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G-DAIC: A Gaze Initialized Framework for Description and
Aesthetic-Based Image Cropping
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We propose a new gaze-initialised optimisation framework to generate aesthetically pleasing image crops
based on user description. We extended the existing description-based image cropping dataset by collecting
user eye movements corresponding to the image captions. To best leverage the contextual information to
initialise the optimisation framework using the collected gaze data, this work proposes two gaze-based
initialisation strategies, Fixed Grid and Region Proposal. In addition, we propose the adaptive Mixed scaling
method to find the optimal output despite the size of the generated initialisation region and the described part
of the image. We address the runtime limitation of the state-of-the-art method by implementing the Early
termination strategy to reduce the number of iterations required to produce the output. Our experiments show
that G-DAIC reduced the runtime by 92.11%, and the quantitative and qualitative experiments demonstrated
that the proposed framework produces higher quality and more accurate image crops w.r.t. user intention.

CCS Concepts: • Computing methodologies→ Interest point and salient region detections.

Additional Key Words and Phrases: Eye-tracking, Gaze-based image cropping, Aesthetics, Deep network
re-purposing, Image captioning
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1 INTRODUCTION
Many researchers throughout the past years have demonstrated the usefulness of multimodal
approaches. Regarding speech and description, the existing ambiguity and complexity of natural
speech can be compensated by using other modalities, such as hand gestures [34] or gaze [21, 23, 28].
While hand gestures or other social cues are not always coupled with the scene description,
observing the region of interest is inevitable to describe it [30]. With the current advancements
in eye-tracking research, eye-tracking devices have become more affordable and easily accessible.
Therefore we can take advantage of this extra modality free of cost by placing an eye-tracker in
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Fig. 1. Illustration of a scenario where the users are looking at and describing the different image
parts. Our proposed framework utilises human natural language expression in combination with eye move-
ments to localise their region of interest. This multimodal solution can effectively produce high-quality image
crops corresponding to the user’s intention.

front of the subject and recording their eye movements before and during describing the image
region. This way, we can effortlessly collect additional, rich contextual information in addition to
the recorded speech or image caption.

Despite its inarguable usefulness of gaze in multimodal communication, this non-verbal mecha-
nism has been less studied as a communication modality [3]. Previous works used fixation points
as pointers to implicitly localise the user’s region of interest [4] or to detect the object of interest
[37]. Recent research [18] demonstrated gaze integration’s usefulness in anchoring implicit notes
to digital content. Furthermore, Reinholt et al. [25] proposed to combine gaze information with
speech to identify regions of interest in an image. This assistive system aimed to create detailed
descriptions of images with minimal effort from the image creator.

In this work, we tackle the reverse problem of [25], where we obtain the image description, like
in [14], and the gaze information with no additional cost from the user to crop the described part
of the image. We propose directly integrating the user’s gaze information into a multimodal image-
cropping framework to understand their interest better. We expect this additional information
to improve the accuracy of the state-of-the-art CAGIC methods and reduce their run time. This
framework utilises the gaze information recorded by an eye-tracking device to initialise the iterative
search to localise the described area of the image. To our knowledge, this is the first work explicitly
tackling the gaze-initialised user description-based image cropping task. Our contributions are
four-fold:

• We presented a novel image cropping framework that integrates the user’s intentions through
explicit (user caption) and implicit (user gaze) input into a multimodal framework optimised
to achieve aesthetically pleasing output.

• We studied the usefulness of gaze data collected before, during, and after the caption gener-
ation and proposed the Fixed grid and Region proposal on how to leverage the correlation
between them to initialise the image cropping method most efficiently.

• We propose a new multimodal framework to optimise crop parameters adaptively using the
novel Mixed scaling method and gaze-based initialisation coupled with an Early termination
technique.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 163. Publication date: May 2023.



G-DAIC: A Gaze Initialized Framework for Description and Aesthetic-Based Image Cropping 163:3

• With the above-mentioned solution, we significantly reduced the run time compared to the
state-of-the-art and improved the performance.

Utilising gaze information in a multimodal framework is a complex problem studied by many
[7, 39]. We designed the gaze data collection experiment carefully, similarly [25], and performed
multiple experiments to confirm the quality of the collected gaze information. We proposed the
Fixed Grid and Region proposal methods to find and define the most looked-at area of the image,
which was used as a start region of our optimisation framework.

For the Gaze initialised, description and aesthetics-based image cropping (G-DAIC) method, we
modified the method introduced in [14] and proposed a Mixed scaling method, where based on the
size of the initialisation area, the cropping parameter is either shrinking or expanding in every
iteration. This proposed alteration is crucial to find the desired image region. Finally, we introduced
Early Termination into the multimodal framework to reduce the number of iterations required to
produce the output image crop.

2 RELATEDWORKS
The primary task of the image cropping algorithms is attention-related. The description-based
methods, like [8, 36], aim to find the described part of the image, keeping in mind that it might not
be the main subject of the image. While aesthetics and attention-based automatic image cropping
algorithms, such as [6], focus on localising the most important part and preserving the image’s
main subject. The attention-based methods can rely on the user’s gaze information or artificial
attention e.g. saliency maps.

2.1 Gaze and artificial attention
2.1.1 Gaze-based image cropping. Despite gaze information not being suitable for our task, gaze
has been known as a crucial element of our social interactions. This non-audible signal can be
interpreted and utilised in many ways; hence, its role has been studied by many during the past
decades. Gaze is a well-known primary social clue that can express the subject’s emotions [11].
Furthermore, it is a good guide to the subject’s interest and intention [19, 22], and it also functions as
a signal for turn-taking [17], and indicator of conversational roles [12, 29]. Gaze in communication
is closely related to speech, meaning that in everyday settings, the user has to address speech
w.r.t. to gaze [3].

Recent eye-tracking technology advancements enabled us to collect high-precision, and accurate
eye movement data of the subjects [10]. This high-level precision and affordable prices boosted
the gaze research field and gaze-based multimodal frameworks. One of the first gaze-based image
cropping solutions, a semi-automatic image cropping algorithm using gaze data, has been proposed
by Santella et al. [26]. This method uses gaze data to identify the important content of the image and
generates an image crop based on a set of composition rules. While this method is useful for photo
composition, it is unsuitable for the description-based image cropping task. This semi-automatic
method is designed to identify the main subject of the image. Still, it is not flexible enough to take
the user’s intention explicitly into account to identify any part of the image.

2.1.2 Artificial attention-based image cropping. The usefulness of artificial attention, such as
automatically-generated saliency maps using deep networks, has been demonstrated in attention-
based image cropping methods [2, 16, 24]. While these maps are good in indicating the potentially
important areas of the image based on its features, they are insufficient for the description-based
image cropping task due to the lack of contextual information. Therefore in this work, we aim to
extend [14] and [18] by combining gaze and description information into a multimodal system
designed to crop images based on the natural language expression provided by the users.
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2.2 Multimodal Image Cropping
Fang et al. [9] proposed an automatic image cropping method that uses composition, content
preservation, and boundary simplicity clues to preserve the image’s subject. This work was one
of the first learning-based automatic solutions which did not hard code the cropping rules but
learned it from online resources. Their study proved that combining different models in one
framework can yield much better performance. Following the success of [9], Wang et al. proposed
a novel deep network solution for attention and aesthetics-aware image cropping, and they also
utilised a cascade attention box regression and aesthetic quality classification in [31, 32]. The
proposed neural network consists of two branches for predicting attention bounding boxes and
analysing aesthetics. This method infers the initial crop as a bounding box covering the visually
important area (attention) and then selects the best crop with the highest aesthetic quality from a
few cropping candidates generated around the initial crop (aesthetic). Most recently, Horanyi et
al. [14] proposed a multimodal description and aesthetic-based image cropping framework using
explicit user description information and the aesthetics assessment. They re-purposed an existing
image caption and aesthetic prediction model into one framework. They could localise the described
part of the image through optimisation techniques and output an aesthetically pleasing image crop.
Through excessive experiments, it was shown that the proposed framework outperforms the other
learning-based automatic image-cropping methods. The drawback of this solution is taking a long
time to produce an image crop due to the iterative nature of the algorithm.

2.2.1 Gaze and Description-based Image Cropping. As the gaze-based semi-automatic image crop-
ping method does not use any additional cluew.r.t. the image context, it is unsuitable for description-
based image cropping applications. However, it is important to note that gaze has been known as a
crucial element of our social interactions, and an important characteristic of gaze in communication
is that it is closely connected to speech [3, 13]. Accordingly, an analysis of communication in daily
settings must address speech concerning gaze. Therefore, it is natural to assume that gaze can be
coupled with other modalities, such as user description, for applied computer vision tasks. Our
work is the first multimodal, gaze-initialised, and description- and aesthetics-based image cropping
solution.

3 METHODOLOGY
Gaze information could be used to indicate the important part of the image. The collected fixation
points and the coupling temporal information tell us which part of the image caught the viewer’s
eye first and how its attention shifted throughout the recording. We propose to use the gaze-based
user attention information to define the most attended area of the input image in addition to the
user caption to enhance the performance of the description-based image cropping algorithm.

3.1 Gaze-based initialisation of the image cropping
The collected gaze points can directly define the cropping parameters [26] or be used as comple-
mentary input coupled with other modalities in a single multimodal framework. First, from the
gathered gaze points, we need to define the centre point of the content and then use predefined
rules to obtain the image crops. To find the centre point and the size of the bounding box (I𝑖𝑛𝑖𝑡 )
around the visually relevant part of the image, we proposed the following two solutions: Fixed grid
and Region proposal.

3.1.1 Fixed grid. This solution uses a generated fixed-size grid to divide the image into 𝑁 × 𝑁 ,
uniform grids𝐺𝑖 , and then classify the gaze points (g) into one of the 𝑁 2 classes. To select the most
attended image region, we counted the number of fixation points within each grid and chose the
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Fig. 2. Example outputs of the fixed grid method using different scales. In the first column, we show
the original image, the ground truth bounding box annotations (top), and the heatmap generated using the
recorded gaze points (bottom). We visualise the generated 𝑁 × 𝑁 grids, the selected section in green with the
highest gaze point count, and the output initialisation region (I𝑖𝑛𝑖𝑡 ) selected based on the gaze points.

one with the highest value. Denoted as
I𝑖𝑛𝑖𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥 (g(G𝑖 )), (1)

where i=1,.., 𝑁 × 𝑁 corresponds to the Grid index. A generated output initialisation region (I𝑖𝑛𝑖𝑡 )
example visualisation is shown in Figure 2. In the first column of the figure, at the top, we show the
ground truth bounding box annotations of the image cropping dataset proposed by [14], and at the
bottom, the heatmap generated from the collected gaze data. For our experiments, the grids were
generated using 𝑁=2,3,4,5, and 10, shown in the first row of the figure. In the figure’s bottom row,
we show the gaze-based image region selection output using the Fixed grid method. The qualitative
highlights and the quantitative evaluation (See Ablation study, Section 4.2, Table 2) of the method
confirm that the gaze data is useful to initialise the search by roughly localising the centre of the
described area; however, it is not flexible enough, hence not suitable to fully preserve the contextual
information.

Fig. 3. Start region generation from the collected gaze points using the region proposal method.We
show the output region proposal bounding boxes (𝑟𝑝) generated by [40], the selected three boxes with the
highest gaze point density (Top-3), and the generated start regions 𝑅𝑃𝑢𝑛𝑖𝑜𝑛 with arbitrary aspect ratio and
𝑅𝑃𝑠𝑞𝑢𝑎𝑟𝑒 with 1:1 aspect ratio.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 163. Publication date: May 2023.
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Fig. 4. Overall framework of the proposed method: G-DAIC. The search is initialised using the gaze
points collected from the subject during the user caption generation and the Region Proposal module
(SED [40]). The adaptiveMixed Scaling method receives the initialisation region (𝑅𝑃𝑠𝑞𝑢𝑎𝑟𝑒 ); meanwhile, the
framework takes an image as input, which goes through multi-scale bilinear sampling to produce a cropped
image. We then input this cropped region into the image captioning and aesthetic networks. The optimisation
ends when the Total loss is below 𝑇𝑙𝑜𝑠𝑠 = 5.23 threshold by the proposed Early termination (*).

3.1.2 Region Proposal. Furthermore, the results of our ablation study, discussed in Section 4.2,
show that the selection of 𝑁 significantly influences the output of the Fixed grid method; therefore,
to alleviate this problem, we propose exploiting context information by using a region proposal
module. This module is implemented by Structured Edge Detector (SED) [40] to get 𝑛 region
bounding boxes (𝑟𝑝𝑚,𝑚 = 1, ...𝑛) for each frame. Note that there are large overlaps among the
generated rectangles; hence calculating the density is a better measure to identify the most attended
image region than counting the number of gaze points. Therefore, for each bounding box, we
calculated the gaze point density (𝑑𝑚) by counting the number of gaze points inside (𝑔𝑚) and
dividing them by the area of the bounding box (𝐴(𝑟𝑝𝑚)).

𝑅𝑃𝑢𝑛𝑖𝑜𝑛 =
⋃ (

𝑚𝑎𝑥3{𝑑𝑚 =
𝑔𝑚

𝐴(𝑟𝑝𝑚)
,𝑚 = 1, .., |𝑟𝑝 |}

)
, (2)

where |𝑟𝑝 | is the number of bounding boxes generated by [40], 𝑑 is the density function, and𝑚𝑎𝑥3
refers to the top-3 highest value elements of the set. We show an example of this method in Figure
3. In the first column, we visualised the collected fixation points; next, we show the generated
bounding boxes using SED [40]. Due to the nature of the region proposal algorithm, we selected the
three highest-density bounding boxes shown in the third column. To generate the output bounding
box for the search initialisation, we merged the selected region by taking the union of the rectangles
(fourth column). Then we extended this rectangle of arbitrary aspect ratio into a square (𝑅𝑃𝑠𝑞𝑢𝑎𝑟𝑒 )
(last column) initialisation region.

3.2 Proposed Framework
The proposed gaze initialised, description, and aesthetics-based image cropping framework (G-
DAIC) is shown in Figure 4. Based on our experimental results, later discussed in Section 4.2, we
chose the Region Proposal-based 𝑅𝑃𝑠𝑞𝑢𝑎𝑟𝑒 method for the gaze-based initialisation.
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3.2.1 Mixed Scaling method. Prior methods chose the described part of the image, starting from
the full image and iteratively searching for the optimal output crop. This method used a fixed scale
and shrunk the sample image crop size every iteration. The gaze-based initialisation depends on
the collected gaze points, which are subjective and user dependent. Therefore, the shrinking-only
strategy for finding the desired output crop is not optimal. If the initialisation region is too small,
the method might not be able to localise the described part of the image. Therefore, we proposed an
adaptive scaling strategy based on the size of the generated initialisation area. Meaning, that based
on the size of I𝑖𝑛𝑖𝑡 , the algorithm either zooms in (shrink) or zooms out (expand) every iteration
with the scale. Mathematically denoted as:

𝑠𝑚𝑖𝑥𝑒𝑑 =

{
+0.98 (shrink) if 𝐴(I𝑖𝑛𝑖𝑡 )

𝐴(I) > 𝑇
−0.98 (expand) otherwise

, (3)

where A(I𝑖𝑛𝑖𝑡 ) is the size of the gaze-based input initialisation region, A(I) is the size of the input
image,𝑇 is the threshold and 𝑠𝑚𝑖𝑥𝑒𝑑 is the scale. The threshold𝑇 = 0.75 was selected empirically as
part of our ablation study (See Section 4.2, Table 10). This new scaling strategy is a crucial part of
the initialised search algorithm as the size of the described part of the image, and the calculated
initialisation region varies based on the image content, the image caption, and the user’s search
behaviour.

3.2.2 Iterative optimisation. Once we calculated the 𝑅𝑃𝑠𝑞𝑢𝑎𝑟𝑒 and 𝑠𝑚𝑖𝑥𝑒𝑑 we input these along with
the original image into the Bilinear Sampler [15]. This module generates a multi-scale sampled
image based on the input information in every iteration. The proposed sample image is chosen
based on the crop parameter 𝜽 , composed of the centre coordinates of the crop 𝑥 and 𝑦, and its
scale 𝑠𝑚𝑖𝑥𝑒𝑑 . A pre-trained Aesthetic Network [5] is used to generate the Aesthetic loss of the
sample image, which reflects on the quality of the current image sample. Furthermore, we used an
Image Captioning Network [35] to calculate the Caption loss from the user caption and the caption
generated from the sampled image. The Total loss (L𝑡𝑜𝑡𝑎𝑙 (I, y, 𝜽 )) was calculated as the sum of
these two loss functions. The optimisation is performed iteratively to minimise L𝑡𝑜𝑡𝑎𝑙 until we find
the optimal output crop which best reflects the user’s intention.

3.2.3 Early Termination. By using gaze-based initialisation, we better understand where the de-
scribed part of the image might be. Hence, it is reasonable to assume that the method will require
fewer iterations (𝑁𝑖𝑡𝑒𝑟 ) to find the optimal output image crop. To further address the runtime limi-
tations of [14], we proposed to use an empirical threshold, 𝑇𝑙𝑜𝑠𝑠 = 5.23, to terminate the iterations
early (Early termination) after n iterations (𝑛𝑖𝑡𝑒𝑟 < 𝑁𝑖𝑡𝑒𝑟 ) in case the total loss (L𝑡𝑜𝑡𝑎𝑙 (I, y, 𝜽 )) was
below a given threshold. This module was integrated into the iterative optimisation cycle.

4 EXPERIMENTS
We implement our method in Tensorflow [1]. All experiments are run on an Intel i7- CPU@3.40GHZ,
16 GB RAM, and two NVIDIA TITAN Xp GPU for fair runtime comparison with [14]. The eye-
tracking data was collected using a monitor-mounted Tobii Pro Fusion Eye Tracker device and the
Tobii Pro Lab v1.145 software.

4.1 Multimodal Dataset
The dataset proposed in [14] was extended with gaze data, shown in Figure 5. To analyse the
correspondence between the two modalities, gaze and caption, we recorded the eye movements of
the participants before and while they performed the caption-based image part localisation task.
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Fig. 5. Example images of the extended, multimodal dataset. The user-defined ground truth bounding
box annotations are shown on the original images in red. We show the collected Free-viewing, Stimuli and
Fixation gaze points and corresponding heatmaps.

4.1.1 Data collection. Experimental setting. For the data collection, we invited 14 participants to
participate in our experiments. Every participant attended our experiment ten times to ensure they
were not exhausted during the recording. During each session, the participant observed ten images
displayed on the monitor before them. The Tobii Pro Fusion eye-tracking device was mounted to
this monitor, and before every session, it was calibrated for the user. All the experiments were
performed in a laboratory with controlled lighting conditions. The data collection had three stages
Free-viewing, Stimuli, and Fixation.

Collected Gaze points. For each image, first, the users observed the image without any given
instruction for 10 seconds (Free-viewing). We recorded the participants’ eye movements during
this experiment while they freely observed the previously unseen image. Without instructions, the
participants naturally observe the image and spend more time on complex or interesting image
parts. Following this stage, we played a recording of the corresponding image caption to the users
from [14]. During the second experiment stage Stimuli, the participants got to know the contextual
information and were asked to follow our instructions. In this phase, the participants were asked
to localise the described part of the image while listening to the image caption recording. In the
experiment’s final Fixation stage, they were asked to fixate on the region of interest for 5 seconds.
Using the collected gaze points, we generated heatmaps corresponding to the image caption. Note
that during this stage, the participants were instructed to fixate on the described image part, which
is not a single point but an image region; therefore, it is expected that the gaze points will be within
a certain area but not limited to a single point.

Participant information. The participants of the eye-tracking experiment were selected to be
diverse in terms of their country of origin, age, sex, and visual acuity. The participants were aged
23-29, seven males and seven females from 6 different countries. Five had perfect vision, five wore
glasses, and four participants used contact lenses during the recordings. See the appendix for a
detailed analysis of the collected gaze data.
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4.2 Ablation Study
In this section, we compare the similarity and usefulness of human gaze data and artificial attention
and the initialisation techniques introduced in Section 3.1. In addition, in the supplementary
material, we present the results of additional experiments using different scaling methods (Shrink,
Expand, and Mixed) and different Mixed scaling method thresholds.

Fig. 6. Gaze-based and artificial attention heatmap comparison. Illustration of the heatmaps generated
based on the collected gaze points from the users compared to the artificial attention heatmaps generated by
with (𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑐𝑎𝑝𝑡𝑖𝑜𝑛) and without (𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑛𝑜 𝑐𝑎𝑝𝑡𝑖𝑜𝑛) providing the user caption to GradCAM [27].

4.2.1 Human gaze-based versus artificial attention heatmaps. In this analysis, GradCAM [27] was
used in two ways to create a coarse localisation map (artificial attention heatmap) that spotlighted
essential areas in the image for predicting the concept. 𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑛𝑜 𝑐𝑎𝑝𝑡𝑖𝑜𝑛 was used without pro-
viding the user caption to the model as part of an image captioning.𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑛𝑜 𝑐𝑎𝑝𝑡𝑖𝑜𝑛 highlighted
the image’s salient features, which could be used to describe the full image. Note that this image
captioning model is designed to describe the entire image, which differs from the user captions.
The implementation of this model is available at 1. 𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑐𝑎𝑝𝑡𝑖𝑜𝑛 was used along with a CN to
extract the parts in the image corresponding to the user caption.

Figure 6 shows example heatmaps corresponding to the collected gaze points and the generated
artificial attention heatmaps. We can see that the artificial attention heatmaps are sparse and poorly
aligned with the ground truth bounding box locations compared to the gaze-based heatmaps. We
calculated the average AUC scores across the dataset between the heatmaps generated based on the
recorded gaze points (Free-viewing, Stimuli and Fixation) to quantitatively measure the similarity
between these and the artificial attention heatmaps. Table 1 summarises the average AUC scores.
We found that the GradCAM heatmaps were generated without the caption, which corresponded
to the free-viewing situation when the users were unaware that the caption corresponded vaguely
to the human gaze-based heatmaps. 𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑐𝑎𝑝𝑡𝑖𝑜𝑛 made more similar predictions to the human
heatmaps. The maximum AUC achieved was 0.63, which corresponded to the fixation map.

4.2.2 Different initialisation techniques. In Table 2, we compare how the different start regions (See
more in Section 3.1) correlate to the described part of the image. The start regions were generated
based on the collected gaze points during Stimuli and the output heatmap of 𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑛𝑜𝑐𝑎𝑝𝑡𝑖𝑜𝑛

1https://github.com/ramprs/grad-cam#image-captioning
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Table 1. Quantitative comparison of the heatmaps generated based on human gaze data and by
GradCAM [27].

AUC (Mean ± Std.) 𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑛𝑜 𝑐𝑎𝑝𝑡𝑖𝑜𝑛𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑐𝑎𝑝𝑡𝑖𝑜𝑛

Free-viewing 0.556 ± 0.119 0.545 ± 0.132
Stimuli 0.572 ± 0.201 0.620 ± 0.192
Fixation 0.567 ± 0.219 0.633 ± 0.206

and 𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑐𝑎𝑝𝑡𝑖𝑜𝑛 . Without performing any optimisation or image cropping, we compare the
proposed image regions with the ground truth annotations of the dataset using the Intersection
over Union (IoU) measure.

The presented results show that human gaze-based initialisation results in start regions that corre-
late more to the desired image region than the artificial attention-based initialisation. This tendency
was present regardless of the type of initialisation method. Furthermore, aligned with the results
presented in Table 1, the calculated IoU score of the start regions generated by 𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑐𝑎𝑝𝑡𝑖𝑜𝑛

was higher than the ones generated by 𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑛𝑜𝑐𝑎𝑝𝑡𝑖𝑜𝑛 .
The results of this experiment show that the gaze data is useful to initialise the framework; how-

ever, more is needed for the description and aesthetics-guided image-cropping task. Furthermore,
the Region Proposal-based 𝑅𝑃𝑠𝑞𝑢𝑎𝑟𝑒 initialisation method was the most reliable for start region
generation.

Table 2. Quantitative comparison of the different start region generation methods using IoU
measure (Mean ± Std.) on the output bounding boxes. The gaze data used in this comparison was
collected during Stimuli.

Method 𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑛𝑜𝑐𝑎𝑝𝑡𝑖𝑜𝑛 𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑐𝑎𝑝𝑡𝑖𝑜𝑛 Gaze data

𝐹𝑖𝑥𝑒𝑑𝑁=10 0.013 ± 0.003 0.013 ± 0.004 0.049 ± 0.013
𝐹𝑖𝑥𝑒𝑑𝑁=5 0.056 ± 0.012 0.059 ± 0.010 0.171 ± 0.007
𝐹𝑖𝑥𝑒𝑑𝑁=4 0.080 ± 0.011 0.094 ± 0.014 0.219 ± 0.017
𝐹𝑖𝑥𝑒𝑑𝑁=3 0.119 ± 0.012 0.150 ± 0.007 0.280 ± 0.005
𝐹𝑖𝑥𝑒𝑑𝑁=2 0.179 ± 0.009 0.223 ± 0.007 0.326 ± 0.006
𝑅𝑃𝑢𝑛𝑖𝑜𝑛 0.277 ± 0.009 0.290 ± 0.012 0.355 ± 0.009

𝑅𝑃𝑠𝑞𝑢𝑎𝑟𝑒 0.284 ± 0.010 0.294 ± 0.012 0.361 ± 0.008

4.2.3 Human gaze and artificial attention-based initialisation. We evaluated the performance of the
G-DAIC framework using artificial attention and human gaze-based initialisation to compare their
usefulness. Based on the results presented in Table 1 and 2, we used the artificial attention heatmaps
generated by𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑐𝑎𝑝𝑡𝑖𝑜𝑛 to initialise our framework. Note that gaze point collection from the
users during Free-viewing and Stimuli does not require additional effort from the user; therefore, it
is unobtrusive.

Gaze information from different stages. In Table 3, we report the IoU scores when the Mixed
scaling method was performed using different gaze data (See Section 4.1.1). Namely, we compare
the differences when using Free-viewing, Stimuli, and Fixation information in the optimisation
framework. In this comparison, we found that using the gaze points from the Stimuli stage results
in the highest similarity with the human ground-truth annotations of the dataset. Furthermore,
regardless of the chosen gaze-based initialisation technique, we can observe that the computed IoU
scores are the lowest when relying on the gaze points collected during Free-viewing. We found
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Table 3. Quantitative comparison of the different attention information for start region definition
using IoU measure (Mean ± Std.) on the output bounding boxes. To obtain these results, we used the
proposed Mixed scaling method for every experiment.

Attention type 𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑐𝑎𝑝𝑡𝑖𝑜𝑛 Free-viewing Stimuli Fixation

𝐹𝑖𝑥𝑒𝑑𝑁=10 0.022 ± 0.005 0.042 ± 0.016 0.075 ± 0.018 0.073 ± 0.015
𝐹𝑖𝑥𝑒𝑑𝑁=5 0.084 ± 0.013 0.146 ± 0.015 0.242 ± 0.007 0.237 ± 0.007
𝐹𝑖𝑥𝑒𝑑𝑁=4 0.140 ± 0.018 0.214 ± 0.017 0.294 ± 0.011 0.289 ± 0.013
𝐹𝑖𝑥𝑒𝑑𝑁=3 0.272 ± 0.020 0.271 ± 0.013 0.365 ± 0.012 0.349 ± 0.013
𝐹𝑖𝑥𝑒𝑑𝑁=2 0.214 ± 0.013 0.246 ± 0.015 0.328 ± 0.015 0.327 ± 0.018
𝑅𝑃𝑢𝑛𝑖𝑜𝑛 0.298 ± 0.013 0.332 ± 0.013 0.369 ± 0.018 0.368 ± 0.014

𝑅𝑃𝑠𝑞𝑢𝑎𝑟𝑒 0.307 ± 0.021 0.309 ± 0.013 0.433 ± 0.011 0.408 ± 0.013

the algorithm’s performance using the Stimuli and Fixation information for initialisation is very
similar. This is because the users knew the contextual information during both experiment stages.
The difference between them might come from the fact that while the Stimuli stage is shorter and
more active during the Fixation stage, the participants’ attention could wander around over time,
potentially influencing the initialisation by introducing Free-viewing like gaze points.

Fig. 7. Qualitative comparison of the human gaze and artificial attention heatmap initialised output
crops. Example illustration of the generated gaze and 𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑐𝑎𝑝𝑡𝑖𝑜𝑛 -based 𝐼𝑖𝑛𝑖𝑡 regions and the 𝐼𝑐𝑟𝑜𝑝
output crops.

4.2.4 Human versus artificial attention. Finally, Table 3 compared also the performance of the G-
DAIC framework initialised by human and artificial attention. The results invariably confirmed that
the artificial attention-based initialisation (𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑐𝑎𝑝𝑡𝑖𝑜𝑛) performed worse than the gaze-based
initialisation. Note that the caption-aware 𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑐𝑎𝑝𝑡𝑖𝑜𝑛 initialisation yielded lower IoU scores
than the Free-viewing gaze points-based output crops. This result aligns well with our qualitative
(Figure 6) and quantitative (Table 1) findings regarding the artificial attention-based start regions.
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Fig. 8. Qualitative comparison highlights. The cropped images obtained by CAGIC, two baseline methods
using Free-viewing and Fixation-based gaze initialisation and G-DAIC using Stimuli-based initialisation. The
user-defined ground truth bounding box annotations are shown on the original images in red. The proposed
method well crops the images as the user described.

Qualitative highlights of this experiment are included in Figure 7. This figure shows the generated
𝑅𝑃𝑠𝑞𝑢𝑎𝑟𝑒 start regions based on the collected Stimuli gaze points, the heatmap of 𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑐𝑎𝑝𝑡𝑖𝑜𝑛 ,
and the final output crops of the proposed method. The qualitative comparison shows that the
human gaze data collected during Stimuli is more useful and preferable for start region generation
than the artificial attention heatmaps.

4.3 Comparison with the state-of-the-art
4.3.1 Qualitative evaluation. In Figure 8, we show qualitative output examples produced by CAGIC
[14], the Mixed initialisation method using Free-viewing and Fixation gaze points, and finally, the
proposed method G-DAIC. In this figure, we demonstrate that using gaze data from different stages
of the eye-tracking experiment in the Mixed initialisation method results in very different image
crops. We can observe that initialising the optimisation framework based on the Free-viewing gaze
information often returned a larger region of the image as the output image crop. Opposite to
the Free-viewing output when the initialisation was based on the Fixation, the image crops tend
to be tightly cropped around the subject. Overall, the crops generated by G-DAIC correspond to
the captions and are aesthetically pleasing. Compared to the images of CAGIC, we found that the
subjects of the caption were more centralised, and we could crop tight enough around the described
image region without losing the contextual information provided by the user caption.

4.3.2 Quantitative evaluation. As part of our ablation study, we compared the quantitative per-
formance of the proposed method using different initialisation methods, threshold levels of the
proposed Mixed Scaling method, and different types of gaze information.
Overall, based on the quantitative evaluations, we found that using gaze-based initialisation is

useful, and with the proposed additions, the new framework G-DAIC was able to outperform the
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state-of-the-art method. Furthermore, we found that for the initialisation, it is best to use the gaze
points collected during the Stimuli stage and that the proposed adaptive Mixed scaling method is
better suited for our multimodal framework than the previously proposed Shrinking only method.
Among the proposed initialisation methods, we found that the Region Proposal-based 𝑅𝑃𝑠𝑞𝑢𝑎𝑟𝑒
initialisation was the most successful in every experiment.

Table 4. Comparison of user intention presence. We ask users to caption cropped images and compare
with natural language metrics how similar they are with the original desired caption.

NLP Metric Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR ROUGE_L CIDEr

GradCAM[27] 0.2728 0.1410 0.0874 0.0531 0.1182 0.2790 0.6973
MAttNet[36] 0.1718 0.0937 0.0603 0.0355 0.1132 0.2947 0.7154
CAGIC[14] 0.3424 0.1876 0.1017 0.0631 0.1702 0.2970 0.9054

G-DAIC 0.3519 0.1963 0.1065 0.0654 0.1747 0.3072 0.9536

4.3.3 User study. Cycle Crop-Caption consistency. To measure the success of the proposed
image-cropping framework, we performed a quantitative comparison of how well each method
preserved the contextual information of the given user caption. We asked five users who did not
participate in our previous experiments, to describe the output image crops of G-DAIC. For a
fair comparison, the caption similarity scores were calculated using the same natural language
processing metrics as in [14]. The comparative results are presented in Table 4. This experiment
demonstrated that G-DAIC was the most efficient at preserving the contextual information provided
by the user according to every metric. The image captions generated from the output crops were
more similar to the original user caption when we used G-DAIC compared to all the other baseline
methods.

Table 5. User study quantitative result.Qualitative comparisons among the state-of-the-art image cropping
methods with the original image and G-DAIC were compared through a human survey and evaluated by
aggregation.

Original Image MAttNet [36] GradCAM [27] CAGIC [14] G-DAIC

Aggregated
percentage (%) 18.07 18.73 19.13 20.87 23.20

Aesthetic assessment. Due to the subjective nature of this research area, we performed a user
study to compare the quality of the image crops provided by the baseline methods and G-DAIC. We
performed an online user study, asking the participants to select the best-looking output image crop
among the five images shown. We asked 15 users, resulting in 1500 decisions, to choose between
the original image and the output image crops of MAttNet, GradCAM, CAGIC, and G-DAIC. Table
5 shows the aggregated percentages. This experiment shows that using the aesthetics information
in the optimisation framework improved the quality of the output image crops. Furthermore, based
on the users’ votes, the most popular choice was the proposed method, G-DAIC.

4.4 Runtime
Finally, we aimed to reduce the runtime (𝑡 ) of the description and aesthetics-based image cropping
method compared to the state-of-the-art optimisation method [14] by adding a new modality to
the framework. Therefore, beyond the quantitative and qualitative experiments, we measured the
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runtime of G-DAIC and the baseline image cropping methods. The results of this experiment are
shown in Table 6.

Table 6. Runtime comparison of the baseline algorithms with the proposed method using a fixed
number of iterations (G-DAIC 𝑁𝑖𝑡𝑒𝑟 = 25), Early termination (G-DAIC 𝑛𝑖𝑡𝑒𝑟 ) and the𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑐𝑎𝑝𝑡𝑖𝑜𝑛-
based (G-DAIC 𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑐𝑎𝑝𝑡𝑖𝑜𝑛).

Method Runtime (sec)

A2RL [20] 0.150
VPN [33] 0.008
Anchor [38] 0.005
GradCAM [27] 0.030
MAttNet [36] 0.020
CAGIC [14] 412

G-DAIC (𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑐𝑎𝑝𝑡𝑖𝑜𝑛) 23.42
G-DAIC (𝑁𝑖𝑡𝑒𝑟 ) 40.92
G-DAIC (𝑛𝑖𝑡𝑒𝑟 ) 32.52

In agreement with our hypothesis, the gaze-based initialisation successfully reduced the runtime
by 92.11% compared to the results presented in [14]. This runtime improvement is especially
impressive, considering that both the quantitative and the qualitative evaluations confirmed that
G-DAIC outperformed all the baseline methods. Therefore, the proposed method is faster and more
accurate at localising the described part of the image and producing an aesthetically pleasing image
crop.

4.4.1 Fixed number of iterations. This runtime improvement was achieved in three steps using two
methods. Firstly, optimising the code reduced the time to run one iteration (𝑡𝑖𝑡𝑒𝑟 ) from 2.06 to 1.637
seconds. This modification resulted in an average 20.53% runtime decrease per iteration. Secondly,
we maximised the number of iterations (𝑁𝑖𝑡𝑒𝑟 ) by 87.5% to 25 instead of 200, assuming that the
provided gaze-based initialisation provides a better starting point for our search than starting from
the original image. This resulted in a 90.07% runtime decrease, where producing a single image
crop took 40.92 seconds (Table 6, G-DAIC (𝑁𝑖𝑡𝑒𝑟 )).

4.4.2 Early Termination. Finally, we used the Early Termination strategy to end the optimisation
after 𝑛𝑖𝑡𝑒𝑟 instead of 𝑁𝑖𝑡𝑒𝑟 when the calculated Total loss (L𝑡𝑜𝑡𝑎𝑙 (I, y, 𝜽 )) was below 𝑇𝑙𝑜𝑠𝑠 = 5.23.
The time spent to generate a single image crop, therefore, is calculated as follows:

𝑡 =

{
𝑡𝑖𝑡𝑒𝑟 × 𝑛𝑖𝑡𝑒𝑟 if L𝑡𝑜𝑡𝑎𝑙 (I, y, 𝜽 ) <= 𝑇𝑙𝑜𝑠𝑠

𝑡𝑖𝑡𝑒𝑟 × 𝑁𝑖𝑡𝑒𝑟 otherwise
(4)

This solution allowed us to save 513, equal to 20.52% of the iterations across the whole dataset.
The Early Termination further reduced the average runtime from 40.92 to 32.52 seconds/image
(Table 6, G-DAIC (𝑛𝑖𝑡𝑒𝑟 )). Overall the average total time to produce a single output crop takes 32.52
seconds, which is 92.11% faster than the original method.
The runtime achieved by G-DAIC is significantly faster than the other iterative optimisation-

based description and aesthetics-based image cropping algorithm CAGIC; however, due to the
iterative nature of the proposed algorithm, it is still significantly slower but better in terms of
performance than the other baselines. Finally, we evaluated the runtime of G-DAIC when initialised
by 𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑐𝑎𝑝𝑡𝑖𝑜𝑛 . While this method achieved 34% faster runtime compared to G-DAIC (𝑛𝑖𝑡𝑒𝑟 ),
the quantitative and qualitative results presented in Section 4.2 showed that its performance was
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significantly lower compared to the human gaze-based initialisation. Note that the models in our
framework were not fine-tuned nor specifically trained for this task. The overall runtime could be
further improved by using new modalities and potentially replacing existing or new pre-trained
models in the framework.

5 CONCLUSION
This work proposes a new gaze-initialised multimodal optimisation method for the description
and aesthetics-based image cropping problem. The main motivation was to reduce the runtime of
the state-of-the-art image cropping method [14] while preserving the accuracy of the previously
introduced solution. Hence, we designed a new framework, which initialised the image cropping
algorithm based on the subject’s eye movements recorded during the image description generation.
In this work, we proposed two solutions, Fixed Grid and Region Proposal, on integrating and utilising
the gaze information into the proposed multimodal framework. Furthermore, we implemented
the adaptive Mixed method for localisation of the described image region based on the size of the
gaze-based initialisation area. Finally, we proposed the Early termination of the optimisation to
significantly reduce the runtime. In this paper, we have shown that with the gaze-based initialisation
of the description and aesthetic-based image cropping method, we were able to outperform the
state-of-the-art methods significantly and in addition, we reduced the runtime by more than 92%.
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A APPENDIX
A.1 Analysis of the collected gaze data
We performed multiple experiments to evaluate the quality of the collected gaze points. First, we analysed how well the
gaze points correspond to the dataset’s ground truth bounding box annotations by calculating the proportion of the points
inside these bounding boxes. This is an important measure as it influences the quality of the gaze-based initialisation, hence
the overall framework’s accuracy. Then we investigated the dynamic nature of the collected Stimuli gaze data. We aimed to
understand the participants’ eye movements w.r.t. the words of the image caption.

Table 7. The proportion of detected gaze points inside the ground truth bounding box during
Free-viewing, Stimuli and Fixation.

GT Free viewing Stimuli Fixation Mean ± std

1 58.78 ± 29.91 87.75 ± 17.91 92.42 ± 19.91 79.65 ± 22.58
2 56.25 ± 32.44 83.75 ± 22.77 90.31 ± 23.31 76.77 ± 26.18
3 54.50 ± 31.22 84.37 ± 21.24 90.37 ± 22.77 76.41 ± 25.07
4 57.67 ± 31.46 85.34 ± 21.17 91.48 ± 22.21 78.16 ± 24.95
5 59.12 ± 29.70 86.96 ± 18.51 92.51 ± 19.94 79.53 ± 22.72
6 50.01 ± 32.69 79.41 ± 26.50 85.26 ± 28.97 71.59 ± 29.39
7 49.04 ± 29.83 81.46 ± 22.63 88.28 ± 25.11 72.92 ± 25.86

Mean ± std 55.06 ± 31.28 84.15 ± 21.86 90.09 ± 23.47

A.1.1 Gaze points w.r.t. bounding box annotations. We evaluated the different stages of the eye tracking recording individu-
ally and compared the recorded points w.r.t. the seven ground truth bounding boxes of the dataset. In this experiment, we
used the recorded gaze points from every participant. In Table 7, we can see that the proportion of the gaze points inside
the bounding boxes is very similar for all three stages of the recording. Furthermore, our results show that over 71% of the
gaze points were within the bounding boxes for every ground truth bounding box.

The lowest percentage of gaze points inside the ground truth bounding boxes belongs to the Free-viewing stage of
the experiment, which is not surprising as the participants were allowed to observe the image without any contextual
constraints during this stage. During the Stimuli stage, the number of gaze points within the target area increased by more
than 29%, reaching nearly 84% accuracy. Overall, this is a high percentage considering that the proportion was about 90%
high during the Fixation stage. In a real-world scenario, users do not tend to fixate on the described part of the image
after providing the description. Therefore, while the Fixation points are more aligned with the ground truth bounding box
annotations of the dataset, we used the Stimuli points in our experiments for initialisation.

A.1.2 Gaze points w.r.t. participants. It is important to note that the participants’ data had some disagreements, similar to
the subjective nature of the user-annotated bounding boxes of the dataset. Therefore, we experimented to better understand
the subjective nature of the gaze points. The results of this experiment are shown in Table 8. We can observe that some
subjects, like User 10, had higher accuracy during all three stages of the experiment than others. However, the tendency
among the stages is the same for every user, and the overall percentages are close to each other too.

A.2 Ablation study
Here, we report more ablation studies left out of the main paper due to spatial constraints. We motivate all our choices
based on these studies.
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Table 8. The proportion of detected gaze points inside the ground truth bounding boxes w.r.t. the
subjects during Free-viewing, Stimuli and Fixation.

User Free viewing Stimuli Fixation Mean ± std

1 55.98 ± 32.63 87.73 ± 17.65 92.72 ± 19.64 78.81 ± 23.30
2 52.48 ± 28.91 89.27 ± 15.63 94.67 ± 17.05 78.81 ± 20.53
3 53.39 ± 33.01 87.97 ± 18.28 94.18 ± 19.97 78.51 ± 23.76
4 59.34 ± 34.73 76.84 ± 30.38 80.87 ± 33.11 72.35 ± 32.74
5 52.45 ± 30.42 84.70 ± 19.55 86.36 ± 25.05 74.50 ± 25.01
6 47.89 ± 28.73 87.18 ± 18.15 94.67 ± 19.58 76.58 ± 22.15
7 54.84 ± 30.53 86.84 ± 18.72 93.93 ± 18.68 78.54 ± 22.65
8 54.62 ± 30.09 83.11 ± 25.92 89.95 ± 27.36 75.89 ± 27.79
9 57.96 ± 31.37 83.57 ± 22.24 92.23 ± 22.35 77.92 ± 25.32
10 66.00 ± 33.92 86.04 ± 22.10 93.03 ± 23.61 81.69 ± 26.54
11 54.58 ± 29.22 80.87 ± 25.03 88.27 ± 23.59 74.57 ± 25.95
12 57.84 ± 31.33 81.77 ± 23.34 90.39 ± 21.61 76.66 ± 25.43
13 54.46 ± 31.04 82.70 ± 20.62 89.39 ± 23.04 75.52 ± 24.90
14 55.92 ± 31.57 78.44 ± 23.64 79.90 ± 27.02 71.42 ± 27.41

Mean ± std 55.06 ± 31.28 84.15 ± 21.86 90.09 ± 23.47

A.2.1 Different scaling methods. In Table 9 we show the IoU scores w.r.t. different scaling methods. Note that we used the
gaze points collected during the stimuli stage during this experiment based on our ablation study’s findings. CAGIC [14]
iteratively zooms into the described part of the image (Shrink) and does not have gaze-based initialisation (See more in
Section 3). When the image cropping framework is initialised, we use three scaling methods to find the region of interest.
Namely, we zoomed in or out in every iteration despite the size of the initialisation region. Alternatively, in Section 3.2.1,
we proposed the adaptive Mixed scaling method, which flexibly decides to use Shrink or Expand w.r.t. the size of the
initialisation area. Our results show that the Mixed scaling method using Region Proposal initialisation provides the highest
IoU value among the compared methods, exceeding even the score of the state-of-the-art method, CAGIC.

Table 9. Quantitative comparison of the different scaling methods using IoU measure (Mean ± Std.)
on the output bounding boxes. All the gaze-based initialisation methods use the Stimuli gaze points.

Scaling Method Shrink Expand Mixed

𝐹𝑖𝑥𝑒𝑑𝑁=10 0.042 ± 0.021 0.074 ± 0.016 0.075 ± 0.018
𝐹𝑖𝑥𝑒𝑑𝑁=5 0.151 ± 0.015 0.241 ± 0.008 0.242 ± 0.007
𝐹𝑖𝑥𝑒𝑑𝑁=4 0.188 ± 0.015 0.303 ± 0.011 0.294 ± 0.011
𝐹𝑖𝑥𝑒𝑑𝑁=3 0.262 ± 0.010 0.365 ± 0.010 0.365 ± 0.012
𝐹𝑖𝑥𝑒𝑑𝑁=2 0.302 ± 0.013 0.286 ± 0.019 0.328 ± 0.015
𝑅𝑃𝑢𝑛𝑖𝑜𝑛 0.352 ± 0.015 0.330 ± 0.017 0.369 ± 0.018
𝑅𝑃𝑠𝑞𝑢𝑎𝑟𝑒 0.369 ± 0.007 0.388 ± 0.011 0.433 ± 0.011

CAGIC 0.416 ± 0.013 - -

A.2.2 Different Mixed Scaling method thresholds. We analysed the performance of the Mixed scaling method using different
thresholds. We used a 0.75 threshold level in our experiments, as mentioned in Section 3.2.1. This threshold level was chosen
empirically based on the results of our experiments presented in Table 10. In this table, we show the performance of the
fixed grid and region proposal-based gaze initialisation methods using the Mixed method with different threshold levels.
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Table 10. Quantitative comparison of the different thresholds (𝑇 ) of the Mixed scaling method
using IoU measure (Mean ± Std.) on the output bounding boxes.

𝑇 0.125 0.250 0.375 0.500 0.625 0.750 0.875

𝐹𝑖𝑥𝑒𝑑𝑁=10 0.076 ± 0.025 0.070 ± 0.016 0.075 ± 0.017 0.085 ± 0.007 0.075 ± 0.019 0.075 ± 0.018 0.073 ± 0.019
𝐹𝑖𝑥𝑒𝑑𝑁=5 0.152 ± 0.011 0.243 ± 0.008 0.241 ± 0.008 0.246 ± 0.004 0.240 ± 0.008 0.242 ± 0.007 0.242 ± 0.005
𝐹𝑖𝑥𝑒𝑑𝑁=4 0.195 ± 0.018 0.289 ± 0.015 0.301 ± 0.008 0.300 ± 0.012 0.296 ± 0.009 0.294 ± 0.011 0.289 ± 0.010
𝐹𝑖𝑥𝑒𝑑𝑁=3 0.259 ± 0.007 0.258 ± 0.010 0.357 ± 0.011 0.371 ± 0.010 0.369 ± 0.010 0.365 ± 0.012 0.367 ± 0.013
𝐹𝑖𝑥𝑒𝑑𝑁=2 0.305 ± 0.014 0.301 ± 0.009 0.298 ± 0.014 0.314 ± 0.011 0.317 ± 0.017 0.328 ± 0.015 0.311 ± 0.019
𝑅𝑃𝑢𝑛𝑖𝑜𝑛 0.352 ± 0.016 0.362 ± 0.014 0.377 ± 0.014 0.361 ± 0.017 0.378 ± 0.021 0.369 ± 0.018 0.363 ± 0.020
𝑅𝑃𝑠𝑞𝑢𝑎𝑟𝑒 0.359 ± 0.007 0.368 ± 0.009 0.382 ± 0.007 0.419 ± 0.010 0.428 ± 0.011 0.433 ± 0.011 0.431 ± 0.012
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