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Abstract
We show that for every infinite collection  of disjoint
equivalent rays in a graph 𝐺 there is a subdivision of the
hexagonal half-grid in 𝐺 such that all its vertical rays
belong to . This result strengthens Halin’s grid theo-
rem by giving control over which specific set of rays is
used, while its proof is significantly shorter.
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1 INTRODUCTION

An end of a graph 𝐺 is an equivalence class of rays, where two rays of 𝐺 are equivalent if there are
infinitely many vertex-disjoint paths between them in 𝐺. The degree deg(𝜔) ∈ ℕ ∪ {∞} of an end
𝜔 of 𝐺 is the maximum size of a collection of pairwise disjoint rays in 𝜔, see Halin [5]. Ends of
infinite degree are also called thick. The half-grid, the graph on ℕ2 in which two vertices (𝑛,𝑚)
and (𝑛′,𝑚′) are adjacent if and only if |𝑛 − 𝑛′| + |𝑚 −𝑚′| = 1, and its sibling the hexagonal half-
grid, where one deletes every other rung from the half-grid as shown in Figure 1, are examples of
graphs which have only one end, which is thick.
One of the cornerstones of infinite graph theory, Halin’s grid theorem [5], says that grid-like

graphs are the prototypes for ends of infinite degree. Recall that a subdivision of a graph 𝐺

is any graph obtained from 𝐺 by replacing some edges of 𝐺 with new paths between their
endvertices, so that none of these paths has an inner vertex in 𝑉(𝐺) or on another new path
[3, § 1.7].

Halin’s grid theorem. Every graph with an end of infinite degree contains a subdivision of the
hexagonal half-grid whose rays belong to that end.

Halin’s theorem is a precursor of the work by Robertson et al. on excluding infinite grid or
clique minors [8] and has further influenced research in [1, 4, 6, 7]. It is curious, however, that
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F IGURE 1 The hexagonal half-grid with vertical rays 𝑅𝑖

Halin’s theorem does notmention any specific ray families, that is if one chooses a specific infinite
collection of disjoint rays witnessing that the end is thick, then neither the assertion of Halin’s
theoremnor its available proofs byHalin [5, Satz 4] and byDiestel [2, 3]make any assertion onhow
the resulting subdivided hexagonal half-grid relates to the collection of rays  one started with.
Furthermore, in recent work of ours on an extension of Halin’s grid theorem to higher cardinals
[4], it became quite important to achieve more control of specific uncountable ray families, and
the question arose whether this can be done also in the countable case. And indeed, the main
result of this note is that this is in fact possible:

Theorem 1. For every infinite collection of disjoint equivalent rays in a graph 𝐺, there is a sub-
division of the hexagonal half-grid in 𝐺 such that all its vertical rays belong to.

The knownproofs ofHalin’s grid theoremare rather involved and require an elaborate recursive
construction that runs close to five pages in Diestel’s textbook. Our stronger result in Theorem 1
requires a different approach — which coincidentally provides a much shorter proof of Halin’s
original grid theorem.

2 THE PROOF

Suppose we are handed a countably infinite collection  of disjoint equivalent rays in a graph
𝐺. The following routine argument shows that there is a ray 𝑆 in 𝐺 that meets each ray in 

infinitely often: First choose an enumeration (𝑅𝑛)𝑛∈ℕ of that lists each ray in infinitely often.
Recursively, build a sequence (𝑆𝑛)𝑛∈ℕ of longer and longer finite paths all starting in the same
vertex and all extending each other such that each 𝑆𝑛 intersects all 𝑅𝑖 for all 𝑖 ⩽ 𝑛 and has its last
vertex 𝑣𝑛 on 𝑅𝑛 such that no vertex of 𝑅𝑛 which comes after 𝑣𝑛 belongs to 𝑆𝑛. Given 𝑆𝑛, since all
rays in are equivalent, there is an 𝑅𝑛–𝑅𝑛+1 path 𝑃𝑛 disjoint from 𝑆𝑛 whose endvertices 𝑤𝑛 and
𝑣𝑛+1 on 𝑅𝑛 and 𝑅𝑛+1 come later than all vertices of 𝑆𝑛 on these rays. To obtain 𝑆𝑛+1, extend 𝑆𝑛
along𝑅𝑛 from 𝑣𝑛 to𝑤𝑛, and then append𝑃𝑛 in order to reach 𝑣𝑛+1. Once the recursion is complete,
𝑆 ∶=

⋃
𝑛∈ℕ 𝑆𝑛 is a ray as desired.
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A STRENGTHENING OF HALIN’S GRID THEOREM 1011

F IGURE 2 A configuration of rays in the half-grid with edge-less𝑀∞()

Hencewemay fix, for the remainder of this paper, a ray 𝑆 in𝐺 thatmeets each ray in infinitely
often. Recall that a path 𝑃 is internally disjoint from a vertex set 𝑋 if 𝑃 has no inner vertex in 𝑋,
that is, only the endvertices of 𝑃 may lie in 𝑋. An-segment (of 𝑆) is any maximal subpath of 𝑆
which is internally disjoint from 𝑉[] ∶=

⋃
𝑅∈ 𝑉(𝑅). We say that an-segment is between two

rays 𝑅1, 𝑅2 ∈  if it has its endpoints on 𝑅1 and 𝑅2, respectively. Let 𝑀() denote the auxiliary
multigraph with vertex setwhere the multiplicity of an edge 𝑅1𝑅2 is equal to the number of-
segments between 𝑅1 and 𝑅2. Finally, let𝑀∞() denote the spanning subgraph of𝑀() obtained
by removing all edges of finite multiplicity.
Recall that a multigraph is infinitely edge-connected if it has at least two vertices and the dele-

tion of finitely many edges does not disconnect it. Since 𝑆 meets every ray in  infinitely often,
it follows that 𝑀() is infinitely edge-connected. As every infinite connected graph has a ver-
tex of infinite degree or contains a ray [3, Proposition 8.2.1], we get the assertion of Theorem 1
immediately when𝑀∞() has a component with infinitely many vertices: In this case,𝑀∞()

either contains a ray 𝑅1, 𝑅2, … or an infinite star with centre 𝑅 and leaves 𝑅1, 𝑅2, …. In the ray case,
one recursively selects sufficiently late -segments to represent subdivided edges 𝑒1, 𝑒2, 𝑒3, … of
the hexagonal half-grid in the order indicated in Figure 1; in the star case, edges between 𝑅𝑖 and
𝑅𝑗 are represented by two sufficiently late -segments between 𝑅𝑖, 𝑅𝑗 and 𝑅 together with the
subpath on 𝑅 connecting the endpoints of those segments.
However,𝑀∞()might have no edges at all: Consider, for example, a collection of radial rays in

the half-grid such that between any two rays there lies a third, see Figure 2. Still, by moving to an
infinite subcollection′ ⊆  and considering auxiliarymultigraphs𝑀(′) and𝑀∞(

′) instead,
the connectivity properties of 𝑀∞(

′) might improve. Indeed, the auxiliary multigraphs for ′

remain well defined as the same 𝑆 still meets every ray in
′ infinitely often. Note, however, that

-segments of 𝑆 may now be properly contained in
′-segments of 𝑆. Our preceding discussion

can be summarized as:

(1) the auxiliary multigraph𝑀(′) is infinitely edge-connected for any infinite′ ⊆ ;
(2) if for some ′ ⊆  the auxiliary multigraph 𝑀∞(

′) has an infinite component, there is a
subdivision of the hexagonal half-grid in 𝐺 such that all its vertical rays belong to′.
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1012 KURKOFKA et al.

Our next observation provides a sufficient condition for𝑀∞(
′) to have an infinite component.

Recall that the degree of a vertex in a multigraph denotes the number of its neighbours.

(3) If′ ⊆  is infinite such that𝑀(′) has only finitely many vertices of infinite degree, then
𝑀∞(

′) has an infinite component.

Indeed, suppose for a contradiction that all components of𝑀∞(
′) are finite. Then there is also a

finite component 𝐶 of𝑀∞(
′) that contains none of the finitely many vertices that have infinite

degree in𝑀(′). Since𝑀(′) is infinitely edge-connected by (1), there are infinitely many edges
in 𝑀(′) from 𝐶 to its complement. And since 𝐶 consists of vertices of finite degree only, the
neighbourhood of 𝐶 in 𝑀(′) is finite. Thus, there is a vertex in 𝐶 that sends infinitely many
edges to some vertex outside of 𝐶, contradicting the choice of 𝐶. This establishes (3).
The idea of the proof of Theorem 1 is now as follows: If all vertices of𝑀() have finite degree,

then 𝑀∞() has an infinite component by (3) and we are done by (2). Otherwise, there is a ray
𝑅1 ∈  that has infinitely many neighbours𝑁(𝑅1) in𝑀(), and wemay restrict our collection of
rays to1 ∶= {𝑅1} ∪ 𝑁(𝑅1). Next, if all but finitely many rays of1 have finite degree in𝑀(1),
then𝑀∞(1) has an infinite component by (3) and we are again done by (2). Thus, we may pick
a second ray 𝑅2 in 1 distinct from 𝑅1 such that 𝑁(𝑅2) is infinite in 𝑀(1), and restrict our
collection of rays to 2 ∶= {𝑅1, 𝑅2} ∪ 𝑁(𝑅2). Repeating this step as often as possible gives rise to
a sequence of rays 𝑅1, 𝑅2, 𝑅3, …. If this procedure ever stops because there are no more vertices of
infinite degree to choose, then we are done by (3) and (2). Thus, the question becomes what to do
when this procedure does not terminate.
Informally, the solution is to modify our construction so that besides the first 𝑛 rays 𝑅1, … , 𝑅𝑛

we will also have chosen suitable paths 𝑃1, … , 𝑃𝑛−2 between them representing the subdivided
edges 𝑒1, … , 𝑒𝑛−2 in the copy of the hexagonal half-grid from Figure 1.† Then, in the case where
our procedure never stops, the chosen rays 𝑅1, 𝑅2, … become the vertical rays of a hexagonal half-
grid where the subdivided paths corresponding to an edge 𝑒𝑖 are given by the path 𝑃𝑖 .
Formally, suppose that at step 𝑛 we have chosen 𝑛 distinct rays 𝑅1, … , 𝑅𝑛 from  and an infi-

nite subcollection𝑛 ⊆  containing all chosen 𝑅𝑖 such that in𝑀(𝑛) every 𝑅𝑖 for 𝑖 = 1, … , 𝑛 is
adjacent to all rays in𝑛. Further, suppose that we have chosen 𝑛 − 2 disjoint paths 𝑃1, … , 𝑃𝑛−2
internally disjoint from 𝑉[𝑛], such that each 𝑃𝑖 connects the same two rays from {𝑅1, … , 𝑅𝑛} as
𝑒𝑖 in Figure 1, in a way such that whenever two paths 𝑃𝑖, 𝑃𝑗 with 𝑖 < 𝑗 have endvertices on the
same ray 𝑅𝑘, then the endvertex of 𝑃𝑖 comes before the endvertex of 𝑃𝑗 on 𝑅𝑘.
Now if all but finitelymany rays in𝑛 have finite degree in𝑀(𝑛), thenwe are done by (3) and

(2). Hence, we may assume that there is a ray 𝑅𝑛+1 in 𝑛 ⧵ {𝑅1, … , 𝑅𝑛} that has infinitely many
neighbours𝑁(𝑅𝑛+1) in𝑀(𝑛). Let′

𝑛+1
∶= {𝑅1, … , 𝑅𝑛+1} ∪ 𝑁(𝑅𝑛+1), and note that in𝑀(′

𝑛+1
),

every 𝑅𝑖 for 𝑖 = 1, … , 𝑛 + 1 is adjacent to all other rays in
′
𝑛+1

. Now let 𝑖 and 𝑗 denote the indices
of the rays in Figure 1 containing the endvertices of the edge 𝑒𝑛−1. Note that 𝑖, 𝑗 ⩽ 𝑛 + 1. Since 𝑅𝑖
and𝑅𝑗 are adjacent to all rays𝑄 in𝑀(′

𝑛+1
)⧵{𝑅1, … , 𝑅𝑛+1}, we also find such a commonneighbour

𝑄𝑛−1 such that the corresponding′
𝑛+1

-segments of 𝑆 between 𝑅𝑖, 𝑅𝑗 and 𝑄𝑛−1 are disjoint from
all earlier paths 𝑃1, … , 𝑃𝑛−2 and also have their endvertices on 𝑅𝑖, 𝑅𝑗 later than the endvertices
of any previous path 𝑃1, … , 𝑃𝑛−2. Then we may pick a new path 𝑃𝑛−1 consisting of both these

′
𝑛+1

-segments of 𝑆 between 𝑅𝑖, 𝑅𝑗 and 𝑄𝑛−1 together with a suitable subpath of 𝑄𝑛−1. Finally,
set𝑛+1 ∶= 

′
𝑛+1

⧵ {𝑄𝑛−1}. This completes the induction step, and the proof is complete. □

† The index shift just has the purpose that when choosing a path for 𝑒2 we have already selected 𝑅3 and 𝑅4.
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A STRENGTHENING OF HALIN’S GRID THEOREM 1013

We remark that only in the case where our procedure stops and (2) yields a ray one can just
build a grid, in all other cases one can build a clique of rays, that is, one finds an infinite′ ⊆ 

and a family of internally disjoint′-paths witnessing that any two rays in
′ are equivalent.
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