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A B S T R A C T

Purpose: Developmentally regulated Guanosine-5'-triphosphate-binding protein 1 (DRG1) is a
highly conservedmember of a class ofGTPases implicated in translation.Although the expression of
mammalianDRG1 is elevated in the central nervous systemduring development, and its function has
been implicated in fundamental cellular processes, no pathogenic germline variants have yet been
identified. Here, we characterize the clinical and biochemical consequences of DRG1 variants.
Methods: We collate clinical information of 4 individuals with germline DRG1 variants and use
in silico, in vitro, and cell-based studies to study the pathogenicity of these alleles.
Results: We identified private germline DRG1 variants, including 3 stop-gained p.Gly54*,
p.Arg140*, p.Lys263*, and a p.Asn248Phe missense variant. These alleles are recessively
inherited in 4 affected individuals from 3 distinct families and cause a neurodevelopmental
disorder with global developmental delay, primary microcephaly, short stature, and craniofacial
anomalies. We show that these loss-of-function variants (1) severely disrupt DRG1 messenger
RNA/protein stability in patient-derived fibroblasts, (2) impair its GTPase activity, and (3)
compromise its binding to partner protein ZC3H15. Consistent with the importance of DRG1 in
humans, targeted inactivation of mouse Drg1 resulted in preweaning lethality.
Conclusion: Our work defines a new Mendelian disorder of DRG1 deficiency. This study
highlights DRG1’s importance for normal mammalian development and underscores the sig-
nificance of translation factor GTPases in human physiology and homeostasis.
© 2023 The Authors. Published by Elsevier Inc. on behalf of American College of Medical

Genetics and Genomics. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction

GTPases are a large enzyme superfamily with critical roles
in fundamental cellular processes.1 Central to their function
is the ability to bind and hydrolyze Guanosine-5'-triphos-
phate (GTP),1 which confers the ability to act as molecular
“switches”.

The GTPase family consists of 2 subgroups referred to as
“SRP, MinD, and BioD” (SIMIBI) and “Translation Factor”
(TRAFAC).2 The TRAFAC group was named after mem-
bers that function as translation factors, but also includes
RAS and heterotrimeric GTPases.2 Less well-characterized
TRAFAC GTPases include OBG- (spoOB-associated
GTP-binding protein) and HflX (high frequency of lysoge-
nization protein X)-like GTPases. OBG/HflX GTPases are
an ancient enzyme class with some members present in all
domains of life.2 OBG/HflX GTPases have roles in ribo-
some regulation/biogenesis, translation, or RNA binding.3

The developmentally regulated GTP-binding (DRG)
proteins, DRG1 (Q9Y295 / NP_004138.1, an ortholog of
the yeast Rbg1) and DRG2 (P55039), are highly conserved
OBG/HflX GTPases2,4 that interact with RNA and ribo-
somes, consistent with a proposed translational role (West-
rip et al4 and references therein). Indeed, structural analysis
places DRG1 within the large ribosomal subunit where it
relieves ribosomal pausing.5 DRGs have also been studied
in other contexts.4 DRG1 expression is elevated during
development of the central nervous system.4 It is also
required for cell proliferation and has been implicated in
cancer-associated processes.4 However, the importance of
these functions and their potential roles in physiology and
disease remain unclear.

Althoughmutation of genes encoding small GTPases such
as RAS has been widely studied in the context of cancer6 and,
more recently, neurodevelopmental disorders,7 the role of the
wider TRAFAC family ismuch less well understood. To date,
there have been no pathogenic germline variants identified in
genes of the OBG/HflX subfamily, including the DRG
GTPases. Because gene expression control at the level of
translation is now recognized as an increasingly important
area of deregulation in inherited disease,8 further studies of
these enigmatic GTPases are warranted.

Here, we identify inherited loss-of-function variants in
DRG1 in 3 pedigrees that present with a novel developmental
disorder associated with global developmental delay, failure
to thrive, microcephaly, and craniofacial dysmorphism. We
show that the disease variants severely damageDRG1 protein
level, interactions, and GTPase activity.
Materials and Methods

Isolation of human fibroblasts

Primary human cutaneous fibroblasts from the proband of
family 2 and one unaffected parental control were isolated
from fresh skin biopsies. Briefly, biopsies were incubated in
trypsin overnight at 4 ◦C to enable the peeling of the
epidermis from the dermal compartment. Dermis was
chopped up and stuck to a 10-cm plastic dish, allowing the
fibroblasts to migrate out of the dermal fragments.

See Supplemental Information for additional Methods.
Results

We report 4 individuals from 3 independently identified
families with biallelic deleterious DRG1 variants resulting in
a neurodevelopmental syndrome (Figure 1A and B). With
the exception of family 2 (Singaporean ancestry), the other
families were of Middle Eastern background and consan-
guineous (family 1 and family 3). The phenotypes in these 4
individuals consist of a global developmental delay, failure
to thrive, microcephaly, intellectual deficit, and craniofacial
anomalies. All 4 patients presented with intrauterine growth
restriction at birth, and they continued to show significant
growth delay. They showed a delay in attaining develop-
mental milestones but, in general, were able to walk and
interact with their surroundings. They all had variable
speech delay. Detailed clinical descriptions and facial dys-
morphism information is presented in Figure 1 and Table 1.

According to gnomAD, no homozygous damaging var-
iants have been reported for DRG1. None of the 4 germline
variants (p.Gly54*, p.Asn248Phe, p.Lys263*, and
p.Arg140*) are present in public databases (gnomAD,
BRAVO/TOPmed, ExAC, and 1000G) or in combined in-
house databases consisting of >50,000 exomes/genomes.
The Regeneron database of >170,000 genomes did not
contain the p.Gly54*, p.Asn248Phe, or p.Lys263* variants
but did include the p.Arg140* variant with an allele fre-
quency of 0.000012. The truncating variants are predicted to
be deleterious, with Combined Annotation Dependent
Depletion (CADD) scores >35 (p.Gly54*; CADD = 38,
p.Arg140*; CADD = 37, and p.Lys263*; CADD = 41;
Figure 1C). The missense p.Asn248Phe variant identified in
proband II:1 of family 2 is located in a highly conserved
region (Figure 1D) and thus annotated as a possible loss-of-
function allele with a CADD score of 26.4.

The DRG1 gene has a residual variation intolerance
score10 of −0.19 (placing it in the top 40% of human genes
most intolerant to genetic variation) and a pLoF observed/
expected score of 0.23 (gnomAD). This suggests that DRG1
is a target of strong negative selection, which may be
consistent with an essential function. Consistent with this,
Drg1 is ubiquitously expressed in embryonic day (E) 14.5
(Figure 1F) mouse embryos and is essential for proper
murine development: homozygous Drg1 knockout leads to a
significantly lower survival rate at weaning age, with less
than 2% Drg1−/− pups obtained from heterozygous crosses
(χ22 [N = 105] = 34, P = 3.8 × 10−8; Figure 1G and H).

Overall, these findings suggest that homozygosity for
pLOF variants is exceedingly rare in the general population



Figure 1 Three families with recessive DRG1 loss-of-function variants. A. Pedigrees of 3 families in which affected children inherited
recessive DRG1 pLoF variants. B. Structure of the DRG1 transcript indicating the location of the genomic variants (above) and their cor-
responding change in amino acid sequence (below). Variants are color-coded according to panel A. C. Minor allele frequency and Combined
Annotation Dependent Depletion score of homozygous DRG1 coding variants found in gnomAD v.2.1.1 (black dots) and those found in each
family (color-coded dots). DRG1 is intolerant of genetic variation. D. p.Asn248Phe is located in a highly conserved region. Functionally
conservative amino acid changes are indicated (* and :). E. Photographs of 4 affected children showing facial dysmorphism and campto-
dactyly, clubbed feet, and eczema for selected patients. F. Ubiquitous Drg1 expression in E14.5 mouse embryos by RNA in situ hybridi-
zation. Taken from the EMAGE gene expression database9 (http://www.emouseatlas.org/emage/); EMAGE:31607 June 2022. Scale bar 1
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and that the DRG1 variants observed are probably delete-
rious, most likely revealing the genetic etiology for this
heretofore unknown syndrome.

Next, we experimentally investigated the impact of the
DRG1 variants described above. The p.Asn248Phe variant
is located in the highly conserved GTPase domain
(Figure 2A and B, Supplemental Figure 1). Analysis of the
primary sequence (Figure 1D) and tertiary structure
(Figure 2B) indicates that Asn248 is completely conserved
and is part of the G4 motif (NKID), which is required for
binding to the GTP guanine base.1 Mutation of the G4 motif
is known to inhibit GTP binding and hydrolysis.12

Furthermore, substitution of asparagine for the larger and
more hydrophobic phenylalanine at position 248 could also
disrupt structural conformation beyond the GTPase domain
(Figure 2B, Supplemental Figure 2).

Three of the alleles are nonsense variants, which likely
trigger nonsense-mediated messenger RNA (mRNA) decay.
Structural analysis indicates that any residual mRNA would
produce a severely truncated protein (p.Gly54*) that lacks
essential functional domains,11 including TGS, S5D2L, and
GTPase domains (Figure 2A). The p.Arg140* variant would
lack the TGS and S5D2L domains and half of the GTPase
domain (Figure 2A, Supplemental Figure 3A). A p.Lys263*

DRG1 protein would lack part of the GTPase domain and
the entire TGS (Figure 2A, Supplemental Figure 3B).
Importantly, DRG1 requires the TGS domain to bind to
ZC3H15 (also known as DFRP1, MIM619704) and for
recruitment of DRG1/ZC3H15 complexes to polysomes.11

ZC3H15 binding is also critical for DRG1 stability and
GTPase activity.4,11,13 Overall, the structural analyses
strongly suggest that all 4 DRG1 variants are likely to
impair GTPase activity and ZC3H15 binding, consistent
with a likely loss of function.

To explore the functional consequences of the variants,
we first expressed epitope-tagged DRG1 vectors in HeLa
cells. Although HA-DRG1Gly54* and HA-DRG1Arg140*

proteins were not expressed, the HA-DRG1Lys263* and HA-
DRG1Asn248Phe proteins were detected, albeit with signifi-
cantly reduced abundance (Supplemental Figure 3C). These
data indicate that all 4 variants are likely deleterious to
normal DRG1 levels. To validate this at the endogenous
level, we cultured primary dermal fibroblasts from patient
II-6 (p.Lys263*/p.Asn248Phe). Consistent with nonsense-
mediated mRNA decay of the endogenous DRG1Lys263*

transcript, we observed significantly reduced DRG1 mRNA
(Figure 2C). Sequencing of DRG1 complementary DNA
only detected the p.Asn248Phe variant and no Lys263*

(Supplemental Figure 3D), suggesting that the residual
transcript is the p.Asn248Phe variant. In line with the
mm. G. Structure of the mouse Drg1 transcript indicating the site of d
premature stop codon within exon 4. H. Survival of Drg1 KO mice up
distribution of 25% WT, 50% Het, 25% KO (χ22 test [N = 105] = 34,
protein 1; Het, heterozygous; Hom, homozygous; KO, knockout; WT, w
mRNA analysis, full-length endogenous DRG1 protein was
dramatically reduced in the patient-derived cutaneous fi-
broblasts (Figure 2D and E), and we were unable to detect a
species consistent with p.Lys263* (see Supplemental
Figure 3C for antibody validation). Overall, these data
indicate that the p.Asn248Phe and p.Lys263* variants seri-
ously impair DRG1 abundance. Consistent with reciprocal
regulation of DRG1 and ZC3H15 level,14 we observed a
modest reduction in endogenous ZC3H15 protein in the
patient-derived fibroblasts (Figure 2D, Supplemental
Figure 3E). These effects on DRG1/ZC3H15 were specific
because we did not observe reduced levels of DRG2 or its
binding partner RWDD1 (DFRP2) (Figure 2D,
Supplemental Figure 3F and G).

We next sought to better understand the impact of the
p.Asn248Phe variant on DRG1 protein stability. Because we
observed reduced protein expression from a heterologous
promoter (Supplemental Figure 3C), we postulated that this
variant negatively regulates protein stability. Therefore, we
performed cycloheximide-based turnover assays in trans-
fected HeLa cells: the half-life of HA-tagged DRG1 was
reduced from about 5 hours in the wild-type to about 1 hour
for theHA-DRG1Asn248Phe variant (Supplemental Figure 3H).
We observed an even more dramatic effect on the stability of
the endogenous protein in patient-derived fibroblasts
(Figure 2F, Supplemental Figure 3I). Overall, these results
confirm that the p.Asn248Phe variant causes enhanced pro-
tein turnover and thus reduced DRG1 protein levels.

Because residual DRG1Asn248Phe protein is expressed in
the patient-derived fibroblasts (Figure 2D), we next tested
the impact on its enzymatic function. Therefore, we purified
HA-DRG1, HA-DRG1Asn248Phe, or HA-DRG1Asp117Ala (a
known inactivating mutation) overexpressed in HEK293T
cells, before analyzing GTPase activity (Figure 2G).
Notably, GTP hydrolysis catalyzed by the DRGAsn248Phe

variant was undetectable. For completeness, we also tested
the p.Lys263* variant because it retains the bulk of the
GTPase domain (Figure 2A). Partially purified DRG1Lys263*

also showed a loss of GTPase activity (Supplemental
Figure 4). Taken together, these data suggest that these
private germline variants are deleterious and therefore
pathogenic in the proband from family 2 in which they are
inherited in trans. Although the p.Asn248Phe allele behaves
as a loss-of-function variant in our assays, it could retain
some hypomorphic activity toward untested, or hitherto
unknown, functions of DRG1.

Interestingly, visual inspection of purified DRG1 variants
(Figure 2G, Supplemental Figure 4) suggested reduced
ZC3H15 binding. To test this, we immunoprecipitated wild-
type or variant HA-DRG1 from transfected HeLa cells
eletion in Drg1 KO mice. This deletion leads to a frameshift and
on weaning. This is significantly different from the expected litter
P = 3.8 × 10−8). DRG1, developmentally regulated GTP-binding
ild-type.



Table 1 Clinical characteristics of 4 patients with Tan-Almurshedi syndrome caused by biallelic DRG1 loss-of-function variants
Clinical Synopsis and Genetics HPO Terms Family 1 Family 2 Family 3 Total

Country of origin Oman Singapore Bahrain

Propositus number (refer to pedigrees) II:1 II:2 II:6 II:7

Gender Male Female Female Male 2F:2M

Intrauterine growth restriction (birth weight in kg) HP:0001511 + (n.d.) + (2.3) + (2.12) + (1.67) ✓

Failure to thrive HP:0001508 + + + + ✓

Gene (MIM 603952) DRG1 DRG1 DRG1 ✓

Autosomal-recessive inheritance HP:0000007 + + (compound heterozygous) + ✓

Genomic change (GRCh38/hg38) (ENSG00000185721.13) chr22:g.31400737G>T Maternal: chr22:g.31426688A>T chr22:g.31420261C>T

Paternal: chr22:g.31426643_31426644inv

Complementary DNA change (NM_004147.3) c.160G>T Maternal: c.787A>T c.418C>T

Paternal: c.742_743inv

Expected protein change (Q9Y295 / NP_004138.1) p.(Gly54*) Maternal: p.(Lys263*) p.(Arg140*)

Paternal: p.(Asn248Phe)

Observed protein change (Q9Y295 / NP_004138.1) n.d. Maternal: p.0 n.d. LoF mutations

Paternal: p.Asn248Phe

Variant classification (ACMG guidelines) Pathogenic (PVS1) Maternal: pathogenic (PVS1) Pathogenic (PVS1) LoF mutations

Paternal: likely pathogenic (PS3)

Craniofacial dysmorphisms

Facial dysmorphism HP:0001999 + + + + ✓

Microcephaly HP:0000252 + + (−2.4 SD) + (−6.7 SD) + (−3.1 SD) ✓

Short palpebral fissure HP:0012745 + + + + ✓

Brachycephaly HP:0000248 + + + + ✓

Prominent forehead HP:0011220 + + + + ✓

Hypoplastic supraorbital ridges HP:0009891 + + + + ✓

Short eyelashes HP:0010764 + + + − 3/4

Broad nasal bridge HP:0000431 + + + + ✓

Low-set ears HP:0000369 + + + + ✓

Posteriorly rotated ears HP:0000358 + + − + 3/4

Everted prominent lower lip HP:0000232 + + − + 3/4

Widely spaced teeth HP:0000687 + + + + ✓

Bone/skeletal abnormalities

Proportionate short stature HP:0003508 + + + + ✓

Camptodactyly HP:0012385 + + + + ✓

Clubbing of feet HP:0001762 + + − + 3/4

Immune defects

Infantile eczema HP:0000964 + + + + ✓

Repeated infections HP:0002719 n.d. n.d. + − 1/2

Hypergammaglobulinemia HP:0010702 n.d. n.d. + − 1/2

Autoimmune hemolytic anemia HP:0001890 n.d. n.d. + − 1/2

Behavioral/neurological traits

Neurodevelopmental delay HP:0012758 + + + + ✓

Spasticity HP:0001257 + + − − 2/4

Seizure HP:0001250 + − − − 2/4

Skin findings and its appendages

Dry skin HP:0000958 + + + − 3/4

Other clinical manifestations

Myelomeningocele HP:0002475 − − − + 1/4

The plus and minus symbols refer to affirmative and negative, respectively.

ACMG, American College of Medical Genetics and Genomics; HPO, Human Phenotype Ontology; n.d., not determined.
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Figure 2 DRG1 variants reduce abundance, GTPase activity, and ZC3H15 binding. A. Domain organization for WT (top) and mutant
DRG1 proteins. Red bars indicate the 5 G motifs conserved in DRG GTPases. The location of the Asn248Phe variants is indicated with an
asterisk. B. Structure of Rbg1 (yeast DRG1) showing the location of Asn248 and its proximity to the ZC3H15 binding interface. GTPase
domain: gray, HTH: green, S5D2L: blue, TGS: orange. The C-terminal fragment of yeast ZC3H15 (Tma46) is also shown in cyan. Structure
file PDB: 4A9A.11 C. Quantification of DRG1 mRNA levels in WT and DRG1 (Asn248Phe / Lys263*) mutated fibroblasts using RT-qPCR.
Results are normalized to a GAPDH control. The data represent the mean with error bars showing the standard deviation of 4 biological
repeats (data points shown). Statistical significance was estimated using a two-sample t test. D. Western blots using protein extracts from WT
and DRG1 Asn248Phe / Lys263* fibroblasts. E. Quantification of DRG1 protein levels relative to B-actin. Data represent mean with standard

6 C.A.E. Westrip et al.
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before western blotting for endogenous ZC3H15 (Figure 2H).
Importantly, both p.Asn248Phe and p.Lys263* variants were
unable to bind ZC3H15. Considering the importance of
ZC3H15 binding for DRG1 activity and stability,11,13,14 the
effect of these variants on the complex may partly explain the
loss of function observed. Overall, our combined functional
analyses demonstrate that these novel patient variants
severely affect the level, GTPase activity, and ZC3H15
binding of DRG1. Consistent with this, and the essentiality of
DRG1, we find that patient-derived cells show a survival
deficit in colony formation assays (Figure 2I).
Discussion

Here, we describe 3 families with recessive loss-of-function
variants in the DRG1 translation factor. Detailed biochem-
ical and functional analyses confirmed the pathogenicity of
the variants in this novel Mendelian disease, which we
propose to refer to as Tan-Almurshedi syndrome. Consistent
with these variants driving the pathogenicity of the associ-
ated syndrome, we also document that Drg1 is an essential
gene in mice, in which targeted inactivation causes pre-
weaning lethality.

Considering the obligate nature of ZC3H15 for DRG1
function, and the loss of ZC3H15 binding to the DRG1
variants described here, one might predict the existence of a
related neurodevelopmental disorder driven by pathogenic
variants in this gene. Indeed, ZC3H15 has a similar pattern
of tissue distribution to DRG1, including in the developing
central nervous system,13 and the ZC3H15 gene is located
within a chromosomal region altered in 2q32 deletion syn-
drome (MIM612345).15 Furthermore, the gene encoding the
JMJD7 Jumonji-C oxygenase, which targets DRGs for lysyl
hydroxylation,16 was identified as a candidate gene for
autism and intellectual disability.17,18 Further work is
required to fully understand the role of the JMJD7-DRG1/
ZC3H15 pathway in human disease.4

Although the functions of the DRG1/ZC3H15 GTPase
complex are still under debate, there is growing evidence
supporting a fundamental role in translation (reviewed in
Westrip et al4), specifically the elongation step. Cryo-elec-
tron microscopy analyses of the yeast orthologs (Rbg1/
deviation. Statistical significance was estimated using a two-sample t tes
DRG1 Asn248Phe / Lys263* fibroblasts. Cells were treated with 50 μg/m
dimethyl sulfoxide control was also included. G. GTPase assay using
predicted to have no GTPase activity), and Asn248Phe that were co-transf
purified using antiflag pulldown. Coomassie stained gel of purified DRG
with error bars showing the standard deviation of n = 3 biological repeats
one-way analysis of variance with Tukey HSD to estimate P values. H. N
were transiently expressed in HeLa cells. Cell lysates were used in an a
indicated proteins using input and pulldown samples. I. Colony-forming a
Cells were seeded on 10-cm plates and then stained with crystal violet aft
form compact colonies with clearly defined borders. EV, Empty Vector;
like domain; TGS, ThrRS, GTPase, and SpoT domain; WT, wild-type.
Tma46) demonstrate associations with the ribosomal A-site
transfer RNA, GTPase association center, and 40S subunit
(Supplemental Figure 5).5 Precedence for the importance of
translational elongation in neurodevelopment is underlined
by other disorders driven by pathogenic variants in elon-
gation factor pathways. Pathogenic variants in the eEF1
complex have been implicated in developmental disorders
associated with failure to thrive, developmental delay, in-
tellectual disability, microcephaly, and facial dysmorphism
(reviewed in19). Furthermore, pathogenic variants in the
elongation factor EIF5A (MIM619376; Faundes-Banka
syndrome)20 or an enzyme (deoxyhypusine synthase,
MIM600944)21 involved in its unique and essential modi-
fication, hypusination, have also recently been identified in
neurodevelopmental disorders with clinical presentations
that overlap with those described here. Aside from EEF1A2
(MIM602959),20 DRG1 represents the only other gene
encoding a GTPase component of a translation elongation
factor complex to have been identified thus far as the basis
of a neurodevelopmental disorder. To our knowledge, our
work also represents the first case of a disorder associated
with the OBG/HflX GTPase family.
Data Availability

The data that support the findings of this study are available
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