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Abstract 

 

In order to enhance the data interoperability, an expeditious and accurate standardization 

solution is highly desirable for naming rapidly emerging novel lab tests, and thus 

diminishes confusion in early responses to pandemic outbreaks. This is a preliminary 

study to explore the roles and implementation of medical informatics technology, 

especially natural language processing and ontology methods, in standardizing 

information about emerging lab tests during a pandemic, thereby facilitating rapid 

responses to the pandemic. The ultimate goal of this study is to develop an informatics 

framework for rapid standardization of lab testing names during a pandemic to better 

prepare for future public health threats. We first constructed an information model for lab 

tests approved during the COVID-19 pandemic and built a named entity recognition tool 

that can automatically extract lab test information specified in the information model 

from the Emergency Use Authorization (EUA) documents of the U.S. Food and Drug 

Administration (FDA), thus creating a catalog of approved lab tests with detailed 

information. To facilitate the standardization of lab testing data in electronic health 

records, we further developed the COVID-19 TestNorm, a tool that normalizes the names 

of various COVID-19 lab testing used by different healthcare facilities into standard 

Logical Observation Identifiers Names and Codes (LOINC). The overall accuracy of 

COVID-19 TestNorm on the development set was 98.9%, and on the independent test set 
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was 97.4%. Lastly, we conducted a clinical study on COVID-19 re-positivity to 

demonstrate the utility of standardized lab test information in supporting clinical 

research. We believe that the result of my study indicates great a potential of medical 

informatics technologies for facilitating rapid responses to both current and future 

pandemics.  

  

 

  



vi 
 

Vita 

 

January 2016 - present …………………Ph.D. candidate/student, Biomedical 

Informatics,                                                     

The University of Texas Health Science Center at Houston, Houston, United States 

 

January 2012 – December 2013……………………Master of Science in 

Bioinformatics, 

Georgia Institute of Technology, Atlanta, United States 

 

September 2007 – July 2010 …………………………Master of Medicine in 

Neurology, 

Peking University First Hospital, Beijing, China 

 

September 2002 – July 2007……Bachelor of Medicine in Medicine (Equivalent to 

MD), 

Peking University, Beijing, China 

 

 

Publications 

1. Dong X, Zhou Y, Shu X, Bernstam E, Stern R, Aronoff DM, Xu H, Lipworth L. 

Comprehensive characterization of COVID-19 patients with repeatedly positive 
SARS-CoV-2 tests using a large US electronic health record database. 
(Accepted by Microbiology Spectrum)  



vii 
 

2. Dong X, Li J, Soysal E, Bian J, DuVall S, Hanchrow E, Liu H, Lynch K, Matheny 
M, Natarajan K, Ohno-Machado L, Pakhomov S, Reeves R, Sitapati A, 
Abhyankar S, Cullen T, Deckard J, Jiang X, Murphy R, Xu H. COVID-19 

TestNorm - A tool to normalize COVID-19 testing names to LOINC codes. 
Journal of American Medical Informatics Association. 2020 Jun 22;ocaa145. doi: 
10.1093/jamia/ocaa145. Online ahead of print. 

3. Zuo X, Li J, Zhao B, Zhou Y, Dong X , Duke J, Natarajan K, Hripcsak G, Shah 
N, Banda J, Reeves M R, Xu H. Normalizing Clinical Document Titles to LOINC 

Document Ontology: an Initial Study. AMIA 2020 Annual Symposium 
Proceedings 

4. Chen H, Shi L, Xue M, Wang N, Dong X, Cai Y, Chen J, Zhu W, Xu H, Meng 
Q. Geographic variations in in-hospital mortality and use of percutaneous 
coronary intervention following acute myocardial infarction in China: a 

nationwide cross-sectional analysis. Journal of the American Heart Association. 
2018 Apr 11. doi:10.1161/JAHA.117.00813  

5. Miao S, Dong X (co-first author), Zhang X, Jing S, Zhang X, Xu T, Wang L, Du 
X, Xu H, Liu Y. Detecting Pioglitazone Use and Risk of Cardiovascular Events 
Using Electronic Health Record Data in a Large Cohort of Chinese Patients with 
Type 2 Diabetes. Journal of Diabetes. 2019 Aug;11(8):684-689. doi: 10.1111/1753-

0407.12894. Epub 2019 Feb 5. 
6. Tu H, Sun L, Dong X, Gong Y, Xu Q, Jing J, Bostick R, Wu X, Yuan Y. A 

serological biopsy using five stomach-specific circulating biomarkers for gastric 
cancer risk assessment: a multi-phase study.  Am J Gastroenterol. 2017 Mar 21. 
doi: 10.1038/ajg.2017.55.  

7. Dong X, Zhang Y, and Xu H. Search Datasets in Literature: A Case Study of 
GWAS. 2017 Joint Summits on Translational Science of AMIA 

8. Xu J, Zhang Y, Wu Y, Wang J, Dong X, and Xu H. Citation Sentiment 



viii 
 

Analysis in Clinical Trial Papers. AMIA Annu Symp Proc. 2015.  
9. Tu H, Sun LP,  Dong X, Gong YH, Xu Q, Long Q, Flanders WD, Smith RA, 

Bostick RM, Yuan Y. Temporal Changes in Serum Biomarkers and Risk for 

Progression of Gastric Precancerous Lesions: a Longitudinal Study. Int J 
Cancer. 2014 Jun 4. Int J Cancer. 2015 Jan 15;136(2):425-34. doi: 
10.1002/ijc.29005. 

10. Tu H, Sun LP,  Dong X, Gong YH, Xu Q, Jing JJ, Yuan Y. Serum anti-
Helicobacter pylori immunoglobulin G titer correlates with grade of histological 

gastritis, mucosal bacterial density, and levels of serum biomarkers. Scand J 
Gastroenterol. 2014 Mar;49(3):259-66. doi: 10.3109/00365521.2013.869352. 

11. Cao K, Lailler N, Zhang Y, Kumar A, Uppal K, Liu Z, Lee E, Wu H, Medrzycki 
M, Pan C, Ho P, Cooper P,  Dong  X, Bock C, Bouhassira E, Fan Y. High-
resolution mapping of h1 linker histone variants in embryonic stem cells. PLoS 
Genet. 2013;9(4) 

 

 

 

Field of Study 

Health Informatics 

  



ix 
 

Table of Contents 

Dedication ............................................................................................................... ii 

Acknowledgements ................................................................................................ iii 
Abstract .................................................................................................................. iv 
Vita ......................................................................................................................... vi 
Table of Contents ................................................................................................... ix 
List of Tables ......................................................................................................... xi 
List of Figures ....................................................................................................... xii 
Chapter 1: Introduction and Literature Review .......................................................1 

1.1 Introduction ......................................................................................1 
1.2 Literature Review.............................................................................4 

1.2.1 Relevant work on ontology development specifically for lab 
tests in pandemics ............................................................................4 

1.2.2 Relevant work on medical information extraction.................9 
1.2.3 Relevant work on lab test standardization ...........................11 

Chapter 2: Information Extraction of Covid-19 Lab Test Information from EUA 
Documents .......................................................................................................14 
2.1 Introduction ..........................................................................................14 
2.2 Methods................................................................................................18 

2.2.1 Data sources ................................................................................19 
2.2.2 Information Model Development ...............................................20 
2.2.3 Annotation Framework ...............................................................21 
2.2.4 Information Extraction Model Development ..............................24 
2.2.5 Experiment and Evaluation .........................................................25 

2.3 Results ..................................................................................................25 
2.4 Discussion ............................................................................................30 
2.5 Conclusion ...........................................................................................33 

Chapter 3: Covid-19 Testnorm - A Tool to Normalize Covid-19 Testing Names to 
LOINC Codes ..................................................................................................34 
3.1 Introduction ..........................................................................................34 
3.2 Methods................................................................................................36 

3.2.1 Dataset.........................................................................................36 
3.2.2 Entity recognition........................................................................37 



x 
 

3.2.3 LOINC mapping .........................................................................41 
3.2.4 Evaluation ...................................................................................42 

3.3 Results ..................................................................................................43 
3.4 Discussion ............................................................................................47 
3.5 Conclusion ...........................................................................................50 

Chapter 4: Comprehensive Characterization of Covid-19 Patients with Test Re-
Positivity in A Large EHR System Across the US ..........................................51 
4.1 Introduction Literature Review ............................................................51 
4.2 Patients and Methods ...........................................................................52 
4.3 Results ..................................................................................................55 
4.4 Discussion ............................................................................................68 
4.5 Conclusion ...........................................................................................74 

Chapter 5: Conclusion............................................................................................75 
5.1 Summary of key findings .....................................................................75 
5.2 Innovations and contributions ..............................................................78 

5.2.1 Innovations ..................................................................................78 
5.2.2 Contributions...............................................................................79 

5.3 Limitations and future work.................................................................81 
5.4 Conclusion ...........................................................................................82 

References ..............................................................................................................84 
 

  



xi 
 

List of Tables 

Table 1:  Lab test statistics for 4 pandemic/epidemics ..........................................15 

Table 2:  Annotation Attributes .............................................................................21 
Table 3:  The coverage of the 10 concepts on the EUA dataset ............................26 
Table 4:  Concept distribution................................................................................28 
Table 5:  Overall performance of the CRF model, BERT and the BI-LSTM-CRF 

model....................................................................................................29 
Table 6:  Semantic categories used by COVID-19 TestNorm ...............................39 
Table 7:  Distribution of mapped LOINC codes ....................................................44 
Table 8:  Detailed information for each patient .....................................................63 
 

 
 
 

  



xii 
 

List of Figures  

Figure 1:  Examples of each type of EUA .............................................................20 

Figure 2:  Annotation Examples ............................................................................24 
Figure 3:  The COVID-19 lab test information model ..........................................26 
Figure 4:  Word Cloud of the corpus .....................................................................28 
Figure 5:  An overview of the COVID-19 TestNorm system ................................36 
Figure 6:  Coding rules for LOINC mapping.........................................................42 
Figure 7:  Number of unique LOINC codes by site ...............................................47 
Figure 8:  Patient selection flowchart ....................................................................53 
Figure 9:  Overall cumulative incidence of re-positivity .......................................56 
Figure 10:  The cumulative incidence of re-positivity by age ...............................56 
Figure 11:  The cumulative incidence of re-positivity by gender ..........................57 
Figure 12:  The cumulative incidence of re-positivity by race and ethnicity ........58 
Figure 13:  The cumulative incidence of re-positivity by body mass index (BMI) 

group ....................................................................................................58 
Figure 14:  SARS-CoV-2 PCR test timeline (days) for 23 repeatedly positive 

patients .................................................................................................59 
Figure 15:  COVID-19 RT-PCR test and clinical journey for 23 patients with 

repeatedly positive tests .......................................................................62 
 

 
  



1 
 

Chapter 1: Introduction and Literature Review 

 
1.1 Introduction  

 
Diagnostic tests play an important role in pandemics such as COVID-19 [1, 2]. They 

identify recently recognized or emerging microbes that provoke disease outbreaks [3]. 

Clinicians depend on laboratory tests to diagnose individuals for disease, while public 

health practitioners monitor threats based on diagnostic test results. During the COVID-

19 pandemic, clinical laboratory diagnostics have acted an even more prominent role [1, 

2, 4].  

 

The EUA [5] is the mechanism by which the FDA authorizes unapproved medical 

solutions under public health emergencies. Currently, all the U.S. COVID-19 lab tests are 

authorized under EUA [5] in order to rapidly support the early response and mitigation. 

The EUA mechanism ensured rapid laboratory support for the battle with COVID-19 [5].  

However, it also posed challenges for standard reporting and efficient analysis of 

diagnostic results, as many new tests were described in narrative text without a standard 

representation (i.e., codes in standard terminologies), especially in the early stage of the 

pandemic [6–8]. Therefore, expeditious and accurate standardization of information 

about the rapidly emerging and novel lab tests is highly desirable, which will improve the 

data interoperability and diminish confusion in the early response to pandemic outbreaks.       
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The significance of medical informatics in combating COVID-19 has been widely 

acknowledged in various studies [9–14]. However, limited work has discussed the 

challenges regarding the standardization of names of diagnostic tests, and few informatics 

tools have been developed to tackle this issue. At present,  challenges to standardizing 

new diagnostic tests in COVID-19 include: (1) there is no standard representation of 

critical information for each EUA approved diagnostic test and the lack of tools to 

automatically extract such information; (2) at the beginning of the pandemic, lab tests 

reported by each healthcare system often did not follow standard terminologies (e.g., 

LOINC [15] and the Systematized Nomenclature of Medicine Clinical Terms (SNOMED 

CT) [16]), and how to standardize those tests and their results is crucial, but little work 

has been done yet; (3) more applications are required to demonstrate the use of 

normalized diagnostic test results from large populations.    

 

To bridge above identified gaps, we propose an informatics framework based on the 

natural language processing (NLP) and ontology technologies, to standardize diagnostic 

test names in EUA documents and electronic health records, thus facilitating clinical 

studies based on standardized test data. Specific aims of this study include: 

 

Aim 1: Develop an information model and an information extracting tool to 

automatically identify new diagnostic test information from EUA documents. 
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We developed a specific information model for new COVID-19 diagnostic tests, which 

utilizes concepts from LOINC and SNOMED CT together with some original concepts. 

Based on it, we further developed an information extraction tool to automatically identify 

relevant entities in FDA EUAs for COVID-19 lab tests. A baseline Conditional Random 

Field (CRF) model [17], a conventional Bi-directional long short term memory (Bi-

LSTM-CRF) model [18] and a state-of-art Bidirectional Encoder Representations from 

Transformers (BERT) model [19] were employed, evaluated and compared for this task, 

from which the highest-performing model was selected for downstream applications. 

 

Aim 2: Develop methods to standardize diverse COVID-19 tests recorded in 

Electronic Health Records (EHRs)   

Using part of the information model from Aim 1 as the annotation axes, we further 

developed a COVID-19 test normalization tool that can map local test names to the 

standard LOINC codes. The tool was evaluated using COVID-19 test data from eight 

healthcare systems and was adopted by other research programs. 

 

Aim 3: Demonstrate the utility of the standardized lab test information by 

conducting a real-world study of re-infection of COVID-19 

Using a large EHR database across the US, we conducted a comprehensive feature 

analysis of COVID-19 patients with re-positive test results. A hybrid searching strategy, 
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combining the standardized lab test information and ICD-10 [20] was applied to enhance 

the completeness of selected patient data. The study investigates the overall cumulative 

re-positivity rate, followed by a thorough detailed review of 23 patients at high risk of re-

infection. 

 

1.2 Literature Review 

 
In this section, we review relevant work on the lab test ontology, lab test extraction, and 

lab test standardization. 

 

1.2.1 Relevant work on ontology development specifically for lab tests in 

pandemics 

 
Pandemics since the 20th century 

A pandemic usually refers to a global epidemic induced by a ‘new’ virus to which 

humans possess little or no pre-existing immunity [3, 21]. Such a virus may be a new 

virus, such as the human immunodeficiency virus (HIV), which has caused more than 35 

million deaths since its outbreak in 1981 [22]; re-emergence of existing pathogens 

causing fulminant outbreaks of infectious diseases, such as cholera and the plague, 

hinders the acquired immunity due to their extremely high mortality rate [23, 24]; or a 

new virus subtype, such as the influenza A/H1N1 and A/H3N2 , which are the pathogens 
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of the famous 1918 flu and the 1968 flu, causing 17-100 million and 1-4 million deaths 

worldwide respectively [25, 26]. Similarly, the novel coronavirus 2019 is a new subtype 

of the coronavirus family, as other subtypes of coronavirus are well-known to be the 

pathogens of 2003 SARS [27] and 2015 MERS [28], both of which are fatal epidemics. 

Compared to the SARS and MERS viruses, the COVID-19 virus has a longer incubation 

period (a period when patients are asymptomatic) and is more likely to spread [29], 

eventually leading to the severe pandemic. 

 

Lab tests during COVID-19 

Since the outbreak of COVID-19, many SARS-CoV-2 tests have appeared on the market 

due to the lack of a standard protocol setup [30]. According to Ravi et al. [31], the 

COVID-19 lab test can be classified as diagnostic detection and antibody detection. 

Diagnostic detection is primarily used for the diagnosis of active COVID-19, which focus 

on the detection of nucleic acid or viral antigen. Antibody tests are applied to identify the 

disease by measuring the antibodies produced in the body against SARS-COV-2. 

 

In Feb 2020, after the CDC developed the first laboratory diagnostic test kit to detect 

SARS-COV-2 nucleic acid, a vast majority of commercially or laboratory developed 

nucleic acid test kits got approved under the FDA EUA. The current standard for SARS-

CoV-2 diagnosis is RT-PCR, which serves to amplify specific related genes [32]. At 
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present, most RT-PCR assays use oligonucleotide primers and probes, which are selected 

from different gene regions of SARS-CoV-2 virus, including the envelope (E) [33–35], 

nucleocapsid (N) [36–38], spike (S) [39] and/or open reading frame 1 ab (ORF1ab) genes 

[40, 41].   

 

Another major test category is the antibody test, also known as serology test. The main 

strain antibody tests consist of rapid diagnostic tests (RDTs), such as the lateral flow 

assay [42], enzyme-linked immunoassays (ELISAs) [43], neutralization assays, and 

chemiluminescent immunoassays [44, 45]. Lateral Flow Immunoassay, ELISA, and 

chemiluminescent immunoassays are frequently employed to detect IgG and IgM 

antibodies. Neutralization assay measures the amount of neutralizing antibodies, which 

could bind to virus and block its replication. 

 

Currently, both the RT-PCR tests and the antibody tests can be qualitative or semi-

quantitative. The specimens applied for lab tests comprise upper respiratory specimens, 

lower respiratory specimens, and blood products (serum, plasma, or whole blood) [31]. 

The lab tests can be conducted in laboratories accredited by the Clinical Laboratory 

Improvement Amendments (CLIA) [46], or point-of-care setting, or even at home [32].  
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The prices of the reluctant lab test products in the market vary drastically, from $50 to 

$200/per test [47] for the same kind of test. 

Existing efforts on standardizing lab tests 

Ontology for Laboratory Test Prescription and Reporting (LABO) - Adrien 

BARTON et al. [48] developed LABO, an ontology for formalizing lab test prescriptions 

and reporting documents. It is based on the Open Biological and Biomedical Ontology 

(OBO) [49]. LABO is a major part of the core ontological model designed to facilitate 

interoperability between different clinical data sources.  

 

Disease Oriented LOINC Ontologies for Public Health Reporting - Karen Eilbeck et 

al. [50] developed an ontology to classify the terms used to describe LOINC-coded tests 

for Chlamydia, and extended it to handle tests for tuberculosis in order to check the 

scalability of this model. The requirements for tuberculosis laboratory test reporting in 

Utah and New York City were scrutinized, which were gathered for the CDC’s 

Reportable Conditions Knowledge Management System (RCKMS) project [51]. It 

furnished the basis for manual queries of LOINC for possible tests for tuberculosis and 

revealed new terms that could be added to the ontology. For each test, they created a new 

ontology term with a logical definition and applied the HermiT reasoner [52] to 

automatically categorize the tests into the ontology terms. The LOINC database supplies 

a structure conducive to the development of an application ontology, which supports 
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epidemiologists in the task of managing code sets that meet reporting standards. With the 

improved ontology, the automated classification strategy can be reproducible and be 

extended to handle new diseases and problems. 

 

Ontology for LOINC – SNOMED CT Harmonization of Observable Entities - James 

R. Campbell et al. [53] created an ontology to represent the lab prescription (LOINC) and 

their ordinal or qualitative results (SNOMED CT) in order to support clinical decision 

making and research by integrating anatomic and molecular pathological data.  This 

ontology concentrated on pathology reports of the colorectal and invasive breast cancer, 

which follows the SNOMED CT hierarchy of “Observable entities”, “Body structures”, 

“Clinical findings”, “Techniques”, “Property types”, “Situations”, “Substances”, 

“Attributes”, and “Qualifiers”. In this task-specific ontology, the researchers developed a 

total of 194 new concepts according to the hierarchy. The LOINC terminology was 

employed as a supplement for wider concept coverage. 

 

The Community-based Ontology for Coronavirus Disease (CIDO) - Coronavirus 

Infectious Disease Ontology (CIDO) [54] covers multiple areas of coronavirus diseases, 

including etiology, transmission, epidemiology, pathogenesis, diagnosis, prevention, and 

treatment. Complying with the OBO Foundry principles, CIDO adopts an extensible 

ontology development strategy compatible with OBO. Presently, CIDO contains more 
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than 4,000 terms imported from approximately 20 other ontologies, such as ChEBI [55], 

Human Phenotype Ontology [56], Disease Ontology [57], and the NCBI taxonomy 

ontology (NCBITaxon) [58]. 

 

1.2.2 Relevant work on medical information extraction 

Information extraction (IE) is an area of NLP, implying the automatic extraction of 

structured entities, concepts, events, relevant attributes, and relations from free text [59–

61]. An IE application typically consists of the following subtasks: named entity 

recognition (NER) which recognizes entity names from the text (e.g., body locations, 

drugs, etc.) [62]; coreference that links names referring to the same entity [63]; and 

relation extraction to determine the relations between entities [64].  

 

IE work in the biomedical domain 

Wang et al. [65] provides a comprehensive review about clinical applications of IE, 

collected from 263 publications in the medical domain from 2009 to 2016. According to 

their research, IE technology is predominantly applied to medical areas such as clinic 

notes, pathology reports and radiological reports. In terms of the disease categories, 

cancer and cancer-related domains are among top areas. IE tools, such as cTAKES [66], 

MetaMap [67], MedLEE [68] are commonly employed in the clinical IE tasks..   
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Rule-based IE approaches 

According to Wang et al [65], a rule is “usually a pattern of properties that need to be 

fulfilled by a position in the document”. A common form of rule is regular expression, 

using a series of traits to define a search pattern. A clinical information extraction system 

is often composed of multiple rules, developed through artificial knowledge engineering, 

utilizing knowledge bases, or a hybrid system. Medical terminologies and knowledge 

bases, such as Unified Medical Language System (UMLS) [69], SNOMED CT medical 

terminology [16], or controlled lexicon such as RadLex [70] (for radiology terminology) 

are often used lexicon sources in such approaches. 

 

The rule-based IE approaches are widely accepted in the applied clinical field because 

that they usually can achieve high performance on most tasks in this field, although some 

researchers consider they are obsolete and are more likely to explore how to develop and 

apply the state -of-art, machine-learning based approaches to solve medical problems 

[65].  

 

Machine learning-based IE approaches 

Recently, the machine-learning based IE approaches are experiencing unprecedented 

rapid advancement [71]. Most of the traditional approaches train models via supervised 

learning algorithms, including Support Vector Machine (SVM) [72] (Cortes & Vapnik, 
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1995) method, CRF [17], and Generalized nearest neighbor (NNge) [73], etc. Now, deep 

learning methods show significant improvements in many NLP tasks including IE. The 

prevalent approaches include the original convolutional neural network (CNN) [74] 

model, recurrent neural network (RNN) [75] model, and their derivative models (e.g. the 

long short term memory, LSTM model [76]). Since 2019, pre-trained language models 

based on contextual embeddings (e.g., BERT [19]) have shown significantly improved 

performance on multiple NLP tasks including in medical IE tasks [77]. Nevertheless, 

despite the widespread acceptance of deep learning-based approaches in the academic 

research domain, the sole machine learning-based approaches are still less utilized in the 

specific task-oriented applied clinical domain than rule-based approaches [65].  

 

1.2.3 Relevant work on lab test standardization 

 
According to CDC [78], the lab test standardization is defined as “Equivalent results, 

within clinically meaningful limits, among different measurement procedures for the 

same laboratory test”. Standardization is significant for clinical practice and can alleviate 

the dilemma of commutability among healthcare facilities. For medical laboratories, the 

International Organization for Standardization (ISO) 15189 (Medical laboratories – 

Particular requirements for quality and competence) is widely followed [79, 80]. Another 

commonly used standard when transferring medical data is the Health Level 7 [81], 
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which is currently collaborating with ISO to establish standards of health data exchange. 

ISO and HL7 cover a range of areas from the laboratory test design, quality control and 

clinical information exchange. Another laboratory standard, LOINC [15], was initiated 

by Clem McDonald in 1994. Different from HL7 and ISO, LOINC focuses on the 

vocabulary standard for clinical and laboratory observations (e.g. describing tests and 

measurements).  

 

With the outbreak of COVID-19 in 2020, FDA started to authorize emergent use of novel 

lab tests for SARS-COV-2 under the EUA system. The importance of standardizing lab 

test information has caught the attention of both researchers and policy makers. Several 

consortia have been formed to construct large clinical data networks for COVID-19 

research, including the National COVID-19 Cohort Collaborative (N3C) [82], the 

international EHR-derived COVID-19 Clinical Course Profiles (4CE) [83], etc. The 

large-scale research consortia working to establish medical data networks are also 

developing manual or automatic methods to normalize various lab tests from databases of 

different participants into a common vocabulary.  

 

To facilitate the effort on standardizing COVID-19 lab testing data, LOINC and CDC 

issued mapping guidelines for the in vitro diagnostic (IVD) kits to assist diagnostic kits 

developers manually map the test names to LOINC codes [84]. On June 4, 2020, the U.S. 
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Department of Health & Human Services (HHS) also launched the implementing of 

Coronavirus Aid, Relief, and Economic Security (CARES) Act (U.S. Department of 

Health and Human Services (HHS), n.d.) to reinforce that all COVID-19 lab tests 

conducted at the CLIA [46] accredited sites should be reported to appropriate state or 

local public health department in a standardized vocabulary. 

  



14 
 

Chapter 2: Information Extraction of Covid-19 Lab Test Information from EUA 

Documents 

 

2.1 Introduction 

 
Human history has been marked by severe pandemics, such as cholera [23], plague [24], 

and smallpox [85] which had extremely high mortality rates and hampered the 

development of acquired immunity. With the global integration and improved public 

health interventions, the epidemiology of pandemics in the 20th century, such as the 1918 

flu [25] and the 1968 flu [26], changed from severe, high mortality infectious disease to 

those respiratory diseases that spread easily and rapidly [86]. Similarly, COVID-19 has 

rapidly spread globally since the emergence of the novel coronavirus in late 2019, 

becoming the first pandemic of the 21st century. The novel coronavirus of 2019 is a new 

subtype of the coronavirus family, as other subtypes of coronavirus are well-known to be 

the pathogens of SARS and MERS, two deadly epidemics. On the one hand, compared 

with SARS and MERS viruses, the COVID-19 virus has a longer incubation period (a 

period when patients are asymptomatic) and is more likely to spread [29], eventually 

resulting in severe pandemics. On the other hand, compared to epidemics such as SARS 

and MERS, pandemics usually have multiple ‘waves’ of outbreaks, which prolongs its 

lifespan and significantly increases the disease burden [87].  
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Therefore, a robust and expeditious lab testing system plays a particularly crucial role in 

the fight against the disease in the early stage of a pandemic outbreak. A fast-responding 

laboratory development-approval-distribution system provides the information necessary 

for effective public health surveillance and early interventions, which is extremely pivotal 

in preventing the progression from epidemic to pandemic and in mitigating pandemic 

outbreak. 

 

Fortunately, advances in biology and other technologies, along with the FDA EUA 

system, have led to the development of COVID-19 lab tests faster than ever before. In a 

short period of time, many COVID-19 tests have been developed, authorized, and 

distributed to the market for diagnosing and monitoring the disease. Table 1 shows the 

COVID-19 lab test statistics by May 25, 2021, together with the three pandemics since 

the 20th century, including SARS in 2003, all belonging to the same family of COVID-

19 [21, 22, 25–27].  

 

Table 1:  Lab test statistics for 4 pandemic/epidemics 

Pandemic/Epidemic No. Tests 

Last Outbreak 

period 

Pathogen isolation from 

the initial outbreak 

From the first case to 

pandemic 

Influenza 244 multiple waves 70 years from the 1918 During WW1, 
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(H1N1/H3N2) until present H1N1 flu unclear 

AIDS(HIV1/HIV2) 257 1980s-2000s 5-6 years  More than 10 years 

SARS 21 2002-2003  5 months epidemic 

COVID-19 131 2019-current 1 month 2.5 months 

 

The numbers of influenza virus, HIV, and SARS virus detection were extracted from the 

recently released Logical Observation Identifiers Names and Codes (LOINC), while the 

number of COVID-19 tests was from the recently released COVID-19 LOINC code sets. 

 

As can be seen in Table 1, the rate of transmission and the development of lab tests for 

COVID-19 far exceed that of the 2003 SARS epidemic, whose pathogen belongs to the 

same coronavirus family as COVID-19. Although the absolute amount of COVID-19 lab 

tests is smaller than for flu and AIDS, the time to identify the disease pathogen for 

COVID-19 and develop corresponding lab tests is much shorter. Moreover, COVID-19 

has the shortest time frame from the first case to pandemic. As global integration and 

technological improvements accelerate, it is reasonable to expect that future pandemics 

will occur in a faster and more dangerous manner, thus requiring a faster development of 

more lab tests. 
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Under the FDA EUA mechanism, a quick and robust lab test system for new pandemics 

can facilitate early response to disease, especially for future outbreaks. However, many 

lab tests details are embedded in narrative text (i.e., FDA EUA documents are free text in 

.pdf format), making data sharing difficult and affecting the efficiency of medical 

resource allocation, clinical research, and early disease mitigation. 

 

To address this challenge, LOINC and CDC timely issued the mapping guidelines for in-

vitro diagnostic (IVD) kits [84], to assist diagnostic kits developers in manually mapping 

the test names to LOINC codes. The U.S. Department of Health & Human Services 

(HHS) also launched the Coronavirus Aid, Relief, and Economic Security (CARES) 

Acton to reinforce that all COVID-19 lab tests conducted at CLIA certified sites should 

be reported to the appropriate state or local public health department in a standardized 

vocabulary. (U.S. Department of Health and Human Services (HHS), n.d.) However, 

during this public emergency of new pandemic, there remains a gap between the release 

of lab test standardization policies and the rapid emergence of lab tests, and the gap time 

may increase when the lab test production capacity enhances in future pandemic 

outbreaks. To prepare for potential future pandemic outbreaks and the highly possible 

surge of new lab tests, it is important to establish an automated approach to lab test 

standardization. 
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An ontology is a “formalized encoding of knowledge that enables machines and 

computerized agents to understand domain information” [88]. It also promotes the 

understanding of the nature of a concept, enabling software agents to ratiocinate from the 

semantic logical connections between concepts, which is machine-based. 

 

Hence, in this study we adopted the ontology approach to develop an information model 

that encompasses the key attributes of lab tests emerging from the COVID-19 pandemic, 

and further developed an automatic entity recognition model to extract such information 

from EUA documents of COVID-19 lab tests. Specifically, this study contributes to 

informatics and medicine in two main aspects: 

 

1. Develop a pandemic specific information model for new COVID-19 diagnostic tests, 

which utilizes concepts from LOINC and SNOMED CT as well as some original 

concepts. 

2. Based on the information model, further develop an information extraction tool to 

automatically identify the entities for COVID-19 lab tests in FDA EUAs. 

 
2.2 Methods 
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The workflow of our study includes the following steps: (1) data collection; (2) 

information model development and corpus annotation; (3) automatic identification of 

attributes for lab tests.   

 

2.2.1 Data sources 

 
Since all the COVID-19 lab tests in the U.S should be used under the FDA EUA, I 

collected 378 (until 05/25/2021) EUAs of COVID-19 lab tests from the FDA website for 

our corpus. The EUAs in pdf format were preprocessed using python to convert them to 

text files. The most informative part of each EUA (the abstract section or the first 

paragraph if there is no abstract section) was retained as our corpus. Figure 1 shows an 

example of each type of EUA. The circled parts were extracted into text files for the NER 

task. 
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Figure 1:  Examples of each type of EUA 

  

2.2.2 Information Model Development 

 
The COVID-19 lab ontology concepts are created by reviewing all the current COVID-19 

lab tests under the FDA EUA and integrating LOINC and SNOMED CT terminologies 

for medical ontologies.  The EUA authority allows FDA to permit unapproved medical 

products or unapproved uses of approved medical products in public health emergencies. 

The National Library of Medicine (NLM) terminology has also been examined because it 

furnishes several well-known ‘knowledge infrastructure’ resources, for example, UMLS 

Metathesaurus [69], which documents numerous synonyms of biomedical terms and 

categories of biomedical concepts that facilitate clinical NER. The COVID-19 lab 

information model is formalized in the Ontology Web Language (OWL) using Protégé 
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5.5, while the logical consistency and taxonomy in the model are checked using HermiT 

1.4.3 reasoner. The information model is evaluated with the assistance of experts in the 

field of medical informatics, physicians, and epidemiologists. For the subset of 

information used for the following IE task, the coverage of each entity is checked using 

the COVID-19 lab test EUAs and the news releases retrieved from the Internet. 

 

2.2.3 Annotation Framework 

 
The subset of the COVID-19 lab ontology applied to the NER task comprises 10 top-

level classes of the information model as the annotation axes, which are “TestName”, 

“Component”, “Scale”, “Method”, “System”, “Facility”, “SamplingMethod”, “Time”, 

“Institution”, and “SamplingPersonnel”. Among the 10 axes, “Component”, “Scale”, 

“Method”, “System” and “Time” are imported from LOINC. The definitions of 10 axex 

are shown below in Table 2 and annotation examples are shown in Figure 2. All 

annotations are completed using the Clinical Language Annotation, Modeling and 

Processing (CLAMP) Toolkit [89].   

 

Table 2:  Annotation Attributes 

Attributes Definition Example 
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TestName Phrases that describe 

procedures, panels, and 

measures to discover or 

find information about 

COVID-19 

“BinaxNOW COVID-19 Ag 

Card 2 Home Test”, 

“the LabCorp COVID-19 RT-

PCR Test” 

 

Component The substance or entity 

being measured or 

observed 

“nucleocapsid protein antigen 

from SARSCoV-2”, 

“COVID-19 IgG/IgM” 

Scale How the observation value is 

quantified or expressed 

“Qualitative”, “Quantitative” 

Method A high-level classification of 

how the observation was 

made 

“molecular nucleic acid 

amplification test (NAAT)”, 

“real-time loop mediated 

amplification reaction” 

System The specimen or thing upon 

which the observation was 

made 

“fingerstick blood samples”, 

“nasal swab” 
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Facility The place where the test can 

be performed 

“at-home use without a 

prescription”, “high and 

moderate complexity 

laboratories” 

 

SamplingMethod In which way the specimen 

are collected 

“Self-collected under 

observation” 

Time The interval of time over 

which an observation was 

made 

“twice over three days with at 

least 36 hours between tests”, 

“15 days after disease onset” 

Institution The place(lab, drug company, 

universities…) where the test 

was developed 

“Rutgers Clinical Genomics 

Laboratory”, “Yale School of 

Public Health” 

SamplingPersonnel The person who performed 

the sample collection 

“the healthcare provider”, 

“any individual older than 18 

years old” 
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Figure 2:  Annotation Examples 

 

2.2.4 Information Extraction Model Development 

 
In this study, a CRF-based [17] NER model was first developed as a baseline using the 

CLAMP tool. Then we employed two state-of-art machine learning models for this task. 

The first one is the fine-tuning BERT model proposed by Devlin et al. [19], and the other 

one is the Bi-Long-Short-Term-Memory model with a CRF layer on top (Bi-LSTM-CRF) 

[90], which has been proven to perform well in natural language processing tasks. In this 

task, we substituted BIO tags for the entities in the input header, where “B” indicates the 

beginning of the entity, “I” represents the subsequent tags in the entity, and “O” denotes 

other non-entity tags. The text is first processed for sentence boundary detection, 

tokenization and position-of-sentence (POS) tagging, and then the “BIO” labels are 
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applied. The output of the Bi-LSTM-CRF model is the predicted probability of “B”, “I”, 

“O” for each token, from which the highest is selected. For the BERT model, add a 

[CLS] token at the beginning of each sentence for classification tasks. The output of the 

fine-tuning process is the final hidden vector of [CLS] tokens, which represents the 

semantics of the whole sentence. If an entity is classified into a certain axis, the 

classification label for this axis is “1”, otherwise it is “0”. The probability of the 

classification label is calculated by softmax function [91]. Therefore, the context of such 

keywords should also be considered.  

 
2.2.5 Experiment and Evaluation 

 
The annotated corpus is randomly divided into training and test sets in a ratio of 4:1. The 

training set is employed for model development, and the test set is utilized for evaluation. 

The performance of the trained model is tested on the entire corpus based on 10-fold 

cross validation. The maximum sequence length of the BERT model is 128 and other 

hyperparameter settings are kept as default. The evaluation metrics are shown below:  

 

 
2.3 Results 

 
Figure 3 illustrates the information model developed for COVID-19 lab tests. The 

evaluation results indicate that the COVID-19 lab information model has a good structure 



26 
 

and concept coverage, and all required modifications were made to optimize the 

information model concepts structure and coverage, ensuring the adequacy of the 

semantic categories for each concept. The coverage of the selected 10 core concepts on 

the EUA dataset is shown in Table 3.  

 

Figure 3:  The COVID-19 lab test information model 

Table 3:  The coverage of the 10 concepts on the EUA dataset 

Concept Coverage Concept Coverage 
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TestName 97% Method 12% 

Component 95% Facility 98% 

System 99% Time 15% 

Scale 90% SamplingMethod 31% 

Institution 85% SamplingPersonnel 22% 

 

The “Time” concept is less well covered than other concepts because it is only included 

in the EUAs for some antibody tests and a few tests which support regular screening. 

Most of the “SamplingMethod” and “SamplingPersonnel” axes are only mentioned in the 

EUAs for over the counter or point-of-care lab test, or those can be performed in 

community settings. The concept of “Method” is also referenced in fewer corpora, as 

some lab tests omit the default PCR method in the abstract/first paragraph of the EUA for 

which the test is applied for RNA detection. 

 

Figure 4 demonstrates the frequency of words in the training set for the NER task. The 

most frequent tokens are mainly from the “Component”, “System”, and “Facility” axes. 

This finding is consistent with the high coverage of these concepts in the training set, and 

to some extent verifies the homogeneity of the three concepts across the corpus. 
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Figure 4:  Word Cloud of the corpus  

 

Table 4 presents the statistics for the 10 types of entities in the EUA dataset. The 

frequency of “System” remarkably exceeds other concepts because most lab tests can be 

conducted on multiple specimens.  

 

Table 4:  Concept distribution 

Concept Total No. of Entities No. of Entities per EUA 

TestName 393 1.0397 

Component 440 1.1640 
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System 1609 4.2566 

Scale 393 1.0397 

Institution 331 0.8757 

Method 46 0.1189 

Facility 441 1.1667 

Time 58 0.1534 

SamplingMethod 379 1.0003 

SamplingPersonnel 82 0.2179 

 
Table 5 reveals the NER task performance of the three models on all the 378 EUAs. The 

results indicate that both the BERT and the Bi-LSTM-CRF outperformed the baseline 

CRF model, and they achieved similar F-1 score.  

 

Table 5:  Overall performance of the CRF model, BERT and the BI-LSTM-CRF model 

Concept Precision Recall F1 

CRF BERT 

BI-LSTM-

CRF CRF BERT 

BI-LSTM-

CRF CRF BERT 

BI-

LSTM-
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CRF 

TestName 90.60% 96.33% 98.50% 90.80% 97.77% 98.30% 90.70% 97.04% 98.40% 

Sampling-

Method 77.30% 87.29% 93.90% 69.90% 90.38% 94.40% 73.40% 88.81% 94.20% 

Sampling-

Personnel 72.60% 75.82% 89.50% 54.90% 79.31% 80.00% 62.50% 77.53% 84.50% 

Scale 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Time 87.30% 91.53% 91.40% 82.80% 90.00% 91.40% 85.00% 90.76% 91.40% 

Institution 92.80% 98.32% 95.60% 85.20% 98.32% 95.90% 88.80% 98.32% 95.80% 

Facility 88.40% 95.09% 89.60% 85.00% 97.19% 89.40% 86.70% 96.13% 89.50% 

Method 87.80% 96.33% 95.70% 78.30% 95.65% 95.70% 82.80% 95.65% 95.70% 

Component 97.20% 97.39% 99.30% 95.00% 98.24% 99.10% 96.10% 97.81% 99.20% 

System 96.10% 98.43% 98.90% 95.20% 98.07% 98.90% 95.60% 98.25% 98.90% 

Overall 92.84% 96.33% 97.00% 89.88% 96.96% 96.80% 91.34% 96.62% 96.90% 

 

2.4 Discussion 
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In this study, we developed and evaluated a COVID-19 lab test information model 

according to the ontology technology. Subsequently, applying the subset derived from the 

information model as entity concepts, we developed, evaluated, and compared three 

machine learning-based NER pipelines to automatically extract the COVID-19 lab tests 

from the FDA EUAs documents.        

 

From the performance comparisons we found that the baseline-CRF achieved a high 

overall performance (91.34%), with 92.84% precision and 89.88% recall. Entity types 

that are highly consistent across the corpus (such as Scale, Component, and System) 

perform much better than types with more variety. Both the BERT and the Bi-LSTM-

CRF models significantly enhance the performance in terms of precision and recall, 

resulting in improved the F-1 score. The BERT model is a state-of-are algorithm that has 

achieved record-breaking performance in multiple NLP tasks. The Bi-LSTM-CRF is a 

traditional recurrent neural-network algorithm that has been proven to perform 

excellently in NER tasks. In our study, the Bi-LSTM-CRF model achieved a slightly 

higher performance than BERT on “SamplingMethod” and “SamplingPersonnel”, two 

concepts that occur less frequently in our corpus than the others. This result is 

comparable with Ezen-Can’s finding [94], suggesting that small corpus size may affect 

the performance of the BERT model. It is also possible that more fine-tuning is desired 

for the BERT model to reach a better F-1 score. On the concepts with long sentences, 
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such as “Institution” and “Facility”, the BERT model significantly outperformed the 

baseline-CRF model and the Bi-LSTM-CRF model, exhibiting its merit in handling long 

sentences. 

 

From the case of COVID-19, we can discern that the development and approval of lab 

tests during a pandemic undergoes a unique process. In the U.S., all the lab tests for 

COVID-19 enter the market through the FDA’s EUA rather than the traditional approval 

process, leading to a rapid response to the public health emergency. The formal format 

with highly homogeneous language used in the EUA also facilitates the adoption of NLP 

tools to automatically extract information from the EUAs documents. By automatically 

retrieving standardized lab test information from the EUAs, it can assist clinical 

healthcare providers, researchers and public agencies in effectively collecting and sharing 

standardized lab test data in the very early stage of a pandemic outbreak, thereby 

improving the efficiency of healthcare resource allocation and medical research. 

 

To the best of our knowledge, this is the first attempt to develop an ontology-based 

automatic information extraction tool to consistently represent and identify rapidly 

emerging lab tests from EUAs approvals. The developed information model can serve as 

a template and be extended to new lab tests for future pandemics. The ontology based 

NER model can efficiently retrieve standardized lab test information from EUAs, 



33 
 

demonstrating the implementation significance of NLP technology in response to public 

health emergencies. 

 

The limitation of our study is that COVID-19 is the only use case for developing the 

information model and the NER tool, although our ultimate goal is to represent lab tests 

for any pandemic. Despite the fact that we considered other previous pandemics in the 

development of the ontology, the lack of EUA documents for those previous pandemic 

lab tests hinders us from a holistic picture of lab testing in those pandemics. Our future 

work is to collaborate with domain experts to further test and optimize the ontology, 

entitling it higher potential to be generalized to future pandemics.  

 
2.5 Conclusion 

 
In this study, we take COVID-19 lab tests as a use case to design an information model 

for lab tests, as well as machine learning-based NER methods to automatically extract 

information from the FDA EUAs documents. Our results indicate that the BERT and the 

Bi-LSTM-CRF model achieves an outstanding performance in the NER task, which 

demonstrates the application of AI approaches in data collection and standardization in 

pandemics.   
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Chapter 3: Covid-19 Testnorm - A Tool to Normalize Covid-19 Testing Names to 

LOINC Codes 

 
3.1 Introduction 

 
In the last chapter, we developed an information model and a machine learning based 

information extraction tool to extract structured lab test information from the FDA EUAs 

for the COVID-19.  In this chapter, we will discuss the normalization of COVID-19 lab 

test information from another data source.  

 

COVID-19 patients’ clinical data stored in EHR is an important data source for COVID-

19 research. Several consortia have been formed to construct large clinical data networks 

for COVID-19 research, including The National COVID-19 Cohort Collaborative (N3C) 

[82], the international EHR-derived COVID-19 Clinical Course Profiles (4CE) [83] and 

many others. 

 

To efficiently conduct clinical studies across different institutions within a network, one 

requirement is to normalize clinical data to common data models (CDM) and standard 

terminologies. One such example is the Observational Medical Outcomes Partnership  

(OMOP) CDM maintained by the Observational Health Data Science and Informatics 

(OHDSI) consortium [95]. Among different types of clinical data, COVID-19 diagnostic 
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tests are critical for all the following analyses, as they are the primary means to identify 

the confirmed COVID-19 cases. To address the urgency of the pandemic, individual 

institutions have created local names and local codes for those new COVID-19 tests in 

their EHRs. Meanwhile, the LOINC has responded quickly by developing a new set of 

standard codes for COVID-19 tests [84] to guide standard coding of these tests in clinical 

settings. Nevertheless, there is a lack of mappings between local COVID-19 test names 

and standard LOINC codes, which hampers cross-institutional studies that rely on 

normalized clinical data at each institution. Existing natural language processing (NLP) 

systems such as MetaMap [67] or CLAMP [89] provide concept mapping functions, but 

none of them has been updated to accommodate new concepts for COVID-19 tests.   

 

To address this urgent need for reliable mappings, we developed an automated tool -- 

COVID-19 TestNorm -- to normalize a local COVID-19 test name to a standard LOINC 

code. This tool is available to the community via an open-source package at GitHub and 

via an online web application. We believe COVID-19 TestNorm can be a useful tool for 

the secondary use of EHRs for research studies on the pandemic.  
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3.2 Methods 

Using COVID-19 test data collected from eight healthcare systems, we developed a rule-

based system to automatically normalize a local test name to a LOINC code for COVID-

19.  Figure 5 shows an overview of the modules of the COVID-19 TestNorm system, 

mainly including entity recognition and LOINC mapping modules, with inputs from 

knowledge components such as lexicons and coding rules. The input lab test names are 

tokenized first, then specific entities are recognized, and appropriate LOINC codes are 

automatically mapped based on the coding rules. 

Figure 5:  An overview of the COVID-19 TestNorm system 

 
3.2.1 Dataset 

 



37 
 

We collected COVID-19 test data from eight healthcare systems across the United States, 

including University of Texas Physicians, Memorial Hermann Health System, University 

of California San Diego, Mayo Clinic, University of Florida, University of Minnesota, 

Columbia University Medical Center, and the national Department of Veterans Affairs 

(collected from 170 medical centers and 1,063 outpatient sites) in April 2020. Data from 

each institution primarily contained test names, as well as other fields available in local 

lab tables, such as specimen information. In total, 568 records were collected from the 

eight sources. Although some institutions provided LOINC codes with the names, we 

manually reviewed all the records and assigned corresponding LOINC codes. Two 

annotators followed the LOINC COVID-19 coding guideline5 and manually mapped the 

568 records to LOINC codes. The Cohen’s Kappa agreement8 between the two 

annotators was 99.3%. We then randomly divided the dataset into a development dataset 

(454 records) and a test dataset (114 records). The COVID-19 TestNorm tool was 

developed using the development dataset and evaluated on the test dataset.  

 

3.2.2 Entity recognition 

 
LOINC describes each concept using six primary axes: Component, System, Method, 

Time, Property, and Scale9, some of which were included in our COVID-19 entity 

categories. Our five root categories were Component, System, Method, 
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Quantitative/Qualitative, which defines if a test returns a qualitative or quantitative result, 

and Institution, which specifies the manufacturer of the test kit. The LOINC team at 

Regenstrief has worked with several in vitro diagnostics (IVD) test kits manufacturers 

and commercial labs to develop and assign appropriate LOINC codes for their SARS-

CoV-2 tests. Some of these mappings are listed on the LOINC website [84].  

 

Furthermore, from the manual review of the training set data and coding rules by LOINC 

[84], we identified that accurate mapping requires more specific values under each root 

category.  For example, for System, which refers to the test specimen, "Serum or 

plasma", "Saliva", "Nasopharyngeal specimen", "ANY respiratory specimen", and 

"Unspecified specimen" will lead to different LOINC codes, since the corresponding test 

methods may vary. In this case, these subcategories of the root category System are 

essential elements for accurate mapping. This finding also applies to the other root 

categories. As a result, we divided the five root axes into subcategories. Table 6 lists all 

the detailed entity categories used in our LOINC coding system, as well as corresponding 

examples. Once entity categories were defined, we further analyzed the development 

dataset and manually extracted all related terms for each category, which were appended 

to the lexicon file used for the COVID-19 TestNorm tool. The lexicon file is publicly 

available together with the COVID-19 TestNorm software package. Potential users can 
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manually revise the lexicon file to further improve COVID-19 TestNorm’s performance 

on their local data.  

 

The entity recognition consists of two steps: (a) an initial step that combines dictionary-

lookup and regular-expression matching, (b) a disambiguation step that converts the 

ambiguous tags from the initial step into the final tags according to a set of predefined 

rules. During the initial step, most information can be captured and tagged to its 

corresponding category, whereas some ambiguous words need to be further reviewed. 

For example, the word “IA” can be either mapped to a “method” which represents the 

abbreviation of “immunoassay” or to a “system” which represents the state “Iowa”. We 

developed context-based rules to determine the correct semantic categories for those 

terms.  

 

Table 6:  Semantic categories used by COVID-19 TestNorm 
LOINC axes  Fine Entity Types Example Values 

Component Covid19 "COVID-19", “SARS-COV-2” 

  Covid19_Related “SARS-related CoV”, “SARS-like CoV” 

  RNA_Comp “RNA”, “N gene”, “RdRp gene” 
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  Sequence_Comp “Whole genome” 

  Antigen_Comp “Ag”, “Antigen” 

  Growth_Comp “Organism” 

  Antibody_Comp “Ab”, “Antibody”, “IgM”, “IgG” 

  Interpretation_Comp “Interpretation”, “Recent infection” 

System Blood “Blood”,  “Serum”, “Plasma” 

  Respiratory “NARES”, “NASAL MUCUS” 

  NP “NP”, "Swab", “NASOPHARYNX” 

  Saliva “SALIVA”, “ORAL FLUID” 

  Other 

“UNSPECIFIED”, “UNKNOWN 

SPECIMEN” 

Method RNA_Method “Non-probe-based”, “NAA”, “PCR” 

  Sequence_Method “Sequencing” 

  Antigen_Method “Rapid IA”, “Immunoassay”, “IA” 

  Growth_Method “Organism specific culture” 

  Antibody_Method “Rapid IA”, “Immunoassay”, “IA” 
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  Panel_Method “Panel”, “Panl” 

Quantitative_Qualitative Quantitative “Cycle Threshold”, “viral load” 

  Qualitative “Presence”, “Ord” 

Institution Manufacturer “Abbott” 

 
 
3.2.3 LOINC mapping 

 
LOINC guidelines for COVID-19 tests [84] (as of May 30th, 2020) were followed to 

guide the development of the initial coding rules, which consist of decision-making 

algorithms based on extracted entities in the previous step. The coding rules were then 

iteratively updated using the development dataset collected across institutions.  Figure 6 

shows the overall decision workflow based on the coding rules (as of May 30th, 2020). It 

starts with checking manufacturer information, as specific LOINC codes are assigned to 

known test kits by specific manufacturers. If no specific manufacturer information is 

available, the tool continues the mapping procedure using test purpose rules. Five test 

purpose rules are defined based on the tagged entities for Component, Method, and 

System with the following information: (a) RNA; (b) Sequence; (c) Antigen; (d) Growth; 

(e) Antibodies. For each test purpose rule, specific tagged entities for the analyte 
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(Component), specimen (System), Method, and/or Qualitative/Quantitative are further 

checked to map to appropriate LOINC codes.  

Figure 6:  Coding rules for LOINC mapping 

IVD: in vitro diagnostics, NAA: nucleic acid amplification 

 
3.2.4 Evaluation 

 
We developed the COVID-19 TestNorm tool using the development set (454 records) 

and evaluated its performance using the independent test set (114 records). We compared 

the system’s output with the manually annotated gold standard and reported the accuracy 
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of the system (the percentage of correct LOINC codes generated by the system among 

114 records). 

 

3.3 Results 

 
Table 7 shows the distribution of different COVID-19 tests’ LOINC codes on the full 

annotated dataset (568 records). LOINC codes 94759-8 (“SARS-CoV-2 (COVID19) 

RNA [Presence] in Nasopharynx by NAA with probe detection”), 94500-6 (“SARS-

CoV-2 (COVID19) RNA [Presence] in Respiratory specimen by NAA with probe 

detection”, and 94309-2 (“SARS-CoV-2 (COVID19) RNA [Presence] in Unspecified 

specimen by NAA with probe detection”), were the most frequent codes across 

institutions, of which “94759-2” is the most frequent one with over 40% of occurrences 

in the collected dataset. All three codes represent test for SARS-CoV-2 RNA using 

nucleic acid (RNA) amplification with a probe-based detection method without 

specifying the gene or region being tested. The 94500-6 code is used for tests that can be 

run on a variety of respiratory specimens, 94759-8 is specific for nasopharyngeal 

specimens, and 94309-2 is for unspecified specimens.  Nucleic acid amplification with 

probe-based detection is the most widely used test method so far across the eight sources.  
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Table 7:  Distribution of mapped LOINC codes 

LOINC Codes Total # Percentage LOINC Long Common Name 

Molecular    

94759-8 240 42.25% 

SARS-CoV-2 (COVID19) RNA [Presence] in 

Nasopharynx by NAA with probe detection 

94500-6 202 35.56% 

SARS-CoV-2 (COVID19) RNA [Presence] in 

Respiratory specimen by NAA with probe 

detection 

94309-2 75 13.20% 

SARS-CoV-2 (COVID19) RNA [Presence] in 

Unspecified specimen by NAA with probe detection 

94502-2 13 2.29% 

SARS-related coronavirus RNA [Presence] in 

Respiratory specimen by NAA with probe detection 

94660-8 11 1.94% 

SARS-CoV-2 (COVID19) RNA [Presence] in 

Serum or Plasma by NAA with probe detection 

Antibody    

94563-4 10 1.76% 

SARS-CoV-2 (COVID19) IgG Ab [Presence] in 

Serum or Plasma by Immunoassay 
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94564-2 4 0.70% 

SARS-CoV-2 (COVID19) IgM Ab [Presence] in 

Serum or Plasma by Immunoassay 

94762-2 2 0.35% 

SARS-CoV-2 (COVID19) Ab [Presence] in Serum 

or Plasma by Immunoassay 

94504-8 2 0.35% 

SARS-CoV-2 (COVID19) Ab panel - Serum or 

Plasma by Immunoassay 

94505-5 2 0.35% 

SARS-CoV-2 (COVID19) IgG Ab [Units/volume] 

in Serum or Plasma by Immunoassay 

94507-1 1 0.18% 

SARS-CoV-2 (COVID19) IgG Ab [Presence] in 

Serum, Plasma or Blood by Rapid immunoassay 

94508-9 1 0.18% 

SARS-CoV-2 (COVID19) IgM Ab [Presence] in 

Serum, Plasma or Blood by Rapid immunoassay 

Other    

56831-1 4 0.70% Problem associated signs and symptoms 

90101-7 1 0.18% Internal control result 

 
 

In addition, we also counted the number of unique COVID-19 test codes at each 

participating site. As shown in Figure 7, the number of unique tests at each site varied, 
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with Columbia University Medical Center at the top, probably indicating that many test 

methods have been used in this medical center in New York City. 

 

The overall accuracy of COVID-19 TestNorm on the development set was 98.9%. When 

evaluated using the independent test set, the system achieved an accuracy of 97.4%, 

indicating that the rule-based approach was effective in normalizing COVID-19 test 

names to LOINC codes. 

 

The source code of the LOINC TestNorm tool is available at a GitHub repository [96]. 

An online web application (https://clamp.uth.edu/covid/loinc.php) is also provided so that 

users can enter local COVID-19 test names and retrieve mapped LOINC codes 

automatically.  
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Figure 7:  Number of unique LOINC codes by site 

UCSD: University of California San Diego, VA: Veteran’s Health Affairs, UMN: 

University of Minnesota, UTP: University of Texas Physicians, MHHS: Memorial 

Hermann Health System, UFH: University of Florida Health. 

 

3.4 Discussion 

 

In this study, we collected the lab tests from eight healthcare systems across the country. 

We developed a simple but effective normalization system for mapping COVID-19 lab 

tests to LOINC codes to facilitate rapid research response to the pandemic. The tool is 
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publicly available with source code. For ease of use, we developed a web application so 

that end users can easily map their local COVID-19 lab test names to standardized 

LOINC codes using the online form, thus improving the efficiency of multi-center data 

aggregation and global knowledge sharing.  

 

We conducted an error analysis for the mis-mapped codes. TestNorm achieved 100% 

accuracy on most of the LOINC codes in the test set, except for codes 94500-6 (2 

records) and 56831-1 (1 record). For the two errors for 94500-6, one test name was “UF 

BKR QUEST OVERALL RESULTS LAB17003,” and the other was 

“CONFIRMATORY TEST-QUEST”. Both were missed because they do not contain the 

key entity of COVID-19, which is required by our current coding rules. In the future, we 

may lift this constraint if we assume that all test names are about COVID-19. For code 

56831-1, the original local test name “PATIENT SYMPTOM (SARS COV 2)” does not 

contain any specific test information, and COVID-19 TestNorm assigned 94309-2 even 

though the original data came with a specific LOINC code 56831-1, probably due to 

additional information available to the local hospital only.  

 

LOINC codes are designed for use in clinical settings, assuming all information is 

available. For secondary use scenarios, data submitted by local healthcare facilities do not 

always contain such detailed information. When the information is incomplete, more 
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general LOINC codes will have to be assigned. For example, when the specimen is 

unknown, LOINC 94309-2 (“SARS-CoV-2 (COVID19) RNA [Presence] in Unspecified 

specimen by NAA with probe detection”) will be mapped, which accounts for 13.20% 

(75/568) in our dataset.  

 

One of the limitations of this study is that, even though we collected data from eight large 

healthcare systems across the United States, the sample size and data heterogeneity could 

still be limited. For example, all codes in our dataset are about molecular and antibody 

tests. With new tests available in the market, the LOINC code sets for COVID-19 are 

evolving, i.e., with weekly updates from Regenstrief, as well as continuous updates from 

the CDC, which maintains a file containing recommended LOINC mappings for test kits 

currently approved by the FDA (https://www.cdc.gov/csels/dls/sars-cov-2-livd-

codes.html). Therefore, it is critical for us to keep updating our tool with new code sets 

and updated coding rules. When large and diverse samples are accumulated, we will also 

look into more sophisticated machine learning approaches for this task.  

 

Although we primarily designed COVID-19 TestNorm for secondary use of EHRs for 

research purposes, the tool could be useful at clinical operational settings or public health 

agencies as well. Unlike large academic medical centers included in this study, many 

community hospitals, federally qualified health centers, non-academic medical centers, 
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and clinics are much less familiar with the difficulties in harmonizing data across 

multiple systems. Given that HHS has just announced more standard reporting for lab test 

of COVID-1911, COVID-19 TestNorm could be a handy tool for improving COVID-19 

lab reporting quality for both healthcare providers and public health agencies.  

 

3.5 Conclusion 

 
Multi-site data aggregation and normalization are essential for rapid response to COVID-

19 research using clinical data. We developed an automated tool to normalize local 

COVID-19 test names to standard LOINC codes.  This offers a foundational first step in 

enabling test data interoperability for research related to COVID-19.  
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Chapter 4: Comprehensive Characterization of Covid-19 Patients with Test Re-

Positivity in A Large EHR System Across the US 

 
4.1 Introduction Literature Review  

 
In Chapter II and Chapter III, we focused on standardization and normalization of two 

major types of unstructured COVID-19 lab test data using medical informatics 

technologies. And in this chapter, a real-world study was conducted, and structured lab 

test information was employed during data preparation to improve the efficiency and data 

quality of the study.  

 

A reverse transcriptase polymerase chain reaction (RT-PCR) test is considered the gold 

standard for detection of SARS-CoV-2 in upper and lower respiratory specimens and for 

diagnosis of COVID-19. While neutralizing antibodies are detectable for several months 

following recovery from SARS-CoV-2 infection [97, 98], it remains unknown whether 

and for how long these antibody responses protect patients from re-infection. There have 

been many case reports of patients with a second positive PCR test after their PCR results 

turned negative and symptoms resolved [99]. Most of these are suspected cases of re-

infection based on limited clinical or test data; in a minority of suspected cases of 

reinfection, the viral genome sequences were analyzed and shown to be distinct, strongly 

supporting a re-infection rather than failure to clear an initial infection [21]. In the 
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absence of genomic evaluations, the presence of two positive molecular tests separated 

by negative tests, prolonged time, and clinical resolution of symptoms remains the best 

surrogate measurement of possible re-infection.  Using the Centers for Disease Control 

and Prevention Common Investigation Protocol for Investigating Suspected SARS-CoV-

2 Reinfection [100] as a guide, we conducted a comprehensive evaluation of patients who 

had repeated positive SARS-CoV-2 PCR tests in a large US COVID-19 electronic health 

record (EHR) database. We characterize their demographic and clinical characteristics, 

including their SARS-CoV-2 test journey, symptoms, medication use and COVID-19 

related complications. 

 

4.2 Patients and Methods 

 
This retrospective study used the Optum® COVID-19 dataset [101], which implements a 

low-latency data acquisition model that aggregates de-identified EHR data from 

providers across the continuum of care.  

 

To achieve the best coverage of all the eligible patients, we employed a hybrid data 

querying strategy. We first identified the COVID-19 patients using the ICD10 code 

(U07.1), and then extracted their COVID-19 lab information using both the COVID-19 

related LOINC codes and a standardized COVID-19 lab test concept set that we 
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developed in a previous study (described in Chapter 2 and Chapter 3). As of August 20, 

2020, the Optum® COVID-19 dataset included 73,702 patients with a COVID-19 

diagnosis code that was laboratory-confirmed with a positive SARS-CoV-2 PCR test, of 

whom we identified 690 having two positive PCR test results separated by at least one 

negative test result. The study sample was further restricted to patients who had two 

consecutive negative test results >24 hours apart between two positive test results 

(N=79); of these, 4 patients had at least 90 days between their two positive tests and 

another 19 had at least 60 days between their two positive tests and had accessible 

demographic and clinical data (Figure 8). If a negative test and a positive test were 

returned on the same day (<24h), both tests were disregarded. 

 

Figure 8:  Patient selection flowchart 

 

Demographic and clinical information, including age, gender, race/ethnicity, smoking 

status, and body mass index (BMI), was extracted. Smoking and BMI were based on the 

patient’s most recent record within one year prior to the index date (first SARS-CoV-2 

positive test date).  
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To get an overall picture about potential re-positivity factors, we created Kaplan-Meier 

cumulative incidence plots for re-positivity by calculating the cumulative incidence of re-

positivity among a subgroup of patients (N=8,618) who had been followed for at least 

one day since the first negative test after COVID-19 lab confirmation. We also looked at 

the cumulative incidence rate by age, gender, race, and BMI. 

 

Available EHR data for the 23 patients were manually reviewed. Prevalence of chronic 

medical conditions which are considered risk factors for COVID-19 was ascertained, 

including: insulin-dependent type 2 diabetes, hypertension, chronic kidney disease 

(CKD), respiratory disease (including chronic obstructive pulmonary disease), 

cardiovascular disease (CVD), atrial fibrillation and immune compromising conditions 

(including end-stage renal disease on dialysis, HIV, cirrhosis including alcohol-related, 

solid organ transplant, cancer, and protein-calorie malnutrition). Symptoms typical of 

COVID-19 were ascertained for each patient during each of two time periods, within 30 

days before and after the index date and the second positive test date. In addition, severe 

clinical outcomes related to COVID-19 illness and medications commonly used to treat 

COVID-19 were ascertained during each time period, including the following: 

hospitalization, intensive care unit (ICU) admission, mechanical ventilation, 

tracheostomy, amputation, or death (at second positive test). 
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Continuous variables were expressed as median (25th, 75th percentile), and categorical 

variables as counts (percentages). Missing data were not imputed. 

 
4.3 Results 

 

Figure 9 shows the Kaplan-Meier cumulative incidence of overall re-positivity among the 

patients (N=8,618) who had been followed for at least one day since the first negative test 

after COVID-19 lab confirmation. Figure 10-13 shows the cumulative incidence of re-

positivity by age, gender, race and ethnicity, and BMI. Most of the re-positivity occurs 

within 100 days from the negative test, with a cumulative incidence risk at day 100 of 

approximately 0.12. Men and older individuals have higher re-positivity risk than women 

and younger patients. Compared to patients with normal or lower BMI, patients with 

higher BMI had a lower risk of re-positivity. Although Asians had a lower re-positivity 

risk curve, no clear conclusion can be reached since the sample size of Asian patients is 

small (N=272). 
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Figure 9:  Overall cumulative incidence of re-positivity 

Figure 10:  The cumulative incidence of re-positivity by age  
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Figure 11:  The cumulative incidence of re-positivity by gender 
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Figure 12:  The cumulative incidence of re-positivity by race and ethnicity 

 

Figure 13:  The cumulative incidence of re-positivity by body mass index (BMI) group 
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For the four patients with at least 90 days between positive tests, the median interval 

between the two positive tests, separated by two or more consecutive negative tests 24 

hours apart, was 100 days (25th, 75th percentile: 96, 107), and the median interval 

between the first positive and first negative test was 22 days (9, 37) (Figure 14). For the 

19 patients with 60-89 days between positive tests, the corresponding intervals were 76 

days (25th, 75th percentile: 69, 78) and 32 days (19, 49), respectively (Figure 14).  

Figure 14:  SARS-CoV-2 PCR test timeline (days) for 23 repeatedly positive patients 

 

Median age of the 23 repeatedly positive patients at the index date was 64.5 years (25th, 

75th: 53.5, 69.8). Seventeen patients were diagnosed in the Northeast, five in the 
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Midwest and one in the South; 40% of patients were Black, 40% white, and 20% 

other/unknown race, 83% had non-Hispanic ethnicity, and 39% were female. Almost 

83% smoked within the prior year, and 61% were overweight or obese.  

 

Comorbidity diagnoses and symptom prevalence for the 23 individual patients at the time 

of each positive test are presented in Table 7, and their PCR test and clinical journeys are 

shown in Figure 17. Chronic disease prevalence was high, including hypertension (70%), 

CVD, atrial fibrillation or CKD (each 26%), and insulin-dependent type 2 diabetes or 

history of venous thromboembolism/long-term anticoagulation (each 22%). Overall, 96% 

of patients had >2 comorbidities.  Most notably, 19 of the patients (83%) had 

immunocompromising conditions, including two of the four patients with >90 days 

between positive tests (PT14 and PT19).  

 

For individuals with 45-89 days between positive SARS-CoV-2 tests, CDC investigative 

criteria include having “a symptomatic second episode and no obvious alternate etiology 

for COVID-19–like symptoms OR close contact with a person known to have laboratory-

confirmed COVID-19.” Among the 19 patients in our study with 60-89 days between 

positive tests, 17 (89%) exhibited symptoms or clinical manifestations indicative of 

COVID-19 at the time of the second positive test, including 9 (47%) with acute 

respiratory failure, 8 (42%) with acute kidney failure, 6 (32%) with shortness of breath, 5 
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(26%) with fever, and 3 with acute embolism and thrombosis (16%).  Fourteen of the 19 

(74%) were hospitalized at the second positive test, all but four of whom were also 

hospitalized at the first positive COVID-19 test.  One patient was treated with 

tocilizumab (PT7, at the time of first positive test and during an extended hospitalization) 

and 4 were treated with dexamethasone after the first diagnosis of COVID-19.  

 

As shown in Figure 15 and Table 8, four of the patients (PT5, PT7, PT12, and PT17) with 

immune compromising conditions had severe symptoms and lengthy hospitalizations 

(including ICU and mechanical ventilation for PT12 and PT17) beginning at the first 

positive COVID-19 test and numerous negative tests, often with their second positive test 

in close proximity to one or multiple negative tests. Additionally, PT10 had no COVID-

19-like symptoms or related treatments at the second positive test, and PT18 had 

esophageal cancer and no COVID-19-like symptoms at the time of either positive test. 

The clinical journeys of these six repeatedly positive patients cast doubt about the 

accuracy of categorizing them as true re-infections. 
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Figure 15:  COVID-19 RT-PCR test and clinical journey for 23 patients with repeatedly 

positive tests 

 

Of the four patients (Figure 15, top) who had >90 days between two positive tests, the 

record of one immunocompromised patient (PT14) suggests mild-to-moderate disease 

with few symptoms following both COVID-19 diagnoses. PT19, also immune 

compromised, had a brief hospitalization at the first diagnosis, followed by ICU 

admission at the second diagnosis three months later.  PT2 had severe symptoms and 



63 
 

hospitalization and treatment with dexamethasone after the first positive test, but no 

symptoms or treatment at the second positive test. 

 

No patients had cardiac arrest, tracheostomy, amputation, or death.  

 
Table 8:  Detailed information for each patient 

PT 1 2 3 4 5 6 7 8 9 

Co-

morbidit

ies 

Obese 

Insulin-dep. 

DM2 

w/CKD 

COPD 

Nicotine 

AFib 

HTN 

HLD 

NSTEMI 

Pacemaker 

Long QT (1) 

h/o VTE (1) 

long-term 

AC 

ESRD on 

HD 

HTN 

HLD 

Kidney-

heart 

transplan

t 

RA 

Protein-

calorie 

malnutrit

ion (1) 

Obese 

HTN 

HLD 

HIV 

Alcoholic 

cirrhosis 

w/ascites 

(2) 

Overweight 

(1) 

Prostate CA 

Alcoholic 

cirrhosis 

w/ascites 

Alcohol 

abuse (1) 

h/o pulm 

TB 

Obese 

HTN 

HLD (2) 

Old MI (2) 

NSTEMI 

Long QT (1) 

ESRD on 

HD 

Protein-

calorie 

malnutrition 

OSA 

Insulin-dep. 

DM2 

w/CKD 

AFib 

HTN 

HLD 

Long QT (2) 

Long-term 

AC 

CKD 

Kidney 

transplant 

Protein-

calorie 

malnutrition 

(1) 

Nicotine 

(2) 

AFib (2) 

HTN (2) 

Pacemak

er (2) 

Long QT 

(2) 

h/o VTE 

(2) 

long-

term AC 

(2) 

AFib 

HTN 

HLD 

Old MI 

Pacemak

er 

Long QT 

(2) 

Long-

term AC 

CKD 

Breast 

cancer 

Protein-

calorie 

malnutrit

ion (2) 
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Cancer - 

retroperitone

um 

Sympto

ms #1 

  

  

  

  

  

  

  

  

SOB, 

diarrhea, 

weakness, 

low back 

pain, 

pneumonia, 

acute 

respiratory 

failure 

w/hypoxia, 

ARDS, 

altered 

mental 

status, 

metabolic 

encephalopat

hy, fluid 

overload, 

SOB, cough, 

fever, chest 

pain, 

pneumonia, 

acute 

respiratory 

failure 

w/hypoxia, 

bradycardia 

Cough, 

chest 

pain, 

pneumon

ia, acute 

kidney 

failure, 

tachycar

dia 

Fever, 

tachycardi

a 

Cough, 

fever, 

headache, 

chest pain, 

tachycardia, 

acute 

embolism 

and 

thrombosis 

(right 

femoral and 

unspecified

) 

Fever, 

diarrhea, 

pneumonia, 

acute 

respiratory 

failure with 

hypoxia, 

ARDS, 

ventilator 

dependence, 

acute kidney 

failure, 

encephalopat

hy, 

tachycardia, 

severe sepsis 

with shock, 

acute 

embolism 

SOB, cough, 

headache, 

pneumonia, 

acute 

respiratory 

failure with 

hypoxia, 

ARDS, acute 

kidney 

failure, 

encephalopat

hy, fluid 

overload, 

sepsis with 

shock, acute 

embolism 

and 

thrombosis 

(unspecified) 

NONE Weaknes

s, 

pneumon

ia, acute 

respirator

y failure 

with 

hypoxia, 

acute 

kidney 

failure 
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ventricular 

tachycardia 

and 

thrombosis 

(right 

peroneal) 

Sympto

ms #2 

acute 

respiratory 

failure 

w/hypoxia, 

ventricular 

tachycardia 

NONE SOB, 

diarrhea, 

respirator

y failure 

w/hypoxi

a, acute 

kidney 

failure, 

tachycar

dia 

SOB, 

fever, 

acute 

kidney 

failure, 

tachycardi

a acute 

embolism 

and 

thrombosi

s 

(unspecifi

ed) 

Chest pain, 

tachycardia, 

acute 

embolism 

and 

thrombosis 

(unspecifie

d) 

Diarrhea, 

pneumonia, 

acute 

respiratory 

failure with 

hypoxia, 

ARDS, acute 

kidney 

failure, 

tachycardia, 

sepsis with 

shock, acute 

embolism 

and 

thrombosis 

(right 

peroneal) 

Fever, 

pneumonia, 

acute 

respiratory 

failure with 

hypoxia, 

ventilator 

dependence, 

acute kidney 

failure, fluid 

overload, 

sepsis with 

shock 

SOB, 

bradycar

dia 

Diarrhea, 

weakness

, 

pneumon

ia, acute 

respirator

y failure 

with 

hypoxia, 

acute 

kidney 

failure 
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COVID 

dx 

#1 yes, #2 

yes 

#1 yes, #2 

NO 

#1 NO, 

#2 yes 

#1 yes, #2 

yes 

#1 yes, #2 

NO 

#1 yes, #2 

yes 

#1 yes, #2 

yes 

#1 NO, 

#2 yes 

#1 yes, 

#2 yes 

Treatme

nt 

#1: Hosp 

#2: Hosp 

#1: Hosp, 

dexamethaso

ne 

#1: Hosp 

#2: Hosp 

Hosp/dex

a in 

between 

two 

positive 

tests and 

at time of 

second 

test 

#1: Hosp 

(long) 

#1: Hosp 

(long) 

#2: Hosp 

then dexa 

#1: Hosp, 

tocilizumab 

#1: Hosp 

(Mech 

Vent) 

#2: Hosp 

#1: Hosp 

#2: 

Hosp, 

dexa 

Notes   Pre-

procedural 

exam (2) 

  Pre-

procedura

l exam (1) 

I think 

this is all 

a single 

infection, 

hosp and 

toci 

somewher

e in the 

middle of 

the two 

Long 

hospitalizati

on, many 

negative 

tests, one 

random 

second 

positive test 

right beside 

a negative; 

I think this 

is a single 

infection 

      2 

COVID 

dx were 

only 18 

days 

apart 

 
*(# indicates if only coded for episode 1 or 2) 

**immunocompromising condition  
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Abbreviations: 

CA = cancer 

MI = myocardial infarction 

AC = anticoagulation 

Immunocompromising conditions (N): 

-     ESRD on HD (4) 

o Prevalence of CKD in U.S. ~14% 

o ESRD incidence rate in 2013 was 363 per million/year, # of 

prevalence cases rises by ~21,000 cases per year 

-     HIV (3) 

o Prevalence in U.S. ~1.2 million1 

-     Transplant (3) 

-     Cirrhosis (5) 

o Prevalence in U.S. ~0.27%2 

-     Alcohol dependence or alcoholic cirrhosis (4) 

-     Cancer (4 solid, 2 liquid) 

-     Protein-calorie malnutrition (8) 

-     Rheumatologic / autoimmune (1) 

-     History of opportunistic lung infection (TB, Histoplasmosis, 

Blastomycosis; 3) 
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4.4 Discussion 

 

In this study, we conducted a comprehensive characterization of COVID-19 patients with 

test re-positivity in a large EHR system across the US. We combined the clinical codes 

(ICD, LOINC) and a standardized concept set as our querying algorithm to best retrieve 

the patient information. We investigated the overall cumulative incidence rate, as well as 

the rate by age, gender, race, and BMI, of re-positivity in patients who are followed at 

least one day after their diagnosis date. From our result, we found that, male and aging 

lead to a higher risk of re-positivity. Although similar research on re-positivity is lacking, 

this finding is consistent with reports from other research, which showed these two 

factors are associated with an increased risk of severe COVID-19 outcomes [102, 103]. 

Against other research that obesity can increase the risk of disease severity and mortality, 

our finding shows that heavier weight provides some protective effects on COVID-19 re-

positivity [104].  

 

We further provide clinical and test characterization of 23 COVID-19 patients with 

suspected re-infection, defined as repeatedly positive SARS-CoV-2 PCR tests separated 

by consecutive negative tests and prolonged time. We observed a high prevalence of 

Black race, obesity, and multiple comorbidities known to increase risk of COVID-19 
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illness, including hypertension, diabetes and CKD. Moreover, 83% of the patients with 

repeated positivity were current smokers, which is linked to increased risk of severe 

COVID-19 [101]. It is possible that those known to be at particularly high risk for 

COVID-19 or those with persistent or recurrent symptoms may undergo frequent test, 

thereby increasing the likelihood of receiving some false positive or false negative 

results.  

 

Immune compromising conditions including end-stage renal disease on dialysis, HIV, 

cirrhosis including alcohol-related, solid organ transplant, cancer, and protein-calorie 

malnutrition were more common in our study population affected by COVID-19 

compared to the general population without COVID-19. Among the subset of patients in 

our study with immunocompromising conditions, more than two-thirds required 

hospitalization for the second positive PCR test after the interval negative PCR test. 

Reinfection may therefore raise clinical suspicion for an underlying immune defect, 

which may have also influenced duration to achieve viral clearance.  

 

Recent studies focused on immune-compromised populations with COVID-19 have 

highlighted elevated risks of COVID-19 severity and morbidity, as well as frequent 

multimorbidity. High attributable 28-day mortality due to COVID-19 for patients in the 

ERA-EDTA Registry, including 3285 on dialysis and 1013 with a functional kidney 
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transplant, was substantial at 20% or 21-times higher and 19.9% or 92-times higher, 

respectively, compared to matched controls [105]. Similar trends of increased mortality 

and worsening liver function tests have been demonstrated in patients with cirrhosis and 

COVID-19 [106]. Moreover, alcohol-related liver disease and baseline hepatic 

dysfunction have been shown to be independent risk factors for death related to COVID-

19 [107]. Patients with HIV in our sample had at least one other significant comorbidity, 

either alcoholic cirrhosis (PT4, PT14) or ESRD on HD (PT20). This aligns with findings 

of an observational prospective study in Madrid by Vizcarra et al. describing 51 HIV-

positive patients with COVID-19 having a significantly higher prevalence of 

comorbidities and age-adjusted mortality [108].  

 

Over 90% of patients in our study exhibited symptoms or clinical manifestations 

indicative of COVID-19 at the time of the second positive test, thereby fulfilling an 

important CDC criterion for the investigation of suspected SARS-CoV-2 reinfection, 

particularly among those with 45-89 days between positive PCR tests. Over three-fourths 

were hospitalized at the second positive test. Overall, 70% (12/17) of patients 

hospitalized at the first positive test were also hospitalized at the second test, suggesting 

that in most cases re-infection was not associated with less severe disease. This 

proportion is somewhat inconsistent with the finding of a recent review of 16 reported 

cases of re-infection confirmed by sequencing [109], in which the severity of the re-
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infection episode was asymptomatic/mild in 75% of cases.  Overall, in our study, 37% of 

those hospitalized had severe disease characterized by ICU admission. This is higher than 

previous estimates that 17-35% of hospitalized COVID-19 patients are treated in an ICU 

[98]. Acute kidney injury (AKI) has been reported to occur in approximately 9% of 

hospitalized COVID-19 patients and a higher proportion of those requiring ICU 

admission [98]. We observed AKI as a more common complication associated with 

COVID-19, including after both COVID-19 diagnoses in several individuals, but we 

were unable to determine whether these were independent or persistent events.  

 

It is possible that hospitalized patients are more likely to undergo frequent test, due to 

more severe disease or to support discharge to a rehabilitation facility or nursing home. 

This frequent test can lead to alternating positive and negative tests, often on overlapping 

days. Given the high hospitalization rate in our study, repeated positive tests for some 

patients (e.g., PT5, PT7, PT12 and PT17) occurring during the time of an extended 

hospitalization with severe complications, including need for ICU admission and/or 

mechanical ventilation, may not represent true re-infections. Moreover, prolonged viral 

shedding, as has been observed in severe COVID-19 cases [110], cannot be ruled out. A 

recent analysis in the Emory Healthcare System indicated that, among 22,443 patients 

who had at least two tests, the median (IQR) duration between first and last positive test 
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was 19 days (12, 32), and a duration of 45 and 90 days represented the 88th and 97th 

percentile, respectively [109].  

 

In the absence of genomic evaluations to definitively confirm reinfection [99, 109], 

finding two positive molecular tests separated by negative tests, prolonged time, and 

resolution of symptoms remains the best surrogate measure of possible re-infection. In 70 

previously reported cases to date [99], with an average of 101 days between first and 

second positive test, viral genome sequences were shown to be distinct, strongly 

suggesting a re-infection rather than failure to clear an initial infection. Our identification 

and clinical characterization of 23 possible re-infections in a large dataset, with a median 

of 77 days between positive tests, provides additional data suggesting that re-infections 

may be common. Since most patients in the Optum dataset did not have repeated tests 

after their COVID-19 diagnosis, the true incidence rate of recurrent detectable SARS-

CoV-2 cannot be estimated.  

 

Our analysis was limited by lack of information on RT-PCR platforms (with varying 

sensitivities) or semi-quantitative RT-PCR cycle threshold (Ct) values. The patients in 

our study nevertheless fulfilled CDC criteria for cases >90 days apart or 45-89 days apart 

based on positive RT-PCR, and based on our study definition, cases were classified as re-

infection rather than relapse based on interval negative RT-PCR. We were not able to 
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confirm if COVID-19 was the primary diagnosis prompting hospitalization, if patients 

were incidentally found to test positive for SARS-CoV-2 upon admission for an unrelated 

illness, or later became symptomatic during the hospitalization course. Diagnoses may be 

more likely to be incidental if associated with ICD-10 codes for pre-procedural exam 

(e.g., elective surgery); however, a pre-procedural exam at the time of the second positive 

test was noted for only one patient in our study (PT2). It is noteworthy that among the 23 

patients with confirmed RT-PCR re-positivity for SARS-CoV-2, a minority were not 

assigned an ICD-10 code for COVID-19 in the EHR. This did not appear to be associated 

with severity of disease presentation. Finally, repeatedly positive tests do not necessarily 

mean a re-infection, and persistent infection or relapse cannot be ruled out, particularly if 

signs and symptoms observed at the second positive test are similar to those seen in 

individuals with post-acute sequelae of COVID-19 (or “long COVID”). 

 

Despite these limitations, our study provides a comprehensive characterization of 

demographic, clinical and SARS-CoV-2 test data for patients with repeatedly positive 

SARS-CoV-2 tests in a large EHR database across the US, which could help prioritize 

suspected cases of reinfection for investigation in the absence of sequencing data and for 

continued surveillance for potential long-term health consequences of SARS-CoV-2 

infection. Further investigation into risk of reinfection by type and degree of 
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immunosuppressive condition, medications, and disease chronicity will be valuable for 

future goals of prevention, mitigation of risk factors, and reducing severity of illness. 

 

4.5 Conclusion 

Our study is an implementation of medical informatics to real-world study to improve the 

research efficiency. This study demonstrated a high prevalence of immune compromise, 

comorbidities, obesity and smoking among patients with repeatedly positive SARS-CoV-

2 tests, which are comparable with findings from other studies. Despite limitations, 

including lack of semi-quantitative estimates of viral load, these data may help prioritize 

suspected cases of reinfection for investigation and continued surveillance. 
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Chapter 5: Conclusion 

 
5.1 Summary of key findings  

 

This is a study to explore the roles and implementation of medical informatics 

technology, specifically NLP and ontology methods, in standardizing the emerging lab 

tests during a pandemic, thus to facilitate rapid responses to the pandemic. The ultimate 

goal of this study is to construct an informatics framework for rapid standardization of 

lab tests during a pandemic, thus to better prepare for future public health threats. We 

first developed an information model for lab tests approved during the COVID-19 

pandemic and built an NER tool that can automatically extract lab test information 

specified in the information model from the FDA EUAs documents, thus creating a 

catalog of approved lab tests with detailed information. To foster standardization of lab 

testing data in EHRs, we further developed the COVID-19 TestNorm, a tool to normalize 

various COVID-19 lab testing names used by different healthcare facilities into the 

standard LOINC codes. Finally, we conducted a clinical research on COVID-19 re-

positivity to demonstrate the utility of standardized lab test information in a pivotal 

clinical research of COVID-19. The main findings of each chapter are summarized 

below. 
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In chapter 2, we took COVID-19 lab tests as a use case to design an information model 

for lab tests developed during a pandemic, as well as to develop NER methods to 

automatically extract standardized information from the FDA EUAs documents. We 

collected 378 COVID-19 lab test EUAs from FDA and annotated them according to the 

types of entities specified in the COVID-19 lab test information model. We then 

developed, evaluated and compared three NER models (the baseline CRF model, the 

BERT model and the Bi-LSTM-CRF model) on the corpus. Our results indicate that both 

the BERT model and the Bi-LSTM-CRF model achieve remarkable performance in the 

NER task, which demonstrates the utility of NLP and ontology technologies for 

extracting standardized information from EUAs in pandemic emergencies. 

 

In chapter 3, we collected lab test results from eight healthcare systems across the 

country and developed a simple but effective normalization system for mapping COVID-

19 lab tests results to LOINC codes, in order to facilitate a rapid research response to the 

pandemic. The overall accuracy of COVID-19 TestNorm on the development set was 

98.9%, and on the independent test set was 97.4%. The tool is publicly available with 

source code. For ease of use, a web application has been developed to enable end users to 

use the online form and easily map their local COVID-19 lab test names to standardized 

LOINC codes, thereby enhancing the efficiency of multi-center data aggregation and 
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global knowledge sharing, furnishing a fundamental step towards test data 

interoperability for research related to COVID-19. 

 

In chapter 4, we conducted a comprehensive characterization of COVID-19 patients with 

test re-positivity in a large EHR system across the US. We combined the clinical codes 

(ICD, LOINC) and a standardized concept set as our query algorithm to best retrieve the 

patient information from the dataset. We investigated the overall cumulative incidence, 

and the rate of re-positivity by age, gender, race and BMI, in patients who were followed 

up at least one day after the date of diagnosis. From our result, we find that being male 

and aging lead to a higher risk of re-positivity. For all the lack of similar research on re-

positivity, this finding is consistent with reports from other research, which indicate that 

both factors are associated with an increased risk of severe COVID-19 outcomes. 

Contrary to other research suggesting that obesity can raise the risk of disease severity 

and mortality, our finding demonstrates that heavier weight offers some protection 

against COVID-19 re-positivity. We provide the clinical and detection traits of 23 

patients with COVID-19 suspected of reinfection, which was defined as repeated positive 

SARS-CoV-2 PCR detection, continuous negative detection and long-term interlude. We 

observed that Black race, obesity, and a variety of illnesses, including hypertension, 

diabetes and CKD, would lead to high incidence rates of complications of COVID-19. 

Moreover, 83% of the patients with repositive detection were currently smokers, which 
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was associated with an increased risk of severe COVID-19 illness. The results are 

comparable to those of other traditional clinical researches. This study demonstrates the 

feasibility of using a standardized vocabulary in clinical researches to enhance the ease 

and efficiency of data preparation and analysis, and ultimately facilitate rapid response to 

the pandemic outbreak. 

 
5.2 Innovations and contributions 

 
5.2.1 Innovations 

 

To the best of our knowledge, this is the first study to construct an information model to 

represent lab tests developed during a pandemic. We identified a number of challenges, 

and applied a range of innovative informatics approaches to address them, including: 

 

a. A new information model was specifically designed to represent COVID-19 lab 

tests, with general applications to future pandemics in mind. In spite of the 

existing COVID-19 related ontologies, they focus more on disease development, 

etiology or the structure of clinical documentations. Our model concentrates on 

the standardization of lab test information, which furnishes a set of attributes to 

represent specific information about a COVID-19 lab test.  
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b. A high-performance, machine-learning based information extraction model to 

parse the FDA EUAs. This is the first attempt to parse the EUAs since these 

documents are intended for public health emergencies. During the COVID-19 

outbreak, all the lab tests, as well as vaccines, should first be authorized through 

EUAs before they can be marketed in the U.S. This process is dramatically 

different from the regular approval process of a lab test. Hence, our high-

performance NER model is the first and only one that can efficiently and 

accurately extract information from EUAs.  

 

c. An easy-to-use automated tool that normalizes local COVID-19 test names into 

standard LOINC codes. This tool is the first publicly available COVID-19 lab test 

normalization tool, which has been adopted by a number of initiatives.  

  

5.2.2 Contributions 

 

This work contributes to both the biomedical informatics and clinical practice/research 

fields in the following aspects. 

 

a. Our study established a unique lab test ontology for COVID-19, which has great 

potential for scalability and generalizability in future pandemic outbreaks. This 



80 
 

ontology affords a validated lab test for disambiguation in clinical practice and 

COVID-19 related research. 

 

b. Our study developed a high-performance NER model to extract information from 

EUAs. From the research on the lab test development and authorization process 

during COVID-19, it can also be expected that future pandemics will lead to a 

similar lab test authorization process, and therefore our machine-learning based 

NER model is of significant extendibility and generalizability for future responses 

to potential public health threats. 

 
 

c.  Our publicly available, easy-to-use COVID-19 lab test normalization tool is 

friendly to local small health care facilities, allowing them to map their lab test 

names to the standard vocabulary. This offers interoperability of test data for 

research related to COVID-19. 

 

d. We conducted a comprehensive characterization of COVID-19 patients with test 

re-positivity in a large-scale real-world dataset across the U.S. In spite of the 

studies exploring the phenomenon of re-infection, most confirmed cases are 

sparse, and the study cohorts are small. In our study, we used a large-scale real-
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world database to build our study cohort. We employed the hybrid searching 

algorithm that combined LOINC, ICD-10 codes with the standardized set of 

concepts derived from the COVID-19 lab test ontology, in order to improve the 

information coverage of COVID-19 patients. This study demonstrates the 

significant potential of applying standardized vocabulary to real world datasets to 

enhance the efficiency and data quality of real-world study. 

 
 

5.3 Limitations and future work  

 
As a preliminary study exploring how NLP and ontology technologies can be applied to 

standardize lab testing data in a pandemic, this study has several limitations. First, 

COVID-19 is the only use case for developing the information model and NER tool with 

the final goal of representing lab tests in general pandemics. Although we take into 

consideration other previous pandemics during the information model development, the 

lack of emergency documents for those previous pandemic lab tests hinders us from a 

holistic picture of how the lab tests emerged during those periods.  Our future work is to 

collaborate with domain experts to further test and optimize the ontology, entitling it 

higher potential to be generalized to future pandemics. Second, the sample size and data 

heterogeneity are still limited, even though we have collected data from eight large 

healthcare systems across the United States. For example, all codes in our dataset are 
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about molecular and antibody detection. With new test results available on the market, 

the LOINC code sets for COVID-19 continues to evolve, i.e., weekly updates from 

Regenstrief and ongoing updates from the CDC, which maintains a file with 

recommended LOINC mappings relationships for currently FDA-approved test kits 

(https://www.cdc.gov/csels/dls/sars-cov-2-livd-codes.html). Therefore, it is critical for us 

to constantly update our tool with new code sets and coding rules. When a large number 

of diverse samples have been accumulated, we will also investigate more sophisticated 

machine learning approaches to accomplish this task. Third, for the real-world re-

positivity characterization, our analysis was limited due to the lack of information on RT-

PCR platforms (with varying sensitivities) or semi-quantitative RT-PCR cycle threshold 

(Ct) values. There is also some other clinical information not included in the real-world 

dataset. By employing the hybrid searching strategy, we extended the information 

coverage of the selected patients, but our study is still limited by the natural deficiencies 

of a real-world study. Therefore, future close collaborations with domain experts, such as 

clinicians and epidemiologists, will contribute to the optimization of our study and 

enhance its validity. 

 
5.4 Conclusion 

 
In this work, taking the COVID-19 as a use case, I developed informatics approaches for 

standardizing lab tests, and demonstrate the application of standardized lab test 
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information in clinical research. The results of my study indicate the great potential of 

medical informatics technologies in facilitating rapid response to both current and future 

pandemics.  
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