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Abstract 

Improving Dose-Response Correlations for Locally Advanced NSCLC Patients Treated with 

IMRT or PSPT 

 

Yulun He, B.S. 

Advisory Professors: Radhe Mohan, Ph.D. & Kristy Brock, Ph.D. 

 

 The standard of care for locally advanced non-small cell lung cancer (NSCLC) is 

concurrent chemo-radiotherapy. Despite recent advancements in radiation delivery 

methods, the median survival time of NSCLC patients remains below 28 months. Higher 

tumor dose has been found to increase survival but also a higher rate of radiation 

pneumonitis (RP) that affects breathing capability. In fear of such toxicity, less-aggressive 

treatment plans are often clinically preferred, leading to metastasis and recurrence. 

Therefore, accurate RP prediction is crucial to ensure tumor coverage to improve treatment 

outcome. Current models have associated RP with increased dose but with limited accuracy 

as they lack spatial correlation between accurate dose representation and quantitative RP 

representation. These models represent lung tissue damage with radiation dose distribution 

planned pre-treatment, which assumes a fixed patient geometry and inevitably renders 

imprecise dose delivery due to intra-fractional breathing motion and inter-fractional anatomy 

response. Additionally, current models employ whole-lung dose metrics as the contributing 

factor to RP as a qualitative, binary outcome but these global dose metrics discard 

microscopic, voxel-(3D pixel)-level information and prevent spatial correlations with 

quantitative RP representation. 

 To tackle these limitations, we developed advanced deformable image registration 

(DIR) techniques that registered corresponding anatomical voxels between images for 

tracking and accumulating dose throughout treatment. DIR also enabled voxel-level dose-
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response correlation when CT image density change (IDC) was used to quantify RP. We 

hypothesized that more accurate estimates of biologically effective dose distributions 

actually delivered, achieved through (a) dose accumulation using deformable registration of 

weekly 4DCT images acquired over the course or radiotherapy and (b) the incorporation of 

variable relative biological effectiveness (RBE), would lead to statistically and clinically 

significant improvement in the correlation of RP with biologically effective dose distributions. 

 Our work resulted in a robust intra-4DCT and inter-4DCT DIR workflow, with the 

accuracy meeting AAPM TG-132 recommendations for clinical implementation of DIR. The 

automated DIR workflow allowed us to develop a fully automated 4DCT-based dose 

accumulation pipeline in RayStation (RaySearch Laboratories, Stockholm, Sweden). With a 

sample of 67 IMRT patients, our results showed that the accumulated dose was statistically 

different than the planned dose across the entire cohort with an average MLD increase of ~1 

Gy and clinically different for individual patients where 16% resulted in difference in the 

score of the normal tissue complication probability (NTCP) using an established, clinically 

used model, which could qualify the patients for treatment planning re-evaluation. Lastly, we 

associated dose difference with accuracy difference by establishing and comparing voxel-

level dose-IDC correlations and concluded that the accumulated dose better described the 

localized damage, thereby a closer representation of the delivered dose. Using the same 

dose-response correlation strategy, we plotted the dose-IDC relationships for both photon 

patients (N = 51) and proton patients (N = 67), we measured the variable proton RBE values 

to be 3.07–1.27 from 9–52 Gy proton voxels. With the measured RBE values, we fitted an 

established variable proton RBE model with pseudo-R2 of 0.98. Therefore, our results led to 

statistically and clinically significant improvement in the correlation of RP with accumulated 

and biologically effective dose distributions and demonstrated the potential of incorporating 

the effect of anatomical change and biological damage in RP prediction models. 
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Chapter 1: Introduction 

1.1 Lung Cancer 

Lung cancer is the second most common cancer worldwide with an estimated 

diagnosis of more than 2 million new cases annually (Figure 1) [1]. The World Health 

Organization reported that lung cancer is associated with the most cancer deaths among 

both men and women, leading to approximately 1.8 million fatalities worldwide in 2020 [2]. 

Lung cancer patients can present symptoms including cough, chest pain, and fatigue [3]. 

The shared symptoms between lung cancer and chronic respiratory conditions such as 

chronic obstructive pulmonary disease contribute to delayed diagnosis, which subsequently 

leads to the high mortality rate [4]. 

 
Figure 1. Percentage of all estimated cancer deaths in both sexes in the world in 2019 

1.1.2 Classification and Staging 

Lung cancer is broadly classified as small-cell lung cancer (SCLC) (15% of total 

diagnosis) or non–small-cell lung cancer (NSCLC) (85% of total diagnosis). NSCLC is made 

up by 40% with adenocarcinoma, 30% with squamous cell carcinoma, 15% with large cell 

carcinoma, and others [5]. 
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The most accepted staging system for NSCLC is the American Joint Commission on 

Cancer (AJCC) TNM system, which stands for Tumor, Nodes, and Metastasis [6]. The T 

factor describes the size and extent of the primary tumor: it ranges from T1, indicating a 

small, confined tumor, to T4, indicating a larger tumor that has invaded nearby structures 

such as the chest wall or diaphragm. The N factor describes the extent of cancer spread in 

lymph nodes: it ranges from N0, indicating no nodal involvement, to N3, indicating extensive 

spread to multiple lymph nodes in the contralateral mediastinum and/or neck. Lastly, the M 

factor describes whether the cancer has spread to other parts of the body: it is either M0, 

indicating no distant metastasis, or M1, indicating the presence of distant metastasis in 

organs such as the liver, brain, or bones. 

Combining the T, N, and M factors results in a stage grouping, which ranges from 

stage I (the least advanced) to stage IV (the most advanced). Detailed staging criteria can 

be referenced from the International Association for the Study of Lung Cancer (IASLC) [7]. 

In general, stage I indicates a small, localized tumor with no spread to lymph nodes or 

distant organs. Stages II and III indicate larger tumors and/or spread to nearby lymph nodes. 

Stage IV indicates extensive tumor growth with metastasis to other parts of the body.  Upon 

diagnosis, the distribution of stages I–IV respectively are 26%, 8%, 28%, and 38% [8]. Most 

patients are diagnosed at advanced stages (e.g., locally advanced) because NSCLC may 

not produce any symptoms in the early stages. By the time symptoms appear, they can be 

mistaken for other chronic lung disease, and the cancer has already spread to other parts of 

the body, which contributes to the low survival [9]. Locally advanced NSCLC (LA-NSCLC) is 

a subtype of NSCLC where the tumor has extended beyond the primary site but has not yet 

metastasized to distant sites [10]. This dissertation project will focus on studying LA-NSCLC 

cases. 
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1.1.3 Diagnosis 

Common diagnosis of the disease and staging includes anatomical imaging, 

functional imaging, and biopsy. 

1.1.3.a Anatomical Imaging 

X-ray and computed tomography (CT) are commonly used for initial diagnosis of lung 

cancer. Both techniques are non-invasive and widely available, and they utilize the 

attenuation capability of the organ (bone higher, soft tissue lower) to the photon beam. X-

Ray provides 2-dimensional images with overlaid anatomical information, thus limited in 

detecting small tumors. However, X-ray technology has advanced from film-based to digital 

radiographic systems and has the advantage of low cost and fast turnaround time. Dual-

energy X-ray technology evolved to provide improved differentiation of tissue composition by 

using two different energy levels of X-ray [11]. X-rays can also be used to diagnose lung 

cancer using volumetric CT [12]. CT employs a rotating X-ray source and detector array to 

acquire cross-sectional images of the human body. These images are then reconstructed 

using computer algorithms to generate 3-dimensional anatomical information. Compared to 

X-ray, CT provides enhanced contrast and image resolution of sub-millimeters.  

Recent advancement in CT technology includes dual-energy CT (DECT) that 

quantifies material composition with the difference in material attenuation and the known 

changes in attenuation when acquired with different energy spectra [13]￼. DECT can be 

used to remove bones from the image to help evaluate tumors or other abnormalities. 

Contrast-enhanced CT (CECT) utilizes contrast agents injected through perfusion to 

highlight blood vessels and tumor angiogenesis. CECT of the chest can serve as a standard 

imaging technique for the initial evaluation of patients suspected of lung cancer[14]￼. CECT 

can also be used to monitor treatment response. 



   
 

4 
 

 
Figure 2. Axial view of a contrast-enhanced computed tomography (CECT) 

X-ray and CT can provide detailed anatomical information especially on bony 

structures. However, anatomical imaging alone is limited in identifying advance-staged 

NSCLC tumors that can be less confined, near soft tissue, and confounded by co-

morbidities such as inflammation that may also appear in similar shape as compared to 

tumors. The addition of functional imaging such as positron emission tomography (PET) can 

help define the extent of the primary tumor and identify metastasis and nodal involvement. 

1.1.3.b Functional Imaging 
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Figure 3. Axial view of a overlaid positron emission tomography (PET) and computed 

tomography (CT) with the tumor shown in the bright region. 
1.1.3.c Biopsy 

Biopsy remains the gold standard for lung cancer staging. It can determine whether 

the lesion is malignant or benign with an accuracy of 73%–90% [16]. Due to the invasive 

nature of biopsy, pneumothorax can occur during the process which decreases diagnostic 

accuracy [17]. Advancement such as fluoroscopy-guided biopsy provided real-time 

visualization of the needle tip and the site of the lesion which can achieve 100% diagnostic 

accuracy for lesions larger than 11 mm in diameter [18]. 

Upon diagnosis and staging of NSCLC, its treatment diversifies and includes 

surgery, chemotherapy, radiation therapy, and immunotherapy [10]. 

1.1.4.a Surgery 

Surgery is a common treatment technique for stage I and II NSCLC with a curative 

intent. Surgery’s curative rate for stage I and II is 60%–80% and 40%–50%, respectively. 

The specific surgical modality includes segmentectomy, lobectomy, and pneumonectomy, 

depending on the size and location of the tumor [10]. Pre-operative pulmonary-function 

testing such as ventilation (air exchange) and perfusion (blood flow) are conducted to 
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determine if the patient can tolerate surgery [19]. 

1.1.4.b Ablation 

Radiofrequency ablation (RFA) can be used as the primary treatment for stage I 

NSCLC patients who are not surgical candidates. RFA is usually guided by CT, and it uses 

a probe that generates electromagnetic energy to impart thermal damage. It was originally 

developed as the primary treatment for liver tumors but has been recently adopted for lung 

[20]. However, the 5-year survival rate for patients treated with RFA are approximately 27% 

[21], and the major complications of RFA include pneumothorax (i.e., collapsed lung), 

pleural effusion (i.e., buildup of fluid between the tissue layers that line the lungs and chest 

cavity), and intrapulmonary hemorrhage [10]. 

On the opposite end the thermal spectrum, cryoablation is a technique that uses 

extremely low temperatures to destroy abnormal tissue can also be used as an alternative to 

traditional surgical approaches. Similar to RFA, cryoablation may also cause healthy tissue 

damage and bleeding [22]. 

1.1.4.c Chemotherapy 

In chemotherapy, drugs are administered orally or through intra-vascular injection. 

These drugs target rapidly dividing cells such as cancer cells but also normal cells such as 

hair follicles, thus causing the common side effects such as hair loss. Chemotherapy is 

commonly combined with other treatment techniques such as surgery and radiotherapy 

where it can be used before the primary treatment to shrink tumor before treatment 

(neoadjuvant). Chemotherapy can also be used as an adjuvant therapy to the primary 

treatment (e.g., surgery) where the drugs can reach the remaining or metastatic cancer cells 

that has evaded the primary treatment [23, 24]. Combining chemotherapy and radiotherapy 

(discussed in Section 1.1.4.c) can enhance the sensitivity of cancer cells to treatment, 

resulting in improved effectiveness compared to either treatment used alone. The 
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combination of paclitaxel and platinum-based drugs such as carboplatin is a commonly 

prescribed for chemo-radiotherapy for NSCLC [25]. 

1.1.4.d Immunotherapy 

Immunotherapy has emerged as a promising treatment option for lung cancer, 

particularly advanced stage disease. Unlike conventional chemotherapy, immunotherapy 

harnesses the patient’s own immune system to identify and attack cancer cells. Immune 

checkpoint inhibitors such as Pembrolizumab have been shown to improve median 

progression-free survival from 6.0 months for patients treated with chemotherapy to 10.3 

months [26]. 

1.1.4.e Radiotherapy 

External beam radiotherapy (RT) is non-invasive and has replaced surgery in early 

staged cancer. RT delivers mega-voltage radiation beam of photons or other particles such 

as electrons to ionize and destroy tumor cells by damaging their DNA. Concurrent chemo-

radiotherapy is the standard of care for LA-NSCLC and is also used in palliative RT to shrink 

tumor and control symptoms [10]. 

1.1.4.e.i Imaging for Treatment Planning  

 A personalized treatment plan is first developed for each patient to maximize tumor 

control and minimize healthy tissue damage. The planning process begins with imaging 

studies such as PET/CT that localize the tumor(s) and define their extent. Lung tumors are 

affected by the natural breathing motion. To address this, respiratory gating techniques such 

as breath hold (BH) can be utilized if the tumor moves more than a clinically set threshold 

during breathing (e.g., 5 mm in the inferior-superior direction) [27]. The deep inspiration BH 

technique involves coaching the patient to take a deep breath and hold it at the same level 

throughout treatment. The patient breathes through a spirometer, which monitors their 

respiration level by measuring the volume of inhaled and exhaled air. Prior to treatment, a 
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spirometry training session is conducted to determine the patient's breathing parameters, 

such as tidal volume and vital capacity [28]. 

However, the BH technique can be challenging especially for advance-staged 

patients with severe comorbidities that prevent extended periods of BH during each 

treatment session (i.e., fraction). In these situations, patients are treated with the free-

breathing (FB) technique that is planned with 4-dimensional computed tomography (4DCT). 

A 4DCT is respiration-correlated over a full breathing cycle, consisting of a series of 3D CTs 

binned to represent various breathing stages along a full cycle [29]. 4CDTs are commonly 

divided into 10 phases starting from T0 (or T0%) as the end-inhalation phase, to T3 (or 

T30%) as the mid-breathing phase, to T5 (or T50%) as the end-exhalation phase, and 

eventually to T9 before the start of the next cycle to T0. Capturing lung anatomy at different 

time points in the normal breathing cycle allows clinicians to identify the extent of tumor 

motion. In addition, a maximum intensity projection image (MIP) is reconstructed by taking 

the highest intensity of any voxel (3-dimensional pixel) during the full breathing cycle, which 

can be used to define the tumor boundaries as the gross tumor volume (GTV). GTV can be 

extended to account for disease extension, and this extended volume is called the clinical 

target volume (CTV). Internal target volume (ITV) is CTV plus any additional tissue to 

account for variations in the location, size, or shape of the tumor during and between 

treatments. Finally, the planning target volume (PTV) is determined by adding an extra 

margin around the ITV to ensure that the tumor receives the appropriate dose (i.e.,95% of 

PTV is typically planned to receive the prescribed dose (e.g., 66 Gy)) [30]. Current clinical 

standard calculates dose on the average-intensity image (AVG) which is created by 

computing the arithmetical mean of the pixel intensity values of all breathing phases [31]. 
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1.1.4.e.i Beam Modulation 

The general goal of RT is to conform the high dose distribution to the PTV while 

limiting dose elsewhere. An early technique for tissue sparing is 3-dimensional conformal 

radiation therapy (3D-CRT) that utilizes the anatomical information provided by the 3D 

planning image (e.g., AVG). Dose conformation can be achieved by shaping the multi-leaf 

collimator (MLC) to the tumor in the ‘beams-eye view’ and using multiple beams directed at 

the tumor from different angles. Intensity-modulated radiation therapy (IMRT) is an 

advanced version of 3D-CRT that uses computer algorithms to ‘inversely’ determine the 

radiation beam settings (e.g., number of beams and beam angles) based on the clinical 

objectives in dose constraints (e.g., dose volume histogram (DVH) metrics) to the target and 

normal tissue [32]. IMRT has been shown to increase tumor dose and decrease damage to 

surrounding tissue in NSCLC [33]. 

1.1.4.e.ii Image Guidance 

While the goal of treatment planning is to accurately plan the radiation delivery, the 

goal of image guidance is to consistently deliver radiation according to the treatment plan 

[34]. The treatment plan is initially optimized on a static anatomy, but patient anatomy may 

vary from fraction to fraction and needs to be aligned to the anatomy originally used in 

treatment planning. The alignment process can be achieved with on-board planar daily kV 

and/or MV X-ray images. However, planar imaging can be inadequate in localizing lung 
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tumor and its surrounding soft tissue. The development of on-board volumetric imaging such 

as cone-beam CT (CBCT) allows detailed volumetric visualization of the target region 

directly on the linear accelerator [35]. To generate a CBCT, the X-ray source emits cone-

shaped X-ray beams that pass through the patient's body, and the attenuated X-rays are 

detected by the on-board imager from different angles to form a 3D image. Similar to 

4DCTs, 4D-CBCTs can also be used to track tumor in real-time while the patient is still in the 

treatment position to adjust treatment plans accordingly [36].  

Newer image guidance techniques have emerged such as ring-based gantries to 

allow for faster scanning and treatment time [37] and magnetic resonance imaging (MRI)-

based linear accretor to leverage the superior soft tissue contrast provided by the MRI 

images for a clearer view of the tumor and surrounding critical structures [38]. 

1.1.4.e.iii Fractionation and Dose Prescription 

Conventional RT delivers dose of 1.8–2 Gy per fraction (fx) due to the radiobiological 

effects of radiation on tumor and healthy cells. Fractionation relies on the differences in 

radiation sensitivity between tumor cells and normal tissue cells. Tumor cells are generally 

more sensitive to radiation than normal tissue. Dividing the total radiation dose into smaller 

fractions allows for the normal tissue cells to repair themselves between treatments while 

keeping the tumor cells under control. This allows for a higher total radiation dose to be 

delivered to the tumor over the course of several treatments while minimizing the risk of 

damage to normal tissues [39]. 

Stereotactic body RT (SBRT) utilizes hypofractionation regimen and delivers higher 

dose per fraction in fewer fractions. During each fraction, SBRT delivers precisely ablative 

dose to the tumor while minimizing toxicities [40]. SBRT can replace the need for surgery 

and reduce the time and inconvenience of treatment for patients. Due to the higher fractional 

dose, SBRT requires more precise imaging and planning than conventionally fractionated 



   
 

11 
 

IMRT [41]. SBRT is commonly used for stage I and II NSCLC that is medically inoperable 

[42]. For these patients, the RTOG 0813 trial compared the efficacy of SBRT and 

conventionally fractionated RT in non-operable NSCLC patients. The trial concluded two-

year local control rates as high as 87.9% and progression free survival of 54.5% [43]. 

Another potential advancement in RT for lung cancer is dose escalation. For stage-III 

NSCLC, the commonly accepted radiation therapy dose of 60–63 Gy was established by the 

RTOG 7301 trial [44]. The dose of 60 Gy was chosen to optimize clinical factors such as 

local control. However, many studies such as RTOG 01173 [45] reported an increase in 

survival with higher than conventional dose (e.g., 74Gy). These findings led to RTOG 0617 

[46] that compared 74 Gy concurrent chemo-radiotherapy and 60 Gy concurrent chemo-

radiotherapy, the result of which showed no improvement and potentially worse survival with 

74Gy than 60Gy. Although treatment-related deaths were more common in the dose 

escalation arm, the comparison did not reach statistical significance. Nevertheless, the 

standard prescription has been kept unchanged, and further clinical trials are needed to 

confirm the benefit of dose escalation. These findings suggest the potential benefit of highly 

conformal tumor coverage provided by dose tracking in adaptive radiotherapy [47] and using 

particle therapy such as protons for the increased biological damage [48]. 

1.1.4.e.iv Proton Therapy 

Photon-beam RT remains the most common modality to treat NSCLC, but proton-

beam RT is being increasingly utilized [49]. Protons are heavy charged particles. As protons 

traverse through tissue, they slowly deposit energy which ionizes nearby atoms. However, 

as protons slow down, due to their mass, they have increased time to ionize tumor cells to 

create many more double strand-breaks in the DNA, making the tumor unable to repair itself 

or grow new cells [48]. Such a phenomenon of losing most of their energy at their track end is 

called the Bragg peak [50]. Therefore, protons can achieve the same cell kill with less dose 
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compared to photons, and such increased ability of damage is represented with relative 

biological effectiveness (RBE), which is clinically applied as 1.1 [48]. Because of the sharp 

increase in tumor cell kill in the Bragg peak region, a spread-out Bragg peak (SOBP) can be 

created by staggering Bragg peaks with various depths from protons with different energies 

to uniformly cover the length of the target while sparing tissue beyond the target [51]. 

Therefore, compared to photon therapy, proton therapy has the advantage of maintaining 

tumor damage while minimizing damage to the surrounding normal tissue [48]. Proton 

therapy can be particularly beneficial for cancers near critical structures such as heart to 

potentially lower cardiac toxicities [52] and in pediatric patients to reduce secondary cancer 

risks [53]. 

 
Figure 5. The percent depth dose (PDD) curves for proton (cyan) and X-ray (dashed). The 

tumor (red dot) is located at the Bragg peak location. Picture source: 
http://www.avoplc.com/en-gb/LIGHT/The-Potential-of-Proton-Therapy 

1.2 Radiation-Induced Lung Toxicities 

Despite significant advances in RT, median survival time of patients with LA-NSCLC 

remains less than 28 months [54]. Rate of loco-reoccurrence increases as primary stage 

increases (5–19% for stage I, 11–27% for stage II, and 24–40% for stage IIIA) [55]. The low 



   
 

13 
 

survival rates may be due in part to lack of tumor coverage with the full prescription dose in 

fear of the dose-limiting treatment-related toxicities. When the prescribed tumor dose is 

constrained by the concern of treatment-induced toxicity, microscopic disease may not 

receive enough radiation to be destroyed. As a result, these cells can survive and potentially 

spread to other parts of the body, such as the brain, forming distant metastases. [23, 56]. 

Radiation pneumonitis (RP) and pulmonary fibrosis (PF) are the two main types of 

radiation-induced lung toxicities. Both RP and PF can be graded using Common 

Terminology Criteria for Adverse Events (CTCAE) [57] and are correlated with increased 

tissue density in computed tomography (CT) images (i.e., appearing brighter on grayscale). 

RP is an acute toxicity that manifests 6 weeks – 6 months post RT. It degrades breathing 

capability and causes respiratory failure [58]. Moderate to severe RP occurs in up to 30% of 

irradiated patients [59]. RP grading is defined subjectively by grades, where grade 1 is 

asymptomatic with radiographic change, grades 2–4 are symptomatic with worsening effect 

on daily life (incidence ranges 15–40% [60]), and grade 5 is death. Currently, steroids are 

prescribed to only alleviate symptoms rather than progression of RP while causing side 

effects such as infection from immune suppression and hyperglycemia [61]. Increased tumor 

dose has been linked to increased survival but also a higher rate of RP [62]. PF is a 

permanent replacement of normal functioning lung tissue with scar tissue and may lead to 

life-threatening respiratory failure. Unlike RP, PF is a latent effect that develops starting 6 

months post RT and stabilizes after 2 years, and it almost always occurs after RT [63, 64]. 

1.2.1 NTCP Models 

Normal Tissue Complication Probability (NTCP) models are clinically used to 

describe the probability of a specific endpoint such as RP. NTCP models aim to distill 

dosimetric and anatomic information down to a single risk measure. The Lyman-Kutcher-
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Burman (LKB) model is a widely accepted model to predict RP [65, 66]. The model equation 

is given as follows: 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  1
√2𝜋𝜋

∫ 𝑒𝑒−
𝑥𝑥2

2  𝑑𝑑𝑑𝑑
𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒−𝑇𝑇𝐷𝐷50
𝑚𝑚∙𝑇𝑇𝐷𝐷50

−∞  (1) 

 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 =  (∑ 𝑣𝑣𝑖𝑖𝐷𝐷𝑖𝑖
1
𝑛𝑛𝑖𝑖 )𝑛𝑛 (2) 

where NTCP is the probability of a specific endpoint such as grade ≥ 2 RP, the 𝑁𝑁𝐷𝐷50 

parameter represents the dose at which 50% patients develop the endpoint, the 𝑚𝑚 

parameter describes the slope of the dose-response curve, i.e., how quickly the probability 

of the endpoint increases with increasing dose, and the 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 term is the dose that, if given 

uniformly to the entire volume, is as effective as the actual nonuniform dose in leading to the 

same NTCP. 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 is often referred to as the uniform equivalent dose (EUD), and its 

composition is described in equation (2): 𝑣𝑣𝑖𝑖 is the volume factor (i.e., percentage of total 

volume) that corresponds to dose level 𝐷𝐷𝑖𝑖, and 𝑛𝑛 is the volume effect where 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 becomes 

mean lung dose (MLD) for 𝑛𝑛 = 1 and root mean squared dose for 𝑛𝑛 = 0.5 where sub-

volumes receiving higher doses carry a higher weight in contributing to the endpoint. A 

recent analysis conducted by Tucker et al. returned 𝑁𝑁𝐷𝐷50, 𝑚𝑚, and 𝑛𝑛 as 34.80 Gy, 0.22, and 

0.5, respectively based on NSCLC patients treated with conventionally fractionated IMRT at 

MD Anderson Cancer Center [67]. 

1.2.2 Toxicity Prediction 

Accurate RP predicting methods can help clinicians optimize dosimetric coverage of 

the tumor while limiting toxicities, thus improving treatment outcomes. Early identification of 

RP, such as changes seen in radiographic imaging, could allow clinicians make better 

treatment strategy [68]. Radiation dose has been consistently reported as the most 

prominent contributor to RP [62, 69–71]. Specifically, DVH-based metrics such as MLD and 

lung volume receiving more than 20 Gy (V20) have been consistently documented to be 
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strongly correlative with RP [72–74]. Despite this pressing need, NSCLC patients still suffer 

from a lack of accurate toxicity prediction methods [75]. 

 

 
Figure 6. Correlated pneumonitis probability against mean lung dose from multiple 

institutions overlaid on the same plot. The dashed lines represent the average trend (red) 
and the confidence intervals (cyan). Source: Marks et al. [76] 

 

One limitation is the usage of parameters derived from the planned dose distribution, 

which may not reflect the actual delivered dose. As previously introduced, for FB treatments, 

radiation dose is planned based on the CT that represents patient anatomy of the initial time 

point. Therefore, the planned dose is computed under the assumption of a static patient 

geometry, not fully considering the intra-fractional breathing motion during beam delivery or 

inter-fractional anatomical change throughout the treatment course such as tumor response. 

As a result, such planned dose may not accurately represent the delivered dose [77]. 

DVH-based metrics such as MLD and V20 are macroscopic metrics that are overly 

generalized and lack spatial features, and their measurement is confounded by the moving 
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lung volume treated during free-breathing therapies. Due to non-uniform dose coverage in 

the lung, different dose distributions may result in the same values in these metrics. 

Therefore, relying on DVH metrics loses spatial information and may inherently render the 

predictions inaccurate.[76] Current normal tissue complication probability (NTCP) models 

are limited to predicting the symptomatic performance of the entire lung using scorings such 

as CTCAE. If physicians were able to examine a regional lung on the voxel-level, they could 

better tailor the treatment plans to avoid complications in certain difficult regions, especially 

in the lower lung that experiences the most breathing motion. 

1.3 Uncertainties in Radiotherapy 

1.3.1 Breathing Motion 

As introduced, BH or 4DCT-based planning techniques have been developed to 

mitigate breathing motion. However, several studies have analyzed the difference between 

planned dose based on a static image such as AVG and the planned dose including 

breathing motion and concluded the latter can provide more accurate description of the 

delivered dose. 

Glide-Hurst et al. investigated the feasibility of using AVG-based planned dose (dose 

calculated on the AVG is copied onto each phase image and summed back on to the 

average image) vs phase-based planned dose (dose was recalculated on each phase and 

summed on to the AVG with the same deformations used in the AVG-based summed dose) 

for SBRT plans [77]. The difference in the average dose of the normal lung (excluding GTV) 

was found to be less than ~1% and the V20 was less than ~4%. The study was limited to 4 

cases. Valdes et al. analyzed 10 SBRT patients with stage I–II lung cancer and showed that 

the phase image-based planned dose (dose recalculated on each breathing phase then 

accumulated to one single phase) is more accurate than the dose directly calculated on 

AVG [78]. The difference in MLD and V20 between the two planned doses was -0.14 ± 0.38 
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Gy and -0.15 ± 0.67 Gy, respectively. The authors estimated that the use of 4DCT-based 

planned dose was more accurate and could benefit the evaluation of normal tissue 

complication probabilities. In both studies, only early staged tumors were analyzed so the 

dose deformations might not be as complex for LA-NSCLC patients. 

1.3.2 Longitudinal Response 

The aforementioned studies laid a great foundation for the feasibility of 4DCT-based 

planned dose. However, these planned doses are assumed to be consistent patient 

geometry, thereby not incorporating the anatomical changes throughout treatment. In other 

words, these studies doses do not account for tumor response and changes in breathing 

pattern that occur over the course of radiotherapy. For standard-fractionated RT schedules, 

patients receive 4–7 weeks of treatment during which time the tumor and its surrounding 

normal tissue can change in shape/size to distort the dose deposition under the same beam 

setup. Therefore, without incorporating the doses reflected by the anatomy changes 

throughout treatment course, the assumption that the planned dose represents the delivered 

dose is inevitably invalid. 

1.3.2.a Dose Accumulation 

To quantify the effect of longitudinal response, dose delivered throughout the treatment can 

be accumulated, and such accumulated dose can be compared to the planned dose. In 

dose accumulation, dose delivered to patients at each intermediate timestamp is 

recomputed using longitudinal images such as weekly 4DCTs. These recomputed doses are 

then mapped/summed to a common, reference image. Retrospectively, dose accumulation 

can be used to provide a potentially better estimate of the delivered dose than the planned 

dose which is based on pre-treatment patient anatomy. However, many dose accumulation 

studies were limited to early staged tumors and the size of the studies were limited by a 

small patient cohort due to the labor-intensive nature of dose accumulation [79–82]. 
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In addition, when the studies observed a dosimetric difference between the 

accumulated dose and the planned dose, they concluded the accumulated dose was more 

accurate in estimating the delivered dose. However, such conclusion was not validated 

through association with evidence from clinical response. Toxicity records such as RP (e.g., 

CTCAE) could potentially be used as clinical evidence but 28% of RP diagnoses can be 

confounded by comorbidities [62]. A quantifiable clinical metric is needed for evaluation. 

Voxel-level image density has is a candidate to demonstrate localized radiographic-based 

damage [83, 84]. Therefore, one aim of this project is to accumulate dose and compare the 

accumulated dose to the planned dose and compare their correlations to clinical response. 

1.3.3 Proton Therapy Biological Damage 

Dose accumulation can potentially return a more accurate representation of the 

delivered dose. However, our knowledge of the dose delivery on the biological level remains 

limited for patients treated with proton therapy: it is yet to be proven that the normal tissue 

sparing of protons translates into reduced toxicity compared to photon therapy for NSCLC 

patients. A randomized phase II clinical trial was conducted at MD Anderson Cancer Center 

to evaluate the difference in efficacy between photon RT and proton RT [85]. The results did 

not demonstrate the anticipated superior normal tissue sparing of protons. This suggested 

our limited understanding of proton’s ability to cause biological damage compared to 

photon–the RBE. Current consensus among clinical usage is a constant RBE of 1.1 [48]. 

Many in vitro studies suggest a much higher number near track end [86–88]. However, there 

is a lack of study directly using clinical evidence rather than cells. Knowing the exact RBE 

values inside patient anatomy would assist in understanding the actual biological damage, 

thus helping provide more accurate toxicity studies correlations. 
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1.4 Feasibility of Radiographic Change as the Clinical Endpoint 

Many studies have investigated localized radiographic-based dose-response 

relationships [83, 84, 89, 90]. Underwood et al. compared the pre- to post-treatment lung CT 

image density change (IDC) for 20 chest wall patients treated with photon or proton (N=10 

for each group), and the authors observed a higher level of IDC caused by the same amount 

of photon and proton dose, with the ratio reaching 4.7, indicating RBEs exceeding 1.1 [89]. 

Bernchou et al. studied the time evolution of IDC in the normal lung after IMRT for 20 

patients with NSCLC who had regular CT scans before and after the treatment [83]. By 

plotting the voxel-level dose-IDC curves for follow-up images taken at various time points 

after RT, the authors observed the greatest IDC occurring in the first few months (<6 

months) after treatment before IDC decreases and stabilizes. The IDC difference for early 

vs. late follow-up time points aligns well with the acute and latent effect of RP and PF, 

suggesting the feasibility of IDC as a clinical endpoint for RBE. Begosh-Mayne et al. 

compared the accuracy of four models in predicting lung response as represented by IDC 

and showed that the LKB NTCP model was the most accurate in predicting both early and 

the overall radiation effects. 

Dahele et al. analyzed 68 patients treated with SBRT [91]. As shown in Figure 7, the 

authors defined four categories for image density change, in addition to no density change, 

for pneumonitis: diffuse (at least 5 cm in maximum diameter and which contained more than 

50% abnormal lung) consolidation, patchy consolidation, diffuse ground-glass opacities 

(GGOs), or patchy GGO. Fibrosis was defined as occurring at soon as 6 months post 

treatment with categories of “modified conventional pattern” of fibrosis (characterized by 

consolidation, volume loss, and bronchiectasis GGO), mass-like fibrosis (local consolidation 

in the tumor region but larger than the original tumor), “scar-like fibrosis” (linear opacity in 

the tumor region with volume loss), besides no density increase. Their follow-up study found 

that, in short-term, 46% lesions showed no evidence of density increase and that the 
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incidence for patchy consolidation, diffuse consolidation, diffuse GGO, and patchy GGO 

were respectively 24%, 16%, 7%, and 6%. Late CT changes were observed for nearly all 

lesions (67/68; 99%), and the onsite of CT density changes at 6, 12, 24, and 36 months was 

56%, 73%, 87%, and 99%, respectively. 

 
Figure 7. Classification of radiographic changes after stereotactic body radiotherapy (SBRT). 

A: Acute radiological pneumonitis within 6 months post treatment. GGO: ground glass 
opacity. B: Late radiological fibrosis 6 months post treatment. Source: Dahele et al. [91] 

 

Therefore, these studies suggest the feasibility of IDC as 1) the clinical evidence of 

radiation damage to be associated with different dose representations to compare their 

accuracy in representing the delivered dose and 2) the alternative clinical endpoint for RBE 

instead of congenic survival that is in vitro. 
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1.5 Image Registration 

Dose propagation for dose accumulation and IDC calculation relies on registering the 

associated images [92] Image registration is the process of establishing voxel-voxel 

correspondence between images, through which, dose deposited in the same anatomical 

voxel can be tracked and accumulated. The registration process returns a transformation 

that optimally aligns the target image (also known as secondary or moving image) to the 

same image space with the reference image (also known as primary or fixed image). The 

registration is optimized using similarity metric (i.e., level of agreement between the 

registered images) [77] Categories of image registration include rigid, affine, and 

deformable. 

1.5.1 Rigid and Affine Image Registration 

Rigid image registration (RIR) restricts the image mapping to translation and/or 

rotation. RIR is an optimization problem that maximizes the similarity measurement between 

the reference image and the target image. The result of RIR is defined by a 4 x 4 

transformation matrix that represents the translation and rotation components along each of 

the x, y, and z axis. The transformation matrix can then be applied to bring the target image 

into alignment with the reference image in the same image space. 
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Figure 8. Fusion view of a rigid image registration example. The orange and blue regions 

are the unaligned regions from the reference and moving images, respectively. 
 

In the treatment planning process, RIR can be used to propagate contours and 

overlay the functional uptake presented in the PET/CT with the planning CT for planner to 

define the target region. In patient setups of IGRT, daily images are rigidly aligned to the 

planning CT to replicate the patient position in the planning exam.  

Rigid registration is a special version of affine registration which includes scaling and 

shearing in addition to the translation and rotation of rigid registration. Similar to rigid, affine 

also applies a single global transformation to bring the images to alignment. 

However, for patient anatomy, tumor and normal tissue may change in shape and 

size during breathing (intra-fraction) or from day-to-day (inter-fraction). In these situations, 

simple rigid registration becomes inadequate to maintain the voxel correspondence. A non-

rigid (i.e., deformable) approach can allow for more anatomically realistic correspondence 

between the two images. Nevertheless, RIR acts as the initialization step for deformable 

image registration (DIR). 

1.5.2 Deformable Image Registration 

DIR non-rigidly warps images in the presence of anatomical changes induced by 

breathing motion, tissue response, surgery, etc. [93]. Optimization of DIR algorithms also 

aims to maximize the similarity measurement between the reference and target images, and 
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the DIR result is represented by a deformation vector field (DVF). The optimization process 

is often regularized (i.e., penalized) by anatomically impossible deformations such as folding 

and invertibility. 

 
Figure 9. Fusion view of a deformable image registration (DIR). The orange and blue 

regions are the unaligned regions from the reference and moving images, respectively. 
Similarity metrics can be based on intensity information or geometric features. 

Intensity-based algorithms (e.g., Demon’s algorithm [94]) strive to match the image intensity 

of all (or patches) of the image voxels through mathematical solutions such as (normalized) 

mutual information, sum of squared differences [95] and cross-correlation [96]. Intensity-

based algorithms are widely applied, but they do not guarantee an anatomically reasonable 

deformation when intensity information is not preserved, e.g., in presence of tumor response 

and radiographic based tissue response. Geometric feature-based algorithms do not 

depend on image intensity information and instead rely on landmarks such as surfaces 

defined by organ contours. These algorithms can be more robust than intensity-based 

algorithms in the presence of response. However, landmark placement can be labor-

intensive, and feature-based algorithms may not guarantee an accurate alignment outside 

the defined landmarks, i.e., ignoring anatomical distortions in regions outside these 

structures.  

Therefore, it is important to use the appropriate algorithm for the specific image 

registration scenario. For example, intensity-based algorithms can be optimal for intra-4DCT 
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registration: i.e., between the phases of the same 4DCT without anatomical response . 

Subsequently, all phase doses can be mapped and summed to the reference phase to 

obtain the 4D dose. For registration of longitudinal lung CTs, the registration algorithm may 

be affected by the type of tumor response observed. Tumor shrinkage can be broadly 

classified into two types: elastic and inelastic shrinkage [93]. In elastic shrinkage, the tumor 

pulls the surrounding normal structures inward as it shrinks, thereby preserving the intensity 

information of the normal structure. In inelastic shrinkage, the tumor regresses and reveals 

previously hidden normal structures, often leaving behind microscopic extensions, resulting 

in loss of intensity preservation. We have observed that inelastic shrinkage is more common 

in LA-NSCLC tumors. Therefore, geometric feature-based algorithms may be optimal for 

longitudinal registrations such as between the corresponding phases (or AVGs) of two 

weekly 4DCTs and between the planning 4DCT and the follow-up CT for response 

assessment. 

Nevertheless, algorithms employing a hybrid approach by combining both intensity 

information and geometric features can provide accurate registration while being 

anatomically plausible. The ANACONDA algorithm is a commercially available hybrid 

intensity-based algorithm [97]. The ANACONDA algorithm was shown to provide robust 

deformations with publicly available image datasets DIR-LAB (data source: 

https://med.emory.edu/departments/radiation-oncology/research-laboratories/deformable-

image-registration/index.html) [98] and POPI (data source: http://www.creatis.insa-

lyon.fr/rio/popi-model/) [99]. The algorithm measures the image similarity with correlation 

coefficient, and a focus region using lung contours is recommended to focus on the intensity 

information inside the lung  when computing the image similarity metric. The regularization 

process includes minimizing the Dirichlet energy of the DVF, detecting inverted elements at 

all grid points as negative determinant of the Jacobian matrix, and preventing severe 

artifacts with large shape deviations of regions of interest (ROIs). The MORFEUS algorithm 

https://med.emory.edu/departments/radiation-oncology/research-laboratories/deformable-image-registration/index.html
https://med.emory.edu/departments/radiation-oncology/research-laboratories/deformable-image-registration/index.html
http://www.creatis.insa-lyon.fr/rio/popi-model/
http://www.creatis.insa-lyon.fr/rio/popi-model/
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is a commercially available biomechanical model-based algorithm [100]. The algorithm 

subdivides the ROI into triangulated finite elements and simulates organ deformation based 

on the assigned linear-elastic properties (Poisson’s ratio and Young’s Modulus). A ‘sliding’ 

boundary condition between the lung surfaces of the registered images simulates the lung 

breathing motion along the rib cages. The displacements of the finite element nodes inside 

the organs are calculated using finite element analysis. The generated DVF from the 

commercial solution can be expanded by externally aligning landmarks defined at the 

internal vessel bifurcations and including these correspondences as additional internal 

boundary conditions. For longitudinal lung CTs, the DVF generated from the algorithm can 

be modified to align lung vessels based on their intensity information, and such hybrid 

approach has been proven to provide robust results [101]. Detailed explanation of the 

ANACONDA and MORFEUS algorithms and their applications will be discussed in   
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Chapter 3: Identifying Reference Image for Inter-4DCT DIR and Chapter 4: 

Parameter Optimization for Biomechanical Model-Based DIR.  

1.5.3 Accuracy Evaluation 

DIR is an inherently ill-proposed solution, and it is crucial to quantify the accuracy of 

the registration.   
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Chapter 3: Identifying Reference Image for Inter-4DCT DIR and Chapter 4: 

Parameter Optimization for Biomechanical Model-Based DIR will discuss the methods to 

quantify the accuracy and robustness of the image registration workflow. AAPM TG-132 

[102] provides a detailed guideline on the metrics and tests acquired to evaluate DIR for 

clinical implantation. These metrics can generally be divided into surface-based vs 

volumetric-based. 

Dice similarity coefficient (DSC) and Hausdorff distance (HD) are two commonly 

used surface-based metrics. However, since DSC measures the relative volume, for larger 

organs such as lung, it is not difficult for algorithms to result in high DSC. Additionally, when 

a boundary condition is applied at the lung surface (e.g., MORFEUS algorithm), it inherently 

aligns the lung boundary, which forces a high DSC and low HD. However, the internal 

alignment is crucial for lung dose accumulation, which is not captured by DSC or HD. For 

this project, we will focus primarily on the target registration error (TRE) that measures the 

Euclidian distance (e.g., in mm) between the coordinates of the intended location and the 

actual location of the corresponding point after registration. We empathized on using TRE to 

measure the internal alignment so we could evaluate and validate the accuracy of voxel-

level dose tracking in our dose accumulation study. The schematic is explained in Figure 10. 

A lower TRE indicates a more accurate voxel-voxel correspondence. 

 

Figure 10. Two corresponding points (black x) in image 1 (target) and image 2 (reference) 
and the green ‘x’ mark as the mapped location from image 1 to image 2. Target registration 
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error (TRE) measures the distance between the green ‘x’ mark and the original ‘x’ mark in 
image 2. Figure taken from Cohen et al. [103]. 

 

Accurate dose accumulation requires accurate DIR workflow. However, there 

remains a need for accuracy assessment for inter-fx DIR for dose mapping. Samavati et al. 

studied the effect of DIR in 4DCT-based dose accumulation over the course of treatment for 

10 SBRT cases and concluded that a maximum of 2.5 Gy difference in the minimum dose 

delivered to 0.5 cm3 in the tumor were seen when comparing different DIR algorithms [67]. 

The authors also concluded that dose heterogeneity potentially has significant impact on 

accumulated dose distribution when mapping contours. However, for this proposed 

dissertation project, we are focusing on the normal lung tissue in LA-NSCLC patients with 

larger, more complicated tumor structures. Therefore, quantifying the DIR accuracy used in 

inter-4DCT dose accumulation will be a focus in our work. 

1.6 Summary 

The optimal treatment of LA-NSCLC and prediction of radiation-induced lung toxicities 

continues to present challenges in clinical practice. This dissertation centers on quantifying 

the accumulation of dose and the biological damage in the normal lung tissue from photon 

and proton RT. With accurate image mapping and dose tracking enabled by advanced DIR 

algorithms, we are aiming to gain novel perspectives on the actual amount of damage 

inflicted, which could aid in making informed clinical decisions. 
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Chapter 2: Central Hypothesis, Specific Aims, and Dissertation Organization 

The long-term goal of the dissertation research is to improve photon and proton 

NSCLC treatment outcomes by reducing radiation-induced toxicities through a dose-based 

toxicity prediction model. This model will improve the prediction of radiation-induced lung 

toxicities, leading to improvements in clinical treatment design. For this specific project, the 

objective is to fill the knowledge gaps of representing radiation dose and biological damage. 

I am evaluating our current assumptions in the accuracy of planned dose distribution and 

fixed RBE of 1.1 for proton patients. To achieve these goals, I am developing and 

quantifying advanced DIR techniques to track image and dose voxels, and such DIR 

workflow facilitated robust dose accumulation and response assessment for proton RBE 

modelling. 

2.1 Central Hypothesis 

 I hypothesize that, for LA-NSCLC patients, dose accumulation using weekly 4DCTs 

acquired over the course of RT improves the accuracy of planned dose and variable proton 

dose-RBE relationship in the normal lung can be measured via radiographic change as the 

clinical endpoint with at least 0.90 goodness of fit. To test the hypothesis, I am 

retrospectively analyzing imaging and planning data of LA-NSCLC patients enrolled on a 

clinical trial at MD Anderson that compared efficacies of photon (conventional) and proton 

radiotherapies. 

2.2 Specific Aims 

Aim 1. Develop and validate a DIR workflow for 4DCT-based dose accumulation. 

Goal: Determine the reference image for inter-4DCT DIR and the optimal parameters 

for biomechanical model-based DIR algorithm using such reference image. 

Study 1-1: Define the reference image for longitudinal 4DCT-based DIR. 

Study 1-2: Develop the optimal parameters for BM-DIR 
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Aim 2. Automate the dose accumulation workflow and evaluate the dosimetric and clinical 

impact as compared to the planned dose. 

Goal: Using the DIR workflow defined in Aim 1, accumulate dose using longitudinal 

4DCTs and compare the result with planned dose 

Hypothesis: At least 15% of patients demonstrate a 10% NTCP difference between 

planned dose and the accumulated dose and the accumulated dose more accurately 

describes the planned dose. 

Study 2-2: organ/region/voxel-level dose comparison 

Study 2-3: associate dose difference to the accuracy difference through dose-

response correlations 

Aim 3. Model variable proton RBE relationships using clinical radiographic evidence. 

Goal: Derive and validate variable RBE values using CT image density change 

Hypothesis: The RBE model will return goodness of fit that achieves 0.9. 

Study 3-1: Model an established RBE model on the RBE derived from clinical 

evidence of response. 

2.3 Dissertation Organization 

This dissertation's main body of work is Chapters 3-6.   
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Chapter 3: Identifying Reference Image for Inter-4DCT DIR and Chapter 4: 

Parameter Optimization for Biomechanical Model-Based DIR address Specific Aims 1-1 and 

1-2 and are respectively entitled “Identifying Reference Image for Inter-4DCT DIR” and 

“Parameter Optimization for Biomechanical Model-Based DIR”. Chapter 5: Evaluate 

Dosimetric and Accuracy Differences between Accumulated and Planned Doses addresses 

Specific Aim 2 and is entitled “Evaluate Dosimetric and Accuracy Differences between 

Accumulated and Planned Doses”. Chapter 6: Variable Proton RBE Modelling Using Clinical 

Radiographic Evidence addresses Specific Aim 3 and is entitled “Variable Proton RBE 

Modelling Using Clinical Radiographic Evidence”. After the main body of work, a discussion 

follows in Chapter 7: Discussion, and References are included at the end. 
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Chapter 3: Identifying Reference Image for Inter-4DCT DIR 

This chapter is based upon: 

Y He; G Cazoulat; C Wu, C Peterson, M McCulloch, B Anderson, J Pollard-Larkin, P Balter, 
Z Liao, R Mohan, K Brock. “Geometric and dosimetric accuracy of deformable image 

registration between average‐intensity images for 4DCT‐based adaptive radiotherapy for 
non‐small cell lung cancer,” J Appl Clin Med Phys, vol. 22, no. 8, pp. 156–167, Aug. 2021, 

doi: 10.1002/acm2.13341. 

Permission policy of Wiley Periodicals LLC: This is an open access article under the 
terms of the Creative Commons Attribution License, which permits use, distribution and 
reproduction in any medium, provided the original work is properly cited. 
 
 

3.1 Abstract 

 
Purpose: Re-planning for four-dimensional computed tomography (4DCT)-based lung 

adaptive radiotherapy commonly requires deformable dose mapping between the planning 

average-intensity image (AVG) and the newly acquired AVG. However, such AVG-AVG 

deformable image registration (DIR) lacks accuracy assessment. The current work 

quantified and compared geometric accuracies of AVG-AVG DIR and corresponding phase-

phase DIRs, and subsequently investigated the clinical impact of such AVG-AVG DIR on 

deformable dose mapping. 

Methods and Materials: Hybrid intensity-based AVG-AVG and phase-phase DIRs were 

performed between the planning and mid-treatment 4DCTs of 28 non-small cell lung cancer 

patients. An automated landmark identification algorithm detected vessel bifurcation pairs in 

both lungs. Target registration error (TRE) of these landmark pairs was calculated for both 

DIR types. The correlation between TRE and respiratory-induced landmark motion in the 

planning 4DCT was analyzed. Global and local dose metrics were used to assess the 

clinical implications of AVG-AVG deformable dose mapping with both DIR types. 

Results: TRE of AVG-AVG and phase-phase DIRs averaged 3.2±1.0mm and 2.6±0.8mm, 

respectively (p<0.001). Using AVG-AVG DIR, TREs for landmarks with <10mm motion 
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averaged 2.9±2.0mm, compared to 3.1±1.9mm for the remaining landmarks (p<0.01). 

Comparatively, no significant difference was demonstrated for phase-phase DIRs. 

Dosimetrically, no significant difference in global dose metrics was observed between doses 

mapped with AVG-AVG DIR and the phase-phase DIR, but a positive linear relationship 

existed (p=0.04) between the TRE of AVG-AVG DIR and local dose difference. 

Conclusions: When the region of interest experiences <10mm respiratory-induced motion, 

AVG-AVG DIR may provide sufficient geometric accuracy; conversely, extra attention is 

warranted, and phase-phase DIR is recommended. Dosimetrically, the differences in 

geometric accuracy between AVG-AVG and phase-phase DIRs did not impact global lung-

based metrics. However, as more localized dose metrics are needed for toxicity 

assessment, phase-phase DIR may be required as its lower mean TRE improved voxel-

based dosimetry.  
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3.2 Introduction 

Recent advances in radiotherapy (RT) have enabled highly conformal treatment 

plans. However, over the treatment course, patient’s breathing pattern can change, and the 

tumor and normal tissue can change in volume, shape, and position in response to the 

treatment.[104] As a result, the original treatment plan may not be optimal to deliver the 

prescribed dose, potentially leading to tumor underdosing and healthy tissue overdosing. To 

account for these changes over the treatment course, the treatment plan must be adapted to 

the new anatomy as previous studies have demonstrated improved clinical outcomes with 

lung adaptive RT.[105, 106] The goal of adaptive RT is to maintain target coverage and 

normal tissue sparing by re-optimizing the treatment plan, based on the most recent imaging 

data that reflect setup differences, patient anatomy changes, and tumor response.[107, 108] 

An essential part of adaptive RT workflow is to consider the dose received in the initially 

completed fractions in the dose optimization based on the newly acquired planning 

image.[93] 

In many RT practices for non-small cell lung cancer (NSCLC), four-dimensional 

computed tomography (4DCT) is used for treatment planning to account for respiratory-

induced motion during beam delivery.[109] Composed of 3-dimensional CT images acquired 

over full breathing cycles, a 4DCT is usually binned into 10 breathing phases, ranging from 

end-inhalation phase (T0) to mid-ventilation phase (T3) to end-exhalation phase (T5).[110] 

An average-intensity image (AVG) can also be created by averaging pixel intensity values of 

all breathing phases of a 4DCT, and many lung RT practices calculate the radiation dose for 

treatment planning using AVG because it is composed of the average density seen at each 

voxel location,[85, 111, 112]  which allows the delineation of the internal target volume, 

comprising of individual target volumes at all phases.[113–115] The current NRG lung 

template mandates that dose calculation is performed on AVG for free breathing lung 

cases.[116] 
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During plan adaptation, calculation of the composite dose requires the dose 

distribution on the AVG of the original planning 4DCT to be mapped onto the dose 

distribution on the AVG of the newly acquired 4DCT.[117] This dose mapping can be 

achieved with deformable image registration (DIR) between the associated AVGs (AVG-

AVG DIR). 

Intuitively speaking, accurate DIR is the prerequisite for accurate dose deformation 

for plan adaptation, and for 4DCT-based NSCLC treatment planning, it is important to 

quantify the uncertainty in DIR between the primary and adaptive 4DCTs. Although 

numerous studies have evaluated the accuracy of intra-4DCT DIR (e.g. between T0 and 

T5),[118–122] very limited number of studies investigated the accuracy of inter-4DCT 

(phase-phase) DIR to analyze the effect of longitudinal anatomic changes over the course of 

RT.[101] The RTOG 1106 trial implemented AVG-based planning for free-breathing 

treatments and rigidly registered the original and mid-treatment AVGs for dose propagation 

because the uncertainty of AVG-AVG DIR was unknown.[123] Therefore, the current work 

evaluated the accuracy of AVG-AVG DIR to provide the uncertainty within this adaptive 

treatment planning workflow for NSCLC.  

In this study, the geometric accuracy of AVG-AVG DIR was quantified using 

corresponding anatomic landmarks and was subsequently compared with the geometric 

accuracy of DIR between corresponding phase pairs of the 4DCTs. The accuracy of AVG-

AVG DIR and phase-phase DIR was also evaluated with respect to landmark motion 

observed for each patient during standard respiratory motion at the planning stage. Finally, 

by evaluating the dosimetric impact of such geometric accuracy, implications of AVG-AVG 

deformable dose mapping for adaptive re-planning were investigated and the associated 

clinical guidelines were provided. 
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3.3 Methods and Materials 

3.3.1 Patient Data 

The original planning 4DCT and a mid-treatment 4DCT (approximately four weeks 

into treatment to mimic an adaptive RT setting) were retrospectively evaluated for 28 

randomly selected patients, who were previously treated with intensity-modulated RT under 

an Institutional Review Board–approved randomized clinical trial for locally advanced 

NSCLC.[85] Weekly 4DCTs, 6-8 per patient, were acquired during the treatment course for 

motion and target re-assessment. These 4DCTs were acquired with voxel size of 

0.98x0.98x2.5 mm3 using the Discovery CT system (General Electric Healthcare, 

Waukesha, WI) with 120kVp, operated in cine mode. Patient surface motion was monitored 

by Varian’s Real-time Position Management Respiratory Gating (Varian Medical Systems, 

Palo Alto, CA).[124] 

3.3.2 Hybrid Intensity-Based DIR 

The DIR algorithm used for this evaluation was ANACONDA (ANAtomically 

CONstrained Deformation Algorithm), a hybrid intensity–based DIR algorithm commercially 

available in RayStation v9 (RaySearch Laboratories, Stockholm, Sweden)[118]. The image 

registration process is as follows. Prior to image deformation, reference and target images 

are rigidly registered based on image similarity measured over all voxels that are enclosed 

by the external body contours in both images. The optimization process of ANACONDA is 

based on image similarity as measured by a correlation coefficient and is solved by a quasi-

Newton algorithm.[118] This process is regularized by minimizing the Dirichlet energy of the 

generated deformation vector field (DVF). DVF smoothness is maintained by penalizing 

large shape deviations of regions of interest (ROIs) defined in the reference image, and 

invertibility is checked by the determinant of the Jacobian. When the optimization process is 
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constrained by user-delineated organ contours in both reference and target images, such 

geometric information makes the ANACONDA method hybrid. 

In the current work, rigid registration was first established between the planning AVG 

and the mid-treatment AVG, focusing on bone and tumor regions and discarding rotations to 

mimic the daily kilovolt alignment. With ANACONDA, T0, T3, T5, and AVG of the mid-

treatment 4DCT were registered to their counterparts of the planning 4DCT (as the 

reference image). Left and right lung boundaries were manually contoured in each image 

pair to guide the DVF as controlling ROIs. The rigid and deformable registrations were 

systematically performed through RayStation scripting. For each registration, the results 

were qualitatively assessed via image fusion of the deformed target image and the 

reference image with a focus on the bronchial and vascular alignment, per recommendation 

of the American Association of Physicists in Medicine (AAPM) Task Group 132.[102] 

3.3.3 Quantitative Metrics for DIR Accuracy Assessment 

3.3.3.a Dice Similarity Coefficient 
AAPM Task Group 132 recommends metrics including Dice similarity coefficient 

(DSC) and target registration error (TRE) for validation of DIR accuracy. DSC is a measure 

of overlap between the ROI in the reference image and the same ROI in the deformed target 

image: 
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 (3)

where vdeformed is the volume of the deformed ROI and vreference is the volume of the reference 

ROI.[125] DSCs of lung contours across all DIRs were obtained. 

3.3.3.b Target Registration Error 
Unlike DSC, which focuses on the alignment of the organ contour, TRE addresses 

the internal alignment of images. TRE is defined as the three-dimensional Euclidian distance 

between a landmark’s position in the deformed target image and its location in the reference 
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where x, y, and z are the Cartesian coordinates in the reference image space. In the current 

work, vessel bifurcations were used as landmarks because of their abundance in the lungs 

and high contrast against air-like lung tissue. Landmark pairs were identified on 

corresponding phases (T0, T3, and T5) of the planning 4DCT and the mid-treatment 4DCT. 

These landmark pairs were overlaid onto the AVGs of the corresponding 4DCTs to assess 

the accuracy of AVG-AVG DIR, given that the AVG comprises all phases and exists in the 

same image space with phases of the same 4DCT. As a result, TRE of each landmark pair 

was computed for AVG-AVG DIR and phase-phase DIRs (T0-T0 DIR, T3-T3 DIR, or T5-T5 

DIR). 

3.3.4 Automatic Landmark Identification Method 

Manual landmark identification is a cumbersome process that could introduce 

uncertainties such as inter-observer variability. For the current work, the following in-house 

fully-automatic landmark identification workflow was used.[126] By thresholding the 

reference and target images, vessels on these images were automatically segmented, 

through which the centerlines could be extracted and the bifurcations on the centerlines 

detected using the neighbors’ count. The segmented vessels on the reference and target 

images were then registered via a separate intensity-based Demons DIR algorithm,[94] after 

which bifurcations less than 4 mm apart after the deformation were considered landmark 

pairs. Landmarks in both lungs were automatically identified on T0 pairs, T3 pairs, and T5 

pairs. This workflow has been previously validated against 10 pairs of T0/T5 lung 4DCTs, 

each with 300 manually identified landmark pairs (DIR-Lab, http//www.dir-lab.com) and 10 

pre-/post-RT pairs of liver contrast-enhanced CTs with 5 manual landmarks each. 
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In the current work, the automatic workflow was also validated against manually identified 

landmarks in the ipsilateral lung from a random subset of 10 patients. Compared with the 

contralateral lung, the ipsilateral lung could inherently exhibit larger anatomic changes 

between the two 4DCTs owing to tumor response. For the validation, 16 anatomic landmark 

pairs were manually identified at vessel bifurcations in the ipsilateral lung in T0 pairs. These 

landmarks were uniformly distributed along the superior-inferior direction of the lung to 

potentially cover a wide range of respiratory motion exhibited by different regions of the 

lung.[127, 128] The same 16 landmark pairs were then re-identified in the T3 pairs and T5 

pairs. Each landmark (position) was then directly copied to the AVG pairs, the same way as 

in the automatic workflow. In total, for each 4DCT set, 16 landmarks were identified in each 

of the three phases, and three variations of these 16 landmark positions (48 total) were 

identified in the AVG. The above process is described in Figure 1. Linear regression was 

used to compare mean TRE values from each phase-phase DIR of manual landmarks 

against the mean TRE values of automatic landmarks. 

 
Figure 11. Manual landmark identification process to validate the automatic landmark 
workflow. The planning four-dimensional computed tomography (4DCT) and the mid-
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treatment 4DCT are shown. Coronal views of the end-inhalation phase (T0), mid-ventilation 
phase (T3), and end-exhalation phase (T5), as well as the average-intensity image (AVG), 
are shown in the left column. Simplified cartoons of the two 4DCTs are shown on the right. 
Deformable image registrations (DIRs) were established between corresponding phases 

and AVGs of the two 4DCTs. A landmark at the lower vessel bifurcation in the right lung was 
identified with different colors in different phases. The landmark’s locations in these phases 

were transferred onto the AVG of each corresponding 4DCT. 

3.3.5 Landmark-Based DIR Accuracy Measurement 

3.3.5.a Comparison of Geometric Accuracy between AVG-AVG DIR and Phase-Phase DIRs  
The TRE of each landmark pair from T0-T0 DIR, T3-T3 DIR, T5-T5 DIR, and AVG-

AVG DIR was obtained for all 28 patients. Paired Student’s t-test was used to compare TRE 

of AVG-AVG DIR and TRE of T0-T0 DIR, based on T0-T0 landmark pairs, and such 

comparison was repeated for T3-T3 landmark pairs and T5-T5 landmark pairs. The same 

statistical testing was also used for comparisons among the phase-phase DIRs. 

3.3.5.b Effect of Breathing Motion 
For each patient, respiratory-induced landmark breathing motion was represented by 

the displacement of landmarks under hybrid intensity-based DIR between T5 (reference 

exam) and T0 of the planning 4DCT, with both lungs as controlling ROI. Assuming TREs of 

landmark pairs in the AVG pair and corresponding phase pairs follow a Gaussian 

distribution, we used linear regression to quantify the effect of landmark breathing motion on 

TRE for AVG-AVG DIR and T5-T5 DIR. A more simplified comparison was made in which 

these landmarks were divided using a cutoff of motion magnitude of 10 mm, and a two-

sample unequal variance t-test was used to compare the average TRE values for landmarks 

that showed at least 10 mm motion and those that showed less than 10 mm motion, for both 

AVG-AVG DIR and T5-T5 DIR. 

3.3.5.c Clinical Impact of DIR Geometric Accuracy on Dose Mapping 
Hybrid intensity-based DIR was established between AVGs and between T5s (from 

planning to mid-treatment) with both lungs as controlling ROIs. Accordingly, the original 

planned dose on AVG, calculated with RayStation’s default uniform dose grid of 3mm, was 
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deformed to the mid-treatment 4DCT to simulate adaptive RT with both AVG-AVG DIR and 

T5-T5 DIR (warranted by AVG and phase existing in the same image space). For the 

ipsilateral lung, multiple linear regression was performed to correlate AVG-AVG DIR TRE, 

along with several planning metrics, to the absolute difference in mean lung dose (MLD) 

between the planned dose deformed with AVG-AVG DIR vs. with T5-T5 DIR, and the 

absolute difference in the volume of lung receiving at least 20Gy (V20) bet ween the planned 

dose deformed with AVG-AVG DIR vs. with T5-T5 DIR, as clinical endpoints. The planning 

metrics include gross tumor volume (GTV) motion in the superior-inferior direction, GTV 

volume inside lung, GTV center of gravity to diaphragm, diaphragm breathing motion in the 

superior-inferior direction, GTV dose homogeneity index (DHI) (concept proposed by Ding et 

al.[129]), DHI of normal lung (lung excluding GTV), and percent of primary tumor volume 

(PTV) in normal lung. In addition, the dose discrepancy on a voxel/sub-regional level was 

evaluated using the percentage of landmarks on T5 that had at least 2Gy absolute dose 

difference when the dose distribution was mapped using AVG-AVG DIR vs. T5-T5 DIR.  

3.4 Results 

AVG-AVG DIR and phase-phase DIR were successfully performed for all patients. 

On average, 654 ± 162, 603 ± 186, and 606 ± 194 landmarks were identified on each 

patient’s T0, T3, and T5 pairs, respectively. The average DSC of left and right lung contours 

combined was 0.95 ± 0.02 for AVG-AVG DIR and 0.93 ± 0.03 for all phase-phase DIRs. 

AAPM Task Group 132 considers DSC of 0.80-0.90 satisfactory within the contouring 

uncertainty of the structures[102]. Therefore, according to this metric, the DIRs were 

deemed successful.  

3.4.1 Validation of Automatic Landmark Identification Workflow 

For 10 randomly selected patients, sixteen landmarks were manually identified 

where they were uniformly distributed along the superior-inferior direction within the 
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ipsilateral lung. TREs of these landmarks were compared against those of the automatic 

landmarks for each phase-phase DIR (Figure 12). With a slope of greater than 1.0, the 

automatic method consistently reported a larger TRE compared with the manual method 

(average TRE 2.5 ± 0.9 mm for automatic compared with 2.4 ± 1.7 mm for manual). 

However, the coefficient of determination was 0.8, and the averaged difference between the 

two methods was 0.1 mm, substantially smaller than the largest voxel dimension (2.5 mm). 

In addition, the paired Student’s t-test showed no statistical significance (p = 0.55), 

indicating that the automatic method was an acceptable substitute for the manual method. 

 
Figure 12. Target registration error (TRE) differences between deformable image 

registration (DIR) across average-intensity images and DIR across phases for each patient. 
Each data point represents a labeled patient. The result of linear regression is TRE 

(auto)=0.5 × TRE (manual) + 1.4. Coefficient of determination is 0.81. 

3.4.2 AVG-AVG DIR Compared with Phase-Phase DIRs  

As shown in Figure 13, the mean TRE of T0 landmark pairs was 3.6 ± 1.1 mm for 

AVG-AVG DIR compared with 2.8 ± 0.8 mm for T0-T0 DIR (p < 0.001). The mean TRE of T3 
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landmark pairs was 3.0 ± 0.9 mm for AVG-AVG DIR compared with 2.6 ± 0.8 mm for T3-T3 

DIR (p < 0.001). The mean TRE of T5 landmark pairs was 3.0 ± 0.8 mm for AVG-AVG DIR 

compared with 2.5 ± 0.8 mm for T5-T5 DIR (p < 0.001). In total, AVG-AVG DIR resulted in a 

mean TRE of 3.2 ± 1.0 mm compared with 2.6 ± 0.8 mm for phase-phase DIRs (p < 0.001). 

For all patients except one, TRE for AVG-AVG DIR was higher than TRE for phase-phase 

DIRs (for such patient, the TRE for AVG-AVG DIR was 0.07 mm lower than that for T0-T0 

DIR and 0.03 mm lower than that for T3-T3 DIR). 

 
Figure 13. Boxplots of mean target registration error (TRE) of the 28 patients. Each color 

pair of boxplots represents the mean TRE of phase pairs for the corresponding phase-phase 
DIR and for AVG-AVG DIR. The standard deviation of TRE ranged from 1.0 to 3.4 mm (not 

shown). *DIR: deformable image registration, AVG: average-intensity image, T0: end-
inhalation phase, T3: mid-ventilation phase, T5: end-exhalation phase 

3.4.3 Geometric Impact of Landmark Motion on DIR TRE 

Respiratory-induced landmark motion was represented by the displacement of T5 

landmarks under T5-T0 DIR of the planning 4DCT. Linear regressions between landmark 

motion and TRE for AVG-AVG DIR as well as for T5-T5 DIR both yielded coefficient of 
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determination values of less than 0.1. When comparing landmarks grouped using a cutoff of 

10 mm motion, for AVG-AVG DIR, the mean TRE of T5 landmarks with less than 10 mm 

motion was 2.9 ± 2.0 mm compared with 3.1 ± 1.9 mm for T5 landmarks with at least 10 mm 

motion (p < 0.001), whereas for phase-phase DIR, the mean TRE of T5 landmarks with less 

than 10 mm motion was 2.5 ± 2.0 mm compared with 2.5 ± 1.9 mm for T5 landmarks with at 

least 10 mm motion (p = 0.30). Therefore, landmark pairs with at least 10 mm motion had 

significantly larger TREs than those with less than 10 mm motion in AVG-AVG DIR, which 

was not observed for phase-phase DIR. 

3.4.4 Clinical Impact of DIR Geometric Accuracy on Dose Mapping 

Figure 14 shows for patient #14 the comparison of the deformed planned dose with 

with AVG-AVG DIR vs. T5-T5 DIR. This patient carried the largest absolute difference in 

MLD between the two deformed doses. 

 
Figure 14. This figure shows, for patient 14, deformed doses (left panels) and their 

difference (right panel) on an axial slice of the average-intensity image (AVG) of the mid-
treatment week. The upper-left and lower-left panels show the deformed planned dose with 
AVG-AVG DIR and with T5-T5 DIR, respectively. *DIR: deformable image registration, T5: 

end-exhalation phase. 
 

Ipsilateral lung planning information for all 28 patients is shown in Table 1. Multi-

linear regression resulted in non-significant correlations (p > 0.05) when correlating AVG-

AVG DIR TRE as well as clinical planning information (columns 3-9) to the difference in 
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global clinical metrics of MLD and V20 between doses mapped with AVG-AVG DIR versus 

T5-T5 DIR (columns 11 and 12). However, when comparing these two mapped doses on a 

sub-regional level, both TRE of AVG-AVG DIR and GTV motion reached statistical 

significance (p = 0.04 and p = 0.01, respectively), and percent of PTV in normal lung 

achieved p = 0.06, when correlated against the metric: portion of T5 landmarks that had at 

least 2 Gy absolute dose difference (≥2Gy%) (column 10). For this local dose metric, 12 

patients achieved at least 10% (at least 10% of total T5 landmarks had at least 2 Gy 

absolute dose difference). Eleven of these twelve patients met at least one of the following 

conditions: TRE larger than 3.0 mm (recommended dose grid size, per AAPM Task Group 

132[102]), GTV motion larger than 5.0 mm (AAPM Task Group 76[130] recommends that 

respiratory management techniques be considered when tumor motion is larger than 5.0 

mm), or percent of PTV in normal lung larger than 20%, achieving sensitivity of 0.92. Only 3 

of the 16 patients with less than 10% of ≥2Gy% demonstrated any of these three criteria, 

achieving a specificity of 0.81. 

 

 

 

Table 1. Planning information for the ipsilateral lung of each analyzed patient.  
Patient Characteristics columns: Diaph motion: the largest distance between two voxels on 
the diaphragm between end-exhalation phase and end-inhalation phase along the superior-
inferior direction. GTV motion: the distance between the center of gravity of the GTVs in 
end-exhalation phase and end-inhalation phase along the superior-inferior direction. GTV to 
Diaph: the distance between the center of gravity of the GTV to the diaphragm along the 
superior-inferior direction. GTV vol: volume of GTV inside normal lung (lung volume 
excluding GTV). PTV%: percent PTV volume in normal lung. 
Dose Metrics columns: 
|ΔMLD|: absolute difference in MLD between the planned dose deformed with AVG-AVG 
DIR vs. with T5-T5 DIR 
|ΔV20|: absolute difference in V20 between the planned dose deformed with AVG-AVG DIR 
vs. with T5-T5 DIR 
≥2Gy%: Portion of T5 landmarks with ≥2 Gy absolute dose difference between doses 
mapped with AVG-AVG DIR vs T5-T5 DIR 
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*AVG: average-intensity image, DIR: deformable image registration, TRE: target registration 
error, Diaph: diaphragm, GTV: gross tumor volume, PTV: planning target volume, DHI: dose 
homogeneity index, MLD: mean lung dose, V20: volume of lung receiving at least 20 Gy. 

Patient 

AVG-
AVG DIR 

TRE 
[mm] 

Patient Characteristics Dose Metrics 
Diaph 
motion 
[mm] 

GTV 
motion 
[mm] 

GTV to 
Diaph 
[mm] 

GTV vol 
[cm3] PTV% GTV DHI 

DHI of 
normal 

lung 

|ΔMLD| 
[cGy] |ΔV20| ≥2Gy% 

1 2.0 16.0 4.4 80 9 13.4 3.5 0.9 7 0.1 2.1 
2 2.3 7.6 1.5 79 32 11.0 4.2 0.9 7 0.0 9.6 
3 1.8 5.1 1.7 73 25 8.4 2.4 0.9 20 0.3 0.0 
4 2.2 19.5 4.0 124 5 3.1 2.6 0.5 7 0.4 4.8 
5 2.6 10.4 6.2 20 19 13.8 2.9 0.8 55 0.8 16.5 
6 2.4 10.2 0.8 56 90 18.1 1.8 1.0 15 0.1 0.4 
7 2.7 5.5 0.6 85 9 10.4 2.2 0.9 37 0.6 6.3 
8 5.7 4.5 0.9 76 21 5.5 3.5 0.5 5 0.1 2.1 
9 1.7 14.7 0.6 35 29 12.4 2.4 1.0 20 0.3 3.2 

10 3.1 27.3 3.7 27 180 8.6 4.6 0.9 80 2.0 16.6 
11 2.1 8.3 1.4 19 12 12.1 2.5 0.9 11 0.1 4.3 
12 3.1 5.5 1.9 32 193 24.1 4.0 1.0 16 0.1 6.0 
13 1.9 26.5 0.9 81 8 7.1 2.6 0.7 1 0.0 2.1 
14 4.8 5.0 0.5 12 18 7.3 2.6 0.8 84 1.6 15.5 
15 2.2 6.2 4.0 90 1 8.1 2.7 0.8 28 0.9 17.8 
16 4.7 9.3 0.4 93 363 13.4 3.0 1.0 18 0.2 12.2 
17 2.7 10.4 1.7 80 192 23.4 4.1 0.9 12 0.1 10.2 
18 3.8 14 3.6 112 235 12.6 4.2 1.0 32 0.1 11.8 
19 2.4 1.4 2.8 25 53 16.8 1.7 0.8 39 0.5 5.3 
20 5.0 9.6 3.0 75 28 8.1 4.5 0.8 2 0.2 11.7 
21 2.3 1.0 0.6 90 21 7.7 2.5 0.8 1 0.0 0.9 
22 4.3 3.6 1.8 94 35 12.3 2.2 0.9 21 0.5 10.7 
23 2.4 10.6 1.0 101 9 8.6 6.3 1.0 38 0.6 8.8 
24 5.4 7.8 4.7 51 23 4.7 3.3 0.5 21 0.2 21.6 
25 2.3 17.7 2.2 72 41 13.9 2.9 0.9 55 0.8 7.4 
26 3.3 28.3 7.7 90 33 5.3 2.4 0.6 48 1.0 8.2 
27 1.9 14.2 8.6 55 19 11.2 3.6 0.9 5 0.0 10.9 
28 4.6 15.1 2.9 81 53 18.5 3.3 0.9 58 0.7 10.7 
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3.5 Discussion 

In the current work, we evaluated the accuracy of AVG-AVG DIR and compared it 

with that of DIR between corresponding phases (T0, T3, and T5) for 4DCT-based treatment 

planning in NSCLC. Based on imaging data and landmark pairs from 28 NSCLC patients, 

our findings indicated that AVG-AVG DIR has larger uncertainty, i.e., inferior accuracy, 

compared with phase-phase DIR, and that breathing-induced motion degrades the accuracy 

of AVG-AVG DIR more than that of phase-phase DIR. 

AAPM Task Group 132 recommends that the target TRE should be less than the 

maximum image voxel size.[102] Therefore, given that 4DCTs used in the current work were 

2.5 mm thick, T5-T5 DIR achieved the AAPM-recommended target TRE, with mean TRE of 

2.5 ± 0.8 mm, and thus can be deemed clinically acceptable. For phases typically subject to 

larger breathing artifacts,[131] T3-T3 DIR and T0-T0 DIR almost met the target TRE, with 

2.6 ± 0.8 mm and 2.8 ± 0.8 mm, respectively. However, with an overall mean TRE of 3.2 ± 

1.0 mm, AVG-AVG DIR did not meet the uncertainty recommendation, with more than half of 

the lateral resolution (0.98 mm) over the recommended threshold. In addition, our analysis 

of the effect of motion showed that large landmark respiratory motion (i.e., at least 10 mm) 

affects AVG-AVG DIR more than phase-phase DIR. In summary, phase-phase DIR was 

more robust against breathing motion, which was not achieved by the AVG-AVG DIR. 

Therefore, per AAPM Task Group 132, additional uncertainty should be assumed, 

depending on the clinical protocol, if AVG-AVG DIR is used for dose mapping. This is 

especially true for patients who breathe with a relatively large magnitude, which can 

potentially introduce a large amount of uncertainty, as well as for anatomic structures that 

typically have a large motion, such as tumors close to the diaphragm. 

Geometrically robust points, which are necessary for TRE, require a geometrically 

robust image. AVG is constructed from averaging the pixel intensities of all phases over the 
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breathing cycle. As a result, anatomy on AVGs is blurred due to breathing motion and thus 

carries inherent uncertainty in representing the true anatomic shapes, which makes AVG not 

geometrically robust. Practically speaking, AVG is commonly used as the planning image for 

dose calculation because it captures the entire tumor movement under respiratory 

motion.[111, 132–134] This helps to avoid overdosing normal tissue near the tumor and 

under-dosing the tumor itself, which can happen with a smooth dose intensity map around 

the tumor. Although AVG-AVG DIR is the more straightforward choice for clinicians, extra 

care must be taken when using AVG-AVG DIR to perform dose mapping when adaptive 

planning is required, given the small but potentially clinically significant uncertainty. 

Furthermore, considering the effect of TRE on dose metrics, a TRE reduction of 1.6 mm for 

phase-phase DIR used to deform and propagate the planning dose has been shown to 

clinically affect decision-making in stereotactic body RT treatment planning.[82] These 

findings support the potential clinical benefit of using phase-phase DIR rather than AVG-

AVG DIR.  

The major strength of the current work was the large number of landmark pairs made 

available by the automatic landmark identification workflow (average of 600+ per DIR). As a 

result, this work contributed to closing the gap on evaluating inter-4DCT DIR in the presence 

of anatomy changes through internal landmark points. In addition to using landmarks to 

determine TRE as the internal metric, we also used DSC of the left and right lung contours 

as the external metric. Because the hybrid intensity-based DIR method was constrained by 

matching the lung contours on the reference and target images, DSC values would naturally 

be large. In addition, the DSC can quantify how well the organ boundary matches, but it 

does not guarantee accurate modeling of internal volume.[135] Therefore, using DSC as the 

sole metric to represent DIR accuracy would be inadequate, and consequently DSC was 

reported to supplement TRE.  
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In terms of landmark identification on AVG, the same anatomic landmarks were 

detected on the three phase images on both 4DCTs and then were directly used for AVG-

AVG DIR. The presented method that transfers landmarks defined in the breathing phases 

onto the AVG of the same 4DCT enabled representation of the actual position of these 

landmarks (the average of a landmark’s locations in breathing phases) in AVG, which is 

difficult to identify directly, especially in regions that experience large respiratory-induced 

motion. 

In our validation of automated landmarks, automatic landmarks achieved larger 

TREs than manual landmarks. This is potentially due to landmarks identified by automatic 

workflows systematically produce worse DIR, so identifying landmarks throughout the entire 

lung would on average produce larger TREs. This result could also be attributed to a lack of 

one-one correspondence between automatic landmarks and manual landmarks and the 

limited number of manual landmark pairs identified. A small set of landmark points has been 

shown to be insufficient for calculating TRE because this misrepresents the actual spatial 

accuracy.[136] In fact, only 16 landmark pairs were chosen manually per patient due to the 

cumbersome nature of manual landmark identification, thus potentially limiting the TRE 

accuracy based on these landmarks. 

The difference in DIR accuracy among the three phases (T0, T3, and T5) could be 

attributed to differences in the magnitude of breathing artifacts. At T0, the full inhale phase, 

the patient changes breathing direction, so this phase is most prone to breathing artifacts 

due to diaphragm motion. In addition, the inhale position tends to vary from breathing cycle 

to breathing cycle. In contrast, in T5, the patient spends a longer proportion of the breathing 

phase in the exhale position, thus leading to the fewest motion artifacts; vessels especially 

near the diaphragm are not “washed out” and can be more accurately identified. Therefore, 

T5-T5 DIR can provide the highest registration accuracy among phase-phase DIRs. This 

can be applied in four-dimensional dose calculation, with phase dose mapped and summed 
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on T5 as the gold-standard dose calculation method for a 4DCT.[78] Therefore, our findings 

can support the investigation of the differences between T5-based four-dimensional planned 

dose and accumulated dose using T5-based four-dimensional weekly doses with T5-T5 

DIR. Retrospective toxicity studies on a voxel or regional level are also warranted, to 

achieve the most accurate representation possible for the delivered dose. 

In the dosimetric study, as the landmark TRE increased, the probability of the dose 

to an image voxel in the planning AVG being mapped to a different anatomical location in 

the re-planning AVG also increased. Such effect was pronounced in the high dose-gradient 

region near the GTV where adjacent image voxels shared large dose differences. It was 

magnified when the GTV motion was large, which further increased TRE of AVG-AVG DIR. 

However, their effect was lessened on global clinical metrics such as mean lung dose, 

where these voxel-level dose differences cancel each other out. For instance, patient 24 had 

AVG-AVG DIR TRE of 5.4 mm (largest among all patients) and achieved 21.6% in the 

previously defined metric ≥2Gy%, but only achieved 21 cGy and 0.2 in absolute MLD 

difference and V20 difference, respectively. On the contrary, patient 8 carried AVG-AVG DIR 

TRE of 5.7 mm but only achieved 2.1% in ≥2Gy% due to low GTV motion (0.9 mm) and low 

PTV in normal lung (5.5%). These results are similar to those concluded by Hardcastle et 

al.,[137] where larger registration error in high dose gradient regions caused larger 

dosimetric uncertainty. These observations demonstrated that the clinical impact of DIR 

geometric accuracy, as represented by TRE, must be interpreted in the context of the 

patient and dosimetric parameters. Therefore, when dose is mapped with AVG-AVG DIR vs. 

phase-phase (T5-T5) DIR, global clinical metrics are unlikely to differ significantly. However, 

if local doses are evaluated based on the mapped dose, phase-based mapping should be 

considered. 

Lastly, to provide context in the clinical adaptive workflow, the following three 

simplified workflows in the order of increasing complexity can be considered. 1) 3D 
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treatment planning using AVG-AVG DIR: original planned dose is calculated on AVG of 

planning 4DCT; at adaptation, the fraction-corrected planned dose is deformed to the AVG 

of the newly acquired 4DCT with AVG-AVG DIR; the adapted dose is created based on the 

deformed dose on the new AVG. 2) Three-dimensional treatment planning using phase-

phase DIR: this is an alternative to 1) where a specific phase-phase DIR is performed and 

used to map the dose calculated on the original AVG onto the secondary AVG for better 

accuracy. 3) Full four-dimensional treatment planning using phase-phase DIR: dose is 

calculated on each phase of the planning 4DCT, deformed to a reference phase, and 

summed over the breathing phases; the fraction-corrected 4D planned dose on a specified 

phase is deformed to the corresponding specified phase of the newly acquired 4DCT with 

phase-phase DIR; the adapted dose is created based on the deformed dose.[77] 

3.6 Conclusion 

In the current work, TRE was used to quantify the geometric uncertainty of DIRs 

between corresponding AVGs and corresponding phases for 4DCT-based lung adaptive RT 

for 28 NSCLC patients. When the region of interest has respiratory-induced motion less than 

10 mm, AVG-AVG DIR may provide sufficient clinical accuracy; however, when motion is at 

least 10 mm, extra attention is warranted and phase-phase DIR, especially T5-T5 DIR, is 

recommended. Dosimetrically, the geometric accuracy of AVG-AVG DIR has not been 

shown to significantly impact global lung-based clinical metrics. However, phase-phase DIR 

may be required for advanced toxicity correlation studies that utilize local dose metrics (e.g., 

dose used in voxel-based analyses). 
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Chapter 4: Parameter Optimization for Biomechanical Model-Based DIR 

This chapter is based upon: 

Y He, B Anderson, G Cazoulat, B Rigaud, L Almodovar-Abreu, J Pollard-Larkin, P Balter, Z 
Liao, R Mohan, B Odisio, S Svensson, K Brock. “Optimization of mesh generation for 

geometric accuracy, robustness, and efficiency of biomechanical-model-based deformable 
image registration,” Med Phys, Aug. 2022, doi: 10.1002/MP.15939. 

Permission policy of Wiley Periodicals LLC: The author is hereby granted a personal, 
non-exclusive, non-sub licensable (on a stand-alone basis), non-transferable, worldwide, 
limited license to reproduce the Wiley Materials for the purpose specified in the licensing 
process. 
 

4.1 Abstract 

Background: Successful generation of biomechanical model-based deformable image 

registration (BM-DIR) relies on user-defined parameters that dictate surface mesh quality. 

The trial-and-error process to determine the optimal parameters can be labor intensive and 

hinder DIR efficiency and clinical workflow. 

Purpose: To identify optimal parameters in surface mesh generation as boundary 

conditions for a BM-DIR in longitudinal liver and lung CT images to facilitate streamlined 

image registration processes. 

Methods: Contrast-enhanced CT images of 29 colorectal liver cancer patients and end-

exhale 4DCT images of 26 locally advanced non-small cell lung cancer patients were 

collected. Different combinations of parameters that determine the triangle mesh quality 

(voxel side length and triangle edge length) were investigated. The quality of DIRs 

generated using these parameters was evaluated with metrics for geometric accuracy, 

robustness, and efficiency. Metrics for geometric accuracy included target registration error 

(TRE) of internal vessel bifurcations, dice similar coefficient (DSC), mean distance to 

agreement (MDA), Hausdorff Distance (HD) for organ contours, and number of vertices in 

the triangle mesh. AAPM Task Group 132 was used to ensure parameters met TRE, DSC, 

MDA recommendations before the comparison among the parameters. Robustness was 
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evaluated as the success rate of DIR generation, and efficiency was evaluated as the total 

time to generate boundary conditions and compute finite element analysis. 

Results: Voxel side length of 0.2 cm and triangle edge length of 3 were found to be the 

optimal parameters for both liver and lung, with success rate of 1.00 and 0.98 and average 

DIR computation time of 100 and 143 seconds, respectively. For this combination, the 

average TRE, DSC, MDA, and HD were 0.38-0.40 mm, 0.96-0.97, 0.09-0.12 mm, and 0.87-

1.17 mm, respectively. 

Conclusion: The optimal parameters were found for the analyzed patients. The decision-

making process described in this study serves as a recommendation for BM-DIR algorithms 

to be used for liver and lung. These parameters can facilitate consistence in the evaluation 

of published studies and more widespread utilization of BM-DIR in clinical practice. 

4.2 Introduction 

Biomechanical model-based deformable image registrations (BM-DIRs) can aid 

image-guided radiation therapy in registering liver and lung anatomies, allowing contour 

propagation, tumor tracking, dose accumulation, and response assessment.[92, 119, 138, 

139] They have been reported to provide improved accuracy and more realistic deformation 

compared to intensity-based DIRs.[101, 140–142] However, biomechanical models estimate 

a dense deformation vector field (DVF) by necessitating organ-specific boundary conditions 

applied on organ contours to estimate the finite element model (FEM) representing the 

patient anatomy before performing the finite element analysis (FEA),[143] which can be 

more time consuming than classical intensity-based DIR algorithms.[144] Additionally, user-

defined parameters such as boundary condition and mesh resolution dictate FEM quality 

and eventually affect the topology and success of the generated DVF. As a result, the 

current implementation of BM-DIR is limited by uncertainties in model parameters which 

further increases registration time and vulnerability. From our clinical research experience, 



   
 

54 
 

DIR failure can occur in approximately 15% cases. This disrupts the image registration 

workflow and especially hinders the efficiency of inter-fractional dose mapping where the 

DIRs sharing the same reference image would consistently fail. Therefore, identifying 

parameters that consistently produced accurate registrations is crucial towards a more 

comprehensive integration of BM-DIRs into clinical workflow, especially when longitudinal 

registrations are involved such as adaptive radiation therapy and image/dose deformations 

for response assessment.[139, 145–147] 

A BM-DIR algorithm (Morfeus) has been implemented in a commercial treatment 

planning system (TPS), (RayStation, RaySearch Laboratories, Stockholm, Sweden).[148] In 

this study, we investigated the different parameters in surface mesh generation that 

influence the boundary conditions in the estimation of a FEM-based DVF for longitudinal 

liver and lung images. The robustness and efficiency of the DIR process using these 

parameters for liver and lung anatomies were compared to find the optimal parameters.  

 

4.3 Materials and Methods 

4.3.1 Patient data 

For liver registrations, pre- and post-treatment contrast-enhanced breath-hold CT 

images of 29 colorectal liver cancer patients were obtained under a retrospective 

institutional review board (IRB)-approved protocol. These patients were previously treated 

with microwave ablation to treat colorectal liver metastasis. The median image voxel size 

was 0.74 x 0.74 x 2.5 mm3 (minimum: 0.56 x 0.56 x 2 mm3, maximum: 0.88 x 0.88 x 5 mm3). 

For each patient, the liver was manually contoured by a graduate student under the 

guidance and review of a board-certified interventional radiologist (BO). 



   
 

55 
 

For lung registrations, four-dimensional CT (4DCT) images of 26 locally advanced 

non-small cell lung cancer patients without major atelectasis or substantial tumor shrinkage 

were acquired under a retrospective IRB-approved protocol. These patients were previously 

treated with concurrent chemo-radiotherapy on a prospective clinical trial. End-exhalation 

phases of the planning and mid-treatment 4DCT were used as the reference and target 

images, respectively. Image resolution across all images was 0.98 x 0.98 x 2.5 mm3. Both 

left and right lungs were contoured by a graduate student under the guidance and reviewed 

by a board-certified radiation oncologist (ZL). 

To assess volumetric alignment, target registration error (TRE) was quantified using 

landmarks at vasculature branching points inside liver and lung anatomy. Liver landmarks 

were manually identified with an average of 4 per patient (0 to 29). The number of liver 

landmarks was limited by the number of vessels, varying contrast stages of the analyzed 

CTs, and underlying diseases. On the other hand, lung landmarks were identified using a 

validated, in-house, automatic landmark identification algorithm with an average of 191 per 

patient (111 to 343).[149] The magnitude of deformation was assessed by computing the 

TRE immediately following rigid registration, which averaged 5.7 mm, with maximum TRE 

values per patient of 7.4 to 21.1 mm. Figure 15 shows renderings of landmarks within 

organs from sample patients in RayStation.  

 
Figure 15. 3D rendering of landmarks in liver (left) and lungs (right) 
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4.3.2 Biomechanical model-based registration algorithm in RayStation 

The BM-DIR implementation in the commercial TPS (RayStation 10B, Stockholm, 

Sweden) consists of two steps: finite element model (FEM) generation and finite element 

analysis (FEA). In the first step, organ and body drawn polygon-sliced contours in both 

reference and target images are converted into voxel masks of the same spacing (Figure 15 

(a)). Triangular surface meshes are generated using a defined triangular length derived from 

the down-sampled voxel size of the voxel masks in the reference image, exerting a 

smoothing effect to the overall mesh surface reducing the number of sharp edges (Figure 15 

(b)). The reference triangle meshes are then rigidly transformed to the target image and 

adapted to the corresponding voxel mask. Distances from the edge of the voxel mask are 

used to drive the cost function in the adaptation process.  

In the second step, the reference triangular surface meshes are converted to 

tetrahedral volumetric meshes (i.e. FEM) using a finite element generator Netgen/NGSolve.  

[150] Using the FEM representation of the reference patient anatomy and the point-to-point 

boundary conditions, an[150] FEA is performed to estimate the displacements of the FEM 

nodes inside the organs, not constrained by the boundary conditions.  

RayStation allows two types of relationship between organs within the FEM. The 

“fixed” interface attaches the surface points of the organ to the body nodes in the FEM, 

allowing a continuous deformation over the organ surface where the reference mesh 

vertices are mapped to the corresponding target mesh vertices – a point-to-point 

correspondence. In the case of a liver registration, the nodes outside the liver will follow the 

boundary condition direction.[148] The “sliding” interface models a frictionless contact 

surface between the inner and external organ elements where the nodes directly outside the 

inner elements do not follow along. In the case of a lung registration where the sliding 
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interface model is used, the FEM will allow discontinuity between the nodes at the interface 

of the lung and chest wall.[151] 

The complexity of the triangular surface mesh, as determined by user defined 

parameters, directly affects the generation of the FEM. If FEM generation fails, the user 

must recreate surface meshes using different parameters until the algorithm succeeds, 

hindering efficiency of the workflow. At the same time, the triangular surface mesh should 

retain the original organ shape. The following section therefore introduces the investigated 

parameters and the metrics that reflect the robustness and efficiency of the DIR process 

using these parameters. 

4.3.3 Parameters for boundary conditions 

In RayStation 10B, different combinations of two parameters: voxel side length and 

triangle edge length were tested to generate the surface meshes and boundary conditions 

required for the biomechanical-model based DIR. The voxel side length refers to the voxel 

size for the voxel masks. The triangle edge length is the approximate triangle edge length 

expressed in number of voxels in the voxel mask. 

Parameters for liver registrations were first investigated. Voxel side lengths of 0.15, 

0.2, and 0.25 cm were each investigated in combination with triangle edge lengths of 1, 2, 

and 3. For lung, the tested parameters were narrowed down to four parameters that well-

performed for liver per the evaluation metrics mentioned in the following section: voxel side 

lengths of 0.2 cm and 0.25 cm were each investigated in combination with triangle edge 

lengths of 2 and 3. 

All tests were performed in a Research version of RayStation (10B DTK, 

v10.1.110.138) running on Windows 2016 Server edition equipped with 6 Tesla T4 15Gb 

GPU. 
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4.3.4 Evaluation 

The resulting BM-DIR created from different parameter combinations were first 

evaluated based on geometric accuracy of the registration, per recommendations of the 

American Association of Physicists in Medicine (AAPM) Task Group 132 (TG-132).[102] The 

surface alignment was evaluated for each organ contour (i.e. liver, left lung, or right lung) 

using Dice similarity coefficient (DSC), mean distance to agreement (MDA), and Hausdorff 

distance (HD) between the deformed reference and the target organ representations. 

Achieving the TG-132 recommendations was identified as the most important goal.  

Second, robustness was evaluated based on the average success rate (i.e. ability to 

create a DIR: pass/fail). Robustness was identified as the next highest priority as modest 

increases in time were deemed worth ensuring that the algorithm would complete the DIR. 

Third, efficiency was evaluated based on the total time to generate the DIR (from surface 

mesh to DVF generation). Together, these ensure minimum user intervention in a stream-

lined workflow (e.g. image-guided clinical workflow). Finally, FEM complexity was evaluated 

for each organ contour using the number of surface mesh vertices. 

4.3.5 Statistical Analysis 

Performance of the different biomechanical-model based DIRs were compared per 

set of parameters and evaluation metrics with paired comparisons using the paired student 

t-test, wherein a comparison was considered significant if the p value was strictly inferior to 

0.05. 

 

4.4 Results 

Table 2 and Table 3 reported the mean (SD) performance of the BM-DIR using 

accuracy (mean and max TRE, DSC, MDA, and HD), robustness (success rate), efficiency 
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(computation time), and FEM complexity for different boundary condition parameters for liver 

and lung images, respectively. 
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Table 2. BM-DIR results for liver images. Bolded row represents the optimal parameters and 
their metrics for each function. *TRE: target registration error; DSC: Dice similarity 
coefficient; DTA: distance to agreement; HD: Hausdorff distance. 

O
rgan 

Voxel Side 
Length [cm

] 

Triangle 
Edge Length 

Success 
R
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e 

[sec] 

M
ean TR

E 
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E 
[cm
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D

A
 [cm

] 

H
D

 [cm
] 

N
um

ber of 
Vertices 

Liver 

0.15 

1 0.56 625 ± 
98 

0.35 ± 
0.16 

0.49 ± 
0.32 

0.98 ± 
0.00 

0.08 ± 
0.01 

0.93 ± 
0.28 

19529 
± 2750 

2 0.93 277 ± 
143 

0.41 ± 
0.28 

0.53 ± 
0.39 

0.97 ± 
0.00 

0.08 ± 
0.01 

1.05 ± 
0.35 

8964 ± 
1732 

3 1.00 173 ± 
78 

0.39 ± 
0.25 

0.52 ± 
0.35 

0.97 ± 
0.00 

0.09 ± 
0.01 

1.06 ± 
0.28 

5254 ± 
996 

0.2 

1 0.54 475 ± 
136 

0.48 ± 
0.27 

0.66 ± 
0.37 

0.97 ± 
0.00 

0.10 ± 
0.01 

0.96 ± 
0.22 

11496 
± 1741 

2 0.89 187 ± 
134 

0.40 ± 
0.22 

0.55 ± 
0.34 

0.97 ± 
0.01 

0.11 ± 
0.01 

1.10 ± 
0.27 

4938 ± 
969 

3 1.00 100 ± 
53 

0.38 ± 
0.18 

0.55 ± 
0.35 

0.97 ± 
0.01 

0.12 ± 
0.02 

1.17 ± 
0.32 

2936 ± 
574 

0.25 

1 0.64 341 ± 
192 

0.50 ± 
0.32 

0.63 ± 
0.39 

0.97 ± 
0.00 

0.11 ± 
0.01 

0.99 ± 
0.27 

7431 ± 
1643 

2 0.89 161 ± 
157 

0.46 ± 
0.22 

0.60 ± 
0.31 

0.96 ± 
0.01 

0.13 ± 
0.01 

1.12 ± 
0.35 

3098 ± 
636 

3 1.00 84 ± 
46 

0.42 ± 
0.20 

0.55 ± 
0.29 

0.96 ± 
0.01 

0.14 ± 
0.02 

1.18 ± 
0.29 

1850 ± 
364 
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Table 3. BM-DIR results for lung images. Bolded row represents the optimal parameters and 
their metrics. Mean and max TRE were calculated for both lungs combined. For DSC, mean 
DTA, HD, and number of vertices, results of each left and right lung were shown in the left 
and right half cells, respectively.  
*TRE: target registration error; DSC: Dice similarity coefficient; DTA: distance to agreement; 
HD: Hausdorff distance. 
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R
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R
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0.2 

2 0.92 

249 ± 136 

0.41 ± 0.09 

1.09 ± 0.28 

0.97 ± 0.01 

0.97 ± 0.01 

0.09 ± 0.01 

0.09 ± 0.01 

0.84 ± 0.38 

0.87 ± 0.40 

5222 ± 996 

5402 ± 965 

3 0.96 

143 ± 100 

0.40 ± 0.09 

1.07 ± 0.26 

0.96 ± 0.01 

0.97 ± 0.01 

0.09 ± 0.01 

0.09 ± 0.01 

0.87 ± 0.39 

0.88 ± 0.45 

2995 ± 600 

3218 ± 629 

0.25 

2 0.96 

159 ± 102 

0.41 ± 0.09 

1.08 ± 0.27 

0.95 ± 0.01 

0.96 ± 0.01 

0.12 ± 0.01 

0.11 ± 0.01 

0.94 ± 0.45 

0.91 ± 0.44 

3224 ± 742 

3372 ± 616 

3 0.88 

155 ± 166 

0.40 ± 0.07 

1.02 ± 0.23 

0.95 ± 0.01 

0.96 ± 0.01 

0.12 ± 0.01 

0.11 ± 0.01 

1.02 ± 0.50 

0.94 ± 0.40 

1930 ± 337 

1975 ± 409 

 

4.4.1 Accuracy 

AAPM TG-132 recommends that TRE and MDA be within the maximum image voxel 

dimension.[102] The diagonal dimension (longest vertex-vertex distance) of liver and lung 

image voxel was 2.71 (2.15-5.15) mm and 2.86 mm, respectively. The parameters for liver 
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and lung both returned mean TREs exceeding the respective tolerance but were 

comparable to the mean TRE of original publication of the DIR algorithm using inhale-exhale 

liver and lung CT images as the benchmark of 4.4 ± 2.0 mm. The 3 parameters with the 

lowest TRE were recommended for further consideration based on this test, which achieved 

a TRE of less than 4.0 mm. The largest MDA among liver parameters was 1.4 mm, and the 

largest MDA among lung parameters was 1.2 mm (left lung) and 1.1 mm (right lung). 

The task group recommends a DSC of 0.80-0.90, which is the typical inter and intra-

observer variability in contouring.[102] The lowest DSC was 0.96 for liver and 0.95 and 0.96 

for left and right lungs, respectively. Both MDA and DSC results were based on comparing 

the target contour with the mapped reference contour. All liver and lung parameters satisfied 

MDA and DSC recommendations. 

4.4.2 Robustness, Efficiency, and Complexity 

Triangle edge length of 1 resulted in 54-64% success rate and was therefore not 

considered a clinically robust solution. 100% success was found in three parameter 

combinations: voxel side lengths of 0.15, 0.2, and 0.25 cm each combined with triangle 

edge length of 3. However, 0.15 cm side length on average required more than double the 

time to compute FEA for the remaining two (both p < 0.001), thereby not clinically 

advantageous. In addition, compared to voxel side length of 0.25 cm, voxel side length of 

0.2 cm resulted in no significant difference for MDA, HD, or DSC, a decrease in efficiency 

(longer FEA computation time, p < 0.05), but an improvement in TRE (p < 0.05). As a result, 

the optimal parameter combination was determined to be a side length of 0.2 cm and edge 

length of 3 cm. 

For lung, all parameter combinations experienced failures from the Netgen FEA 

generator, the third-party software component implemented for volumetric tetrahedral 



   
 

63 
 

generation. However, voxel side length of 0.25 cm + triangle edge length of 3 succeeded in 

less than 90% of total cases and was therefore not considered ideal for a clinically robust 

solution. Subsequently, DIR computation time was evaluated for the remaining parameters, 

and voxel side length of 0.2 cm + triangle edge length of 2 on average required more than 

one minute more than the remaining parameters, thereby not clinically advantageous. 

Comparing the remaining two parameter combinations: voxel side length of 0.2 cm + triangle 

edge length of 3 vs voxel side length of 0.25 cm + triangle edge length of 2, the former on 

average yielded insignificantly superior TRE metrics and HD but significantly superior DSC 

and MDA (p < 0.01), despite not clinically significant. However, the former yielded coarser 

meshes (number of vertices) indicating inferior FEM complexity (p < 0.05). Despite the 

similar quality of FEM and DIR between these two parameters, the optimal parameter was 

determined to be voxel side length of 0.2 cm with triangle edge length of 3 due to its slightly 

outperforming surface alignment. However, voxel side length of 0.25 cm with triangle edge 

length of 2 is recommended as a viable option. 

 

4.5 Discussion 

This study investigated different parameter combinations used to generate the 

surface mesh for the BM-DIR implemented in a commercial TPS, using pre- and post-

ablation liver contrast-enhanced CT and planning and mid-treatment radiotherapy lung 

4DCT images. The success rate, efficiency, and accuracy of the generated DIR using these 

parameters were evaluated, and the optimal parameters for each organ were found. The 

decision-making process described in this study serves as a recommendation for the 

RayStation biomechanical-model based DIR algorithm and a potential reference for other 

biomechanical DIR systems. These parameters were subsequently verified on, 16 head-

and-neck cancer patients and 16 prostate cancer patients randomly selected from an 
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existing IRB protocol. All cases had biomechanical DIR successfully completed using the 

optimized parameters for the parotid glands[152] and prostate[153]. 

First and foremost, the DIR should strive to meet volumetric and surface accuracy 

tolerances recommended by AAPM TG-132.[102] Volumetrically, the optimal parameters 

yielded comparable TRE results compared to the original Morfeus publication[148] but did 

not meet the TG-132 tolerance, with the TRE exceeding the voxel dimension by 1.1 mm. 

However, TG-132 did note that these metrics were a target goal and may not be met with 

current DIR algorithms, and when not met, the uncertainty should be included in the clinical 

process. Research into adding additional boundary conditions at internal vasculatures to the 

standard Morfeus DVF demonstrated a significant reduction in TRE for both lung and liver 

longitudinal CTs.[101, 140] For surface alignment, DSC and MDA were met by all remaining 

parameters. These metrics would naturally be satisfactory as boundary conditions required 

matching organ mesh surfaces between the reference and target images. 

Once a consistent accuracy was ensured, robustness (success rate) was the next 

criteria for the selection process as it ensures minimum user input needed, which is critical 

for automated clinical workflows. Even for parameters achieving superior accuracy, a lower 

success rate would indicate a higher chance for potential failure, necessitating user manual 

interventions to optimize parameter settings (e.g. voxel side length of 0.2 cm with triangle 

edge length of 3 for lung) or create the boundary conditions in the user interface on a 

patient-specific bases. This would be especially burdensome for heavy offline dose 

accumulation workflows to monitor delivered dose during online adaptive radiotherapy or 

image-guided ablation that relies on robust DIRs.[141, 154] In addition, parameters that are 

accurate and robust alone would not guarantee a clinically feasible solution unless they are 

reasonably efficient. Therefore, for parameters with similar accuracy and robustness, those 

that require substantially longer computational time were excluded to ensure robust and fast 
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DIRs. Even though the results from this study showed a potential positive relationship 

between efficiency and robustness, parameters with exceptional accuracy but a long 

computational time would not be recommended.  

The last criteria, mesh complexity was subsequently considered because a coarse 

mesh would not provide enough vertices to maintain a low surface accuracy (MDA and HD) 

while a substantially complex mesh might be burdensome to solve the finite element 

problem, which negatively impacts efficiency and even robustness. This can be seen from 

the liver result where decreasing the triangle edge length from 3 to 1 for the same voxel side 

length drastically increased the number of vertices but required significantly longer 

processing time. Therefore, finding the balance of accuracy, robustness, efficiency, and 

complexity is the essence of parameter optimization. The parameter selection process can 

be automated by configuring a scoring system where different metrics are weighted to find 

the highest-scoring parameter sets. It is important to note that users can adapt the ordering 

of the metrics according to their own clinical needs: online adaptive radiotherapy may 

require robustness and efficiency weighed highest while hypo-fractionated treatments may 

require accuracy weighed highest. 

In this study, there were two primary sources of failure in the tested biomechanical-

model based DIR algorithm: mesh generation failure and DIR generation failure. Mesh 

generation failure can be due to low number of smoothing iterations to achieve the desired 

fine mesh structures. Note that these failures are not due to the magnitude of deformation 

between the reference and target images but the complexity of structures being modeled 

and the quality of the generated mesh as determined by the parameters. DIR generation 

failure can be due to intersecting triangles in the meshes that rendered solving the FEA 

impossible. As observed in the study, DIR generation failure can also come from Netgen 

failing to convert the reference triangular meshes to tetrahedral volumetric meshes, for 

which the failure is not reproduceable and the source is currently under investigation by 
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RaySearch. Further work is required to seek parameters that achieve potential 100% 

success rate. For the one case that failed for voxel side length of 0.2 cm and triangle edge 

length of 3, the remaining three parameter combinations completed without failing, which 

encouraged the selection of an alternative parameter combination (voxel side length of 0.25 

cm and triangle edge length of 2) as a temporary solution when the optimal parameter fails. 

Rerunning with the same parameters could also resolve the failure but it is a less optimal 

solution. 

4.6 Conclusion 

In this study, several parameter settings for boundary condition generation of the 

biomechanical-model based DIR algorithm in a commercial TPS have been evaluated 

based on accuracy, robustness, and efficiency. The optimal parameters were found for liver 

CT and lung CT DIR to be voxel side length of 0.2 cm and triangle edge length of 3. 

Improved robustness and efficiency may encourage more widespread usage of 

biomechanical model-based DIR algorithms in clinical practice, such as adaptive 

radiotherapy workflows and retrospective dose accumulation studies. The consistent use of 

the same reported optimal parameter by users across institutions can also facilitate 

standardized evaluation of published studies. 

 

  



   
 

67 
 

Chapter 5: Evaluate Dosimetric and Accuracy Differences between Accumulated and 

Planned Doses 

In Revision: International Journal of Radiation Oncology - Biology - Physics 

 

5.1 Sample Size Justification 

Dose accumulation is a labor-intensive process. To justify the sample size needed 

for the aim, a preliminary study with six IMRT patients was conducted to compare phase-

based accumulated dose and the AVG-based planned dose. These accumulated doses 

were propagated from the exhale phase to the AVG of the planning 4DCT to be compared 

against the planned dose on the same image. Specifically, we compared the region that 

received more than 80 Gy in the normal, ipsilateral lung. On average, these regions had 

volumes of 48 cm3 and 22 cm3 for the accumulated dose and the planned dose, respectively. 

Volumetric overlaps between the regions from the two distributions had an average score of 

0.37 ± 0.20. The null hypothesis was that the two dose distributions are the same, for which 

we set the criteria of dice score to be at least 0.9. Therefore, for a 2-tailed test and 0.05 

alpha, 26 cases were needed to have a power of 80% in demonstrating a significant 

difference in dose distributions between the phase-based weekly dose accumulation and 

average-image based planned dose. 

We developed an automated approach utilizing the scripting capabilities of 

RayStation treatment planning system (RaySearch Laboratories, Stockholm, Sweden). The 

end of the thesis will provide some general tips on scripting in RayStation. 

5.2 Abstract 

Purpose: To investigate the dosimetric and clinical impacts of 4-dimensional computed 

tomography (4DCT)-based longitudinal dose accumulation in locally advanced non–small-
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cell lung cancer patients treated with standard-fractionated intensity-modulated radiotherapy 

(IMRT). 

Materials and Methods: Sixty-seven patients were retrospectively selected from a 

randomized clinical trial. Their original IMRT plan, planning and verification 4DCTs, and ~4-

month post-treatment PET/CTs were imported into a commercial treatment planning system. 

Two deformable image registration (DIR) algorithms were implemented for dose 

accumulation, and their accuracies were assessed. The planned and accumulated doses 

computed using average-intensity images or phase images were compared. At the organ 

level, mean lung dose (MLD) and normal-tissue complication probability (NTCP) for grade ≥ 

2 radiation pneumonitis were compared. At the region level, mean dose to lung subsections 

and the volumetric overlap between isodose intervals were compared. At the voxel level, the 

accuracy in estimating the delivered dose was compared by evaluating the fit of a dose vs. 

radiographic image density change (IDC) model. The dose-IDC model fit was also compared 

for sub-cohorts based on the magnitude of NTCP difference (|ΔNTCP|) between planned 

and accumulated doses. 

Results: DIR accuracy was quantified, and the uncertainty was considered for the voxel-

based analysis. Compared to planned doses, accumulated doses on average resulted in < 

1-Gy lung dose increase and < 2% NTCP increase (up to 8.2 Gy and 18.8% for a patient, 

respectively). Volumetric overlap of isodose intervals between the planned and accumulated 

dose distributions ranged 0.01–0.93. Voxel-level dose-IDC models demonstrated a fit 

improvement from planned dose to accumulated dose (pseudo-R2 increased 0.0023) and a 

further improvement for patients with ≥ 2% |ΔNTCP| vs. for patients with < 2% |ΔNTCP|. 

Conclusions: With a relatively large cohort, robust image registrations, multi-level metric 

comparisons, and radiographic image-based evidence, we demonstrated that dose 

accumulation more accurately represents the delivered dose and can be especially 

beneficial for patients with greater longitudinal response.  
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5.3 Introduction 

The standard of care for locally advanced non–small-cell lung cancer (LA-NSCLC) 

patients includes radiotherapy. Despite the treatment’s curative intent, these patients suffer 

from low 5-year survival rate.[7] Current clinical practice in external-beam radiotherapy 

calculates the delivered dose at the planning stage by assuming stationary anatomy 

throughout the course of treatment. However, patient anatomy often changes in volume and 

shape, which affects the treatment response of the target and the organs at risk.[155] 

Having an accurate representation of the delivered dose may help clinicians to predict 

toxicity and develop a better understanding of dose-dependent predictors of response. 

Intra-fractional and inter-fractional anatomical changes have been demonstrated to 

alter dose deposition in the tumor and normal tissue.[155] For the intra-fractional anatomical 

change, four-dimensional computed tomography (4DCT) is routinely used in treatment 

planning to quantify motion for use in defining the planning target volume,[29] and studies 

have found that by incorporating breathing motion, the phase-based 4D planned dose is 

more accurate than the average-intensity image (AVG)–based 3D planned dose.[77, 78, 

156–159] The effect of inter-fraction anatomical changes can be realized with longitudinal 

dose accumulation based on repeat volumetric imaging over the course of treatment. 

Previous studies have accumulated dose using cone-beam computed tomography (CBCT) 

in small patient cohorts (< 30 patients).[79–81] These studies focused on DVH-based organ-

level metrics that lack spatial features; however, increasing evidence has suggested clinical 

benefits of region/voxel-level metrics.[160, 161] Therefore, true validation of the dosimetric 

accuracy improvement of deformable image registration (DIR)-based dose accumulation 

compared to the planned dose in delivered dose representation has been limited. To date, 

no study has evaluated improvements in dosimetric accuracy using models of dose vs. 

radiographic evidence of response to prove the superior accuracy of the accumulated dose 

over the planned dose. 
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In this study, we hypothesized that the accumulated dose is superior in accuracy 

than the planned dose in representing the delivered dose, with an improved correlation to 

radiographic treatment response. To test this, we automated a 4DCT-based deformable 

dose accumulation workflow for standard-fractionated IMRT and retrospectively investigated 

the dosimetric differences between the planned dose and the accumulated dose on the 

organ, region, and voxel levels. We assessed the voxel-level dose-radiographic treatment 

response relationships to determine the clinical implications of dose accumulation. We 

employed state-of-the-art DIR techniques to ensure accurate dose and image mappings and 

addressed the uncertainties involved in dose accumulation and image-based response 

assessment. 

 

5.4 Methods and Materials 

5.4.1 Patient Data 

Data on 67 LA-NSCLC patients were curated under an IRB-approved retrospective 

protocol and imported into a commercial treatment planning system (TPS) (RaySearch 

Laboratories, Stockholm, Sweden) for processing. Patients were originally treated under 

free-breathing conditions with standard-fractionated IMRT in a prospective clinical trial.[85] 

Table 4 lists the tumor locations and dose prescriptions of the cohort. Patients had a single 

treatment plan and an average of 6 (range, 4–8) weekly 4DCTs to quantify response over 

the course of radiotherapy. The net tumor volume change was 23.0 ± 70.0 cm3 over the 

course of treatment. 

Table 4. Tumor location and dose prescription for the selected patients. 
 Number 
Tumor location 

 

Upper lobes (L/R) 45 
Right middle lobe 6 
Mediastinum (nodal) 5 
Lower lobes (L/R) 11 
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Dose prescription [Gy] 
 

74 40 
66 24 
60/62 3 

 

For a subset of 60 patients, image response was assessed using a non-contrasted 

free-breathing PET/CT acquired 4.0 (1.1–8.2) months after treatment to measure acute 

inflammatory response. The voxel sizes for 4DCT and PET/CT were 0.98 x 0.98 x 2.5 mm3 

and 0.98 x 0.98 x 3.3 mm3, respectively. All images were free from lobar atelectasis or 

pleural effusion with > 2-cm axial thickness to minimize lung volume imbalance for image 

registration accuracy. Both lungs were segmented using a commercially available 3D U-

Net–based auto-segmentation algorithm as provided by the TPS. The algorithm was trained 

with in-house images that were manually edited by an experienced graduate student (YH) 

and checked by a board-certified radiologist (CW). 

 

5.4.2 Dose Accumulation Workflow 

A clinical dose grid of 3 x 3 x 3 mm3 was set for all dose calculations. Dose was 

accumulated in a 3-step process: recalculation, deformation, and summation. For clarity, the 

term “summation” corresponds to adding doses that share the same image frame, whereas 

the term “accumulation” is reserved for longitudinal dose mapping. We investigated 4 types 

of doses: the AVG–based 3D planned dose (3DP) as the standard of care, the phase-based 

4D planned dose (4DP), the AVG–based 3D accumulated dose (3DA), and the phase-based 

4D accumulated dose (4DA) as the most extensive dose accumulation. Their schema are 

shown in Figure 16.  

Planned doses (3DP and 4DP) were recalculated based on the planning 4DCT. 3DP 

was obtained by recalculating the dose by the treatment plan on the AVG of the planning 

4DCT, and 4DP was obtained by calculating the dose on each phase of the planning 4DCT 
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(with equally distributed weights), mapping non–end-exhale phase (T5) dose distributions to 

T5 through intra-fractional DIRs (green arrows, Figure 16), and summing the deformed 

doses with the T5 dose. 

To accumulate dose (3DA or 4DA), weekly doses (3D or 4D) were weighted by the 

number of fractions assigned to each 4DCT (the nearest fractions according to the treatment 

record) with respect to the total treated fractions. For 3DA, weekly 3D doses were deformed 

to the planning AVG and summed. For 4DA, weekly 4D doses (obtained in the same way as 

with 4DP) were deformed to the planning T5 and summed. We selected T5 as the reference 

image for dose propagation as recent studies showed that T5-T5 DIR maintains the most 

robust registration accuracy for inter-fractional registrations.[146] 

 
Figure 16. Schema for obtaining the 4D planned dose (4DP) (green), the 3D accumulated 
dose (3DA) (orange), and the 4D accumulated dose (4DA) (red). Images shown are the 
AVG and the 0%/50%/90% breathing phases of the planning 4D computed tomography 

(4DCT) and the weekly verification 4DCTs. Arrows indicate the direction of dose mapping. 
 

Planning Week Week 1 Week n

T5

T0 T0

T5

T9T9T9

T0

T5

AVG AVG AVG
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5.4.3 Image Registration Process and Accuracy 

Prior to DIR, rigid alignments were performed in the TPS. The AVGs of the planning 

and weekly 4DCTs were registered with translation only and a focus on bony anatomy to 

mimic patient setup during original treatment. Subsequently, breathing phases of weekly 

4DCTs were automatically registered to those of the planning 4DCT since images of each 

4DCT shared the same image frame—this allowed dose recalculation for the phase images 

of weekly 4DCTs. For response assessment, the planning T5 was registered with the 

PET/CT. 

Two deformable image registration (DIR) algorithms were implemented. An image 

intensity-based algorithm focusing on the lung region (ANACONDA) (commercially available 

in the TPS) was used for intra-fractional mappings.[118] A biomechanical model-based 

algorithm with sliding lung motions and internal vasculature alignment (vbcMORFEUS) was 

used for longitudinal mapping and response assessment by modifying a commercially 

available algorithm in the TPS.[101] The process for vbcMORFEUS was the following: 1) 

triangle mesh was generated with previously optimized parameters,[162] 2) boundary 

conditions for a sliding lung interface were established, and 3) the deformation vector field 

was exported from the TPS and modified by adding constraints on vessel alignment. 

We validated geometric registration accuracy within the ipsilateral normal lung 

(excluding the gross tumor volume (GTV)). We implemented a previously validated 

automatic landmark identification algorithm to quantify the target registration error (TRE) at 

vasculature branching points,[149] to evaluate the accuracy for intra-fractional DIR 

(represented by T0-T5 DIR of the planning 4DCT), inter-fractional T5-T5 DIR and AVG-AVG 

DIR between the planning and the third weekly 4DCTs (both using landmark pairs identified 

on the T5s), and the T5-PET/CT DIR for response assessment. The American Association 
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of Physicists in Medicine Task Group 132 (AAPM TG 132) Report was employed to 

determine whether voxel-level accuracy was achieved for these DIRs.[102] 

 

5.4.4 Organ-Level Dose and Response Metrics 

The mean dose to the ipsilateral normal lung (MLD) was recomputed as the organ-

level dose metric. Probability of grade ≥ 2 radiation pneumonitis was evaluated as the 

clinical metric using the Lyman–Kutcher–Burman (LKB) normal-tissue complication 

probability (NTCP) model (with dose distributions of the total normal lung). The model is 

expressed in equations (1) and (2) where[65, 66, 163] 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  1
√2𝜋𝜋

∫ 𝑒𝑒−
𝑥𝑥2

2  𝑑𝑑𝑑𝑑
𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒−𝑇𝑇𝐷𝐷50
𝑚𝑚∙𝑇𝑇𝐷𝐷50

−∞  (1) 

 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 =  (∑ 𝑣𝑣𝑖𝑖𝐷𝐷𝑖𝑖
1
𝑛𝑛𝑖𝑖 )𝑛𝑛 (2) 

parameters 𝑁𝑁𝐷𝐷50, 𝑚𝑚, and 𝑛𝑛 were 34.80 Gy, 0.22, and 0.5, respectively, per Tucker et al. that 

shared the same patients with our study.[67] These patients were treated with standard 

fractionation, so no fraction-correction was implemented for 𝐷𝐷𝑖𝑖. One-way ANOVA with 

Dunnett's multiple comparisons test (with P = 0.05 as the threshold for statistical 

significance) was used to compare MLD and NTCP for each of 4DP, 3DA, and 4DA against 

3DP. Histograms were created for 4DP, 3DA, and 4DA to demonstrate the distribution of the 

magnitude of MLD deviation (|ΔMLD|) and NTCP deviation (|ΔNTCP|) against 3DP. The 

number of patients with |ΔNTCP| ≥ 5% or 2% was quantified to identify patients with 

potentially clinically meaningful changes over the course of treatment. These thresholds 

were proposed by Langendijk et al. to guide the decision making of treatment modality in 

clinical trials.[164] 
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5.4.5 Region-Level Dose Metrics 

The ipsilateral normal lung in the planning T5 was tri-partitioned into equal-volume 

subsections along the superior-inferior direction. Using the paired Student t-test, the mean 

dose to each subsection was compared between 3DP (evaluated using T5 contours) and 

4DA. Further, the percentage volumetric overlap between isodose intervals were evaluated 

for 3DP and 4DA. These isodose intervals were defined by voxels of 5-Gy increments that 

spanned 0–80 Gy. 

 

5.4.6 Voxel-Level Dose and Response Metrics  

Dose grids of 3DP and 4DA were resampled to match the resolution of the planning 

T5. For each patient, we subtracted the dose maps between 3DP and 4DA for voxels in the 

ipsilateral normal lung to obtain the level of dose difference. Subsequently, we created a 

cumulative histogram for the magnitude of dose difference for the entire cohort. 

To link the dosimetric difference to clinical impact, we calculated CT image density 

change (IDC) between the planning T5 and the PET/CT (after the PET/CT was deformed via 

vbcMORFEUS to the planning T5). Since 3DP was calculated on the planning AVG, we 

overlaid 3DP to the inherently registered planning T5. We considered voxels of the planning 

T5 that were at least 2 mm away from the lung and GTV boundaries to avoid partial-volume 

averaging and boundary effects. Similar to the isodose intervals in the regional analysis, 

these voxels were grouped into 5-Gy dose bins. Dose bins with fewer than 1 million voxels 

were excluded to ensure robust statistics—this defined the highest dose bin to be plotted. 

The average IDC and dose for voxels of each dose bin were obtained. Subsequently, voxel-

level dose-IDC relationships were established by fitting a modified LKB NTCP model, where 

NTCP was expressed as the percent IDC against the maximum IDC, and 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 was 

represented by dose to each voxel. Non-linear least squares fitting from the Python SciPy 
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package (version 1.6.2) was used to obtain 𝑚𝑚 and 𝑁𝑁𝐷𝐷50. Pseudo-R2 in equation (3) was 

used to reflect the non-linear fit, where the residual IDC represented the difference between 

the modeled IDC and the measured IDC. 

 R2  =  1 − 𝑣𝑣𝑣𝑣𝑑𝑑𝑖𝑖𝑣𝑣𝑛𝑛𝑟𝑟𝑒𝑒(𝑑𝑑𝑒𝑒𝑟𝑟𝑖𝑖𝑑𝑑𝑟𝑟𝑣𝑣𝑟𝑟 𝐼𝐼𝐼𝐼𝐼𝐼)
𝑣𝑣𝑣𝑣𝑑𝑑𝑖𝑖𝑣𝑣𝑛𝑛𝑟𝑟𝑒𝑒(𝑑𝑑𝑒𝑒𝑣𝑣𝑟𝑟𝑟𝑟𝑑𝑑𝑒𝑒𝑑𝑑 𝐼𝐼𝐼𝐼𝐼𝐼)

 (3) 

The voxel-level dose-IDC modeling was repeated for the sub-cohort of patients with ≥ 2% 

|ΔNTCP| between 3DP and 4DA and again for patients with < 2% |ΔNTCP|. 

 To ensure voxel-based analysis, if the accuracy of T5-PET/CT DIR did not meet the 

recommendations from AAPM TG 132,[102] the images and doses involved (i.e., planning 

T5, deformed PET/CT, 3DP, and 4DA) were simultaneously resampled by binning voxels 

uniformly along all three dimensions (e.g., 2 x 2 x 2 voxels) until the diagonal length of the 

“super” voxel was larger than the average TRE of T5-PET/CT DIR. Subsequently, the voxel-

level dose-IDC modeling was repeated using the “super” voxels, and the model fit was 

compared with that of the original voxel dimension. 

 

5.5 Results 

5.5.1 Image Registration Accuracy 

The evaluated DIRs were the intra-fractional T0-T5 DIR (ANACONDA), the inter-

fractional T5-T5 DIR and AVG-AVG DIR (vbcMORFEUS), and the longitudinal T5-PET/CT 

DIR (vbcMORFEUS). For T5-PET/CT DIR, the algorithm was modified to include 

bifurcations on thinner vessels to compensate for the complex response in the follow-up 

PET/CTs, and the TRE evaluation was limited to cases with > 20 identified landmarks. The 

average TRE and number of identified landmarks were 2.3 ± 1.8 mm and 62 ± 27 (T0-T5 

DIR), 2.8 ± 1.9 mm and 60 ± 26 (T5-T5 DIR), 3.2 ± 1.8 mm and 60 ± 26 (AVG-AVG DIR), 

and 5.6 ± 2.2 mm and 61 ± 43 (T5-PET/CT DIR). The AAPM TG 132 Report recommended 

the registration uncertainty to be within the longest vertex-vertex distance of the 
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images,[102] which was 2.9 mm as the diagonal dimension of the analyzed 4DCTs. Both the 

T0-T5 DIR and the T5-T5 DIR satisfied this recommendation, indicating that the phase-

based 4DP and 4DA achieved voxel-level accuracy. TRE for AVG-AVG DIR indicated 

slightly lower dose mapping accuracy compared to T5-T5 DIR. To meet the 

recommendation for T5-PET/CT DIR, we resampled images and doses involved in the 

voxel-level dose response analysis by binning every two voxels along all three dimensions 

into “super” voxels with diagonal dimension of 5.7 mm (1.95 x 1.95 x 5.0 mm3). 

 

5.5.2 Organ-Level Dose and Response Metrics 

Figure 17 shows the effect of intra- and inter-fractional anatomical changes at the 

organ level. Figure 17(a) and Figure 17(b) demonstrate the MLD and NTCP, respectively for 

all four doses: 3DP, representing standard of care, had MLD of 30.6 ± 7.7 Gy and NTCP of 

28.5% ± 16.2%; 4DP, accounting for intra-fractional anatomical change, had MLD of 30.3 ± 

7.7 Gy and NTCP of 27.4% ± 15.7%; 3DA, accounting for inter-fractional anatomical 

change, had MLD of 31.4 ± 8.0 Gy and NTCP of 30.4% ± 17.6%; 4DA, accounting for both 

intra- and inter-fractional anatomical changes, had MLD of 31.3 ± 8.0 Gy and NTCP of 

29.7% ± 17.3%. Figure 17(c) and Figure 17(d) show the frequency distribution for |ΔMLD| 

and |ΔNTCP|, respectively, for each of 4DP, 3DA, and 4DA compared to 3DP. The largest 

MLD increase from 3DP to 4DA was 8.2 Gy, and the NTCP increased 18.8% for this patient, 

and more patients with larger deviations were seen for 3DA and 4DA than 4DP. The number 

of patients with ≥ 5% or 2% |ΔNTCP| between 3DP and 4DA was 11 or 30 (16% or 45% of 

the cohort).  
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Figure 17. The effect of intra- and inter-fractional anatomical changes to the mean lung dose 

(MLD) and the normal tissue complication probability (NTCP) at the organ level. Whiskers 
span the 10th-90th percentile. Top sub-plots: boxplots for average MLD and NTCP for the 3D 
planned dose (3DP), the 4D planned dose (4DP), the 3D accumulated dose (3DA), and the 
4D accumulated dose (4DA) for the studied cohort. The NTCP comparison between 3DP 
and 4DA resulted in P = 0.08. Middle and bottom sub-plots: histograms for |ΔMLD| and 

|ΔNTCP| for each of 4DP, 3DA, and 4DA against 3DP. 
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5.5.3 Region-Level Dose Metrics 

Compared to 3DP, 4DA resulted in higher mean dose of the superior and middle 

subsections (47.4 Gy vs. 48.0 Gy and 34.8 Gy vs. 35.4Gy, respectively, both P < 0.01) and 

lower mean dose of the inferior subsection (13.8 Gy vs. 13.6 Gy, P = 0.73). Boxplots in 

Figure 18 illustrate that the volumetric overlap of 5-Gy isodose intervals between 3DP and 

4DA ranged 0.01–0.93. 

 
Figure 18. Boxplots of volumetric overlap between the 3D planned dose (3DP) and the 4D 

accumulated dose (4DA) for isodose intervals of 5-Gy increments. The triangles next to 
each boxplot represent the average volume of each isodose interval under both 3DP and 

4DA. Due to differences in dose prescriptions, the number of patients that contributed to the 
last 2 boxplots were labeled above each boxplot. 

 

5.5.4 Voxel-Level Dose and Response Metrics  

For individual patients, more than one-fifth of the cohort (14/67) had ≥ 20% voxels 

experiencing absolute dose difference of ≥ 5 Gy between dose distributions of 3DP and 

4DA. Figure 19 shows the ‘dose-difference’ volume histogram for the comparison between 

3DP and 4DA for the entire cohort. Approximately 35% and 15% voxels received absolute 

dose difference of ≥ 2 Gy and 5 Gy, respectively. 
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Figure 19. Cumulative histogram for voxels of the entire cohort showing the distribution of 
absolute dose difference between the 3D planned dose (3DP) and the 4D accumulated 

dose (4DA). Dose difference of > 20 Gy was excluded in the plot. 

 

The voxel-level dose-IDC model fit for the original voxel resolution is shown in Figure 

20(a). The average number of voxels in each dose bin was 1.8e+6 for both doses (3DP: 

1.0e+6–7.5e+6, 4DA: 1.1e+6–7.6e+6). Compared to 3DP, 4DA resulted in a higher TD50 

(dose causing 50% of maximum IDC), a higher mean IDC for each dose bin (P < 0.01 

except for 10-15 Gy with P = 0.08), and a modest, but consistent, improvement in model fit 

(pseudo-R2 increase of 0.0023). Figure 20(c) and Figure 20(d) show that the model fit for 

patients with ≥ 2% |ΔNTCP| had larger improvement in pseudo-R2 (0.0118) than for patients 

with < 2% |ΔNTCP| (0.0007)—i.e., those with larger longitudinal anatomical changes vs. 

those with less changes. Figure 20(b) shows that 2x2x2-binned “super” voxels maintained 

comparable fitted parameters and pseudo-R2 compared to the original voxel dimension in 

Figure 20(a), demonstrating the results from the original voxel resolution was not degraded 

by accounting for the larger TRE. 
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Figure 20. Voxel-level dose-image density change (IDC) modeling results: the mean image 
density change (IDC) (left y-axis), mean dose (x-axis), and the normalized IDC against the 
maximum IDC (right y-axis) for voxels in each dose bin. The fitted plots are represented by 

dashed lines. TD50 represents dose that causes 50% of maximum IDC. (a) & (b): Fitted 
models using original sized voxels and “super” voxels of the entire cohort, respectively. (c) & 
(d): Fitted models for patients with ≥ and < 2% |ΔNTCP| (magnitude of change in the normal 

tissue complication probability) between the 3D planned dose (3DP) and the 4D 
accumulated dose (4DA), respectively. 

 

5.5 Discussion 

For LA-NSCLC patients treated with standard-fractionated IMRT, we quantified the 

dosimetric differences between the planned and accumulated dose distributions by 

independently evaluating the effect of intra-fractional and inter-fractional anatomical 

changes. We determined the clinical impact of such dose differences by correlating the 

analyzed doses with radiographic image-based outcomes. 

(a) (b)

(d)(c)
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We employed two DIR algorithms: ANACONDA for intra-fractional dose mapping and 

vbcMORFEUS for inter-fractional dose mapping and longitudinal image mapping for 

response analysis. Intra-fractional image mapping does not involve tissue response, which 

warranted ANACONDA as an accurate, robust, and fast method. For inter-fractional image 

registrations, lung tumors can respond 1) inelastically, where the tumor boundary erodes 

away while normal lung tissue stays intact, 2) elastically, where normal lung tissue follows 

the tumor boundary, indicating no microscopic disease, or 3) both inelastically and 

elastically.[93, 165] Intensity-driven DIR algorithms may force align the tumor boundary 

between the registered images to maximize the image similarity metric. In contrast, 

biomechanical model-based DIR algorithms are independent of image intensity, and the 

internal boundary conditions drive the alignment of structural similarities that are maintained 

in each image. It was observed in our sample that most tumors responded (at least partially) 

inelastically. Therefore, vbcMORFEUS would provide a more realistic registration. In 

addition, for elastically responding tumors, not force-aligning the tumor boundary was a 

conservative approach to accumulate lung dose—target dose to lung voxels adjacent to 

shrunken tumor was mapped to tumor voxels in the planning image, so the high dose was 

not accounted for the accumulated lung dose, since only the normal lung was considered for 

dose metrics. Accuracy of these DIRs were validated by automated TREs and compared 

against the recommendation of AAPM TG 132. To maintain voxel-level accuracy for dose-

response analysis, we binned the voxels of the images and doses involved into “super” 

voxels to compensate for the high TRE for T5-PET/CT DIR. 

We leveraged the commercially available scripting capability of the TPS to perform 

auto-segmentation, image registration, dose mapping, and dose summation to achieve, to 

our knowledge, the most comprehensive dose evaluation for the largest patient sample to 

date. Among these doses, 3DP represents the planned dose calculated on the AVG and is 

widely used as the clinical standard for treatment planning. In contrast, 4DP explicitly uses 
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the anatomy of a full breathing cycle, and the difference between 3DP and 4DP has been 

well-documented in the literature.[77, 78] Compared to 3DP, 3DA resulted in a higher MLD, 

indicating the effect of inter-fractional anatomical change: e.g., fewer photons were 

attenuated by smaller tumor volume and, in turn, deposited more energy in the normal lung. 

The higher MLD of 4DA compared to 3DP reflected the net result of the interplay of intra- 

and inter-fractional anatomical changes. Neither the MLD nor NTCP difference was clinically 

significant in the population-based analysis. However, a substantial portion (16–45%, 

depending on criteria used) of the cohort individually resulted in |ΔNTCP| that could trigger a 

change in the treatment planning re-evaluation per Langendijk et al., suggesting the benefit 

of dose accumulation on a patient-by-patients basis for assessment of complication risk. 

Therefore, automated dose accumulation workflows can help identify dose deviation that 

triggers re-planning. 

Among the geometric subsections of the ipsilateral normal lung, the highest mean 

dose in the superior subsection reflected that the majority of the cohort had superiorly 

located tumors. Both superior and middle subsections experienced increased mean dose 

while their inferior counterpart experienced decreased mean dose–the interplay of intra- and 

inter-fractional anatomical changes was especially pronounced in the inferior subsection. 

For the volumetric comparison of isodose intervals, the < 50% average overlap for the mid-

level dose ranges shown in Figure 18 indicated low agreement between the planned and 

accumulated doses. In contrast, isodose intervals for low and high dose ranges resulted in 

relatively better agreement, potentially due to increase in the compared volumes. Therefore, 

evaluating the dose metrics at a regional level may improve our understanding of how 

longitudinal anatomical changes affect different lung sub-regions. Future studies should 

consider applying automatic lobe segmentation to investigate the dosimetric and functional 

impact of anatomical changes to different lobes, especially the inferior lobes with increased 

sensitivity—a multi-institutional clinical trial.[70, 166–168] 
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We utilized IDC from planning to post-treatment to quantify radiographic response 

rather than subjective, qualitative symptomatic scorings.[169] Similar methods have been 

documented in the literature.[83, 84, 89, 170, 171] However, we addressed the DIR 

accuracy for voxel-to-voxel correspondence to obtain IDC and used non-contrasted 

PET/CTs to avoid artificial IDC increase in voxels near vessels. Studies have demonstrated 

a time-dependency of IDC where IDC peaked at around 6 months for acute response (e.g., 

pneumonitis) and then decreased to a plateau at around 12 months as a permanent 

response (e.g., fibrosis).[83, 170, 171] The PET/CTs from our study were, on average, 

obtained ~4 months after treatment, representing mostly acute inflammatory response. 

Future studies can include additional longitudinal images to examine the time effect, but the 

number of available images could be limited due to loss of patient contact for follow-ups. 

We used a modified NTCP model (i.e., a sigmoid curve) instead of a linear model, as 

IDC theoretically cannot increase indefinitely. However, the model had to be modified so 

that each voxel represented itself as a sample, independent of the location and patient. As a 

result, 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 became the dose to voxel itself. With the relative IDC against the maximum IDC 

as the endpoint, the model calculated the likelihood that a voxel would achieve the 

maximum radiographic response. The modest, but consistent improvement in model fit from 

the accumulated dose, compared to the planned dose, is evidence, especially for the sub-

cohort with larger anatomical changes, that the accumulated dose more accurately 

represents radiation damage than the planned dose. Given this improvement, the ability to 

robustly automate the dose accumulation process, and the substantial differences observed 

in individual cases with larger response, we recommend using dose accumulation to 

represent the delivered dose when performing radiation-induced toxicity analysis and to 

determine the composite dose for re-irradiation or adaptive re-planning. However, the 

increased voxel-mapping sensitivity in regions of high dose and large dose gradient calls for 
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caution for lung tissue near tumor. Nevertheless, the observed dosimetric benefits of dose 

accumulation should be further evaluated in a multi-institutional prospective trial. 

Our findings aligned well with those of previous studies. Wang et al. accumulated 

dose for a hypo-fractionated regimen for stage III patients (N = 27) using 5 CBCTs for a total 

of 17 fractions per patient, and observed a limited increase in MLD (median increase < 

5%).[81] Luo et al. grouped 3-dimensional conformal radiotherapy and IMRT (N = 24, each 

cohort size unknown) and found no significant differences in organ-level dose metrics in 

lung, unless patients had a large target response.[80] Ren et al. combined doses from the 

original plan and the new plan after 20th fraction (N = 30) and found a positive relationship 

between the difference in the planned–accumulated doses and the lung volume change.[79] 

Alam et al. focused on the esophagus dose for LA-NSCLC (N = 11) and found that the 

median accumulated mean esophagus dose was higher than the planned dose (24 Gy vs 21 

Gy, P < 0.01).[172] 

Our study benefited from a large patient cohort, the component-wise investigation of 

the impact of breathing motion and longitudinal response, region/voxel-level dose/response 

analysis, and the correlation of dose to the clinical, image-based response. However, one 

limitation is the lack of daily imaging, such as CBCT, to more frequently represent the inter-

fractional anatomical changes. However, we believe that the number of weekly 4DCTs was 

sufficient to reflect anatomical changes throughout treatment and that 4DCTs had the 

advantage of realizing the intra-fractional anatomical change and full field-of-view compared 

to CBCT. 

The studied patients were enrolled in a clinical trial that compared photon vs proton 

therapies, and proton dose accumulation is the focus of ongoing research. We hypothesize 

a more significant dose difference due to protons’ increased sensitivity to anatomical 

changes. 
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5.6 Conclusions 

We performed 4DCT-based longitudinal deformable dose accumulation for LA-

NSCLC patients treated with standard-fractionated IMRT and compared the accumulated 

dose with the planned dose. Population-based comparison returned statistically significant 

dose deviations yet modest differences in the predicted pneumonitis rate. Individually 

however, a substantial portion of the cohort (16–45%, depending on criteria used) resulted 

in deviations in predicted pneumonitis rate that could trigger a change in the treatment 

planning re-evaluation. Additionally, clinical image-based evidence showed that 

accumulated dose improved the correlation to localized tissue damage than planned dose, 

especially for patients with larger deviations in predicted pneumonitis rate. Therefore, our 

findings demonstrated that dose accumulation more accurately estimates the dose delivered 

from the treatment course and can be particularly beneficial when patients experience large 

longitudinal anatomical changes.  
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Chapter 6: Variable Proton RBE Modelling Using Clinical Radiographic Evidence 

 

6.1 Abstract 

Purpose: To derive the proton variable relative biological effectiveness (RBE) from 

radiographic changes and validate it with two published empirical models for locally 

advanced non–small-cell lung cancer patients. 

Materials and Methods: We retrospectively analyzed patients previously treated on a 

prospective randomized trial with standard-fractioned intensity-modulated photon therapy (n 

= 51) or passive scattering proton therapy (n=67). We recomputed, for photon patients, the 

planned dose (Dx) and, for proton patients, the physical planned dose (Dp) and the dose-

averaged linear energy transfer (LETd). For each patient, we calculated the image density 

change (IDC) in the normal ipsilateral lung from the planning CT to a follow-up CT. Using 

IDC as the clinical evidence of response, we correlated voxel-level dose-IDC relationships 

by fitting a modified Lyman–Kutcher–Burman normal tissue complication probability (NTCP) 

model for both patient groups together. With the fitted NTCP models, we calculated Dx and 

Dp at each defined IDC level and the clinical RBE value as Dx/Dp. We validated the 

observation of variable RBE values by fitting two empirical models: McNamara et al and 

Wedenberg et al. 

Results: The measured radiographic-based RBE values ranged from 3.0 to 1.2 for voxels 

that received proton physical doses ranging from 9.7 Gy to 55.6 Gy (corresponding to IDC 

levels of 20 HU to 115 HU, in increments of 5 HU). The McNamara and Wedenberg models 

returned the fitted parameter(s) of p0 = 3.9, p1 = 15.8, p2 = 2.3, and p3 = -0.3 and q = 13.0 

with a pseudo-R2 of 0.99 and 0.92, respectively. 

Conclusion: Variable RBE values were modeled using voxel-based radiographic changes 

as the clinical endpoint and validated using established models. This is the first study to 
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demonstrate the potential clinical radiographic-based endpoint for RBE modelling to better 

understand proton biological dose. 

6.2 Introduction 

The standard of care for patients with locally advanced non–small-cell lung cancer 

(LA-NSCLC) includes radiation therapy (RT). However, RT patients experience a low 5-year 

survival rate [7]. Dose-limiting toxicity such as radiation pneumonitis (RP) may contribute to 

this low survival rate. Given concerns about toxicity, clinicians may prescribe sub-optimal 

dose coverage, enabling tumor cells to avoid lethal damage. The RTOG 0617 trial 

concluded that photon dose escalation increases tumor control but also increases toxicity 

[46]. Photon therapy is the conventional radiation modality, and its tumor conformality has 

improved as 3-dimensional conformal RT has evolved into intensity-modulated RT (IMRT). 

However, IMRT still delivers a considerable amount of radiation to surrounding healthy 

tissues (i.e., exit dose). 

Proton therapy has emerged as an alternative radiation modality because it 

theoretically offers better conformal dose delivery than photon therapy, and thus a lower risk 

of toxicity [49]. Proton therapy’s superior dose conformality comes from protons stopping 

after delivering most of their energy at the tumor, through the Bragg peak phenomenon [50]. 

With this unique characteristic, proton therapy has the advantage of maintaining tumor dose 

while minimizing damage to the surrounding normal tissue [48]. However, studies have 

shown that the efficacy achieved with proton therapy is not significantly different than that 

achieved with photon therapy.  A randomized phase II clinical trial aimed to compare the 

efficacy of PSPT with that of IMRT for LA-NSCLC [85]. The trial showed that although PSPT 

provided better conformality, with a reduced volume of lung receiving at least 5 or 10 Gy, it 

did not yield significantly lower rates of local failure (~ 11% for both IMRT and PSPT) or 

grade 3 RP (6.5% for IMRT vs. 10.5% for PSPT). Therefore, the theoretical tissue-sparing 
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advantage of proton therapy has not translated into improved clinical outcomes, and we 

have a limited understanding of the underlying biological damage done by protons in the 

lung. 

Relative biological effectiveness (RBE) describes the difference in biological damage 

between protons and photons. It is defined as the ratio between the proton dose and photon 

dose contributing to the same biological endpoint. Based on an average of evidence, the 

current consensus for the clinical implementation of proton therapy is to use a constant RBE 

of 1.1 [173], so the physical proton dose is obtained by dividing the biological dose by 1.1. 

However, we questioned the validity of the clinically implemented fixed RBE of 1.1 because 

the clinical trial results did not confirm the anticipated superior normal tissue sparing 

promised by proton therapy [85]. Even though the fixed RBE–weighted lung dose was 

preserved by PSPT, the higher biological effectiveness of PSPT, which was not accounted 

for in treatment planning, could have contributed to the increased toxicity. 

Increasing experimental and simulation evidence suggests RBE varies depending on 

dose [174–177]. However, these studies do not reflect the response of normal tissue inside 

patients. Therefore, measuring the RBE values directly in the patient could help us 

understand the clinical biological effects of protons. Therefore, we used the image density 

change (IDC) from the planning computed tomography (CT) to post-treatment CT as a 

directly quantifiable clinical endpoint for RBE. Although the IDC does not always indicate 

RP, it is still considered a grade 1 response according to the Common Terminology Criteria 

for Adverse Events  [57]. In addition, an increasing number of studies has demonstrated the 

feasibility of localized radiography-based dose-response models [83, 84, 90, 178]. The 

common relationship is a positive sigmoidal relationship between the dose and radiographic 

change. Therefore, in the present study, we considered the clinical RBE to be the ratio 

between the photon and proton doses causing the same level of IDC. As we obtained 

changing RBE values with dose, we validated the observation by fitting an established RBE 
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model. Many phenomenological models have been developed using empirical data from in 

vitro cell studies [176, 177]. In general, these models are based on a linear-quadratic model 

of cell killing, and common parameters include photon dose, proton physical dose, linear 

energy transfer (LET), alpha/beta ratio (α/β), and their unique parameters to be fitted. Such 

models assume that LET, a macroscopic dosimetric parameter, is a main contributor to 

proton RBE [179]. As a proton slows towards the end of its track, LET is the main contributor 

to the increase in the proton RBE [180]. Due to the stopping of proton, LET dramatically 

increases, which increases RBE [176] whereas LET stays constant for photons. 

The goals of the present study were to (1) leverage clinical response evidence of the 

variable relationship of RBE with dose using IDC as radiographic response and (2) validate 

this evidence using two established empirical RBE models. This work provides an innovative 

method in leveraging IDC as the clinically viable metric to better understand the proton 

biological damage in patients. 

6.3 Methods 

6.3.1 Patient data 

Under an Institutional Review Board–approved protocol, we retrospectively acquired 

clinical data for patients with LA-NSCLC who previously received IMRT (n = 51) or passive 

scattering proton therapy (PSPT; n=67) to 60–74 Gy (RBE = 1.1 for PSPT) in a prospective 

randomized trial [85]. We recomputed the planned dose for IMRT patients (Dx) in RayStation 

11B DTK (RaySearch Laboratories, Stockholm, Sweden). We recomputed the planned 

physical dose for PSPT patients (Dp) and dose-averaged LET (LETd) with a clinically 

commissioned track-repeating Monte Carlo algorithm [181]. For each patient, we obtained 

contrast-free follow-up CT acquired approximately 4 months after the end of the course of 

radiation therapy. We selected this imaging timeline because it matched the period of 

clinically reported RP or, if no RP was reported, captured acute response in general. 
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6.3.2 Testing the feasibility of using image density change as the clinical endpoint for RBE 

To ensure that the IDC reflected toxicity development, we randomly selected 20 

patients who were clinically identified to have developed RP, and the RP regions were 

contoured by a board-certified radiologist (XXX). The average IDC for voxels in the RP 

region was compared with that for voxels in the non-RP region (i.e., the normal ipsilateral 

lung excluding the RP region). A significantly higher IDC for the voxels in the RP region 

would indicate that RP contributed more to IDC than did all other radiation responses (e.g., 

pneumonia, atelectasis) combined, confirming the association of IDC with toxicity. 

 

6.3.3 Establishing Dose–Response Relationship 

We used a biomechanical model–based deformable image registration algorithm that 

is commercially available in the RayStation treatment planning system [100] to deform the 

follow-up CT to the planning CT. To ensure voxel-level accuracy, we performed the following 

steps: 1) we generated a triangle mesh using parameters previously optimized for 

robustness and accuracy [162]; 2) we used boundary conditions for a sliding lung interface; 

and 3) we modified the treatment planning system–generated deformation vector field by 

adding constraints on vessel alignment [101]. The voxel-level correspondence enabled us to 

obtain the IDC in voxels of the normal ipsilateral lung. These voxels were at least 2 mm from 

the boundaries of lung and the primary tumor. All lung and tumor contours were reviewed by 

a board-certified radiologist (XXX). To establish the dose–IDC correspondence for each 

image voxel, we resampled Dx, Dp, and LETd maps to match the resolution of the planning 

CT (0.98 x 0.98 x 2.5 mm3) using nearest-neighbor interpolation with SimpleITK v2.0.2 

(http://simpleitk.org/). Using a previously validated automatic landmarks identification 

method, we quantified the target registration error (TRE) at vasculature branching points of 

the DIR to be 5.6 mm. AAPM TG-132 recommends that TRE should be less than the voxel 

http://simpleitk.org/
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size (diagonal length) which is 2.9 mm for the images used in the study [102]. Therefore, to 

account for DIR uncertainty (mis-registration), all dose and image voxels were 

simultaneously binned along all three dimensions into “super” voxels of size 1.98 x 1.98 x 

5.0 mm3. 

We first grouped the lung voxels into dose bins at 5-Gy intervals and calculated the 

mean physical dose and mean IDC for the voxels belonging to each dose bin. To ensure 

statistical power, we excluded dose bins with fewer than 1 million voxels, which defined the 

highest dose bin to be plotted. Subsequently, we correlated voxel-level dose–IDC 

relationships by fitting the Lyman–Kutcher–Burman (LKB) normal-tissue complication 

probability (NTCP) model [65, 182]:  

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  1
√2𝜋𝜋

∫ 𝑒𝑒−
𝑥𝑥2

2  𝑑𝑑𝑑𝑑
𝐸𝐸𝐸𝐸𝐷𝐷−𝑇𝑇𝐷𝐷50
𝑚𝑚∙𝑇𝑇𝐷𝐷50

−∞  (1) 

with a change in the meaning of the parameters: 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 becomes the normalized IDC 

(against the maximum IDC of any dose bin); the effective uniform dose (𝑇𝑇𝐸𝐸𝐷𝐷) represents the 

mean dose of each dose bin, since each voxel represents itself as a sample, independent of 

the location and patient; 𝑁𝑁𝐷𝐷50 represents the dose that would achieve half the maximum IDC 

(the global maximum for both groups); and 𝑚𝑚 represents the speed at which the IDC 

increases with the increasing physical dose. We used non-linear least squares from the 

Python SciPy package (version 1.6.2) to fit the model and obtain 𝑚𝑚 and 𝑁𝑁𝐷𝐷50. To evaluate 

the goodness of fit, we obtained the pseudo-R2 using the following equation: 

 R2  =  1 − 𝑣𝑣𝑣𝑣𝑑𝑑𝑖𝑖𝑣𝑣𝑛𝑛𝑟𝑟𝑒𝑒(𝑑𝑑𝑒𝑒𝑟𝑟𝑖𝑖𝑑𝑑𝑟𝑟𝑣𝑣𝑟𝑟 𝐼𝐼𝐼𝐼𝐼𝐼)
𝑣𝑣𝑣𝑣𝑑𝑑𝑖𝑖𝑣𝑣𝑛𝑛𝑟𝑟𝑒𝑒(𝑑𝑑𝑒𝑒𝑣𝑣𝑟𝑟𝑟𝑟𝑑𝑑𝑒𝑒𝑑𝑑 𝐼𝐼𝐼𝐼𝐼𝐼)  (3) 

 
where the residual IDC represents the difference between the modeled IDC and the 

measured IDC. 
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6.3.4 Obtaining RBE values 

After we plotted the fitted NTCP models for both the IMRT and PSPT groups, we 

graphically determined the IDC levels at which to compute Dx and Dp. Specifically, we 

selected the lowest and highest IDC levels that both curves reached (i.e., both Dx and Dp 

could be associated given the IDC value). We then computed Dx and Dp with their 

respectively fitted NTCP models at each IDC level of 5-HU increments between the lowest 

and highest IDC levels. We then computed RBE values using the ratio of Dx and Dp 

corresponding to each IDC level. 

6.3.5 Fitting RBE models 

We then fitted McNamara [177] and Wedenberg [183] models using the measured 

RBE values, the corresponding Dx, Dp, and LETd values, and an α/β of 3 Gy for lung tissue 

[177]. LETd values were each estimated as the average LETd value for voxels receiving Dp ± 

0.001 Gy. We used the pseudo-R2 calculated with equation (2) to describe how closely the 

model-fitted RBE values matched the measured RBE values. 

 

6.4 Results 

The voxel-level NTCP fit result is shown in Figure 21. The average number of voxels 

in each dose bin was 2.0e+6 for IMRT (1.3e+6–6.0e+6) and 1.7e+06 for PSPT (1.3e+6–

2.6e+6). Voxels in PSPT patients demonstrated that dose had a more linear relationship 

with IDC according to the higher fitted m parameter of 0.71 (i.e., a faster IDC increase for 

low-dose proton voxels than photon voxels). For all dose bins (except 62–67 Gy), the PSPT 

IDC was significantly higher than the IMRT IDC (p < 0.001). 
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Figure 21. Voxel-level dose-IDC(image density change)-modeling results for both PSPT 
(passive scattering proton therapy) and IMRT (intensity modulated photon therapy) patients: 
the mean image density change (IDC) (left y-axis), mean dose (x-axis), and the normalized 
IDC against the maximum IDC (right y-axis) for voxels in each dose bin. The fitted plots are 

represented by dashed lines. TD50 represents dose that causes 50% of maximum IDC. 
 

To identify the lowest and highest IDC levels for RBE modeling, we compared the 

fitted curves between IMRT and PSPT. Because the PSPT curve was higher than the IMRT 

curve, we set the lowest IDC level at 20 HU based on the PSPT curve and set the highest 

IDC level at 115 HU based on the IMRT curve. The range of IDC levels, the inversely 

derived Dx and Dp corresponding to each IDC level, and the estimated LETd are given in 

Table 5. The McNamara and Wedenberg models returned the fitted parameter(s) of p0 = 3.9, 

p1 = 15.8, p2 = 2.3, and p3 = -0.3 and q = 13.0 with a pseudo-R2 of 0.99 and 0.92, 

respectively. 
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Table 5. RBE modelling result. At each IDC (image density change) level, the ratio between 
the corresponding Dx (photon dose) and Dp (proton physical dose) returned the measured 
RBE. LETd (dose-averaged linear energy transfer) was estimated as the average LETd of 

voxels receiving Dp±0.001Gy. 
IDC 

[HU] 
Dx [Gy] Dp [Gy] LETd 

[keV/µm] 
Measured 

RBE 
RBE fitted 

using 
McNamara 

et al 

RBE fitted 
using 

Wedenberg 
et al  

20 28.8 9.8 5.1 3.0 2.9 2.7 
25 31.3 12.8 4.1 2.5 2.3 2.2 
30 33.5 15.4 4.1 2.2 2.1 2.1 
35 35.6 17.9 4.3 2.0 2.0 2.0 
40 37.5 20.2 3.8 1.9 1.8 1.8 
45 39.3 22.4 4.1 1.8 1.8 1.8 
50 41.1 24.5 4.2 1.7 1.7 1.8 
55 42.8 26.6 3.6 1.6 1.6 1.6 
60 44.5 28.7 4.1 1.6 1.6 1.7 
65 46.2 30.7 3.0 1.5 1.5 1.5 
70 47.9 32.7 3.4 1.5 1.5 1.5 
75 49.6 34.7 4.0 1.4 1.4 1.6 
80 51.3 36.8 3.9 1.4 1.4 1.5 
85 53.1 39.0 4.2 1.4 1.4 1.5 
90 54.9 41.2 3.5 1.3 1.3 1.4 
95 56.9 43.6 3.5 1.3 1.3 1.4 

100 59.0 46.1 3.2 1.3 1.3 1.4 
105 61.3 48.9 3.8 1.3 1.2 1.4 
110 63.9 52.0 3.6 1.2 1.2 1.4 
115 66.9 55.6 3.4 1.2 1.2 1.3 

 

 Testing for the association of IDC with clinical toxicity response revealed that RP 

voxels had an IDC of 451 ± 176 HU, whereas non-RP voxels had an IDC of 23 ± 74 HU (p < 

0.001). 

6.5 Discussion 

Herein, we demonstrate a novel approach to model proton RBE using voxel-level 

clinically imaged response inside patients as the biological endpoint. Our results 

demonstrate that RBE varies depending on dose, in which RBE reached 3.0 for low-dose 

voxels and decreased to 1.2 for high-dose voxels. We validated the RBE values by fitting 
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two published empirical RBE models and achieved a pseudo-R2 of 0.99 and 0.92, 

respectively. To our knowledge, this is the first study that shows clinical evidence of variable 

RBE relationships in normal lung tissue. 

The difference in IDC between RP and non-RP voxels validated our usage of using 

image changes in post-treatment images as a clinical endpoint for RBE. In addition, several 

studies have suggested the feasibility of using IDC as the clinical endpoint for RBE modeling 

for proton therapy. For example, Peeler et al. analyzed post-treatment magnetic resonance 

images of pediatric patients with ependymoma and found that voxel-level image changes 

depended on increasing LET and dose [178]. Underwood et al. studied radiographic 

changes in postmastectomy chest wall CT images of 20 breast cancer patients (proton n = 

10, photon n = 10) [89]. By analyzing the image change against the dose at the voxel level, 

they found that proton patients had a greater increase in both image density and IDC 

compared with photon patients. In these patients, the higher IDC per dose was associated 

with higher-grade abnormalities, which suggests clinical RBE values higher than 1.1. 

After we obtained both the dose maps and the IDC maps, the next step was to 

determine a correlation so dose could be calculated given an IDC. Our decision to use the 

LKB NTCP model was inspired by Begosh-Mayne et al., who compared the accuracy of four 

NTCP models in correlating dose with IDC response on the binned voxel basis and showed 

that the LKB NTCP model was the most accurate in predicting both early and overall 

radiographic response [90]. The 0.95+ pseudo-R2 for both the IMRT and PSPT patients 

validated the accuracy of the fitted LKB NTCP model. However, as shown in Figure 21, the 

high dose datapoints of the PSPT patients did not follow the sigmoidal curve. This may have 

been due in part to the difference in the patients’ dose prescriptions. The clinical trial in 

which the patients had been enrolled implemented a dose escalation to 74 Gy (RBE) 

instead of the conventional 60–66 Gy (RBE). As a result, voxels receiving 60 Gy (RBE) in 

patients with dose escalation could be physiologically different than voxels with the same 
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dose but in patients with conventional dose prescriptions. Physically tracking voxels—for 

example, by creating a map showing voxels’ proximity to the tumor surface—could provide 

more insight into the varying sensitivity of tissue voxels in biological dose damage. 

After we measured the RBE values for the IDC levels, we validated these RBE 

values using two empirical models derived from existing cell experiments. Here, the aim was 

to use existing models to validate our clinically derived RBE values, not to determine the 

best model with which to validate our results. In future studies, researchers are encouraged 

to select models according to their preferences or develop full mechanistic models to 

describe the clinical endpoint of IDC. One limitation of the study was that the patients were 

not matched even though they were randomized in the clinical trial, as we tried to include as 

many patients as possible. As a result, RBE is currently derived from voxels of proton and 

photon patients that might inherently carry different response sensitivity. Nevertheless, 

future studies should focus on matching patients while enrolling a sufficient number to 

ensure strong statistical power. 

6.6 Conclusion 

Using CT-based IDC as the clinical endpoint, we obtained voxel-level variable RBE 

values in patients with LA-NSCLC previously treated with IMRT or PSPT. Therefore, our 

findings demonstrate the feasibility of proton RBE modeling based on clinically imaged 

evidence and warrant additional studies of similar approaches to explain clinical proton 

biological damage, using models focusing on clinical response as the endpoint. 
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Chapter 7: Discussion 

 

7.1 Overall Summary 

The presented project aims to improve the understanding of radiation damage 

through dose accumulation and proton biological dose modelling to help improve decision 

making based on toxicity predictions. If dose-limiting radiation-induced toxicities can be 

better predicted, dose distributions can be better optimized. Patients with lower toxicity risks 

could be treated with a higher tumor dose, potentially improving treatment outcomes and 

quality of life. 

The phase-based accumulated dose (4DA) is the most extensive dose accumulation 

workflow that incorporates both breathing motion and longitudinal response. The first step to 

achieve such workflow is to establish a reference phase that provides the most robust 

longitudinal phase-phase DIR, which is our current gap in knowledge. This was achieved in 

Chapter 3. We analyzed the three most representative phases of the breathing cycle: T0, 

T3, and T5. We also compared these phase-phase DIRs with the AVG-AVG DIR because 

dose is conventionally planned on the AVG image and the AVG-AVG DIR accuracy needs 

to be quantified if we want to apply it clinically in dose mapping for plan adaptation 

purposes. Therefore, this work not only helped us decide on the reference phase for our 

dose accumulation workflow, but also served as the clinical guideline for AVG-based 

adaptive workflow. 

Next, we needed to optimize our selection of DIR algorithms used for both intra-

4DCT and inter-4DCT DIRs to ensure accuracy and efficiency. Since we utilize the 

RayStation TPS for its scripting capability to automate our dose accumulation, it was most 
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convenient to leverage the DIR algorithms directly available in RayStation: the intensity-

based ANACONDA algorithm and the biomechanical model-based MORFEUS algorithm. 

We used ANACONDA for intra-4DCT DIR since studies have shown it is both accurate and 

efficient for registering breathing phases obtained in the same imaging session [97]. We 

decided to use the MORFEUS algorithm since most of the tumor response in these patients 

were inelastic or a mixture of elastic and inelastic, thereby not preserving image intensity. 

However, the success rate and accuracy of the MORFEUS algorithm is affected by the 

mesh generating parameters, which are selected by the user. When the algorithm fails, the 

only way to find a suitable parameter is through trial-and-error, which prevents automation. 

Therefore, we conducted the study in Chapter 4 to find the optimal (and alternative) 

parameter set that consistently produces accurate T5-T5 DIR. With the optimal reference 

phase and the parameter set for MORFEUS DIR algorithm identified, the workflow met the 

accuracy recommendation of AAPM TG-132 on clinical implementation of DIR, proving our 

hypothesis. Subsequently, we could streamline the dose accumulation pipeline. 

In Chapter 5, our comparison of 3DP, 4DP, 3DA, and 4DA was comprehensive and 

individually evaluated the effect of breathing motion and the effect of longitudinal response. 

Although the DVH-based organ-level metrics showed minimal differences on the population 

basis, the differences in individual patients demonstrated the importance of individualized 

treatment and the potential of ART: with 16% patients found to experience the deviation 

(magnitude of difference) of NTCP score from planned dose distribution to the accumulated 

dose distribution, we proved the hypothesis of a clinical dose difference between the 

planned dose and the accumulated dose. The final step was to associate their dose 

difference to accuracy difference in representing the delivered dose. We established the 

dose-response correlations where the goodness of fit (pseudo-R2) indicated how well each 

dose described localized damage, thereby their accuracy. The clinical radiographic based 

response modelling was inspired by Begosh-Mayne et al. which recorded that the LKB 
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NTCP model most accurately modeled the normalized IDC for short-term radiation effects 

(<6 months) on the voxel level. This method was implemented in our study where follow-up 

PET/CTs close to 4 months post RT were selected. The improvement in the pseudo-R2, 

although modest, demonstrated that the accumulated dose indeed more closely estimates 

the delivered dose than the planned dose. 

The dose-IDC correlation also served as the backbone of our proton RBE modelling 

work in Chapter 6. Since the concept of RBE is flexible with the clinical endpoint, we chose 

IDC as the endpoint. RBE was derived from proton and photon doses achieving the same 

level of IDC. As we measured the RBE values to be larger than 1.1, we decided to fit an 

established model published by McNamara et al. [177]￼. The fit result of pseudo-R2 = 0.98 

confirmed the hypothesis that the goodness of fit for the variable RBE model was more than 

0.9. 

Our results on the anatomical response and RBE effect of dose have the potential to 

help physicians tailor treatment plans to individual patients, based on the predicted toxicity 

and adapt the treatment plan according to anatomical response while maintaining sufficient 

tumor dose coverage. Ultimately, we hope to improve the quality of life and long-term 

survival for NSCLC patients. 

7.2 Discussion on Specific Studies 

7.2.1 Inter-4DCT DIR Accuracy 

This work narrowed our knowledge gap in the effect of registration of 4DCT images 

acquired at different timepoints and accuracy in phase-phase and AVG-AVG DIR for IGRT. 

In most clinical practices, patient dose is calculated using the AVG while they are treated 

with free breathing. Therefore, the most clinically achievable dose mapping is through AVG-

to-AVG mapping. RTOG 1106 [184] used AVG-based planning and adaptive treatment. Its 

protocol only allowed rigid registration between the AVG images due to the lack of accuracy 
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analysis of AVG-AVG DIR, which justified the clinical need to quantify the accuracy of AVG-

AVG DIR. 

Evaluating the results of the phase-phase comparisons, T3 and T5 did not 

demonstrate a statistically significant difference in TRE. We made the decision to use T5 

since patients spend most of the time in the exhalation stage within a breathing cycle. 

Therefore, T5 is usually anatomically robust with the least breathing artifact. In addition, the 

response assessment required the registration with PET/CT. In our clinical practice of 

PET/CT acquisition, we use T5 for correction of static PET when misregistration between 

PET and CT occurs [185]. 

7.2.2 Parameter Optimization for Biomechanical Model-Based DIR Algorithm 

As a collaboration with Dr. Brian Anderson, this work provided recommendations on 

the most robust parameter selection for BM-DIR in RayStation for lung and liver DIRs. We 

automated the mesh creation, finite element analysis, accuracy, efficiency, and robustness 

assessment through the scripting capability of RayStation, and assessed the DIR results 

following the recommendations of AAPM TG-132 [102].  

The immediate goal of this work was to facilitate automated dose accumulation for 

lung and liver. Previously, the tetrahedral mesh generation in RayStation could fail without 

pointing to the exact area of failure, thus requiring trial and error on the parameters that 

initially generated the surface mesh. With parameters that consistently achieve anatomically 

robust and accurate BN-DIRs, we streamlined the inter-4DCT dose mapping.  

The secondary goal was to develop appropriate BM-DIR working practices allowing 

integration into clinical workflows such as adaptive radiotherapy. For this goal, we have 

tested the optimal parameters on 16 head-and-neck patients and 16 prostate patients, and 

they also successfully generated meshes then DIRs for parotid glands and prostate, 

respectively. Furthermore, we expect the same parameters when extrapolating to other DIR 
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algorithms, since we are focusing on fundamental components of mesh generation of BM-

DIR. 

7.2.3 Dose Accumulation 

We addressed the limitations in dose accumulation studies due to the lack of 

systematic review of the effect of breathing motion and longitudinal response. Most studies 

focused on the planning 4DCT [77, 78], which does not account for tumor response and 

changes in breathing motion that occur over radiotherapy, especially for advanced stage 

lung cancer patients. Studies that do investigate the effect of longitudinal response are 

limited by small sample size due to the labor-intensiveness of image and dose mapping, 

focus on organ-level DHV-based metrics such as MLD and V20 that lack spatial features, or 

hypo-fractionated treatments that restrict the effect of response [79–81]. 

Besides the organ-level DVH metrics, we interrogated the dose evaluations at the 

region and voxel level. Lung is considered as a parallel organ for clinical dose constraints. 

However, it consists of different lobes, airways, and blood vessels. Moreover, increasing 

studies on the functional substructures of lung are showing the potential benefit of lung 

functional avoidance [186, 187]. The DVH-based MLD and V20 are inevitably insufficient in 

describing the localized damage to the lung. Our results on the overlap of isodose regions 

confirmed that albeit the organ-level metrics are minimally different on the population basis, 

the underlying dose differences can be very dramatic. In DVH metrics, these sub structural 

dose differences are washed out by the cancelling effect between the breathing motion and 

the longitudinal effect. 

To correlate dose differences with clinical evidence, we quantified response using 

IDC from pre- to post-treatment. This was obtained by registering the follow-up image to the 

planning image. Subsequently, the same response map for each patient can be associated 

with either the planned or the accumulated dose, and the difference in the dose-response 
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correlations indicated how well each dose representation describes the localized damage, 

thereby the delivered dose [49]. 

Results of the project showed significant differences between accumulated and 

planned dose distributions for certain patients (e.g. large tumor breathing motion and large 

tumor shrinkage throughout treatment), we showed the importance of using dose 

accumulation to represent the delivered dose rather than simply the planned dose, and such 

information can aid in the development of clinical dose accumulation strategies for adaptive 

radiotherapy, especially with treatment planning for re-irradiation. The results currently are 

only for the photon arm of the clinical trial, and I have been working on the dose 

accumulation for the proton arm based on Monte Carlo simulations. Future work can 

leverage the pipeline to evaluate these proton cases. We are expecting a more significant 

difference from the planned dose to the accumulated dose due to the proton range 

uncertainties. 

In summary, the completed study was the first to analyze the difference between 

planned dose and accumulated dose for multiple 4DCTs. This ensures dose to be clinically 

used in toxicity prediction model is the closest representation of the actual delivered dose. 

Therefore, our 4DCT-based weekly dose accumulation contributed to the knowledge in the 

field by providing a more complete dose accumulation scheme. 

7.2.3.a Defining Accuracy of Dose Accumulation 

The quantification of dose accumulation accuracy can be challenging as it cannot be 

measured directly (e.g., through a dosimeter measure in deforming patient tissues to 

determine the true dose). However, we investigated how the geometric accuracy of image 

deformation interplays with dose calculation – using TRE to determine the accuracy of DIR. 

The intra-4DCT and inter-4DC (phase-phase) reported TRE of 2.3 ± 1.8 mm and 2.8 ± 1.9 

mm, respectively, which means that lung voxels were deformed to within 3 mm radius of the 
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corresponding voxel. With a clinical dose grid of 3x3x3 mm3 for conventionally fractionated 

IMRT, the uncertainty of image deformation was on a similar scale with the size of dose 

calculation. Therefore, we addressed the concerns such as geometric accuracy of image 

deformation and changing mass when determining the accuracy of dose accumulation, 

especially when working with tumors that are heavily affected by breathing motion (e.g., 

tumors at diaphragm) and large shrinkage throughout the treatment course. 

In addition, the changing anatomy over the course of treatment affected the definition 

of dose deposition. During image deformation, the tumor region can experience volumetric 

changes and deformation causing adjacent voxels to merge into one and where portions of 

tumor cells that used to exist in the voxel now are replaced by normal lung tissues when 

they are eliminated by radiation, making tumor dose accumulation difficult to define. 

Therefore, cases with responding tumors will have to be scrutinized when a high dose 

gradient is seen at the tumor boundary in the original plan dose distribution. If a tumor 

shrinks elastically where the surrounding lung tissue is ‘pulled’ centripetally, a boundary 

condition can be placed at the tumor boundary to preserve the bordering relationship. When 

the tumor is ‘eroding’ away as it responds to radiation, it reveals the underlying lung tissue 

that was covered by tumor rather than being pushed away by tumor. In such cases, a 

boundary condition at the tumor boundary would not be considered. However, with the help 

of Lusmeralis Almodóvar-Abreu (undergraduate student at the University of Puerto Rico who 

I mentored as a CPRIT summer experience student), we identified that most tumors 

regressed inelastically. We manually placed 4 landmarks at vessel bifurcations closest to the 

tumor at the planning 4DCT and a mid-treatment 4DCT. And we compared the distance 

from each landmark to the closest tumor surface. If distance between each landmark and 

tumor surface all increased, the tumor would have experienced a complete inelastic 

regression. If half the landmarks increased, the tumor would have experienced a mixture of 

elastic and inelastic regression. Both scenarios would require not placing the boundary 
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condition over the tumor, and we found that most of the tumors qualified for this situation. 

However, a more automated method in finding the 4 landmarks to determine the tumor 

shrinkage should be developed to facilitate personalized DIR method. 

7.2.3.b Defining Clinical Significance of Dose Difference 

The dose accumulation study improved the predictive power of current methods. 

Currently, NTCP scoring is the default clinically used indicator for toxicity prediction [74, 76], 

but it often lacks appropriate level of complexity. It assumes a sigmoid relationship between 

toxicity and independent variables such as dose, which might not be the universal solution. 

[26] In addition, such method assumes uniform irradiation of target volume, and the 

parameters come from interpolation or extrapolations from whole organ data or are based 

purely on the experience of the clinicians involved in the contouring [27]. 

However, considering the lack of more sophisticated complication prediction 

methods, even though NTCP scoring can be criticized for being overly simplified since it 

does not maintain the 3-dimensional dose distribution and is subject to human factors, it can 

still be used as a caliper to reasonably estimate the tendency of a patient to experience 

adverse events. McCulloch et al. studied the potential impact on NTCP models from dose 

accumulation for liver patients who received stereotactic radiation therapy and concluded a 

statistically significant difference between the NTCP models based on the two different dose 

representation methods. [28] Therefore, we designed the hypothesis such that if differences 

in lung NTCP based on accumulation dose vs planned dose (used by current methods) 

yielded > 5%, such difference can be considered clinically significant. This was previously 

proposed by Langendijk et al. to aid clinical decisions in re-planning to guide clinical trial 

strategies [164]. 
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7.3 Auto-Segmentation for Lung 

The nature of this project involves retrospective analysis of patient data from a 

clinical trial [85]. Lung segmentation is a crucial step to guide the image registration for dose 

accumulation and for IDC calculation using follow-up imaging. The dose-IDC correlation also 

requires lung boundary to be defined. With the sheer number of images to contour, it was 

important to utilize an auto-segmentation tool. However, the methods available at the start of 

the project were not robust enough in the presence of the complex lung tumor and the lung 

conditions such as pleural effusion which should be excluded and atelectasis which should 

be included in lung volume. These methods included the Atlas-based method within the 

RayStation TPS, and the publicly available deep-learning based algorithm that were trained 

with mostly healthy or early staged lungs [188]. Another available source was the algorithms 

that participated in the 2017 AAPM Thoracic Segmentation Challenge. However, the training 

set in the Challenge did not include pre-existing diseases such as pneumonia, which can be 

seen across the patients in the dataset used for the completed project. Figure 22 is an 

example of an evaluation of different auto-contouring algorithms in RayStation in the 

presence of pre-existing lung disease. 

 
Figure 22. Comparison of different lung auto-segmentation methods in RayStation in the 

presence of pre-existing lung disease. The left lung contains opacity above the tumor and all 
auto-contouring methods (yellow: model-based, green: atlas-based, and blue: deep-

learning-based algorithm trained with the same dataset of the AAPM Challenge) failed to 
correctly identify the actual lung boundary as depicted by the pink, manual. The right lung is 

disease-free, and contours from all segmentation methods align well. This shows the 
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importance for auto-contouring algorithms to consider cases with pre-existing lung 
conditions. 

 

Therefore, I trained RayStation’s patch-based 3D U-NET algorithm using my 

manually curated lung contours for 100+ CT images, including most of the patient analyzed 

so that the remaining weekly images could be automatically contoured with prior knowledge. 

Therefore, no systematic testing of accuracy was conducted. The segmentation on the AVG 

and T5 of the planning 4DCT for dose comparisons (both images) and response 

assessment (T5 only) were further modified manually on top of the auto-segmentation result 

to ensure high precision for voxel-level dose and response analysis. The resulting algorithm 

is available in the research version of RayStation. This work was a collaboration with Dr. 

Bastien Rigaud. 

 
Figure 23. The created segmentation model in RayStation. 
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7.4 Future Directions 

7.4.1 CBCT-Based Dose Accumulation 

We realize that the acquisition of weekly 4DCT images is not common for most 

clinical practices. Therefore, CBCT-based dose accumulation can be the most clinically 

viable way to investigate the effect of dose accumulation [189]. AVG-based accumulated 

dose (3DA) most closely mimics FB CBCT-based dose accumulation. However, the CBCT 

image equality can limit CBCT from being used as the new planning image for plan 

adaptation but recent hardware and software advancements in CBCT’s image quality may 

enable adaptive radiation therapy [190, 191]. 

Prospectively, dose accumulation can be used in adaptive radiotherapy (ART) to 

compute the composite dose which consists of the dose already delivered from the original 

plan and the dose to be delivered from the new plan. I hope our results encourage future 

prospective clinical trials to evaluate the clinical impact of using dose accumulation to 

adaptive the treatment plan vs not-adapting original treatment plan by comparing toxicity 

development in lung and other organ-at-risks such as heart and esophagus. 

7.4.2 Incorporating Clinical Metrics/Record for A Comprehensive Toxicity Model 

For our study, the clinical toxicity record such as symptomatic RP was defined and 

graded according to CTCAE v3.0 [57]. Despite the clear guideline of CTCAE, the criteria can 

be subjective, varying among individual treating physicians and confounded by underlying 

comorbidities. In the clinical trial, the outcomes review committee met to discuss each 

patient reported to have developed RP, and the final grading was decided by the outcomes 

review committee.  

Ideally, for the dose accumulation study, a predictive model such as receiver 

operator characteristic (ROC) curve can be constructed and the area under the curve (AUC) 

value be compared between the NTCP values from the planned dose and the accumulated 
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dose using the toxicity record for symptomatic RP. This could further validate our result that 

the accumulated dose is more accurate than planned dose based on radiographic evidence. 

However, the number of available patients for the dose accumulation study was restricted, 

mostly due to accessibility of weekly 4DCT datasets in the clinical storage system which 

rendered the patients unqualified for the study. Only 10 patients out of the analyzed 67 

patients developed symptomatic RP. Therefore, a much larger number of patients need to 

be analyzed. Furthermore, the probability of exceeding clinical dose constraints for organs-

at-risks with and without consideration of dose accumulation can also be studied to 

demonstrate the necessity of having more accurate dose representations in the prediction 

model. 

In addition to dose metrics, studies have demonstrated the improvement in toxicity 

prediction by incorporating clinical metrics. Krafft et al. discovered that by including clinical 

data and dose information with radiomics features extracted from the normal lung volume on 

pre-treatment CTs, pneumonitis predictability as represented with the AUC score, increased 

from 0.51 (no image features) to 0.68 [192]. They used Common Terminology for Criteria for 

Adverse Events v3.0. Castillo et al. studied 100 NSCLC patients that underwent FDG 

PET/CT prior to RT and used SUV95 information of PET and achieved AUC of 0.78 (95% CI 

= 0.69 – 0.87) in predicting symptomatic RP using CTCAE v4.0 [69]. Wang et al. studied 

predicting capability of MLD excluding (GTV, PTV, CTV) and concluded highest AUC for 

MLD was 0.707 to predict RP grade 2+ based on CTCAE v3.0 [72]. 

The ultimate goal is to create the most robust RP prediction model based on an 

extensive dose accumulation that will ensure better representation of the delivered dose, 

coupled with clinical metrics such as age and smoking status. We hope that eventually the 

developed toxicity prediction strategy from the proposed project can be deployed in the 

clinic, which can help improve NSCLC treatment and toxicity management. This will also 
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require prospective clinical trials, which can be supported by the automated workflows 

developed and validated in this thesis.  
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General RayStation Scripting Advice 

 

The project benefited from the scripting/automation functionality of the RayStation treatment 

planning software. Here is some general advice on how to script in RayStation: 

1. RayStation is based on python, so learning Python syntax is a must. 

2. The ‘record’ function is a direct and simple method to know the desired script. 

3. Reference the user manual, the scripting manual, and other manuals. 

4. There are also sample scripts that can be found in the same network folder where 

RayStation is installed. 

5. Create a toolbox with functions that you often use so you can keep using the same 

function in different scripts. When the function needs to be changed, you only need 

to change it in the toolbox once rather than changing it in every script that uses it. 

6. Ask your colleague and RaySearch support. 

7. Lastly but most importantly: just because the script ran without any hiccups, doesn’t 

mean the result is guaranteed to be physically possible! Always QA the process and 

check the results visually in the user interface before analyzing the results! 
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