decide on the terminology 

normalization strategy, if needed. The third is the reporting of any subgroup analysis to 

acknowledge any difference in the proposed model performance among different age 

groups, gender, race, or ethnicity. Therefore, in our proposed framework, we have a 

specific subgroup analysis module that can be used to calculate the model performance of 

different subgroups based on their demographics, location, or common comorbidities. As 

an example, in our CovRNN study[93], we defined four different test sets. The first is a 

large multi-hospital test set with more than 48,000 patients. Then, there are two test sets, 

with each representing full hospital data from different regions and of different sizes. 

Finally, there is a test set from a completely different data source (Optum®). As we 

found that the training data, except for medications, are mainly in the common standard 

terminologies in use in different EHRs, and given our finding that the raw data format is 

commonly associated with one of the best model prediction performances, we decided to 

train the CovRNN models on the standard terminologies available for diagnosis, 

procedures, assessments, and laboratory results. We normalized medication information 

into Multum identifiers and categories, mapping NDC codes to their corresponding 

Multum codes, using standard software. Finally, we utilized the subgroup analysis 

module to compare the performance of the model for different age groups, regions, races, 
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and comorbidities and acknowledged that the model’s discriminative accuracy slightly 

decreased for older age groups.      

5.4.2.4. Data Mechanics, Efficiency, and Privacy 

We define data mechanics as how the data flow between systems and computational 

infrastructures. These mechanics are essential to understand when designing the model’s 

integration into the clinical workflow. In addition, as we understand the steps of the data 

flow until it reaches the model and how the model will process the data to calculate the 

prediction risk score and corresponding explanations, we can make a preliminary 

judgment of the proposed model’s efficiency. 

As per MLOps standards, we define efficiency as the amount of time and computational 

resources required by the model to work properly. Efficiency evaluation factors include 

the projected running time and computational resource, e.g., memory and storage 

utilization, consumption, which ultimately becomes a cost. Figure 5.2 provides an 

example of the flow of data from EHR standard tables to the CovRNN model to calculate 

the patient risk score as well as to provide prediction explanations. 
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Figure 5.2. CovRNN Data Mechanics 

Ensuring the security of the data flow, from the EHR to the model and the prediction 

back to the EHR, is more manageable during the implementation phase. During the 

model development, researchers need to avoid the utilization of any PHI data as much as 

possible. In our work, as explained in chapters 2,3, and 4, as well as in other publications 

[40 47], we never use PHI data to feed our models. In the majority of our work, we train 

our models on de-identified data, which helps to ensure that our model is HIPAA 

compliant. For example, when we use patient age, any patient who is 90 years or older is 

assigned the age of 90. Although that might explain the slight decrease in the prediction 

accuracy in the elderly age group, it is essential to ensure patient data privacy.  

 

5.5. Final Thoughts 

In this dissertation, we demonstrated how the utilization of large secondary EHR 

databases can help to create knowledge and train generalizable predictive models, using 
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innovative tools and methods. Future work should consider the improvement of 

performance and the usefulness of the work from the early model development phase. 

Despite the advancements in AI and DL-based methods for predictive modeling, there is 

a lack of evaluation of such methods. Researchers need to improve the explainability of 

clinical DL-based predictive models and, more importantly, to study how to efficiently 

evaluate the explanation of model predictions in a more clinically relevant way. It is our 

hope that researchers also will consider evaluating the efficiency and costs associated 

with their proposed methods, following industry standards, such as MLOps.  
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