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Abstract 

A plasma is a gaseous system that contains large numbers of electrons and ions 

that are subject to forces produced by electric and magnetic fields. Weakly ionized 

plasmas, where the plasma density is much lower than the background gas density, are 

common in laboratory, atmospheric, and astrophysical situations. Theoretical calculations 

of plasma properties are challenging due to the complexity of the differential equations 

used to characterize fundamental physics. Particle-in-cell (PIC) simulations bypass the 

mathematical difficulties associated with analytic models, at the expense of more 

complex and time-consuming computer calculations. In this work we developed a one 

dimensional PIC simulation of a weakly ionized plasma. We use a Monte Carlo technique 

to include a simplified model of electron-gas and ion-gas collisions. The results of 
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preliminary simulations give good qualitative agreement with simplified theoretical 

models of plasma sheath formation and ambipolar diffusion. 
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Chapter I: Introduction 

A. Overview of Plasma Physics 

 1. Plasma Basics 

Plasma is one of the four fundamental states of matter, along with solid, liquid, and gas. 

It exists in many forms in nature and has a wide range of applications in science and 

technology. A plasma usually consists of electrons, positively charged ions, and 

sometimes negative ions, but in the present work we will ignore the possible presence of 

negative ions. If there is no neutral background gas the plasma is said to be fully ionized. 

If there is a neutral background gas that could contain neutral atoms or molecules, the 

plasma is said to be partially ionized. If the concentration of background gas is much 

greater than the charge particle density, the plasma is called weakly ionized. 

Following the definition of the degree of ionization χ	=	𝑛	𝑛+𝑒𝑛	, where 𝑛𝑒	and 𝑛𝑛	denote 𝑒

	 𝑛 

the electron density and the neutral gas density respectively ,a weakly ionized plasma 

usually has a χ	of lower than 10−6. Weakly ionized plasmas are also usually not in 

thermal equilibrium, typically having low background gas and ions temperatures and 

high electron temperature (𝑇𝑒	≫	𝑇𝑖≈	𝑇𝑔). Many plasmas of interest are weakly ionized, 

5

Zheng and Doyle: PIC/Monte-Carlo Simulation for Weakly Ionized Plasmas

Published by DigitalCommons@Macalester College, 2023



5 

including Earth’s ionosphere, stellar chromospheres, and most engineered plasmas in 

laboratories [1]. Fully ionized plasmas include stars and plasmas used for terrestrial 

fusion energy. 

In general plasmas are characterized by the plasma density 𝑛𝑝	and the electron and ion 

temperatures 𝑇𝑒	and 𝑇𝑖. For weakly ionized plasmas the background gas density 𝑛𝑔𝑎𝑠	is 

also specified (often as an equivalent pressure at 25 C). For weakly ionized plasmas 

studied in laboratories and used in plasma processing applications, the ion temperature is 

around 300~600K, the electron temperature 10000~100000K, the plasma density 1013	~	

1018	𝑚−3, and the gas density 1019	~	1024	𝑚−3. 

Quasi-neutrality is an important property of a plasma. This means the number of negative 

and positive charges in the system is nearly the same. Due to the high strength of the 

electrostatic interaction, separation of positive and negative particles requires high 

potential energy. Therefore, on large distance scales, the system appears neutral. 

However, this neutrality is quasi- neutrality because at sufficiently small scales there can 

be large variations in the local charge density and electric fields. The scale for deviations 

from neutrality is known as the Debye length and will be discussed further below. 
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 2. The Debye Length 

When a single charged particle is immersed in the plasma, it will attract local particles 

with the opposite sign of charge and repel those that possess the same. An observer 

located far from this single particle will see the combined potential of the particle and its 

associated “cloud” of surrounding charges. Since the cloud has an opposite polarity, the 

cloud potential will partially cancel the single particle’s potential. The phenomenon of 

this cancellation is called shielding, or screening [2]. The Debye length is a measure of 

this shielding distance. It could also be interpreted as the minimum neutrality distance, 

meaning that over this distance the quasi-neutrality may break down. The expression for 

the Debye length is 

 λ𝐷	=	(	ϵ𝑛0𝑘𝑒𝑇2𝑒	)1/2	 (1.1) 

where n is the plasma density and Te is the electron temperature. Debye length is an 

important property of plasma. It determines the ability of the plasma to shield out electric 

potentials that are applied to the plasma. In particular, plasmas in contact with a material 

boundary will deviate from quasi-neutrality in the region of the boundary, depending on 

the boundary condition. The region of deviation from quasi-neutrality is called the 

plasma sheath. Note that λD increases with increasing electron temperature and decreases 

with increasing plasma density; this will be important in our discussion of results below. 
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 3. Plasma sheaths 

The formation of plasma sheaths can be described as follows. When a system is confined 

in a vessel, which is often the case for laboratory experiments [3], the electrons encounter 

boundaries and leave the system more quickly than ions due to their typically higher 

temperature and much lower mass. The quick loss of the electrons results in a positive 

net charge in the remaining plasma near the boundary. The result is that the potential is 

higher in the quasi-neutral region of the plasma than at the wall.. This positively 

increased potential tends to trap electrons, and slow down the overall electron flux to the 

wall. On the other hand, with the wall potential at more negative potential than the 

plasma the ion flux will increase. The region between the wall and the steady potential in 

the system is called the plasma sheath. The sheath acts effectively as a way of reducing 

the electron flux while increasing the ion flux,, and thus moves towards balancing the 

initial large difference in the loss rate of the electrons and ions. In the special case of a 

floating surface (i.e. a surface that cannot conduct away the charges) the electron and 

positive ion flux to the surface must cancel in the steady-state. In this case the surface has 

a net negative charge due to the initial higher flux of electrons. In general, however, the 

relative electron and ion fluxes to the confining walls will depend on boundary 

conditions imposed on the walls. 

The formation of the sheath described above is due to an effect called ambipolar 

diffusion. In general, if we start with a quasi-neutral plasma that is initially bounded, the 

higher mobility and diffusivity of the electrons will always result in an charge imbalance 

in the plasma over time. However, this charge imbalance results in an electric field that 
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counters the electron diffusion and enhances the ion transport. In the steady-state an 

electric field is generated which tends to equalize the flow of both ions and electrons. 

The simple theory of ambipolar diffusion is an idealized phenomena that ignores 

imposed boundary conditions on the plasma, as well as any potential evolution in the 

plasma properties such as the electron temperature. Nevertheless, it is a useful conceptual 

tool to understand passive charge transport in plasmas, as opposed to plasma that are 

driven by an external energy source. 

 4. Glow Discharges 

In the laboratory, plasmas can be created by applying a sufficiently large voltage across 

two electrodes that contains a gas. Under the right gas density conditions, the gas will 

“break down” and become conductive and a current will flow [4]. The breakdown occurs 

when an electron spontaneously appears in the electrode gas (for example from a cosmic 

ray). The electron gains energy from the applied electric field, and will eventually have 

enough energy to collisionally ionize the gas. Electron multiplication thus occurs with the 

generation of ions. Ions striking the lower voltage electrode (the cathode) will result in 

emission of electrons from the electrode ( a process known as secondary electron 

emission), and the plasma current is a self-sustaining discharge. Energy is dissipated in 

the discharge through collisions and excitation and ionization of the gas and impact of the 

ions and electrons on the electrodes and walls. This energy is supplied to the discharge by 

the external power supply that is providing the voltage across the electrodes. Because of 

the electron collisional excitation process, the discharge emits photons and is therefore 

commonly referred to as a glow discharge. This type of discharge is the source of light 

from fluorescent lights and “neon” signs. 
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 5. Afterglows 

Glow discharges have a complicated structure including different kinds of sheaths at the 

electrodes and at the other confining surfaces [5]. However, in the central regions of the 

discharge a quasi-neutral plasma, called the positive column, is formed. In this region the 

electrons and ions can be approximately characterized by Maxwell-Boltzmann 

distributions having Te and Ti respectively, where Te >> Ti (see above). A simplified 

plasma structure can be obtained for short times by abruptly turning off the external 

power, resulting in a plasma afterglow. In this situation the sheaths at the electrodes 

rapidly collapse and an approximately quasi-neutral plasma fills the inter-electrode 

region. However, ambipolar diffusion then begins and sheats form at all surfaces, 

followed by a decay of the plasma as ions and electrons are absorbed at the boundaries. 

One of our goals with the development of the simulation here is to observe this 

ambipolar diffusion as well as the evolution of the afterglow over time. 

 6. The Plasma Frequency 

To complete this overview of plasma physics we should mention the plasma frequency 

!p. Just as the Debye length represents a characteristic length scale for the plasma, the 

plasma frequency represents a characteristic frequency or time scale for a plasma. The 

plasma frequency is derived by imagining a slight displacement of the electron density 

with regard to the ion density at t = 0. The restoring electric field force then results in a 

harmonic oscillation of the electron density. The plasma frequency is given by 
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 𝑤𝑝	=	 𝑞𝑚𝑒2𝑒𝑛ϵ0𝑝 

In this work our focus is on the spatial structure of the plasma, but the plasma frequency 

is important since it determines the appropriate time scale for the time evolution of the 

afterglow. In particular, our time increment in our simulations should be much less than 

wp, in order to properly resolve time evolution. 

B. Types of plasma calculations 

Although plasmas are extensively studied through experiments in the laboratory, these 

studies need to be supported by theoretical and computational models of plasma structure 

and evolution. In addition, some plasma conditions that exist in the universe (such as 

interstellar space) are difficult to replicate in the laboratory, so modeling is needed to 

fully understand their nature. Therefore, plasma modeling is a valuable and 

complementary approach in studying the plasma characteristics, development, and 

interactions. 

Plasma modeling provides a means to study in detail the physical and chemical processes 

that occur in the plasma [6]. Theoretical modeling uses equations of electron and ion 

transport coupled to external and internally generated electric and magnetic fields to 

produce analytic expression to analyze the behavior of plasma. However, due to the 

complexity of the system, especially when collisions are included, these methods require 

many and often severe approximations. Therefore in most cases this approach is very 
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approximate and is expected to be only in qualitative and semi-quantitative agreement 

with experiment results. 

Computer simulation of plasma processes can relax many of the approximations made in 

analytic models. There are several approaches to computational plasma physics. Plasma 

models with fluid approaches assume local thermodynamic equilibrium and treat particle 

transport as flow fields. Fluid models are based on particle differential equations that 

describe the motion of fluids coupled with Maxwell’s equations for the electric and 

magnetic fields. These fluid models describe macroscopic plasma phenomena and reveal 

how the average plasma parameters evolve in time and space. Fluid approaches are most 

suitable for dense, fully-ionized plasmas where local thermodynamic equilibrium is a 

good assumption. However, the coupled fluid-field equations are usually complex and 

non-linear and the simulations often simplify the equations by neglecting some terms, 

such as the viscosity effect in the transfer equation or kinetic energy contribution 

compared to the thermal one, at the expense of accuracy [7]. At the lower pressure 

characteristic of weakly-ionized laboratory plasmas, the assumption of local 

thermodynamic equilibrium is usually not valid [8]. Although hybrid models that treat 

ions and neutral gas as fluids while treating electrons using kinetic or Monte Carlo 

methods overcome this limitation to some extent, since the problem of local 

thermodynamic equilibrium is due primarily to the electron dynamics. 

The Particle-In-Cell (PIC) simulation method makes the fewest assumptions of 

commonly used plasma simulation methods. In PIC simulations the motion of charged 
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particles is treated directly using Newtonian particle mechanics. The particle positions 

provide the local charge density from which the potentials and fields, and the forces that 

determine the particle motion can be self-consistently calculated. PIC thus represents a 

kind of “mean field” approach to the plasma particle dynamics. Of course it is not 

computationally possible to simulate the motion of individual electrons and ions in a 

plasma having a density ~ 1015 m-3, so the PIC method simulates far fewer (but still 

statistically significant) numbers of “superparticles”. The PIC method has the advantage 

of making minimal dynamical assumptions. Furthermore, with the addition of Monte 

Carlo methods to simulate collision phenomena, PIC simulations can incorporate highly 

accurate collision physics that is not possible in analytic or fluid approaches. However, 

PIC simulations have important limitations as well, such as being very computationally 

intensive. In addition, PIC simulations are probably best considered as “numerical 

experiments” with results that require other types of models to understand the basic 

physics of the results. Finally we should mention that PIC simulations are sometimes 

used in conjunction with fluid models to balance the tradeoffs and better simulate the 

specific plasma scenarios of interest. 

C. Overview of this work 

In our simulation, we develop a PIC simulation method to study one-dimensional weakly 

ionized plasmas, using helium as the background gas. The one-dimensional nature of the 

simulation (approximately experimentally realizable using large electrodes closely 

spaced) limits the application to electric fields only; including magnetic fields would 
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require at least two dimensions. We use Monte Carlo sampling methods to include 

simplified electron-gas and ion-gas collisions. Since the gas density exceeds the plasma 

density by many orders of magnitude, charged particle-charged particle collisions can be 

neglected and the electrostatic field that the ions and electrons experience are instead 

determined by a mean field approach. Monte Carlo sampling is also used to properly 

initialize the electron and ion velocity distributions. The motivation of this work is 

mainly to study some basic and important plasma properties, with an emphasis on sheath 

formation and ambipolar diffusion effects under idealized conditions. In the future the 

simulation will be further developed to include more realistic collision models and 

geometries that can be compared with more actual laboratory experiments and more 

sophisticated theoretical models.  
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Chapter II. Methods 

Discretization 

For a practical laboratory plasma system, the charge distribution is essentially 

continuous. However, in order to numerically calculate the potential and field, we need to 

discretize space and consequently the charge density, potential, and the electric field. 

A. Discretization of charge density 𝛒 

The spacing between grid points is denoted ℎ. For a particle with position 𝑥	and total 

charge of 𝑞, we first break down the position into an integer that represent the rounded-

down grid point i and the fraction f of h to the next grid point: 

 𝑥	=	𝑖	+	𝑓	 (2.1) 

We assume this superparticle’s charge q will only contribute to the 𝑖th and (𝑖	+	1)th grid 

points. We assign its charge to the two grids points as follows: 
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𝑖	+=	𝑞(1	−	𝑓)	 (2.2) ρ𝑖+1	

+=	𝑞𝑓 

(2.3) 
B. Discretization of potential 𝛟 

Poisson’s equation for electric potential is : 

The first order derivative for a function𝑑𝑑f(x)2𝑥ϕ2	is:=	−ϵ0ρ 

Similarly for the second derivative,𝑓'(𝑥)	=	ℎlim→	0𝑓(𝑥+ℎℎ)−𝑓(𝑥) 

 𝑓	'(𝑥)	=	ℎlim→	0	𝑓'(𝑥+ℎℎ)−𝑓'(𝑥) 

𝑓	'(𝑥)	=	ℎlim→	0	(	𝑓(𝑥+2ℎ)ℎ−𝑓(𝑥+ℎ)	−	𝑓(𝑥+ℎℎ)−𝑓(𝑥)	)/ℎ 

This gives the discrete form of the second order derivative as a finite difference: 

Therefore we can discretize𝑓the'(𝑥)electric=	ℎlim→potential0
	 𝑓(𝑥+2ℎ)−2usingℎ𝑓2(𝑥+ℎ)this+𝑓(𝑥)method, denoting the grid 

ρ 
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point as the index i: ϕ 

In our simulation, the index number𝑑𝑑2𝑥ϕ2	=i goesϕ𝑖+1−(from∆2ϕ𝑥)𝑖+2	ϕ0𝑖−1to=	−ϵρ0𝑖	 , where 
the points 0 and 

are the boundary points. The interior points 𝑁𝑔go from+	11 to . The charge 

density is𝑁𝑔only+	1defined on the interior points while the potential includes𝑁𝑔the 

boundaries. The 

boundary potentials are specified at the start of the simulationϕ	 as the boundary 

conditions on ϕ. Using the charge density array determined from the particle positions 

and the potential boundary potential values, we can calculate the potentials on the interior 

grid point with indices from 1 to 𝑁𝑔. We can write out the following relations: 

 𝑖	=	1:	 	ϕ0−(2∆ϕ𝑥)12+ϕ2	 	=	−	ϵ10	ρ1 

 𝑖	=	2:	 	ϕ1−(2∆ϕ𝑥)22+ϕ3	 	=	−	ϵ10	ρ2 

… 

 𝑖	=	𝑁𝑔:	 	ϕ𝑁𝑔−1−(2∆ϕ𝑥𝑁𝑔)2+ϕ𝑁𝑔+1	 	=	−	ϵ10	ρ𝑁𝑔 
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Multiply the 𝑖th term by its corresponding i: 

𝑖	=	1:	(ϕ0	−	2ϕ1	+	ϕ2)	·	1	 	=	(−	ϵ10	ρ1)	·	1	·	(∆𝑥)2	𝑖	=	2:	(	ϕ1	−	2ϕ2	+	

ϕ3)	·	2	 	=	(−	ϵ10	ρ2)	·	2	·	(∆𝑥)2 

… 𝑖	=	𝑁𝑔:	(ϕ𝑁𝑔−1	−	2ϕ𝑁𝑔	+	ϕ𝑁𝑔+1)	·	𝑁𝑔	 	=	(−	ϵ10	ρ𝑁𝑔)	·	𝑁𝑔	·	(∆𝑥)2 

Nowand thewe add up allterms.the terms. On the left, all terms cancel out except for the 
0th, the 𝑁𝑔, 

𝑁𝑔	+	1	ϕ0	+	((𝑁𝑔	+	1	−	1)	−	2(𝑁𝑔	+	1))ϕ𝑁𝑔	+	ϕ𝑁𝑔+1	=	−	𝑖𝑁𝑔∑=1	𝑖	ϵ10	ρ𝑖	

·	(∆𝑥)2 

Then we solve for ϕ𝑁𝑔: 

𝑁𝑔 

Once we have ϕ𝑁𝑔, we can solve for the rest of the potential with indices from 1 to 

𝑁𝑔	−	1 
using the relationship 

18

Macalester Journal of Physics and Astronomy, Vol. 11, Iss. 1 [2023], Art. 18

https://digitalcommons.macalester.edu/mjpa/vol11/iss1/18



18 

𝑖	∈	{1,	.	,	𝑁𝑔	−	1}	:	ϕ𝑖	−	2ϕ𝑖+1	+	ϕ𝑖+2	=	−	ϵ10	ρ𝑖+1	*	(∆𝑥)2 

 𝑖	∈	{1,	.	,	𝑁𝑔	−	1}	:	ϕ𝑖	=	−	ϵ10	ρ𝑖+1	*	(∆𝑥)2	+	2ϕ𝑖+1	−	ϕ𝑖+2	 (2.7) 

C. Discretization of electric field E 

With the potentials determined at the grid points by the procedure above, we can now 

calculate the electric field at all of the grid points. The electric field E is related to 

the electric potential ϕ	by 𝐸	  

Since our potential is one-dimensional and on 𝑥, 

Use finite difference method for the first𝐸	=order	−	derivative,𝑑𝑑𝑥ϕ	𝑥	 we have: 

 𝐸	=	−	ϕ𝑖+1−ϕ2𝑖−1	 (2.8) 

 𝑖	 2(∆𝑥) 

D.Discretization of Equations of Motion 

The particle equations of motion need to be discretized in time. For each particle p at 

timestep n, we have for the acceleration 

 𝑎(𝑝𝑛)	=	𝑞𝐸𝑚(𝑝𝑛)	 (2.9) 
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Where Ep
n is the electric field at the particle p position at the nth time step. Ep

n is 

determined by using the E values at the two adjacent grid points to the particle, with 

weights determined by the relative distance to those grid points. From the acceleration 

we have the updated velocity using the discretized time interval DT 

 𝑣(𝑝𝑛+1/2)	=	𝑣(𝑝𝑛−1/2)	+	𝑎(𝑝𝑛)	*	𝐷𝑇	 (2.10) 

giving the update position as 

 𝑥𝑛𝑝+1	=	𝑥𝑛𝑝	+	𝑣𝑝𝑛+1/2	*	𝐷𝑇	 (2.11)n+½ n-½ 

The choice of DT will be described below. The notation v and v refers to the “leap 

frog” method of calculating the velocity. This is because using the sampled velocities at 

timestep n assumes that the particle moves at this constant velocity throughout the entire 

timestep, which is inaccurate since the particle usually has non-zero accelerations. 

Calculating the particle’s displacement during one timestep with a velocity in the middle, 

that is vn+1/2 is thus a better approximation. To implement this idea, immediately after 

assigning initial velocities to the particles (see below) we adjust the velocity at time = 0 

for each particle as 

The velocity v-1/2 is called the back𝑣−1/2velocity=	𝑣0	−of0.the5	*particle.	𝑎	*	𝐷𝑇 
E. Collision Model 

In a weakly ionized gas, the electrons and ions collide mostly with the background gas 

atoms instead of with each other. In this preliminary study we assume that the electron-

atom collisions are hard sphere collisions, and the ion-atom collisions are charge-
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exchange collisions. The atoms are assumed to be static before scattering. This is a very 

good approximation for the electron-atom collisions due to the high velocity of the 

electrons. The case of the charge exchange collisions will be discussed below. 

The advantage of hard sphere collisions is that the collision cross section, and the 

scattering angle versus the impact parameter, have analytic forms. The cross-section for 

the electron-atom collisions is given by σ	=	π𝑅2. This can be thought of as the effective 

cross sectional area of interaction, where 𝑅	is the effective radius of interaction. For hard 

spheres, 𝑅	is the sum of the radii of the colliding objects. Since the electrons and ions 

have very small radii compared to those of the atoms, we may consider 𝑅	as just the 

radius of a background gas atom. In our simulations 𝑅	is equal to 5	·	10−10𝑚. Though 

larger than the actual radius of the helium atom, a larger 𝑅	accounts for the additional 

ion-induced dipole effect that increases the cross section in charged particle - atom 

collisions. 
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Figure 2.1: An illustration of the effective radius of interaction 𝑅. For two particles 

colliding, 𝑅	is the sum of the radii of the two particles. 

We define the distance between the centers of the colliding particles to be the impact 

parameter b, as illustrated in Figure 2.1. The scattering angle θ is illustrated in Figure 2.2. 

 

Figure 2.2: Definition of the impact parameter b. 

 

Figure 2.3: The scattering angle θ 
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In a hard sphere collision, the angle of incidence of the scattering will be equal to the 

angle of reflection. Define this angle to be ɑ, as denoted in Figure 2.3. The scattering 

angle is θ, which is the auxiliary angle of α. From the geometry of the scattering model 

we can find the relationship between θ and ɑ to be: 

The impact parameter is also related2toαɑ+by:θ	=	π 
𝑏 

𝑏	=	𝑅	·	𝑠𝑖𝑛(α) 

𝑏 
Therefore, we derive function of the deflection angle θ dependent on : 

𝑏	=	𝑅	·	𝑠𝑖𝑛(	π2	−	2θ	)	θ(𝑏)	=	2	·	

𝑐𝑜𝑠−1(	𝑅𝑏	)	 (2.9) 

In our simulation, each scattering event only affects the electron's velocity and we neglect 

the energy gain of the target gas atoms. However, we do account for the energy loss of 

the electrons in the collision. The post-collision velocities for both the incident and target 

particles are given by conservation of energy and momentum for a given scattering angle 

θ. The change in the electron speed is given by [9]: 

 𝑣𝑓/𝑣𝑖	=		 1	−	2𝑚𝑒𝑚𝑔𝑎𝑠/(𝑚𝑒	+	𝑚𝑔𝑎𝑠)2	·	(1	−	𝑐𝑜𝑠(θ))	 (2.10) 

23

Zheng and Doyle: PIC/Monte-Carlo Simulation for Weakly Ionized Plasmas

Published by DigitalCommons@Macalester College, 2023



23 

Using this expression, an updated 1-D velocity of an electron after a collision is produced 

and , in our simulation, the horizontal component of its new velocity vector is generated. 

However, since me/mgas << 1, the fractional change ß in the electron speed is very small. 
This is the primary reason why in weakly ionized plasmas electrons do not readily 

equilibrate with the background gas and maintain their high temperature. 

For an ion, since its mass is comparable to the mass of the helium atom we assume the 

atom and the ion simply exchange velocity after the collision. That is, after the collision, 

the incident ion is neutralized and no longer tracked, and the new ion begins with a 

velocity sampled from the neutral gas Maxwell-Boltzmann distribution. According to 

Equation 2.10 above, when the masses are comparable there is a very efficient transfer of 

energy (and momentum) between the collision partners. This is the primary reason why 

ions tend to be in thermal equilibrium with the background gas in weakly ionized 

plasmas. 

The scattering cross-section determines the mean free path for collisions 

λ	=	1/(𝑛𝑔𝑎𝑠	σ) 

where is the number density of the background gas. The probability distribution of free 

paths is given by 

𝑛𝑔𝑎𝑠 
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The mean scattering time is the average𝑃(𝑥)	time=	1between/λ	·	𝑒−𝑥/scatteringλ	 events. 

For a beam of particles with speed 𝑣	and given free path ∆𝑥, the time ∆𝑡	is given by 

∆𝑡	=	∆𝑣𝑥	

∆𝑥	∆𝑡 

For a given distance , will be shorter for a higher speed. This means that for a 

fixed mean free path, the scattering events happen more frequently when the particles are 

moving faster. As discussed in the section Monte Carlo simulations below, in the 

simulation the collision time is sampled from the distributions of free paths divided by 

the relative speed of the collision partners. 

F. Monte Carlo Sampling 

Monte Carlo sampling refers to the process of using a pseudo-random number generator 

to sample from a known probability distribution. There are two general methods for 

doing this of interest to us: direct sampling and rejection sampling. 

 1. Collision Time 

Consider a normalized probability distribution given by P(x). We wish to sample values 

of x from this distribution using a random process that reproduces the distribution P(x). 

In the direct sampling method this can be done using 
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𝑅𝑁𝐷	 𝑑𝑥' 

Where RND is a pseudo-random number between 0 and 1. According to probability 

theory [10] when this procedure is repeated many times the resulting distribution of x 

values will satisfy P(x). For the distributions of free paths given by kinetic theory as P(x) 

= 1λ	𝑒−	𝑥λ	, we have: 

𝑥	

𝑅𝑁𝐷 

where λ	is the mean free path. ∆𝑥	is the sampled path. Solve for ∆𝑥, we have: 
∆𝑥	=−	λ𝑙𝑛	(1	−	𝑅𝑁𝐷)	=	−	λ𝑙𝑛	(𝑅𝑁𝐷)	 

 (1	−	𝑅𝑁𝐷)	 (𝑅𝑁𝐷) 
The term can also be written simply as since the random number 

ranges from 0 to 1 uniformly. In our simulation it is more convenient to sample collision 

times rather than free paths. From the collision model we have the expression for the 

sampled collision time: 

∆𝑡	=	∆𝑣𝑥 

where v is the relative speed of the colliding partners and ∆𝑥	is the sampled path. 

Therefore, we can calculate for the sampled collision time: 

= 	 
0 

∆ 𝑥 
∫ 1 λ 𝑒 

− 𝑥 ' λ 𝑑 𝑥 
' 
= 1 − 	 𝑒 

− ∆ λ 
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 ∆𝑡	=−	𝑣λ	𝑙𝑛	(𝑅𝑁𝐷)	=	−	τ𝑙𝑛	(𝑅𝑁𝐷)		 (2.11) 

The expression 𝑣λ	is equivalent to the average collision time τ. 

 2. Impact parameter b 

We can also use the direct sampling method to determine the impact parameter 𝑏	in the 

collision model. Recall the effective cross sectional area to be π𝑅2, which means the 

incident particle can potentially collide with the target particle anywhere within this area 

with equal probability. 

Each value of 𝑏	is represented by an annulus of area 2π𝑏	·	𝑑𝑏, as illustrated in Figure X. 

Therefore, the probability of getting a certain 𝑏	is proportional to the area of the annulus 

𝑃(𝑏)𝑑𝑏	∝	2π𝑏𝑑𝑏	=	𝐶2π𝑏𝑑𝑏 

𝐶 
where is a normalization constant: 

	 

Solving for C: 
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𝐶	=	π1𝑅2 

Giving the normalized probability distribution 

𝑃(𝑏)𝑑𝑏	=	𝑅22	𝑏	𝑑𝑏 

The direct sampling method gives 

𝑅𝑁𝐷	  

Solve for b, we have 

 𝑏	=	𝑅	𝑅𝑁𝐷	 (2.12) 

 

Figure 2.4. Sampling of the collision impact parameter 

 3. Initial velocities 

If the probability distribution P(x) does not have an analytic integral, or the integrated 

form cannot be easily inverted to give x, the rejection method of sampling can be used. 

The rejection method has the advantage that any P(x) can be sampled, but the 

disadvantage of being much more computationally intensive than the direct method. In 

our simulation we use the rejection sampling method to generate the initial velocities of 

the particles from the Maxwell-Boltzmann distribution: 

28

Macalester Journal of Physics and Astronomy, Vol. 11, Iss. 1 [2023], Art. 18

https://digitalcommons.macalester.edu/mjpa/vol11/iss1/18



28 

𝑃(𝑣)	=	4π(	𝑚𝑒	)3/2𝑒−	𝑚2𝑘𝑇𝑒𝑣2	(2.13) 

2π𝑘𝑇 

 

Figure 2.5 The Maxwell-Boltzmann Distribution: 

We first re-normalize the distribution so that the maximum value of the curve is equal to 

1, and therefore the y axis is 𝑃/𝑃𝑚𝑎𝑥	which varies from 0 to 1. The x-axis ranges from 0 

to a maximum velocity of our choice that makes all relevant values of velocities 
included. 

In our simulations We chose 𝑣𝑚𝑎𝑥	=	5𝑣𝑚𝑝	where 𝑣𝑚𝑝	is the most probable speed. 

 𝑣𝑚𝑝	=	 3𝑚𝑘𝑇	(2.14) 

To perform the rejection sampling method, we first generate a random number RND1 and 

calculate a test velocity 

29

Zheng and Doyle: PIC/Monte-Carlo Simulation for Weakly Ionized Plasmas

Published by DigitalCommons@Macalester College, 2023



29 

𝑣𝑡𝑒𝑠𝑡	=	𝑅𝑁𝐷1	·	𝑣𝑚𝑎𝑥 

Draw a box with width of 𝑣𝑚𝑎𝑥	and height 1, as demonstrated in Figure X. 

 

Figure 2.6: The rejection method 

Now generate a second random number RND2 as a test probability. Calculate 

𝑃(𝑣𝑡𝑒𝑠𝑡)/𝑃𝑚𝑎𝑥. If 𝑅𝑁𝐷2	<	𝑃(𝑣𝑡𝑒𝑠𝑡)/𝑃𝑚𝑎𝑥, accept 𝑣𝑡𝑒𝑠𝑡	for a sampling velocity. 

Otherwise, generate a new test velocity and a new RND2, until the condition 

arrays,𝑅𝑁𝐷2	we<	may	𝑃(𝑣𝑡𝑒𝑠𝑡sample)/𝑃𝑚𝑎𝑥a 
velocitysatisfies.forByeachloopingparticlethisthatmethodfollowsoverthetheMaxwell-
Boltzmannelectron and ion 

distribution. 
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Assuming the generated velocities represent an isotropic distribution in three-dimensions, 

we need to sample appropriate values of 𝑞	and 𝑓. Both of these angles can be selected by 

the direct sampling method. Values for angle ϕ	are evenly distributed between 0 and 2π. 

Therefore, 

(2.15) 

The probability of selecting an proportional to the area of the 

Figure X below. 𝑃 annular region shown in 

by ∫	∫Normalize this distribution 
	 . This gives 

The integral of this distribution𝑃(θ)𝑑θ	=can	4π1be𝑅2	analytically	2π𝑅	𝑠𝑖𝑛θ	𝑅𝑑solvedθ	=	
easily,21	𝑠𝑖𝑛θtherefore	𝑑θ	 we use the 

direct sampling for selecting the angle θ. Construct and solve the integral: 

𝑅𝑁𝐷	 ' 

Solve for the angle θ: 𝑅𝑁𝐷	=	12	(1	−	𝑐𝑜𝑠θ)	θ	=	𝑐𝑜𝑠−1(1	−	

2	·	𝑅𝑁𝐷)	 (2.16) 
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Figure 2.7. Geometry for θ selection 

The components of velocity are then 

𝑣𝑥	=	𝑣	𝑠𝑖𝑛θ	𝑐𝑜𝑠ϕ. 

𝑣𝑦	=	𝑣	𝑠𝑖𝑛θ	𝑠𝑖𝑛ϕ. 

𝑣𝑧	=	𝑣	𝑐𝑜𝑠θ. 

In our 1-D program only 𝑣𝑥	is affected by the electric fields. However, in order to provide 

duringproper the simulations.and post-collision parameters, 𝑣𝑦	and 𝑣𝑧	must also be 

tracked for each particle pre- 

G. Summary of the Algorithm 

The flow chart below summarizes the algorithm of our simulation. The function that 

implements the equations of motion 2.9- 2.11 is called the mover.  
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Figure 2.8: Flow chart of the simulation. 
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H. Limits on DT and H 

The plasma frequency is the natural frequency for the system, so for adequate time 

resolution we want the time increment to be much less than one electron plasma 

oscillation period: 

𝐷𝑇	≪	2ѡπ𝑝	=	2π	𝑚𝑛𝑝𝑒𝑒ϵ20	𝐻	In addition, to properly resolve 

the spatial variations, we want the spatial increment to be much less than the Debye length, 

the characteristic distance scale for the plasma 

 𝐻	≪	λ	=	 ϵ0𝑛𝑘𝑒𝑇2𝑒 

These relationships need to be verified for each set of np and conditions. 
𝑇𝑒 

I. Programming Details 

The PIC simulations were implemented in the C++ computer language using a Linux 

operating system platform. All simulations used initial 20 million (2 x 107) superparticles 

for each of the electrons and ions. The memory requirements for such large arrays were 

not supported by the default memory allocations, so stack size and maximum locked 

memory had to be manually set to unlimited for each session. Depending on the total 

number of time steps simulated (see Chapter V) the run-times ranged from a few minutes 

to about 12 hours. Python and R-Studio were used in the analysis of the data. 
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Chapter III. Scaling for Dimensionless Equations 

In numerical calculations it is usually desirable to use quantities that are dimensionless to 

remove the arbitrariness of units. In this chapter we develop the relevant scale factors to 

turn the discretized equations developed previously into dimensionless quantities. 

We have 𝑁𝑔	interior points, where boundary points are 0 and 𝑁𝑔	+	1, therefore we have 

𝑁𝑔	+	1	intervals with a total length of 𝐿, measured in meters. For each dimensionless 

interval in the model, the spacing in real unit is: 

𝐻	=	𝑁𝑔𝐿+1 

The time increment DT is given by 𝐷𝑇	=	𝑓𝑡	*	2ωπ𝑝	 

where !p is the plasma frequency. For all of the simulations presented here ft =0.005. The 

simulation takes a total number of times steps 𝑁𝑡. Each time step corresponding to DT is 

assigned the dimensionless value of 1. 

Each superparticle represents individual particles. Therefore, for each superparticle, 
𝑁𝑠 

𝑄𝑒	=	−	𝑁𝑠𝑒 
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𝑀𝑒	=	𝑁𝑠𝑚𝑒 

𝑄𝑖	=	+	𝑁𝑠𝑒 

𝑀𝑖	=	𝑁𝑠𝑚𝑖 
𝑝 

The equations of motion of the th particle are 

𝑣𝑛+	12	=	𝑥𝑛𝑝+1	−	𝑥𝑛𝑝 

 𝑝	 𝐷𝑇 

𝑎𝑛𝑝	=	𝐹(𝑀𝑥𝑝𝑛𝑝)	=	𝑣𝐷𝑇𝑛𝑝−	12 

And the field equations are 𝐹(𝑥𝑛𝑝)	=	𝑄𝑝𝐸(𝑥𝑛𝑝) 

𝐸𝑛𝑔	=	ɸ𝑛𝑔−12−𝐻	ɸ𝑛𝑔+1 

To make these equations dimensionless,ɸ𝑛𝑔−1	−	2𝐻ɸwe2𝑛𝑔	+introduce	ɸ𝑛𝑔+1	=	−ϵthe⍴0𝑛𝑔	
following quantity that has e 

units of J/C = Volts: 

2𝑀𝐷𝑇𝑒𝐻2𝑄2	𝑒	=	2𝑚𝐷𝑒𝑇𝐻22𝑒 

Therefore, the dimensionless potential would be: 
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 (ɸ𝑛𝑔)'	=2𝑀𝐷ɸ𝑇𝑒𝐻𝑛𝑔2𝑄2𝑒 

(ɸ𝑛𝑔)'	=	ɸ𝑛𝑔	2𝐷𝑚𝑇𝑒2𝐻𝑒2 

Recall that ɸ𝑛𝑔−1	−	2𝐻ɸ2𝑛𝑔	+	ɸ𝑛𝑔+1	=	−ϵ⍴0𝑔𝑛	, which means 

 (ɸ𝑛𝑔−1)'	−	2(𝐻ɸ2𝑛𝑔)'	+(	ɸ𝑔𝑛+1)'2𝐷𝑚𝑇1𝑒2𝐻𝑒2=	−ϵ⍴0𝑛𝑔 

Giving the dimensionless charge density 
(⍴𝑛𝑔)'	=	⍴𝑛𝑔	2𝐷𝑚𝑇𝑒2ϵ𝑒0 

Also recall that 𝐸𝑛𝑔	=	ɸ𝑛𝑔−12−𝐻	ɸ𝑛𝑔+1	from. Therefore, 

(2𝐻)𝐸𝑛𝑔	=	(ɸ𝑛𝑔−1)	−	(ɸ𝑛𝑔+1) 

(ɸ𝑛𝑔−1)'	−	(ɸ𝑛𝑔+1)'	=	2𝐷𝑚𝑇𝑒2𝐻𝑒2	(2𝐻)𝐸𝑛𝑔	=	(𝐸𝑛𝑔)' 

Giving for the dimensionless electric field 

The dimensionless position is (𝐸𝑛𝑔)'	=	𝐸𝑛𝑔	𝐷𝑚𝑇𝑒2𝐻𝑒 

And the dimensionless velocity is: (𝑥𝑛𝑝)'	=	𝑥𝐻𝑛𝑝 
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The acceleration is: (𝑣𝑛𝑝)'	=	𝑣𝑛𝑝	𝐷𝑇𝐻 

𝑎𝑛𝑝	=	=	𝑄𝑝𝐸𝑀(𝑝𝑥𝑛𝑝)	𝐷𝑇	𝑎𝑛𝑝	

=	𝑣𝑛𝑝+	 12	−	𝑣𝑛𝑝−	 12	(𝑎𝑛𝑝)'	=	

(𝑣𝑛𝑝+	12	)'	−	(𝑣𝑛𝑝−	12	)' 

(𝑎𝑛𝑝)'	=	(𝑣𝑛𝑝+	12	−	𝑣𝑛𝑝−	12	)	𝐷𝑇𝐻 

(𝑎𝑛𝑝)'	=	𝑄𝑝𝐸𝑀(𝑝𝑥𝑛𝑝)	𝐷𝑇	𝐷𝑇𝐻 
Recall that 𝑄𝑝	=	𝑁𝑠𝑒	and 𝑀𝑝	=	𝑁𝑠𝑚𝑒. 

Organize the equation to solve(𝑎𝑛𝑝for)'	=the𝑎dimensionless𝑛𝑝	𝐸(𝑥𝐻𝑛𝑝)𝑚𝑒𝐷𝑒	𝑇2	=	
(E𝐸field(𝑥𝑝𝑛))expression:' 

(𝐸(𝑥𝑛𝑝))'	=	𝐷𝐻𝑇𝑚2𝑒𝑒	𝐸(𝑥𝑛𝑝) 
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Charge Density 

Wechargesnow calculateto the gridthe chargepoints densityaccordingin 
thetosimulation.the distribution𝑊	is the function that weighsabove.theIn 

actual units𝑥𝑛𝑝	we have 𝑥𝑔	 scheme discussed 

⍴𝑛𝑔	=	𝑉𝑄𝑐𝑒𝑙𝑙	Σ𝑊(𝑥𝑛𝑝,	𝑥𝑔) 

The function W provides the fractional weighting to the grid points. 

Consider a particle at position 𝑥𝑛𝑝	with 𝑔	+	1	>	𝑥𝑛𝑝	>	𝑔, where g is a grid point. Suppose 

𝑥𝑛𝑝	=	𝑔	+	𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛. Then 

𝑥𝑔	+=	𝑥𝑛𝑝	·	(1	−	𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛) 

𝑥𝑔+1	+=	𝑥𝑛𝑝	·	𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

Therefore, the weight of the charge at position 𝑥𝑔	and 𝑥𝑔+1	from particle 𝑥𝑝𝑛	is: 
𝑊(𝑥𝑛𝑝,	𝑥𝑔)	=	𝑥𝑛𝑝	·	(1	−	𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛) 

39

Zheng and Doyle: PIC/Monte-Carlo Simulation for Weakly Ionized Plasmas

Published by DigitalCommons@Macalester College, 2023



39 

We need to relate the actual plasma𝑊(𝑥𝑛𝑝,density𝑥𝑔+1)	=n (𝑥electrons/volume𝑛𝑝	·	

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛	 ) to the dimensionless charge density. Suppose there are 𝑁𝑐	superparticles 

per 𝑉𝑐𝑒𝑙𝑙. Therefore, 𝑁𝑐	=	𝑁𝑝/𝑁𝑔 

Wewherecan𝑁express𝑝	is the thetotalparticlenumbernumberof superparticles,density np 

as:and 𝑁𝑔	is the total number of grid points. 

𝑛𝑝	=	𝑁𝑉𝑠𝑐𝑒𝑙𝑙𝑁𝑐 

Where 𝑁𝑠𝑁𝑐	is the total number of particles and Vcell is the volume of a cell. We can solve 

this for Vcell giving 

𝑉𝑐𝑒𝑙𝑙	=	𝑁𝑠𝑛𝑁𝑐 

Substituting into the expression n = 𝑉𝑄𝑐𝑒𝑙𝑙	gives 

Rewriting the dimensionless charge𝑉𝑄𝑐𝑒𝑙𝑙	=density:𝑉𝑁𝑐𝑒𝑙𝑙𝑠𝑒	=	𝑁𝑠𝑒	𝑁𝑠𝑛𝑁𝑐	=	𝑛𝑒𝑁𝑐 

(⍴𝑛𝑔)'	=	⍴𝑛𝑔	2𝐷𝑚𝑇𝑒2ϵ𝑒0	=	𝑉𝑄𝑐𝑒𝑙𝑙	Σ𝑊(𝑥𝑛𝑝,	𝑥𝑔)	2𝐷𝑚𝑇𝑒2ϵ𝑒0 
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 (⍴𝑛𝑔)'	=	𝑛𝑒𝑁𝑐2𝐷𝑚𝑇𝑒2ϵ𝑒0	Σ𝑊(𝑥𝑛𝑝,	𝑥𝑔) 

We can rewrite this expression(using⍴𝑛𝑔)'	=the2𝑛electron𝑚𝑒2𝑒𝐷ϵ0𝑇𝑁2𝑐	Σ𝑊plasma(𝑥𝑛𝑝,	
𝑥𝑔frequency:) 

ѡ2𝑝	=	𝑚𝑛𝑒𝑒ϵ20 

Recalling that 𝑁𝑐	=	𝑁𝑝/𝑁𝑔, we have for the final expression for the dimensionless 

charge density 

(⍴𝑛𝑔)'	=	𝐷𝑇22𝑁𝑔ѡ2𝑝𝑁𝑝	Σ𝑊(𝑥𝑛𝑝,	𝑥𝑔)  
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Chapter IV. Program Tests 

In this chapter we will perform some simple tests to verify the potential, electric field, 

and mover parts of the algorithm. We will consider cases where an analytic solution 

exists and compare the results with the PIC simulation. 

A. Potential and Electric Field Calculation Tests 

 1. Charge Density = 0 

In the absence of charge density, the Poisson’s equation is 

𝑑2ϕ	 𝑑𝑥2	=	
0 

The solution is a linear potential function. And the electric field is a constant equal to the 

negative of the potential slope. We set 𝑉0	=	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	1	and 𝑉𝑁𝑔+1	=	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	2	and the 

resulting linear potential and constant electric field are shown in figure 4~5. 
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Figure 4.1: Dimensionless potential profile for the zero charge density test. 

 

Figure 4.2: Dimensionless E field profile for the zero charge density test. 
 2. Constant Charge Density 

We now set the charge density ρ	to a non-zero constant at every grid point and set both 

boundary potentials to be zero. We expect a parabolic shape of the potential as a solution 

to 𝑑𝑑2𝑥ϕ	=	−ϵρ	=	non-zero constant 

 2	 0 

as shown in Figure 4.3 . The corresponding electric field is then a linear function with a 

positive slope passing through x = 0 at the midpoint as shown in Figure 4.4 . 
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Figure 4.3: Dimensionless potential profile for the constant charge density test. 

 

Figure 4.4: Dimensionless E field profile for the constant charge density test. 

 3. Single Particle Charge Density 

In this test we place one stationary positively charged particle at the middle of the region 

with the potential at the endpoints set equal to zero. The charge density will be zero 

everywhere except at the position of the particle where the potential has a maximum. The 
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electric field is then constant in the regions where there is no charge, negative in the left 

half of the regions, positive in the right half and zero at the particle position. 

 

Figure 4.5: Dimensionless potential profile for the single particle charge density test. 

 

Figure 4.6: Dimensionless E field profile for the single particle charge density test. 
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 4. Two Particle Charge Density 

Here we place two particles in the system, both stationary and placed symmetrically. 

Figure 4.7 shows that our analytic result is the same as the simulation one. 

 

Figure 4.7: Dimensionless potential profile for the two particle charge density test. 

 

Figure 4.8: Dimensionless E field profile for the two particle charge density test. 
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B. Mover Tests 

 1. Linear Potential 

Here we test the mover function for a given potential. We first define a linear potential 

distribution, so that the E field, as well as for the acceleration of the particle, will be 

constant. Under constant acceleration, the displacement should be 

𝑥	=	𝑥0	+	𝑣0𝑡	+	12	𝑎𝑡2. Figure 13 shows that our simulation result agrees with the analytic 

result precisely. 

 

Figure 4.9. Dimensionless potential profile for the linear potential test. 
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Figure 4.10. Dimensionless E field profile for the linear potential test. 

 

Figure 4.11. Dimensionless Position vs Time plot for both simulation and analytic results. 
 2. Harmonic Oscillation 

In this test a negatively charged particle is in the middle of the potential described by 

Figure 4.3. For a negative charge this potential represents a harmonic well and we expect 
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the particle to undergo simple harmonic motion over time. Figure 4. 12 confirms this 

prediction 

 

Figure 4.12. Dimensionless Time vs Position plot for the harmonic oscillation test. 

Chapter IV. Results 

Simulation Conditions 

In this chapter we discuss simulations that are approximately equivalent to static 

afterglow experiments (see Chapter I). Electrons and ion superparticles are uniformly but 

randomly distributed throughout a gap, with the boundary potentials set at 0 V in equal 

numbers. The electrons and ion velocities are initialized according to 

Maxwell-Boltzmann distributions characterized by an electron temperature Te and an ion 

temperature Ti. This results in an initial potential profile that has ϕ = 0 throughout the 

gap. However, due to the ambipolar diffusion effects discussed in Chapter 1, electrons 

near the boundaries are quickly lost to the wall and sheath regions with an excess of 
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positive charge are formed. This results in electric fields forming near the boundaries and 

the potential of the quasi-neutral middle region to increase relative to the boundaries. 

Based on the discussion of Debye length in Chapter I, we expect the spatial extent of the 

sheath regions to scale with the Debye length. 

We initially ran two sets of parameters (Table 1), each with seven different numbers of 

time steps Nt: 5000, 2500, 1000, 500, 200, 100, 50, and 20. 

Table 5.1. Groups of parameters used for the simulation. 

10 

A.Te = 30000 K, np = 1015 m-3 

Figure 5.1 shows the potential profile evolution for the Group 1 parameters, considered 

our default conditions for these simulations. We observe a well-defined sheath for each 

simulation time, though the sheath width depends on the simulation time 𝑁𝑡. We also 

observe an increase in the quasi-neutral plasma potential when 𝑁𝑡	increases from 500 to 

2500. However, for Nt > 2500 this potential begins to decrease and at 𝑁𝑡	=	10000	it is 

 Electron Temperature 

 (K) 𝑇𝑒 

Plasma Density 𝑛𝑝	(m-3) 

Group 1 30000 
1015 

Group 2 30000 
17 
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close to that of N, = 500. Since electrons and ions are not replenished after absorption by 

the boundary, we expect the plasma potential to continue to decay until all particles leave 

the system. However, for these simulation conditions it would take an impractical amount 

of computer time (days) for all particles to leave. 

 

Figure 5.1. Potential profile for different numbers of total time-steps 𝑁𝑡	= 500, 1000, 

2500, 5000, and 10000. 

To better understand the evolution of the system under these conditions, we plot the 

particle loss rate for electrons and ions in Figure 5.2. We find that electrons initially have 

a rapid loss rate, which quickly drops. The ion loss rate initially increases and then 

appears to flatten out. At 𝑁𝑡	=	2500, the electron loss rate intersects with the ion loss 
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rate. After this intersection, the electron loss rate continues to decrease while the ion loss 

rate stays almost constant, but is actually decreasing slowly (not apparent in Figure 5.2). 

We can account for these results as follows. Initially when the electron flux towards the 

wall is high in the system, an excess of positive charge rapidly builds up in the sheath 

regions, increasing the plasma potential. However, when 𝑁𝑡	>	2500. the loss rate of 

electrons becomes less than the loss rate of the ions. Since the ions are now being lost at 

a higher rate than the electrons, the plasma potential begins to decline. 

 

Figure 5.2. Particle loss rate for electrons and ions respectively for 𝑁𝑡	𝑢𝑝	𝑡𝑜	5000. 

These considerations are supported by the evolution of the charge density. Figure 5.3 

shows the charge density in the system at three different phases in the plasma evolution: 
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1) 𝑁𝑒	𝑙𝑜𝑠𝑠	𝑟𝑎𝑡𝑒	>	𝑁𝑖	𝑙𝑜𝑠𝑠	𝑟𝑎𝑡𝑒, 2)

 𝑁𝑒	𝑙𝑜𝑠𝑠	𝑟𝑎𝑡𝑒	=	𝑁𝑖	𝑙𝑜𝑠𝑠	𝑟𝑎𝑡𝑒, 3)

 𝑁𝑒	𝑙𝑜𝑠𝑠	𝑟𝑎𝑡𝑒	<	𝑁𝑖	𝑙𝑜𝑠𝑠	𝑟𝑎𝑡𝑒. 

We observe that at 𝑁𝑡	=	500, there is relatively more positive charge in the sheath 

while 

sheath.region, This resultafter also𝑁𝑡	=conforms2500, thetopositiveour 

previouschargeanalysis:densityduringstarts tothedecreasephases wherein the the electron 

loss rate exceeds that of the ion, the ions are more attracted to the wall potential, resulting 

in the accumulation of positive charge within the sheath region. As the electron loss rate 

continues to drop and the ion loss rate starts to catch up and eventually surpasses that of 

the electron, ions are more prone to stay in the system. 

53

Zheng and Doyle: PIC/Monte-Carlo Simulation for Weakly Ionized Plasmas

Published by DigitalCommons@Macalester College, 2023



53 

 

Figure 5.3. Charge density for 𝑁𝑡	=	500,	2500,	and 5000. 

In addition to the evolution of the potential and charge density, the velocity distributions 

of the electrons and ions also evolve in time. In Figure 5.4 we have plotted the electron 

and ion velocity distributions at Nt = 50 and Nt = 10000 time steps, compared to the 

original Maxwell-Boltzmann distributions. At Nt = 50 the distributions are very similar to 

the initial distributions, but by Nt = 10000 there has been considerable evolution of the 

distributions, especially in the case of electrons. The dramatic change in the electron 

distribution is to be expected, since due to the steep potential energy barrier due to the 

sheath formation, high energy electrons will be preferentially lost, shifting the 

distribution to lower energies. 
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Figure 5.4. Initial and final velocity distribution for electrons and ion respectively, as well 

as for 𝑁𝑡	=	10000	and 𝑁𝑡	=	50	respectively. 

The simple ambipolar diffusion theory predicts that the electron and ion loss rates should 

equalize in the fully developed afterglow. Although we do see the predicted decrease in 

electron wall flux and increase in the ion wall flux, as shown in Figure 5.2 the system 

does not reach the ideal steady-state where the electron flux equals the ion flux in the 

steady state. However, given the results in Figure 5.4, as well as the fact that the electron 

and ion numbers decrease over time, we do not expect an ambipolar steady state can be 

achieved. The simple ambipolar theory assumes fixed values of the electron and ion 

concentrations and temperatures, which is clearly not the case under these conditions. In 

fact, without some means of replenishing the electrons and ions to maintain the 

55

Zheng and Doyle: PIC/Monte-Carlo Simulation for Weakly Ionized Plasmas

Published by DigitalCommons@Macalester College, 2023



55 

concentrations and velocity distributions, the system can never truly achieve a steady 

state. This is especially true for electron behavior. 

B. Te = 30000 K, np = 1017 m-3 

The inability to achieve an ambipolar steady-state under our standard conditions due to 

the continuing rapid loss of particles and evolution of the velocity distributions 

(especially the electrons) suggests that higher plasma densities might give a result closer 

to the ideal ambipolar theory. At higher plasma densities the sheath should contract since 

according to Equation 1.1 the Debye length should decrease, causing the sheath to 

contract and increasing the plasma potential, and thereby limiting the loss of electrons. 

In Figure 5.5 we show the evolution of the plasma at the initial conditions of Te = 30000 

K, np = 1017 m-3. As expected, we observe a contraction of the sheaths compared to the 

standard conditions of Te = 30000 K, np = 1015 m-3. (Figure 5.1) . In Figure 5.6 we show 

the loss rates of the electrons and ions, and Figure 5.7 gives the evolution of the velocity 

distributions at 5000 timesteps. 
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Figure 5.5. Potential profile for different numbers of total time-steps 𝑁𝑡	= 200, 500, 1000, 

2500, and 5000. 

 

Figure 5.6. Particle loss rate for electrons and ions respectively for 𝑁𝑡	=	5000. 
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From the particle loss rate evolution (Figure 5.6) we see a different pattern compared to 

the previous Group 1 parameter results. With 𝑛𝑝	=	1017, the electrons and ions both 

converge to stable values. The loss rates of both species are also very close to each other. 

Although not exactly the same as expected in the ideal case, this result is closer to 

representing an ideal ambipolar diffusion scenario. The evolution of the velocity 

distributions over time from Figure 5.7 confirms that the electron velocity distribution 

still maintains a quite stable shape at least up to Nt = 5000. These results are consistent 

with the better confinement of the quasi-neutral plasma due to the higher plasma density. 

 

Figure 5.7. Initial and final velocity distribution for electrons and ions respectively, 

𝑁𝑡	=	5000. 

C. Sheath Width Dependence on Te and np 

Finally it is of interest to vary 𝑛𝑝	and 𝑇𝑒	to verify the assumptions that the sheath width 

should scale with the Debye length. Recall that the expression for the Debye length is 

given by 
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 λ𝐷	=	(	ϵ0𝑛𝐾𝑒𝑇2	𝑒	)1/2	 (1.1) 

As discussed in the Introduction, the Debye length is the characteristic length over which 

the plasma can deviate from neutrality. Thus, we expect the sheath widths at the 

boundaries to be strongly correlated with the Debye length. There is no universally 

accepted precise definition of the sheath width, but if we define the sheath width as the 

distance to 90% of the maximum potential, we can compare the Debye length to the 

sheath width for different values of 𝑛𝑝	and 𝑇𝑒. 

As is evident from the results presented above, another issue in making such comparisons 

is that the system is not static and continues to evolve over time. Nevertheless, it is 

possible to make semi-quantitative comparisons if we confine the condition to early 

enough in the evolution so that the electron energy distribution has not significantly 

evolved and a significant decrease in electron superparticle numbers has not occurred, but 

evolved enough where the potential profile in the central region of the region is relatively 

stable. In the cases discussed below the average electron energy was within 1% of the 

starting average energy, and the electron superparticle numbers had decayed to less than 

4% from the starting values. 
In Figure 5.8 we show the potential profile near the boundary for plasma densities of 

1e14, 1e15, and 1e16 after 500 time steps, all at 𝑇𝑒	=	30000	𝐾	and 𝑇𝑖	=	30000	𝐾. The 
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potentials have been normalized by their maximum values near the middle of the region 

so that the sheath profiles can be compared on the same scale. In Figure 5.9, we show the 

comparison between the Debye length and the sheath widths. The ratio of the sheath 

width to the Debye length is of order 1 for all cases as expected. The ratio of sheath width 

to Debye length ranges from about 1 for 𝑛𝑝	=	1014	to about 3 for 𝑛𝑝	=	1016. Despite 

this variation, the strong correlation of sheath width with Debye length is evident. Given 

the arbitrariness of our sheath width definition and the absence of any precise relation 

between the sheath width and Debye length, we consider this level of agreement to be 

satisfactory. 

 

Figure 5.8. Potential in sheath regions for 𝑛𝑝	=	1014,	1015,	and 1016	𝑚−3. The potentials 

have been normalized by their maximum values. 
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Figure 5.9. Debye length and sheath width comparison. 

In Figure 5.10 we show the effect of varying the electron temperature. A good correlation 

exists between the sheath width and the Debye length, as observed in Figure 5.11. In this 

case the ratio varies between 2.7 and 2.1 for 𝑇𝑒	varying between 10000 K and 30000 K, 

again illustrating the strong correlation between the Debye length and the sheath width. 
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 𝑇𝑒	=	10000	𝐾,	30000	𝐾,	 60000	𝐾 
Figure 5.10. Potential in sheath regions for and . The 

potentials have been normalized by their maximum values. 

 

 Figure 5.11. Debye length and sheath width comparison as a function of . 
𝑇𝑒 

We conclude that the observed sheath widths are qualitatively consistent with basic 

plasma theory with the expected scaling with the Debye length. 

VI. Conclusions and Future Work 

We have developed a Particle-in-Cell (PIC) model with collisions for a one-dimensional 

electrostatic plasma. We have confirmed our program is consistent with basic plasma 

behavior, particularly with regard to plasma evolution by ambipolar diffusion and sheath 

formation. The relevance of the theoretical Debye length is confirmed and the results are 

in qualitative agreement with the expected relation between the Debye length and and the 

sheath formation with respect to variations of plasma density and electron temperature. 
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Although we did not achieve conditions that reflect the ideal ambipolar diffusion case, 

the results indicate that better agreement occurs with higher plasma densities, as 

expected. The program provides a firm foundation for further studies of the plasma 

dynamics of weakly-ionized plasmas that are commonly used in technological 

applications. 

There are many opportunities for further study and refinement of the simulation. A wider 

range of conditions of plasma density and electron temperature should be explored. We 

did not examine the effect of changing gas pressure which would affect the collision 

dynamics. In addition, more realistic electron-atom and ion-atom scattering models could 

easily be introduced. We would also like to explore mechanisms that would help maintain 

fixed electron and ion temperatures and densities while allowing the formation of 

sheaths. For example, an electron and ion generation term can be introduced, that would 

perhaps correspond to UV photon ionization processes (work on a preliminary version of 

this approach is already underway). Secondary electron emission from the electrode 

could also be easily introduced. 

Due to the one-dimensional nature of our program, the simulation can only consider 

electrostatic forces. A further extension could consist in developing the program into 

two-dimensional simulation where more realistic experimental geometries and magnetic 

forces could be introduced. With the basic structure presented here in place, all of these 

refinements could be implemented in a straightforward manner. With some of the above 

refinements a robust comparison to experimental results, as well as detailed plasma 

theories, could be achieved.  
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