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In June 2022, the LUX-ZEPLIN collaboration released its first results, with the

most precise measurements of any direct dark matter detector. The findings were

calculated using the expected spin-independent WIMP-nucleon interaction model,

which would result in small energies deposited in the detector. Therefore, the

background of non-dark interactions was calculated for events with S1 areas up to

80 phd (Aalbers et al. 2022). In order to increase the sensitivity to high energy

WIMP-nucleon interaction events, as predicted by other models, we extended the

non-dark NR background to events with S1 areas of up to 600 phd. We found a

large contribution to the NR background from ER leakage. Though the leakage

peaked below 80 phd, the leakage rate at 80 phd is roughly 1% for all interaction

models, and falls to zero between 150 phd and 200 phd. The expected number

of xenon-based MSSI is roughly 0.015 for all spin-dependent interaction models,

peaking at high S1 areas. We found the rate of cathode-based MSSI to be zero.

The wall based MSSI rate we calculated is significantly higher than is shown by

the data, which likely means that the model of the electric field in the detector is

incorrect.
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CHAPTER 1: Introduction

The identification of the particles that constitute dark matter is one of the most

challenging problems in modern physics. Since Fritz Zwicky first noticed the abun-

dance of nonluminous mass in galaxy clusters using the virial theorem (Andernach

& Zwicky 1933), dark matter has been the subject of countless studies using tech-

niques from particle collision to gravitational lensing. While these studies have

yet to detect any form of dark matter, they have resulted in invaluable insight

into its characteristics. Though observation suggests that dark matter makes up

roughy 85% of the total matter in the universe (Mullat 2016), it does not interact

through the strong or electromagnetic forces, allowing light and other matter to

pass through it without resistance. The only force that dark matter has been

observed to interact with is gravity.

The current leading theory for dark matter composition is Cold Dark Matter

(CDM). CDM theory predicts that dark matter is composed of Weakly Interacting

Massive Particles, hereafter referred to as WIMPs, with estimated mass between

2 GeV and 100 TeV. WIMPs are nonbaryonic, meaning they are not made up of

the atoms and molecules that constitute the matter we are used to (Roszkowski

et al. 2018). This matter is referred to as ”cold” because its relatively high mass

particles causes it to be non-relativistic at the time of decoupling, the time at which

photons began to travel freely, and thus the time from which we can observe light.

While dark matter does not interact via the electromagnetic, weak, or strong

forces, the standard model predicts that it should interact with baryonic matter

through weak coupling with standard model particles (Roszkowski et al. 2018)

This theorized interaction forms the basis for all three primary methods to search

for dark matter: indirect detection, particle collision, and direct detection.

Indirect DM detection uses observational astronomy to search for the remnants of

WIMP decay in space. Telescopes such as the High Energy Antimatter Telescope

peer into regions with high expected dark matter density, such as galactic centers.

They look for the positrons and antiprotons, among other particles, that are pre-

dicted to be created as a result of dark matter annihilation. By comparing this

1
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2

to the rate of these particles from non-dark sources, researchers can theoretically

calculate the small-scale structure of dark matter (Bertone & Merritt 2005).

The particle collision method utilizes particle accelerators such as the Large Hadron

Collider to search for dark matter. Using the extreme energies and precision pro-

vided by the detectors in such colliders, researchers measure the collision of parti-

cles travelling nearly the speed of light to instigate interactions with a high energy

threshold. By observing the particles emitted by the interaction, the researchers

identify the resulting energy and momentum of the system. As these values must

be conserved, any difference in energy or momentum after the interaction must

have been emitted in a particle the instruments are unable to detect, dark matter

(Abe et al. 2020).

Finally, direct detection projects use highly specialized sensors to detect even the

faintest energies that a DM particle may deposit in a detector through interactions

with baryonic matter. These detectors use the observation that dark matter is

dispersed roughly evenly through the galactic halo, and thus manyWIMPs must be

passing through the Earth every second. while the interaction rate with baryonic

matter is low, it is not predicted to be zero. Thus, large containers of ultra-pure

material are constructed to attempt to measure these interactions (Bertone &

Merritt 2005). The work in this project is performed as part of the direct dark

matter detection collaboration, LUX-ZEPLIN.

1.1 The LUX-ZEPLIN Detector

The LUX-ZEPLIN (LZ) collaboration is made up of hundreds of members at more

than 35 institutions across the globe. LZ is one of three second generation direct

detection dark matter experiments, and is primarily formed of researchers from

the first generation LUX and ZEPLIN experiments (Mount et al. 2017). The

second generation of detectors are several times larger than the first generation,

and include more precise instruments, Therefore, they have the ability to identify

WIMPs with much smaller cross sections than the first generation were able to.
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In June of 2022, LZ released the results from its first observing run, taken from

60 days of run time out of a planned 1000 days. Although it used merely 6% of

the total exposure time, the June publication significantly lowered the upper limit

of the DM cross section function for all masses. At its most sensitive mass, LZ

reduced the limit by a factor of 6.5 over past experiments, making it the most

sensitive direct dark matter detector for the foreseeable future (Aalbers et al.

2022). The mass-cross section limit is compared to previous studies in Figure 1.1.

Figure 1.1: The 90% confidence limit of the mass-cross section function for
spin-independent WIMPs is shown by the black line. The 1σ and 1σ sensitivity
projections are shown in green and yellow, with the median sensitivity projection
shown by the dotted black line. Sensitivities for previous direct detection studies

are shown and labeled (Aalbers et al. 2022)

The data used by the LZ collaboration is captured by the LUX-ZEPLIN detector.

The design for the LZ Detector was first proposed in September 2015, with con-

struction beginning in September 2016 and finishing in August 2020. The detector

is housed at the Sanford Underground Research Facility in South Dakota, nearly

5,000 feet below the surface. This depth provides an environment that excludes

the vast majority of particles that interact strongly with baryonic matter, such as
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muons and cosmic rays, while allowing WIMPs, which have interaction rates low

enough to easily pass through the intervening earth.

The LZ detector, shown in Figure 1.2, measures nearly 6 meters in height and more

than 7.5 meters in diameter. The detector sits within a large tank of water, which is

regularly circulated to maintain purity. This water is primarily designed to block

radiation from outside sources. The outer detector (OD) uses Photomultiplier

Tubes, hereafter PMTs, to measure incoming particles and veto any that interact

again in the inner detector. The cryogenic system maintains an inner detector

temperature of 80K. The outside of the inner detector is made up of a thin layer

of liquid xenon, known as the skin, which provides an additional veto for certain

incoming particles (Mount et al. 2017). The methods by which the OD and skin

veto events are discussed in § 2.2.

Figure 1.2: Model of the LUX-ZEPLIN Detector, with large components
labeled and a human for scale (Mount et al. 2017)

The center of the LZ Detector contains the Time Projection Chamber (TPC),

which is shown in Figure 1.3. The chamber is roughly 1.5 meters in diameter and

and 1.5 meters tall and contains 7 metric tons of ultra-pure liquid xenon (LXe).

The top and bottom of the detector both contain an array of PMTs that measure

energy of photons and electrons emitted inside the TPC. A cathode at the bottom

of the detector, an anode at the top, and field shaping structures embedded in the
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walls generate an electric field with a strength of roughly 192 V/cm. The electric

field points downwards and is uniform throughout most of the detector (Mount

et al. 2017).

Figure 1.3: Diagram of the Time-Projection Chamber collecting data from a
particle interaction. In the diagram, a particle enters the detector and deposits
some of its energy on a xenon atom, which then emits electrons and photons.

Taken from Mount et al. (2017)

Liquid xenon was chosen as the interaction medium for several reasons. Primarily,

LXe has been identified as a material with efficient yields for both ionization and

scintillation. The large numbers of electrons emitted by the ionization and photons

emitted through scintillation allow us to detect lower energy interactions than is

possible with other mediums (Mount et al. 2017). Xenon is a noble element,

eliminating the need to account for reactions with detector components. The

large mass of the xenon nucleus increases the chance of a WIMP passing close

enough to interact with the target mass. Finally, LXe was chosen for its stability.

While radioactive isotopes of xenon are present in extremely small concentrations,

the vast majority of the radioactive events identified during the first observation

originated from similarly small argon, krypton, and radon impurities, roughly

80% of all events measured. Meanwhile, only 9% came from Xe decay (Aalbers

et al. 2022). The reasoning for the importance of high ionization and scintillation

efficiencies as well as large nuclear cross section are discussed in § 1.2.
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1.2 Data Collection

The LZ Detector collects data on particle interactions within the TPC by measur-

ing the energy of the ionization and scintillation pulses using PMTs. The photons

emitted by the interaction travel outwards at the speed of light and reach the

PMTs. The PMTs multiply the signal by a factor of roughly 106 before recording

the final energy in terms of photons detected, or phd. As the scintillation reaches

the PMTs before the ionization, we call the light signal S1.

The electrons that are emitted are subject to the strong electric field and move

upwards at roughly 1,500 m/s. The TPC is temperature controlled so that it has

a thin layer of Xe vapor just below the PMTs. Due to the high electrolumines-

cence of the Xe vapor, the electrons passing through produce large numbers of

photons. These photons are measured by the PMTs as the ionization, or S2 signal

(Mount et al. 2017). The shapes and sizes of the two signal types are compared

in Figure 1.4.

Figure 1.4: Comparison of the shape and size of S1 and S2 signals. The S1
signal, seen on the left, is significantly weaker and lasts for less than half a
nanosecond. The signal strength quickly peaks before slowly decaying back to
zero. The S2 signal on the right is a much stronger signal and lasts 4 ns. The

amplitude follows a roughly Gaussian distribution over time.

Particles that pass through the detector can interact with Xe atoms through two

mechanisms. When a charged particle passes near a Xe atom, it interacts with the

electron shell through the electromagnetic force. We label this type of interaction

as Electronic Recoil (ER). As the energy is transferred into the electrons, the
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interaction provides enough energy to eject a large number of electrons from the

shell. The atomic excitation temporarily creates diatomic xenon, called excimers,

which quickly de-excite and emit photons (Akerib et al. 2020).

In contrast, an uncharged particle, such as a WIMP, will not interact with the

electrons. Instead, it will be detected if it passes close enough to the nucleus for

the weak coupling to cause an energy transfer. In such a Nuclear Recoil (NR)

interaction, the energy is transferred into the nucleus of the Xe atom. Thus,

some of the energy is converted to heat and the interaction releases less energy in

the form of photons than an ER interaction, and an even smaller fraction of the

electrons of an ER interaction (Akerib et al. 2020).

Due to the differences in ionization and scintillation efficiency between ER and NR

interactions, they can be differentiated by plotting photon energy against electron

energy. This creates two distinct bands, one for ER events and one for NR events,

as shown in Figure 1.5.

Figure 1.5: Plot of the median and 90%-10% probability distribution of the
ER and NR bands based on simulation data. S1c and S2c represent the corrected
area of the S1 and S2 signal detections, measured in photons detected by the
PMTs. The S2 signal is plotted on a log scale, meaning that the S2 strength is
several orders of magnitude greater for ER events at all but the lowest energies,

leading to easy discrimination.
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1.3 The NR Background

A primary challenge faced in the search for WIMP-nucleon interactions is account-

ing for the NR background. There is a significant number of events, that despite

being caused by Electronic Recoil, appear within the NR band. In order to iden-

tify whether or not WIMP-nucleon interactions are present in our data, we must

compare the NR band detections, shown in Figure 1.6, to the expected number of

ER events in the NR band. The total rate of non-dark events in the NR band is

known as the NR background. The NR background is primarily made up of two

contributors: MSSI events and ER leakage. In addition, the NR background has

a large contribution from neutron interactions. As neutrons are uncharged, they

generate NR events. These events are primarily removed by the outer detector,

and thus are not included in this study.

Figure 1.6: Plot of event detections from the first 60 days of run time. 12
events are measured within the NR band, between the dotted red lines, with
most of the remainder falling towards the middle of the ER band. Some or all
of the events in the NR band are likely the result of ER interactions (Aalbers

et al. 2022).
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1.3.1 MSSI Events

Multiple Scintillation Single Ionization events, often referred to as MSSI, are the

result of particles that interact with the LXe multiple times, but are not measured

correctly.

When a particle such as a high energy photon interacts with a Xe atom, it may

not release all of its energy, instead scattering and traveling as short distance

before interacting with another Xe atom. This is known as a double scatter.

Because the incoming photon travels at the speed of light, the two interactions

occur near instantaneously. Therefore, the photons emitted by the two interactions

indistinguishable and generate a single, larger S1 signal. Thus, events are identified

as double scatters by the presence of two separate S2 signals.

MSSI events occur when the scintillation of both events is detected, but the ion-

ization of one event is lost. This phenomenon stems primarily from the non-

uniformity of the TPC’s electric field, which causes an electron’s path to intersect

with a wall and not reach the PMTs. Figure 1.7 shows the Reverse Field Region

(RFR) present below the cathode. Additionally, while the electric field shaping

structures in the TPC walls are closely packed, there is a nonzero separation be-

tween them. This creates small inconsistencies near the wall, where the space

between the field shapers results in an inconsistent electric field. These electric

field dead zones near the walls of the TPC are displayed in Figure 1.8.

When a scatter occurs below the cathode, the electrons are released as normal.

However, as the electric field below the cathode points upwards, the electrons

are forced to the bottom of the TPC. Because of this, the electrons do not pass

through the Xe vapor and are not measured by the PMTs.

For scatters that occur very close to the walls of the detector, electrons can be-

come caught by the dead zones. The electric field in the red regions of Figure 1.8

push electrons away from the wall, towards the drift region. As the electron moves

upwards, it reaches a blue dead zone, with an electric field pointing the other direc-

tion, pushing the electron back towards the wall. This creates an oscillatory path

for the electron, with some paths intersecting the wall. The electrons following

these paths will not reach the PMTs.
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Figure 1.7: Diagram of the electric field strength relative to location in the
detector, with radius from the center plotted on the x-axis. Potential contours
are shown in black. The electric field is significantly stronger and points the
opposite direction below the cathode, with this region being designated the

Reverse Field Region (Mount et al. 2017).

As Double scatters are identified by the double S2 signal, an MSSI, which only

measures one S2, will be misread as a single scatter. As the scintillation of both

scatters are measured, this single scatter will have an S1 signal equal to the S1

sum of the two scatters. This event moves to the right from the ER band displayed

in Figure 1.5, potentially landing within the NR band and becoming part of the

NR background.

The double scatters that can be read as MSSI come from two primary sources. The
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Figure 1.8: Model of the electric field strength relative to the drift region near
the wall of the detector, with radius from the center plotted on the x-axis and
height on the y-axis. This region is significantly enlarged to show the small
fluctuations clearly. Electric field lines are shown in white, with dead zones in

dark blue (Plot created by Reed Watson).

more well understood source of MSSI is the radioactive decay of atoms within the

LXe. As the few radioactive isotopes in the sample decay, they emit γ photons with

high enough energy to create a double scatter. Previous research has estimated

the xenon-based MSSI rate to be around 1.7 events below 600 phd for the first

60 days of run time (Rischbieter 2022). Due to the low rate and the fact that

many of the MSSI will fall outside of the NR band, their contribution to the NR

background is expected to be low.

The second potential source of MSSI is from detector components. Detector com-

ponents are manufactured to be highly radiopure. Nevertheless, there is likely to
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be a small number of double scatters that originate from detector components.

Component-based double scatters have an increased likelihood of being measured

as MSSI as a result of their proximity to the electric field inconsistencies. Because

of this, we expect cathode-based MSSI due to the RFR and wall-based MSSI due

to the dead zones. The rate of component based MSSI is not well constrained, but

is expected to be low.

1.3.2 ER Leakage

Apart from MSSI, the other large contributor to the NR background is leakage

from the ER band. As a natural result of uncertainties in particle interactions as

well as signal detection, ER events regularly fall outside of the ER band, roughly

following a Gaussian distribution. The distribution means that ER events can be

measured with an S1 and S2 that are characteristic of an NR interaction. This

effect is especially pronounced at low energies, when the ER and NR bands are

close together. Because the rate of ER events is significantly higher than MSSI,

we expect ER leakage to be by far the largest contributor to the NR background.
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CHAPTER 2: Computational Methods

The primary goal of this project is to identify the NR background rate for a wider

S1 range than previously calculated. The first results paper published in June 2022

included events with S1 areas up to 80 phd, which are shown in Figure 1.1. This

cutoff is reasonable for the assumed spin-independent WIMP-nucleon interaction

model, for which most interactions fall at low energies. In this project, we create

a model for the NR background for S1 events up to 600 phd. Using the expanded

model, the LZ collaboration will be able extend the range of the WIMP search,

increasing the sensitivity for WIMP-nucleon interaction models with higher rates

of high energy events. The alternative interaction models are discussed further

in Section 2.1. In order to create the model for the NR background rate, we

performed an analysis of Near Miss MSSI events, as well as simulations to calculate

the leakage of ER and xenon-based MSSI into the NR band.

2.1 WIMP-Nucleon Interaction Operators

Though the first set of data analysis was handled with the assumption that the

interaction between dark matter and xenon nucleons is spin-independent, How-

ever, there are several competing models of these interactions. These interaction

models were created using a simplified extension of the standard model in the non-

relativistic case that includes dark matter and a particle to mediate the interaction

between DM and standard model particles (Goodman & Witten 1985).

Using the extension of the standard model, researchers generated linear opera-

tors in terms of basic invariants under four symmetries. These symmetries are of

three-dimensional momentum transfer, relative velocity of the particles, and the

spin of the WIMP and nucleon, respectively. These calculations resulted in 14

independent linear operators for interactions between spin 1/2 WIMPs and nu-

cleons, shown in Figure 2.1. Operators 17 and 18 only apply to spin 1 WIMPs

from Baum et al. (2018), which we did not include in our study. This left the

13
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Figure 2.1: Quantum Mechanical Operators for WIMP-nucleon interactions.
Operators 2 and 16 are linear combinations of other operators and thus are not

shown (Baum et al. 2018).

spin-independent operator 01 and the spin-dependent operators 03 through 15 for

leakage analysis.

2.2 Near Miss MSSI Analysis

We found the total component-based MSSI rate for events within the target energy

range using data from the first observing run of the LZ detector. The Near Miss

MSSI search identified Near Miss MSSI events, which closely match the circum-

stances that would result in an MSSI, but are measured correctly. The events we

studied were therefore double scatter ER interactions with a detection near the

wall or cathode of the TPC.
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The data used in the Near Miss MSSI Search was taken from the first observing run

of LZ. This consisted of 60 live days of data collection between between December

2021 and April 2022. Through the use of an algorithm that identifies S1 and S2

signals by their shape and size, we selected all events with a single S1 peak and

two S2s, characteristic of double scatters. This initial data set contains more than

3 million events and is displayed in Figure 2.2.

Figure 2.2: Distribution of S1 and combined S2 area of all events included in
this study. ER and NR bands are overlaid in blue and red, respectively. As the
events are double scatters, their reconstructed S1 and S2 areas are each roughly
double what they would be for single scatters, causing an offset from the ER
and NR bands. Most events fall near the ER and NR bands, though there are

many events outside these bands, particularly at lower energies.
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2.2.1 Data Cuts

The large quantity of events included in the study mean that it is impossible

to perform manual analysis on all data points. In order to deal with this, we

implemented several standard selection criteria, also known as cuts, that are used

in the WIMP search. Any MSSI that would be excluded through these cuts has

no impact on the accuracy of the WIMP search. Because of this, we are able to

reduce the size of our data set and increase the accuracy of our Near Miss MSSI

count by eliminating all double scatter events that fail the standard cuts.

The first cuts we performed were a skin cut and an outer detector cut. These cuts

excluded all events with a simultaneous detection in the skin layer or OD. Due

to dark matter’s extremely low rate of interaction with baryonic matter, we have

yet to conclusively detect even a single WIMP-nucleon interaction, the chance of

a WIMP interacting with the xenon in the skin or OD as well as inside the TPC

is effectively zero. Therefore, all events with associated skin and OD scatters are

ignored when searching for WIMPs.

Figure 2.3: Comparison of random noise incorrectly marked as S1 (top) to an
expected S1 signal (bottom). Taken from a single scatter event using the LZ
event viewer. Note that the amplitude scale for the noise based S1 has been

magnified 10x.
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The next set of cuts we used were quality cuts for the S1 and S2 detections. The

algorithm we use uses difference of Gaussian filters and decision trees based on

parameters such as rise time and PMT coincidence, as well as a hard cutoff for

signals below 3 phd to determine whether a signal is S1, S2 or neither (Williams

2022). Additionally, it marks events with whether or not the signal is very likely to

be real based on the shape and size of the S1 and S2 signals. While low confidence

events are useful for some aspects of analysis, this method can identify random

noise as S1 signals, an example of which is compared to a true S1 in Figure 2.3.

The WIMP search, and thus the Near Miss MSSI search, only performs analysis

on events that are very likely to be real. The S1 and S2 quality cuts exclude all

events that are faint or of an irregular shape, and thus have low confidence. After

taking the S1 and S2 quality cuts, we are left with events with a high likelihood

of being real.

The final standard cut we used was a fiducial volume cut. Due to the low inter-

action rate of DM, we can use the skin and OD to veto many non-dark particles.

However, as the path length of certain particles, such as gamma photons (γs) and

neutrons, is on the order of 10 cm between interactions, it is possible for these

particles to interact just outside the skin and again just inside the TPC.

The edges of the detector are also exposed to radiation from material surrounding

the detector than the inner region of the TPC due to the self-shielding of the

LXe. LXe’s high density mean that any high interaction rate particles passing

through the detector will quickly interact with a xenon atom. Therefore, few

incoming particles will pass through a significant length of LXe. As the majority

of particles that pass through the TPC originate from outside the detector or from

the radioactive decay of impurities in its components, the center of the TPC has

a much lower event rate, as seen in Figure 2.4.

In order to reduce the rates of missed double scatters and total non-dark interac-

tions, we constrain the data used in the WIMP search to interactions within the

fiducial volume (FV). The FV is a cylindrical volume at the center of the TPC with

a radius of roughly 70 cm and a height of roughly 130 cm and contains roughly

5.6 metric tons of LXe. Within this volume, the chance of a γ or neutron’s second
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Figure 2.4: Event density of double scatters compared to location in the
detector. Horizontal position is shown as R2 to remove bias as a result of larger

radii containing a larger volume.

interaction being missed is much lower, thus lowering the noise level (Mount et al.

2017).

While the FV cut is simple to implement for the WIMP search, simply by removing

all events that occur outside the fiducial volume. However, due to the nature of

the double scatters in our data, we created a more complex FV cut that included

the Near Miss MSSI events we intended to study.

The FV cut we selected generally performs the same task as the standard FV cut,

with one primary exception. For a double scatter to pass our FV cut, only one of

its scatters must occur within the FV. By including events with a scatter outside

the FV, we hope to capture double scatters with a xenon interaction near the

detector walls and cathode as these are similar to the double scatters that result

in MSSI detections. The data that passes the FV cut is shown in Figure 2.5. More

in-depth analysis of the FV cuts we considered is provided in Appendix A.
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Figure 2.5: Plot of double scatters that have passed all standard data cuts.
There seem to be false detections remaining at the low end the of S1 area axis,

but most of the noise has been eliminated.

In addition to the standard cuts we used to fit with the WIMP search, we imple-

mented a series of cuts designed to isolate Near Miss MSSI events that threaten

the WIMP search. Although there were a large number of events remaining in

our data set, very few of them have the potential to leak into the WIMP region if

they were to become MSSI. Thus, we used a xenon decay cut and a diagonal cut

to create a manageable data set for manual processing.

Although our research primarily focused on events with S1 areas below 600 phd,

due to the greater concentration of MSSI at higher energies, we extended the range

of our S1 cut to increase the sample size. An issue we faced with the extension

was that, above 700 phd, we begin to run into xenon decay based MSSI. The left

overdensity of double scatters seen in Figure 2.5 is caused by the decay of Xe-127,

and the right is caused by Xe-129. In order to identify the detector component-

based MSSI rate, we must exclude these events from our data set, and set the upper
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limit of the xenon decay cut to 700 phd. Due to the high energy requirement of a

particle to generate a double scatter, it is highly unlikely for double scatters with

low S1 area to be real. Therefore, we additionally cut events with S1 areas below

30 phd.

The final cut we made was a diagonal cut to exclude any remaining false detections.

As our study is built to measure the rate of ER double scatters, we can eliminate

all events a significant distance from the ER band. To do this, we built a diagonal

cut centered on the ER band median and extending 0.5 above and below, which

translates to a factor of
√
10 as S2 is plotted in in log space. Following this series

of data cuts, we were left with the 61 events shown in Figure 2.6.

Figure 2.6: 61 double scatters that passed all quality cuts. The xenon and
diagonal cuts are shown in black and the ER band is shown in blue. There are
two primary groupings of double scatters, one with lower energies and one with

high energies.
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2.2.2 Hand Scanning

The final step of the data processing was to manually analyze the event wave-

forms to remove any remaining false double scatters. Because double scatters are

automatically identified by computer analysis, unexpected signals that are easily

identifiable by a human may be misread. We used the LZ event viewer to check

each of the remaining events against the expected form of double scatters. The

full waveform of an event seen in the event viewer is displayed in Figure 3.5.

The manual scanning we performed was primarily focused on the S1 signals. The

energy captured in an S2 detection is several orders of magnitude larger than that

of an S1, so the chance of a false positive or missed S2 is extremely low. On the

other hand, S1 signals are weak enough that they can be confused with detections

of a few stray photons by the algorithm.

If an S1 detection is missed, the primary events that appear as double scatters are

pileup events. These occur when two separate particles interact with the liquid

xenon in close succession. This generates two S1 pulses and two S2 pulses, which

in this case are read as a single S1 and two S2. Through this analysis, we identified

the S1 signals that had been missed by the algorithm and excised them from the

data. An example of an incorrectly marked pileup event is shown in Figure 2.7.

Figure 2.7: The waveform of a pileup event that was incorrectly marked as a
double scatter. Due to the small size of the first S1 signal, it was not properly

identified.

After the completion of the hand scanning, we were left with a data set containing

only true double scatters. The number of events removed with each step and the

cut efficiency are shown in Table 2.1.
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Data Cut Events Removed Efficiency [%]

Skin and OD Cuts 1155244 35.45
S1 S2 Quality Cuts 1470160 69.89

FV Cut 250349 39.52
Diagonal Cut 383035 99.98
Hand Scanning 36 59.02

Table 2.1: Events removed in each step of the data selection process. Both
the absolute number of events and the percentage of remaining events were
removed is given. While the S1 and S2 quality cuts removed the most events,

the Diagonal cut had by far the greatest efficiency.

2.3 MSSI and ER Leakage Rate

Next, we calculated the rate at which MSSI and ER events are found within the

WIMP-nucleon interaction region of S1-S2 space using simulated data of the three

types of detections. The rate was calculated by first generating WIMP-nucleon

specific bands, similar to the NR band seen in Figure 1.5. Then we calculated the

rate at which ER and MSSI events fall in and below the WIMP-nucleon band to

identify the total number of leakage events.

2.3.1 WIMP-nucleon Recoil Bands

Although there are 16 operators that could potentially govern WIMP-nucleon

interactions, many of them have low rates of high energy events. As the first

results paper calculated leakage rates for low energy interactions, we found it most

important to calculate the leakage rates for interaction models with significant

event rates at higher energies. In order to identify the most important operators

to study, we used simulated signals of WIMP-nucleon interactions with different

operators and masses. We plotted the ratio of events with S1 areas of 300 phd to

those with 50 phd in Figure 2.8 and selected the operators with the greatest ratio

for study, which came out as operators 03, 06, 10, 13, and 15.

Using the Noble Element Simulation Technique detailed in Szydagis et al. (2013),

which generates light and charge yields based on input energy, we simulated new
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Figure 2.8: Ratio of events with 300 phd S1 detection to 50 phd S1 detection.
Ratio rises for higher mass WIMPs, and is consistently highest for operator 06,

followed by operators 15, 13, 10, and 03.

data consisting of 2 million WIMP-nucleon interactions for each of the 5 operators

identified above for WIMP masses of 400 GeV and 4000 GeV. Additionally, we

simulated data for the spin independent operator 01 and its positive and negative

uncertainty levels. Due to an issue with the code, the positive and negative un-

certainty of the spin-independent model were simulated by Dr. Greg Rischbieter.

We used band maker code to calculate the mean of the distribution and the 10%-

90-% confidence levels as a function of S1 area. The 10%-90% confidence levels

are bands of the 10th and 90th percentile for S2 area based on S1 area. The

10%-90% confidence levels for the ER and flat NR bands are shown as dashed

lines in Figure 1.5. Unfortunately, there was an error with the simulated data

for operator 15 and operator 06 for 4000 GeV mass WIMPs. This error persisted

across multiple simulations and prevented the bands from being created. Thus,

these WIMP-nucleon interaction models had to be excluded from analysis. Bands

for the other operators are displayed in Appendix B.
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2.3.2 ER Leakage Calculations

We used the same simulation as was used for the NR data to generate 10 million

ER events from which we calculated the leakage rate. As the ER band is much

closer to the NR band at low energies and separates significantly for higher energy

interactions, the ER simulation simulated events with S1 areas up to 200 phd.

Additionally, as we wished to find the leakage for different values of S1 area, we

had to simulate a large number of ER events to calculate the leakage accurately.

The simulated data is plotted against the NR bands in Appendix B.

To calculate the leakage rate, we counted the number of events that fell below

the 90% confidence line and the number below the band median for the NR band.

By separating the events into 5 phd wide boxes, we then found the number of

events below the NR band as a function of S1 area, and calculated the rates by

dividing by the total number of events in the S1 range. The results are discussed

in Section 3.

2.3.3 MSSI Leakage Calculations

MSSI events were simulated using a custom simulator built by Dr. Greg Risch-

bieter that based on the Compton scattering of gamma photons with an input

energy spectrum. As the processes that generate MSSI are more complicated than

ER or NR signals, this simulation is much more computationally rigorous. Thus,

he simulated 3 million events up to a maximum S1 area of 600 phd. The data

from this simulation is plotted against the NR bands in Appendix B.

The MSSI leakage calculation differed in two primary ways from the calculation

for ER events. The irregular distribution of MSSI necessitated the calculation

of events between the 10% and 90% confidence levels rather than leakage below.

Additionally, the low expected leakage rate meant that an accurate calculation of

the total rate is more important than the S1 dependent rate that was found for

the ER leakage. The results are discussed in Section 3.
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CHAPTER 3: Results and Analysis

3.1 Near Miss MSSI Search

After the data processing described in Section 2.2, the data set contained 25 Near

Miss MSSI events with S1 areas between 30 phd and 700 phd. The data are shown

in S1-S2 space in Figure 3.1. Figure 3.2 displays the relative positions of the recoil

events for each double scatter, with the two scatters for each event connected by

a gray line.

Figure 3.1: Near Miss MSSI events displayed with ER band shown in blue.
Note that the events are more concentrated at higher energies, with none below

200phd.

In Figure 3.2, there is the distinct lack of Near Miss MSSI near the cathode at

the bottom of the detector. Using our assumption that the rate of Near Miss

25
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Figure 3.2: Near Miss MSSI plotted by their location in the TPC. Drift time
is roughly proportional to vertical depth and is plotted in reverse so that events
near the top of the detector are shown at the top of the plot. There are many

events near the outer walls but virtually none near the cathode.

MSSI events is similar to the rate of true MSSI events, we expect the rate of

cathode-based MSSI to be effectively zero. Thus, it is not necessary to account

for cathode-based MSSI in the WIMP search.

In contrast, Figure 3.2 shows roughly 15 Near Miss MSSI near the outer wall of

the TPC. Using the same assumption for these, we should expect the wall-based

MSSI rate to be on the order of 10 events. However, when we compared this to

the data from the first observing run of the LZ detector, we did not see what we

predicted. In fact, we see zero events that are consistent with wall-based MSSI.

Based on the apparent conflict between the calculated and observed wall-based

MSSI rates, we must conclude that our assumption breaks down for wall-based

MSSI. Although there are a large number of double scatters near the detector
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walls, electrons are not becoming trapped in pockets with weak electric field at

the rate we expect.

We theorize that the unexpectedly low MSSI rate is the result of a charge buildup

on the inner walls of the TPC. As some of the electrons emitted due to ER in-

teractions build up on the TPC walls, they would generate a slight electric field

directed towards the detector walls. This field would cause electrons emitted in

the weakened electric field regions to be pushed to the interior of the detector and

be detected as normal. If this theory is correct, the MSSI rate would be kept low

at the cost of small errors in measured position. Ultimately, we conclude that the

electric field model must be refined more to deduce the cause of the low MSSI

rate.

3.2 Pileup Events

During hand scanning for the Near Miss MSSI search, we were surprised by the

number of pileup events we identified just above the cathode. While pileup events

are not too uncommon, we usually expect them to follow a similar distribution

to the single scatters that constitute them. However, after correcting the data to

accurately reflect the drift time of the scatter that was measured accurately, this

clearly is not the case. Every event occurs at the same depth, with a drift time

of 950 µs as seen in Figure 3.3, and thus is located at the cathode. Due to the

overdensity of pileups we observe, we expect there is be a source of pileup events

originating at the bottom of the detector.

Apart from the shared location, these pileup events have several similarities. We

reconstructed the total energies using the equation E = W (S1/g1 + S2/g2). In

this case, W is the energy to release one quanta in the form of an electron or

photon, 0.0135 keV, and g1 and g2 are the rates at which a single photon or

single electron are converted into phd by the PMTs, 0.114 phd/photon and 47.1

phd/electron respectively as used in Aalbers et al. (2022). We found the pileup

events’ energy to be significantly lower than for the double scatters as shown in

Figure 3.4. The horizontal displacement between the scatters is below 2 cm for all

pileup events, which is likely a result of the poor position reconstruction resolution
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Figure 3.3: Pileup event position using corrected drift time. All drift times
fall between 950 µs and 952 µs. This is the depth of the cathode and falls

outside the fiducial volume.

(Aalbers et al. 2022). Additionally, the drift times of the two scatters are identical.

This is not seen directly in the double scatter data as the first S1 is missed in each

case, but can be observed through the LZ event viewer as in Figure 3.5.

Because the two scatters in each pileup event are roughly co-spatial, these events

are likely the result of stationary particles interacting with the liquid xenon twice

in quick succession. In order to explain these pileup events, we theorize that

there exists a small amount of an unknown radioactive isotope in the metal of the

cathode. This long half-life material decays into a daughter isotope with a very

short half-life which decays after a brief period. We believe this to be the most

likely origin for such an overdensity of pileup events.

Although this theory is reasonable, the data does not fully support it. The pileup
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Figure 3.4: Overlaid histograms comparing the reconstructed event energy
for pileup events and real events. Apart from a single outlier, the pileup events

have significantly lower energy and a narrower energy distribution.

events we measure have an average time separation on the order of 100 µs. How-

ever, this does not fit with the decay of any known contaminants in the cathode.

Additionally, radioactive decay rate over time is traditionally expected to follow a

simple exponential decay function. In practice, the decay rate of the pileup events

appears to fill a bimodal distribution in Figure 3.6. In order to come to an accurate

conclusion on the origin of the pileup events, it will be necessary to look at more

than the events that were mistaken for double scatters. By analyzing the pileup

events originating from the cathode in a more detailed study, we would learn more

about the LZ detector and potentially open up new avenues for reducing detector

noise.

With the research we currently have, it appears that the cathode based pileup

events are not a source of noise in the NR region. The pileup events occur outside
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Figure 3.5: The waveform of a characteristic pileup event. The S1 at the
far left was small enough that this event was mis-classified as a double scatter.
The drift time for each scatter is shown with the red arrow marking the time

between the S1 and S2 detections.

the FV and are only measured as being inside it because the S1 signals have

a time separation. Conversely, an MSSI could only occur if the S1 signals had

virtually zero time separation. Thus, all cathode-based pileup events that could

be measured as MSSI will be removed by the FV cut and are not relevant to the

NR background.

3.3 MSSI Leakage Rate

Using the simulated data and WIMP-nucleon bands we created, we calculated the

MSSI leakage for each interaction model. The total number of leakage events for

each operator is displayed in Table 3.1.

Of the 2 xenon-based MSSI expected during the first observing run of the LZ

detector, the number that we expect to fall within the NR band ranges between

0.0144 and 0.0403 events. The spin independent model has the greatest leakage

rate, with the spin dependent operators having slightly lower leakage. Apart from

the difference between the spin dependent and spin-independent models, there is

no significant pattern in leakage rates based on operator or WIMP mass.

Due to the low rate, the most likely case is that there is zero NR background

due to xenon-based MSSI. However, the rate is high enough that we must include

MSSI background in our calculations for the WIMP search. This will be especially
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Figure 3.6: Histogram of the time separation between pileup events. If these
were caused by two radioactive decays, we would expect the time separation to

follow A = A0e
−λt.

important as we observe for longer periods of time and the expected MSSI leakage

rises.

3.4 ER Leakage Rate

Finally, we calculated the leakage rate of ER events into the NR band. The leakage

rate below the NR 90% confidence level and band median as a function of S1 area

is shown for the measured operators in Figures 3.7, 3.8, 3.9, 3.10, and 3.11.

Using the plots above, we can see a few commonalities in the leakage rates. The

leakage rate peaks at the low end of S1 area, generally around 30 phd. Past 50

phd, the leakage rate drops quickly and falls to virtually zero by 200 phd. The
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Interaction Model Leakage [Events]

Operator 01 Default Uncertainty 0.0230 ± 0.015
Operator 01 Positive Uncertainty 0.0403 ± 0.025
Operator 01 Negative Uncertainty 0.0173 ± 0.01

Operator 03 400 GeV 0.0144 ± 0.01
Operator 03 4000 GeV 0.0173 ± 0.01
Operator 06 400 GeV 0.0154 ± 0.01
Operator 10 400 GeV 0.0182 ± 0.01
Operator 10 4000 GeV 0.0154 ± 0.01
Operator 13 400 GeV 0.0154 ± 0.01
Operator 13 4000 GeV 0.0163 ± 0.01

Table 3.1: Xenon-based MSSI leakage into NR band for a variety of interaction
models. Leakage shown is expected number of events in the first observing
run of LZ. The high uncertainty is primarily the result of the large estimated
systematic uncertainties in the calculation for the total xenon-based MSSI.

Figure 3.7: ER band leakage rate as a function of S1 area. Plotted are the
leakages below the band median and 90% confidence level for the default flat
NR band (Operator 01) as well as positive and negative uncertainties in the

band.

peak leakage is roughly 0.05 below the 90% confidence level and ranges between

0.005 and 0.01 below the band mean for all interaction models.

Over the course of the first observing run of the LZ detector, we expect roughly
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Figure 3.8: ER band leakage rate as a function of S1 area. Plotted are the
leakages below the band median and 90% confidence level for Operator 03 with
WIMP masses of 400GeV and 4000GeV. The leakage below the default flat band

is displayed for comparison.

Figure 3.9: ER band leakage rate as a function of S1 area. Plotted are the
leakages below the band median and 90% confidence level for Operator 06 with
WIMP mass of 400GeV. The leakage below the default flat band is displayed

for comparison.
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Figure 3.10: ER band leakage rate as a function of S1 area. Plotted are the
leakages below the band median and 90% confidence level for Operator 10 with
WIMP masses of 400GeV and 4000GeV. The leakage below the default flat band

is displayed for comparison.

500 ER events below 200 phd. This number was calculated by extending the 200

events identified below 80 phd in Aalbers et al. (2022) and the flat ER spectrum

at low energies. Using the leakage rates, we can approximate a few tens of ER

events to leak into or below the NR band. This means ER leakage is by far the

largest overall contributor to the NR background, with several orders of magni-

tude more events than either source of MSSI leakage. However, this leakage only

occurs for low energy interactions. At higher energies, the ER and NR bands have

diverged significantly and the leakage rate approaches zero. Thus, we expect a

noisy background at low energies with just a few scattered background events at

higher energies.

To accurately identify whether the data shows evidence of WIMP-nucleon inter-

actions, the WIMP search will need to use not just the expected number of ER

leakage events, but also their distribution. By comparing the distribution of events

in the ER band to those in the NR band, researchers will be able to determine

the statistical likelihood that the NR events emerged exclusively from ER leak-

age using the leakage rates we calculated. Although there is currently no way
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Figure 3.11: ER band leakage rate as a function of S1 area. Plotted are the
leakages below the band median and 90% confidence level for Operator 13 with
WIMP masses of 400GeV and 4000GeV. The leakage below the default flat band

is displayed for comparison.

to completely eliminate the ER leakage contribution to the NR background, the

leakage rate calculations allow us to search for WIMP-nucleon interactions that

were previously hidden by the noise.
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CHAPTER 4: Conclusion

By analyzing a combination of collected and simulated data, we have constructed a

model of the expected NR background for a greater energy range than was used in

Aalbers et al. (2022). The analysis shows that the vast majority of the contribution

to the NR background results from ER leakage at low energies, which is in line with

our predictions. The xenon-based MSSI have a small chance of falling within the

NR band below 600 phd, and primarily occur at higher energies. Component-based

MSSI have a near zero chance of originating from the cathode. The wall-based

MSSI rate is likely low, but cannot be calculated accurately without an improved

electric field model.

During Near Miss MSSI analysis, we identified a source of pileup events at the

cathode. These events had a characteristic energy and event separation, so we

concluded that they are likely the result of consecutive radioactive decays. Al-

though we do not know the exact source or rate of these events, they do not

contribute to the NR background.

The NR background that we have calculated will be used for statistical analysis

in the WIMP search. The expected background based on detector time and ER

event distribution will be compared to the data collected of events falling in the

NR band. The greater range of our background model will allow the WIMP search

to be sensitive to WIMP-nucleon interactions that occur at higher energies, such

as through spin-dependent interaction models.

In the future, the most important extension to this work is likely to improve the

electric field model at the edges of the detector. This will involve performing

another calibration, as the detector environment from which we calibrated the

previous model seems to have changed. Additionally, we would like to fix the

issues with simulating WIMP-nucleon interactions for operators 06 and 15. The

detailed leakage models created from this data could be important to determining

the presence of DM in the data set, depending on the interaction type. Finally, we

would like to do further research on the source of the pileup events we identified.

The pileup events do not appear to interfere with the WIMP search, so this is
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a lower priority. However, understanding these events is integral to constructing

a more accurate model of the detector, and this understanding could potentially

provide insight into an aspect of the WIMP search.
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APPENDIX A: Fiducial Volume Cut Analysis

By definition, double scatters include two separate interactions, often taking place

in different locations. Because of this, it is possible for one of the scatters to be

in the FV and one to be outside it. In order to select an implementation for the

cut, we compared three options. FV cut 1 required that both S2 pulses originated

within the fiducial volume. FV cut 2 required that at least one of the scatters

occurred in the FV. FV cut 3 similarly required that just one scatter occurred

in the FV, but allowed the other scatter to fail the S2 quality cut and still be

included in further calculations.

In order to select the appropriate FV cut, we ran our data through each cut

combined with the rest of the standard cuts. By analyzing the resulting data

structure, we identified the cut that best fit the data we were attempting to study.

Although cut 1 most accurately eliminated false detections created by random

noise, it also excluded much of the data most relevant to our study. MSSI events

are characterized as double scatters in which one scatter is so close to the detector

wall that its electrons are not detected. Thus, by excluding events with one xenon

interaction close to the wall, we would be ignoring the events most similar to

MSSI. In contrast to cut 1, FV cut 3 resulted in far too many false detections,

especially at the low end of S1 area. The scatters that do not pass the quality

cuts are highly unlikely to be real, resulting in a large number of single scatters

with phantom second scatters remaining in the data. As single scatters cannot be

MSSI, we concluded that FV cut 2 is the best cut to use for a Near Miss MSSI

Search.
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Figure A.1: Plot of double scatters that have passed all standard data cuts,
including FV cut 1. This series of cuts has eliminated much of the random noise
in addition to significant amounts of low energy ER events which we would like

to study.

Figure A.2: Plot of the positions of double scatters that have passed all
standard data cuts, including FV cut 1. There are no events outside the FV,

though such events are similar to MSSI.
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Figure A.3: Plot of double scatters that have passed all standard data cuts,
including FV cut 2. This series of cuts has eliminated much of the random noise
but leaves many of the low energy ER events which we would like to study.

Figure A.4: Plot of the positions of double scatters that have passed all
standard data cuts, including FV cut 2. There are some events outside the FV,

though many are excluded.
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Figure A.5: Plot of double scatters that have passed all standard data cuts,
including FV cut 3. This data is still very noisy, as events significantly above

the ER band or below the NR band are unlikely to be real.

Figure A.6: Plot of the positions of double scatters that have passed all
standard data cuts, including FV cut 3. There are many events outside the FV,

including those that may not have a real scatter in the FV.
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APPENDIX B: WIMP-Nucleon Recoil Bands

(a) MSSI Events (b) ER Events

Figure B.1: The flat NR band expected for spin independent WIMP-nucleon
interactions plotted against simulated MSSI and ER events. The events that
fall within the NR band form the NR background. The fringes for the positive
uncertainty in the flat NR band is shown above the top dotted line and the

negative uncertainty is shown below the bottom line.

(a) MSSI Events (b) ER Events

Figure B.2: The NR band expected for nucleon interactions by 400GeV mass
WIMPS through operator 03, plotted against simulated MSSI and ER events.

The events that fall within the NR band form the NR background.
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(a) MSSI Events (b) ER Events

Figure B.3: The NR band expected for nucleon interactions by 4000GeV mass
WIMPS through operator 03, plotted against simulated MSSI and ER events.

The events that fall within the NR band form the NR background.

(a) MSSI Events (b) ER Events

Figure B.4: The NR band expected for nucleon interactions by 400GeV mass
WIMPS through operator 06, plotted against simulated MSSI and ER events.

The events that fall within the NR band form the NR background.
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(a) MSSI Events (b) ER Events

Figure B.5: The NR band expected for nucleon interactions by 400GeV mass
WIMPS through operator 10, plotted against simulated MSSI and ER events.

The events that fall within the NR band form the NR background.

(a) MSSI Events (b) ER Events

Figure B.6: The NR band expected for nucleon interactions by 4000GeV mass
WIMPS through operator 10, plotted against simulated MSSI and ER events.

The events that fall within the NR band form the NR background.
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(a) MSSI Events (b) ER Events

Figure B.7: The NR band expected for nucleon interactions by 400GeV mass
WIMPS through operator 13, plotted against simulated MSSI and ER events.

The events that fall within the NR band form the NR background.

(a) MSSI Events (b) ER Events

Figure B.8: The NR band expected for nucleon interactions by 4000GeV mass
WIMPS through operator 13, plotted against simulated MSSI and ER events.

The events that fall within the NR band form the NR background.
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