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Abstract

Before embarking on an individual participant data meta-analysis (IPDMA)

project, researchers should consider the power of their planned IPDMA condi-

tional on the studies promising their IPD and their characteristics. Such power

estimates help inform whether the IPDMA project is worth the time and fund-

ing investment, before IPD are collected. Here, we suggest how to estimate the

power of a planned IPDMA of randomised trials aiming to examine treatment-

covariate interactions at the participant-level (i.e., treatment effect modifiers).

We focus on a time-to-event (survival) outcome with a binary or continuous

covariate, and propose an approximate analytic power calculation that condi-

tions on the actual characteristics of trials, for example, in terms of sample

sizes and covariate distributions. The proposed method has five steps:

(i) extracting the following aggregate data for each group in each trial—the

number of participants and events, the mean and SD for each continuous

covariate, and the proportion of participants in each category for each binary

covariate; (ii) specifying a minimally important interaction size; (iii) deriving

an approximate estimate of Fisher's information matrix for each trial and the

corresponding variance of the interaction estimate per trial, based on assuming

an exponential survival distribution; (iv) deriving the estimated variance of the

summary interaction estimate from the planned IPDMA, under a common-

effect assumption, and (v) calculating the power of the IPDMA based on a

two-sided Wald test. Stata and R code are provided and a real example pro-

vided for illustration. Further evaluation in real examples and simulations is

needed.
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Highlights

What is already known?
• Individual participant data (IPD) meta-analysis projects potentially allow

more robust and powerful examinations of participant-level relationships,
such as whether participant-level covariates interact with treatment effect
(treatment-covariate interactions).

• However, IPD projects are time-consuming and so, before IPD collection,
their potential power should be examined, to help inform whether they are
worth investment.

What is new?
• We derive an approximate analytic approach for calculating the power of a

planned IPD meta-analysis to estimate treatment-covariate interactions
using IPD from multiple randomised trials with a time-to-event outcome.

• Our approach uses (published) trial aggregate data, to condition the power
calculation on the actual characteristics of trials promising IPD, for example,
in terms of sample sizes and covariate distributions, assuming exponential
survival distributions.

Potential impact for RSM readers outside the authors' field?
• The approach can be applied to any IPD meta-analysis project aiming to

model interactions with time-to-event (survival) data.

1 | INTRODUCTION

Individual participant data (IPD) meta-analysis pro-
jects obtain, check, harmonise and meta-analyse the
IPD from multiple studies to address a particular
research question.1 They are considerable undertak-
ings, often taking upwards of 2 years to complete, and
so should not be embarked upon without due thought.
This should include determining how many trials
are likely to provide their IPD and, based on this,
estimating the potential power of the planned IPD
meta-analysis.2–4 Such power estimates are needed to
help inform whether the IPD meta-analysis project is
worth the time and funding investment, before IPD
are collected. For example, it is potentially unwise to
spend 2 years collecting IPD if the power of a subse-
quent IPD meta-analysis is potentially only 20%;
conversely, if the power is likely to be over 80% then
this gives a strong rationale for time and resource
investment.

We have previously described how to calculate the
power when planning an IPD meta-analysis of random-
ised trials with either a continuous or binary outcome,3,5

where the estimand of interest is a treatment-covariate
interaction at the participant level. Participant-level cov-
ariates that interact with treatment effect are also known
as effect modifiers, predictive markers (especially in the

oncology literature), and subgroup effects. The premise is
that the magnitude of treatment effect is conditional on
the value of the participant-level covariate. An example is
the interaction between the effect of trastuzumab and a
breast cancer patient's oestrogen receptor status. Single
trials are typically powered on the overall treatment
effect, and so rarely have the power to detect genuine
treatment-covariate interactions, and this provides one of
the key motivations for combining IPD from multiple tri-
als in an IPD meta-analysis.

In this article we propose a new method to calculate
the power of a planned IPD meta-analysis project to esti-
mate a treatment-covariate interaction for a time-to-event
(survival) outcome. Many IPD meta-analysis projects
involve survival outcomes, for example, in cancer and
cardiovascular trials where long-term follow-up and out-
comes are of interest. Further, compared to our earlier
work for continuous and binary outcomes,3,5,6 the exten-
sion to survival outcomes is complicated by the issue of
censored observations and the need to account for length
of follow-up. This is problematic in advance of IPD col-
lection, but here we propose approximate closed-form
(analytic) approaches to power calculations that only
require readily available aggregate data to be obtained
per trial.

The paper outline is as follows. In Section 2 we
describe an analytic solution for Fisher's information
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matrix and the variance matrix of parameter estimates
from an exponential survival regression model of a single
randomised trial, and apply them to a real example
with comparison of results to those from a Cox model.
The analytic solutions are used within Section 3, as
part of a four-step process to calculate the approximate
power of a planned IPD meta-analysis project to esti-
mate a treatment-covariate interaction for a survival
outcome, in advance of IPD collection. The four steps
are: (1) extract aggregate data from trial publications;
(2) derive variances of treatment-covariate interac-
tions for each trial separately, conditional on the
aggregate data extracted and assumptions about the
magnitude of the treatment-covariate interaction and
an exponential survival distribution; (3) calculate the
variance of the summary treatment-covariate interac-
tion from the planned IPD meta-analysis, under a
common-effect assumption, which is a function of the
trial-specific variances from the previous step; and
(4) use the result to calculate the corresponding power
of the planned IPD meta-analysis project based on a
two-sided Wald test. Stata and R code are provided to
implement the approach. Section 4 illustrates the
methodology with two examples, and Section 5 con-
cludes with discussion, noting that further evaluation
in real examples and simulations is needed.

2 | ESTIMATING THE VARIANCE
OF A TREATMENT-COVARIATE
INTERACTION FROM AN
EXPONENTIAL SURVIVAL
REGRESSION MODEL FOR A SINGLE
TRIAL

In this section, we focus on the analysis of a single ran-
domised trial to examine a treatment-covariate interac-
tion, and the statistical theory for obtaining the variance
of a treatment-covariate interaction estimate. This will be
used in Section 3 within our proposed power calculation
for IPD meta-analysis projects.

Let i denote a particular trial in the IPD meta-analysis
and j denote a participant in that trial. We focus on a
parallel-group trial design, comparing a treatment
(xij ¼ 1) to a control (xij ¼ 0). Let zij be a participant-level
covariate (e.g., the age of participant j in trial i), observed
for all participants in each trial, and tij denotes the event
time for participant j. The estimand of interest is the
interaction between the treatment effect (as measured by
a log hazard ratio) and the covariate zij. In this article, we
will model this using an exponential regression frame-
work, under a proportional hazards assumption, as
follows.

2.1 | Exponential regression model
specification

The exponential regression model with a hazard rate of
ηij for participant j in trial i can be written as:

tij � exponential ηij

� �
ln ηij

� �
¼ μij ¼ αiþβixijþ γizijþλixijzij

ð1Þ

As each trial is analysed separately the trial subscript
i is not strictly required, but we retain it as the solutions
that follow will be used in subsequent sections to derive
power calculations for the IPD meta-analysis setting, for
which the i notation is needed. Apart from the intercept,
all parameters correspond to log hazard ratios and these
are assumed constant over time. The treatment-covariate
interaction is denoted by λi, and is adjusted for the prog-
nostic effect (γi) of the covariate of interest (zijÞ and the
reference treatment effect (βiÞ. Other prognostic factors
could also be adjusted for, but we do not consider this
here. The intercept, αi, denotes the baseline hazard (rate).

Our focus is on estimating the treatment-covariate
interaction term, λi, which indicates the expected change
in treatment effect (log hazard ratio) for a one-unit
increase in zij for trial i. For a continuous covariate, this
assumes the effect of the interaction is linear. Although
extension to non-linear trends is important in practice,5

for simplicity assuming a linear relationship will be sensi-
ble for the power calculation that follows in Section 3.

The exponential regression model of Equation (1) can
equivalently be written as an accelerated failure time
model, as follows,7

ln tij
� �¼�μijþ εij ¼�αi�βixij� γizij�λixijzijþ εij ð2Þ

where εij follows an extreme value distribution with pdf
f εij
� �¼ exp εij

� �
exp �exp εij

� �� �
. We will use this specifi-

cation when deriving the variance matrix of parameter
estimates, but the interpretation of parameters is identi-
cal to before for the exponential regression (in particular,
λi is the treatment-covariate interaction).

2.2 | Deriving Fisher's information
matrix and the variance matrix of
parameter estimates

Using the IPD from a particular trial, the parameters in
Equation (1) or (2) can be estimated using maximum
likelihood estimation, for example, using an iterative
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approach such as Newton–Raphson. The variance of
parameter estimates can then be calculated using the
inverse of Fisher's information matrix. Of key interest for
our power calculation is deriving an analytic expression
for the estimated variance of bλi for a particular trial. A
complication is the need to account for censored observa-
tions. Let yij be the minimum of log event time and log
censoring time for participant j in trial i, and the design
matrix X¼ 1,xij,zij,xijzij

� �0
. The 4 by 4 observed informa-

tion matrix (IiÞ after fitting Equation (2) for a particular
trial can be expressed as7,8:

Ii ¼XX0 exp yijþbμij� �

Ii ¼

Xni
i¼1

wij

Xni
i¼1

xijwij

Xni
i¼1

zijwij

Xni
i¼1

xijzijwij

Xni
i¼1

xijwij

Xni
i¼1

x2ijwij

Xni
i¼1

xijzijwij

Xni
i¼1

x2ijzijwij

Xni
i¼1

zijwij

Xni
i¼1

xijzijwij

Xni
i¼1

z2ijwij

Xni
i¼1

xijz
2
ijwij

Xni
i¼1

xijzijwij

Xni
i¼1

x2ijzijwij

Xni
i¼1

xijz
2
ijwij

Xni
i¼1

x2ijz
2
ijwij

2
66666666666666664

3
77777777777777775
ð3Þ

where ni is the total sample size of trial i, wij ¼
expðyijþbμijÞ, bμij is an individual's estimated linear predic-
tor value from the fitted exponential regression (i.e.,bμij ¼bαiþbβixijþbγizijþbλixijzij) and XX0 is a 4 by 4 matrix
due to the four parameters in the regression equation (αi,
βi, γi, λi). The diagonal elements of the inverse of Ii pro-
vide the corresponding variances of the four parameter
estimates, and of particular interest is the variance of the
interaction estimate,

var bλi� �
¼ I�1

i 4,4ð Þ ð4Þ

where I�1
i 4,4ð Þ denotes the 4,4 element of the inverse of

the observed information matrix (I) for trial i.
Note that we can decompose the information matrix

for a trial into the product of the total sample size and a
matrix of expected values,

Ii ¼ ni E x,z,wð Þ

wij xijwij zijwij xijzijwij

xijwij x2ijwij xijzijwij x2ijzijwij

zijwij xijzijwij z2ijwij xijz
2
ijwij

xijzijwij x2ijzijwij xijz
2
ijwij x2ijz

2
ijwij

2
6666664

3
7777775

¼E x,z,wð Þ B½ �
¼ni I�i

ð5Þ

where E x,z,wð Þ B½ � denotes the expected value of B over the
joint distribution of xij, zij and wij, and I�i is the subse-
quent 4 by 4 matrix of expected values (also known as
the unit information matrix). This decomposition will be
helpful in the next section, and allows us to derive the vari-
ance of bλi using:

var bλi� �
¼ I��1

i 4,4ð Þ=ni ð6Þ

2.3 | Estimates from Cox regression
compared to exponential regression

In practice, trial analyses typically use a Cox regression
model, which makes no assumption about the shape of the
baseline hazard. However, in this article we utilise an expo-
nential regression framework, which assumes a constant
baseline hazard over time. This is a pragmatic decision as it
allows us to use the analytic solution for Fisher's informa-
tion matrix as derived in Equations (5) and (6), which (see
Section 3) we need to approximate based on only trial
aggregate data (e.g., as available from trial publications) in
advance of IPD collection. Such an analytic approach is
more challenging with a Cox regression model.

Reassuringly, parameter estimates and SEs in Cox and
exponential regression models will often be similar, even
when the hazard rate is not a constant. To illustrate this,
consider re-analysis of IPD from a randomised trial evaluat-
ing the use of oestrogen for the treatment of Stage 3 or 4 pros-
tate cancer patients,9,10 obtained from http://hbiostat.org/
data courtesy of the Vanderbilt University Department of
Biostatistics. The trial contains 502 participants and
338 deaths, with a mean follow-up of 36 months. There are
127 and 375 participants in the placebo and oestrogen
groups, respectively. The overall unadjusted treatment effect
and SE from a Cox regression model are the same as those
from an exponential regression model (log hazard
ratio = �0.115, SE = 0.123). Similarly, the treatment-age
interaction and SE are almost identical for the Cox regres-
sion (interaction = 0.0166, SE = 0.0198) and exponential
regression (interaction = 0.0165, SE = 0.0198). This is
despite the observed baseline hazard not being a constant
(Figure 1). In small sample sizes differences are more likely
to arise. For example, we compared the SE of the
treatment-age interaction in randomly selected subsets of
the trial data from a sample size of 50 participants to a full
sample size of 502 participants (Figure 2a). Differences are
more noticeable in the smaller datasets, with the exponen-
tial model producing slightly smaller SEs, but the differ-
ences are negligible. For example, with 50 participants, the
SEs are 0.070 and 0.067 for the Cox and exponential
models, respectively. The same picture is observed when
looking at the interaction between treatment and bone
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metastases (Figure 2b). This gives reassurance that our
pragmatic focus on the exponential model is sensible for
our power calculation approach that follows.

2.4 | SEs based on an approximation of
Fisher's information matrix

Our power calculations in the next section aim to calcu-
late, for a particular trial, Fisher's information matrix

(using Equation 5) and the subsequent variance matrix of
parameter estimates (using Equation 6) based on only a
trial's published aggregate data. A major difficulty with
this is that Fisher's information depends on the value of
wij ¼ expðyijþbμijÞ for each participant, and thus depends

on exp yij
� �

(i.e., the exponential of the minimum of log

event time and log censoring time), which will not be
available without IPD. To address this, we consider the
following three options, which gradually increase in com-
plexity in terms of the aggregate data required.

1. Option (i): set wij ¼ ei=ni for every participant, where
ei is the total number of observed outcome events in
the trial and ni is the total sample size of the trial. This
is equivalent to setting wij ¼ 1 and replacing ni with ei
in Equations (5) and (6). This approximation stems
from Lemonte,8 who notes that wij ¼ 1 when there are
no censored observations; thus, to acknowledge that
there are censored observations, our approach
replaces the effective sample size from ni to ei. This is
a simple (pragmatic) approach, as the total number of
outcome events and total sample size should be rou-
tinely available from a trial's publication (unlike the
mean follow-up time as in options (ii) and (iii) below).
To examine this approximation, we replicated the pre-
vious simulation study using the prostate cancer trial
data, but now compared the SE of the treatment-age
and treatment-bone interactions from this approximate
method (i.e., based on the exponential regression

FIGURE 1 Baseline hazard following a Cox regression model

including treatment, age and their interaction, as estimated for the

prostate cancer trial described in Section 2.3 using a kernel

smoother. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Comparison of Cox regression and exponential regression SEs of the (a) treatment-age interaction and (b) treatment-bone

interaction from the prostate cancer trial for subsets of participants for increasing sample sizes from 50 participants (far right) to

502 participants (far left).
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solutions of Equations (5) and (6), but using wij¼ 1 and
changing ni to ei) to those from fitting a Cox regression
model. The results are shown in Figure 3 (i) and (ii),
and the approximate method performs reasonably well,
but is not perfect (differences between 10% and 16%),
with greater differences to Cox regression in trials with
a smaller sample size. Nevertheless, the approach is a
reasonable approximation and practical to implement.

2. Option (ii): use wij ¼ exp yijÞexpðbμij� �
and set exp yij

� �
to be the mean follow-up time in the participant's cor-
responding treatment group. We repeated the previ-
ous simulation study to compare SEs from a Cox
regression model with those from this approximate
method (i.e., based on an exponential regression and
replacing exp yij

� �
to be the mean follow-up time in

the participant's corresponding treatment group, with
exp bμij� �

derived from the fitted exponential regres-
sion model. Figure 3 (iii) and (iv) show the results are
similar to option (i), in that the approximate method
gives reasonably similar SEs to those from Cox regres-
sion, but not perfect. For example, for bone metastases
(Figure 3 (iv)), with the SEs from the approximate
method always smaller than those from the Cox
model, between about 7% and 20%.

3. Option (iii) (for binary covariates): for each partici-
pant set exp yij

� �
to be the mean follow-up time in the

subgroup defined by the participant's treatment and
binary covariate classification. For example, in the
prostate cancer trial data, this requires the mean
follow-up for each of four groups defined by treatment
and bone group status. This method gives SEs in close
agreement to those from the Cox regression
(Figure 4), and highlights the improvement when
using a more exact value of exp yij

� �
for each partici-

pant. However, a downside is that the extra aggregate
data (mean follow-up for each of the four groups) is
unlikely to be routinely reported.

3 | CALCULATING THE POWER
OF A POTENTIAL IPD META-
ANALYSIS PROJECT TO ESTIMATE
A TREATMENT-COVARIATE
INTERACTION WITH A TIME-
TO-EVENT OUTCOME

We now consider a how to undertake a power calculation
for an IPD meta-analysis project that aims to estimate a
summary treatment-covariate interaction estimate based
on combining IPD from S parallel-group randomised tri-
als (e.g., by a previous systematic review). The premise is
to do this before IPD collection, based on routinely

reported aggregate data from the publications of trials
already identified as relevant (e.g., from a previous sys-
tematic review) for potential inclusion in the IPD
meta-analysis project. Crucially, this means the power
calculation is tailored to the actual known characteris-
tics (e.g., total sample size and outcome events) of
each trial whose IPD will be sought (or is even already
promised). The power calculation involves five steps,
which utilise the theory outlined in Section 2 for deriv-
ing the (unit) information matrix and variance matrix
for a single trial.

The user needs to provide aggregate data for each trial
(step 1), and the assumed interaction size (step 2), and
then our Stata and R code implement the remaining
three steps in under a minute. Stata code is provided in
the Data S1, and R code is available at www.github.com/
gscollins1973, for our applied example in Section 4.

3.1 | Step 1: Extract aggregate data for
each trial

For each trial potentially contributing their IPD for the IPD
meta-analysis project, we want to approximate the trial's
information matrix (IiÞ based on aggregate data. It is clear
from Equation (3) that Ii depends on the total partici-
pants, and the joint distribution of xij, zij and wij. Thus,
the first step is to extract the following aggregate data
from each trial:

• Total participants in the trial (niÞ
• Total participants in the control group (nCiÞ and treat-

ment group (nTiÞ
• Number of outcome events in total (eiÞ
• Number of events in the control group (eCiÞ and treat-

ment group (eTiÞ*
• Mean follow-up time in the control group (f CiÞ and

treatment group (f TiÞ*
• Characteristics that summarise the joint distribution of

xij and zij.

For a binary zij, we require:

• Proportion of patients in the trial with zij= 0 and xij
= 0 Pr x¼ 0,z¼ 0ð Þð Þ

• Proportion of patients in the trial with zij = 0 and xij
= 1 Pr x¼ 1,z¼ 0ð Þð Þ

• Proportion of patients in the trial with zij = 1 and xij
= 0 Pr x¼ 0,z¼ 1ð Þð Þ

• Proportion of patients in the trial with zij = 1 and xij
= 1 Pr x¼ 1,z¼ 1ð Þð Þ

For a continuous zij, we typically assume a normal
distribution and require:

6 RILEY ET AL.
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• mean and SD of zij for xij = 0
• mean and SD of zij for xij = 1

‘*’ denotes not required if using option (i) in step
3—see below.

This set of aggregate data are usually available from
trial publications, especially for commonly reported
baseline covariates like sex and age (e.g., Table 1 of a
trial publication usually summarises participant

characteristics per group). Sometimes other informa-
tion might be needed to derive the required aggregate
data indirectly. For example, the mean follow-up time
can be derived from the total follow-up time divided by
the number of participants. Trial investigators can also
be contacted to provide any missing information, and
some could be derived from other results.

For a binary covariate, the joint distribution of xij and zij
is defined exactly by the proportions Pr x¼ 0,z¼ 0ð Þ,

FIGURE 3 Comparison of SE of a treatment-covariate interaction as calculated from a Cox regression and from an approximate method

based on exponential regression, for a prostate cancer trial for increasing sample sizes from 50 participants (far right points on each graph)

to 502 participants (far left points on each graph). Two approximate methods are considered.

RILEY ET AL. 7



Pr x¼ 0,z¼ 1ð Þ, Pr x¼ 1,z¼ 0ð Þ, and Pr x¼ 1,z¼ 1ð Þ. How-
ever, for a continuous covariate the underlying distribu-
tion also needs to be assumed; for simplicity, this will
typically be assumed to be a normal distribution based on

the reported mean and SD (perhaps after assuming a par-
ticular transformation), but it does not necessarily need
to be (e.g., if a skewed distribution is more appropriate
and can be approximated from other available summary
statistics). If the distribution of zij is only summarised
overall (i.e., not by xij = 1 and xij = 0 groups separately)
then, as these are randomised trials, this distribution
could be assumed the same for both treatment and con-
trol groups.

3.2 | Step 2: Define the assumed true
value of the treatment-covariate
interaction in each trial (λiÞ

For the key parameter (λiÞ, we suggest assuming a mini-
mally important value, as identified via discussion with
clinical experts within the IPD meta-analysis project
team. It is simplest to assume λ is common for all trials
(see our consideration on between-study heterogeneity in
the Discussion).

3.3 | Step 3: Estimate the variance of bλi
by simulating a large dataset that matches
the aggregate data for each trial and
deriving Fisher's unit information matrix

The next step is to approximate Fisher's unit information
matrix and then the variance of bλi for each trial sepa-
rately, by applying the following process, which is imple-
mented in our Stata and R code:

FIGURE 4 Comparison of SE of a treatment-bone interaction

from a Cox regression with those from our approximate method

based on exponential regression, for the prostate cancer trial for

increasing sample sizes from 50 participants (far right) to

502 participants (far left). The approximate method applied here

sets exp yij
� �

to be the mean follow-up time in the participant's

corresponding treatment and bone groups.

TABLE 1 Aggregate data from 10 randomised trials included in an IPD meta-analysis project examining the effect of anti-hypertensive

treatment.

Trial

Total
participants
(events)
control

Total
participants
(events)
treatment

Mean
follow-up
in years
control

Mean
follow-up
in years
treatment

Age in years:
mean (SD)
control

Age in years:
mean (SD)
treatment

Male, %
control

Male, %
treatment

1 750 (13) 780 (9) 2.92 3.14 42.36 (5.34) 42.17 (5.39) 70.00 69.36

2 199 (28) 150 (27) 4.43 4.79 69.57 (5.39) 69.71 (5.18) 37.19 32.67

3 82 (29) 90 (32) 4.13 4.56 74.11 (8.69) 72.64 (7.99) 20.73 25.56

4 2371 (82) 2427 (81) 4.91 4.92 41.54 (5.48) 41.58 (5.53) 53.73 54.64

5 3445 (69) 3546 (73) 4.97 4.95 45.17 (5.86) 45.38 (6.00) 59.01 58.83

6 1337 (199) 1314 (178) 5.75 5.79 70.43 (2.72) 70.41 (2.74) 41.81 41.25

7 2371 (242) 2365 (213) 4.31 4.34 71.54 (6.68) 71.64 (6.72) 42.68 43.72

8 131 (7) 137 (4) 1.93 1.98 75.90 (3.95) 76.00 (3.75) 24.43 27.01

9 1139 (82) 1252 (61) 2.54 2.80 66.77 (5.67) 66.42 (5.34) 63.65 65.02

10 2297 (137) 2398 (123) 2.49 2.50 70.21 (6.67) 70.26 (6.73) 33.83 32.53

Abbreviation: IPD, individual participant data.
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a. Generate a large dataset of, say, 1 million participants
each with a value of xij and zij sampled from distribu-
tions to reflect the extracted trial aggregate data from
step 1, in terms of:
� the proportion of participants in the treatment and

control groups,
� the proportion with an outcome event in each group,
� the distribution of zij in each group (e.g., for a

binary covariate, the correct Pr x¼ 0,z¼ 0ð Þ,
Pr x¼ 0,z¼ 1ð Þ, Pr x¼ 1,z¼ 0ð Þ, and Pr x¼ 1,z¼ 1ð Þ;
or for a continuous covariate, the correct mean and
SD in each group)

b. Generate wij for each participant in the dataset. Recall
that wij ¼ exp yijþbμij� �

¼ exp yij
� �

expðbμijÞ, and we
already discussed three options to approximate wij in
Section 2.4. The first two options are the most
practical:
� Option (i): for each participant set wij ¼ ei=ni. This

is the simplest option and does not even require
assumptions about the parameter values of the
exponential regression model for each trial.

� Option (ii): for each participant, derive
wij ¼ exp yij

� �
exp bμij� �

, after calculating exp yij
� �

and exp bμij� �
separately. First, set exp yij

� �
for

each participant as the mean follow-up time in the
participant's corresponding treatment group (f Ti
or f Ci). Then, derive
exp bμij� �

¼ expðbαiþbβixijþbγizijþbλixijzijÞ, which
requires the user to specify the anticipated values
of αi, βi, γi, and λi. Without loss of generalisability,
assume zij is centred by its mean. Then, bαi
becomes the log-rate of the outcome event in the
control group for a participant with the mean
value of zij, and can be derived from the extracted
aggregate data using eCi= nCif Cið Þ. The treatment
effect (bβi) for a participant with the mean value of
zij can be approximated by the rate ratio, as
derived from the aggregate data using
eTi= nTif Tið Þð Þ= eTi= nTif Tið Þð Þ. In terms of the prog-
nostic effect (bγiÞ of the covariate, we suggest
assuming this is zero for simplicity, or considering
a range of possible of values (see examples later).
The value of bλi was defined in step 2.

c. For each participant in the dataset, calculate the value
of each element of B from Equation (5), and then cal-
culate the mean value for each element. These mean
values provide the corresponding values of each ele-
ment of I�i as defined in Equation (5).

d. calculate the anticipated variance of the treatment-
covariate interaction for each trial, using Equation (6)
of var bλi� �

¼ I��1
i 4,4ð Þ=ni.

3.4 | Step 4: Estimate the variance of the
summary treatment-covariate interaction
from the planned IPD meta-analysis

Step 3 produces S estimates of var bλi� �
, one for each trial,

and we can now use these to derive the variance of the
summary treatment-covariate interaction estimate from
an IPD meta-analysis. We focus on using a two-stage IPD
approach. In the first stage, the treatment-covariate interac-
tions are estimated using the IPD in each trial separately; in
the second stage, these interaction estimates are then
pooled using a chosen meta-analysis model.2 For example,
a common-effect model assumes the true interaction (λÞ is
assumed the same in all trials (i.e., λi ¼ λ), such that,

bλi �N λ,var bλi� �� �
ð7Þ

and the corresponding variance of the summary interac-
tion estimate is:

var bλ� �
¼ 1PS

i¼1 var bλi� �� ��1 ð8Þ

Hence, the anticipated var bλ� �
from a two-stage meta-

analysis of interaction estimates can be obtained by sim-
ply plugging in the var bλi� �

derived following step 2 into
Equation (8).

3.5 | Step 5: Calculate the power of the
planned IPD meta-analysis

The final step is to calculate the power of the planned IPD
meta-analysis project to detect λ. Assuming a common inter-
action for all trials, and based on a Wald-test and a 5% sta-
tistical significance level, the power is approximately:

Power¼Prob
λ̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var bλ� �r >1:96

0
BB@

1
CCA

þ Prob
bλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var bλ� �r < �1:96

0
BB@

1
CCA

¼Φ �1:96þ
bλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var bλ� �r
0
BB@

1
CCA
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þΦ �1:96�
bλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var bλ� �r
0
BB@

1
CCA ð9Þ

Here, Φ xð Þ is the probability of sampling a value < x
from a standard normal distribution, var bλ� �

is the vari-
ance of the summary interaction estimate (as obtained in
step 2), and bλ can be replaced with the assumed true λ (as
defined in step 1). The power estimate is usually multi-
plied by 100 and reported as a %.

4 | APPLIED EXAMPLE: IPD
META-ANALYSIS TO EXAMINE
WHETHER SEX OR AGE INTERACTS
WITH THE EFFECT OF ANTI-
HYPERTENSIVE TREATMENT

We now apply our proposed method to calculate the power
of an IPD meta-analysis to examine whether the effect of
anti-hypertensive treatment on mortality depends on either
age or sex; that is, whether there is a treatment-age or
treatment-sex interaction. Ten randomised trials of anti-
hypertensive treatment versus control were obtained, and
the IPD meta-analysis dataset has been analysed in various

applied and methodology papers. Here, we focus on the
power of this IPD meta-analysis, but pretend that IPD are
not yet available, and just use aggregate data about the
10 trials as previously reported (Table 1), and derive power
using the four steps outlined in Section 3.

Stata code for this example is provided in Data S1, and
R code is available at www.github.com/gscollins1973. These
can easily be adapted for researchers in their own
applications.

4.1 | Step 1: Extract aggregate data

Using information from previous publications, we
obtained aggregate data for the 10 trials as shown in
Table 1, in terms of the number of participants, events
and mean follow-up per group, together with the mean
and SD of age, and the percentage of males.

4.2 | Step 2: Specify assumed value of λi

We assume λi is common for all trials, and consider
values for λi of log(1.3) for sex (males compared to
females) and log(1.3) for a 10-year increase in age,
assumed to be minimally important interactions to
detect, for illustrative purposes.

TABLE 2 Results of our power calculation for the anti-hypertensive example, using the four-step process described in Section 3 based

on the aggregate data shown in Table 1 and applying option (i) to derive wij (i.e., wij ¼ ei=ni Þ:

Study

Variance of each trial's interaction estimate (var bλi� �
Þ

Power (%) based
on each trial separately

Weight (%) in the planned
IPD meta-analysis

Sex Age Sex Age Sex Age

1 0.861 0.0063 5.92 6.25 1.17 1.14

2 0.329 0.0027 7.43 87.99 3.06 2.69

3 0.374 0.00095 7.13 13.65 2.69 7.58

4 0.099 0.00082 13.28 15.17 10.17 8.88

5 0.116 0.00080 12.00 15.25 8.64 8.95

6 0.044 0.0014 24.11 10.69 23.00 5.04

7 0.036 0.00020 28.34 46.60 28.05 36.67

8 1.910 0.0246 5.41 5.32 0.53 0.29

9 0.122 0.00093 11.66 13.88 8.23 7.78

10 0.069 0.00034 16.90 29.41 14.47 20.97

Planned IPD meta-analysis

Variance of summary interaction estimate (var bλ� �
Þ Power (%) of planned IPD meta-analysis

Sex Age Sex Age

All 10 trials 0.010 0.000072 74.4% 87.2%

Note: For option (i), the mean follow-up from in Table 1 is not required in the power calculation.
Abbreviation: IPD, individual participant data.
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4.3 | Step 3: Estimate the variance of bλi
for each trial

Using our Stata or R code, which follows the approach
outlined in Step 3 of Section 3, we used the aggregate
data from step 1 to obtain the variance of bλi for each
study. Age was assumed normally distributed. Both
option (i) and (ii) were used to calculate wij. For option
(ii), we assumed that there is no prognostic effect of the
covariate (γi ¼ 0Þ. The estimated var bλi� �

for each trial is
shown in Table 2, for each of sex and age, based on
option (i) (i.e., assuming wij ¼ ei=ni). Results for option
(ii) are very similar (see Table S1).

4.4 | Step 4: Estimate the variance of the
summary treatment-covariate interaction
from meta-analysis

Based on a common-effect meta-analysis model, we
applied Equation (8) to calculate the anticipated variance
of the summary interaction estimate from the planned
IPD meta-analysis, which were 0.010 for sex and
0.000072 for age, for either options (i) or (ii).

4.5 | Step 5: Calculate the power of the
planned IPD meta-analysis

Lastly, applying Equation (9), we calculated that the
IPD meta-analysis project has a power of 74.4% for sex
and 87.2% for age. When using option (ii), the power
was very similar (74.7% for sex and 87.3% for age—
see Table S1). Had these power estimates been avail-
able before embarking on this IPD meta-analysis pro-
ject, it would have given strong reassurance to funders
and the researchers that the project is worth the
investment.

Some observations are worth noting. Firstly, the
power is low for each trial separately, a consequence of
each trial originally being powered on the overall treat-
ment effect and not a treatment-covariate interaction.
This emphasises the importance of combining IPD from
the multiple trials. Secondly, the anticipated contribution
of each trial (as revealed by the percentage trial weights,
Table 2) to the IPD meta-analysis revealed which trials
should be prioritised for their IPD. In particular, trials
6, 7 and 10 together contribute over 50% of the total
weight, for either sex or age, and so are essential to
obtain. The contribution of each trial is largest for those
trials with more participants and events; however, a tri-
al's contribution also depends on the variability of the
covariate.6 For example, in the age power calculation,

although trials 2 and 3 have a similar number of partici-
pants and events (Table 1), the percentage contribution
(weight) in the IPD meta-analysis of trial 3 is larger
(7.6%) than for trial 2 (2.7%) because it has a larger SD of
age (Table 2). Fourthly, although the power for sex is
quite large and close to 80% based on the 10 trials, if addi-
tional IPD could be obtained from other anti-
hypertensive trials then this would still be worthwhile to
improve the power further. Furthermore, if trials had
longer follow-up since the original trial publication,
obtaining this updated IPD would also improve the
power (due to additional events).

4.6 | Sensitivity analysis

We repeated the power calculation for option (ii) rather
assuming the prognostic effect of sex was γi ¼ ln 1:25ð Þ
and the prognostic effect of age was γi ¼ ln 1:025ð Þ. The
power was similar, abeit slightly larger (sex= 75.2%,
age= 88.1%), to the original analyses assuming the cov-
ariates had no prognostic effect.

Finally, we also considered option (iii) for the sex
covariate, which aims to refine the value of wij for each
participant by allowing for different exp yij

� �
values for

each of the four treatment and sex groupings. To imple-
ment this, whereas option (ii) set exp yij

� �
to be the mean

follow-up in the participant's corresponding treatment
group, for option (iii) we assumed a mean follow-up time
reduced by 0.25 years for males and increased by 0.25 for
females compared to the overall mean follow-up time in
their respective treatment group. Implementing this, the
power is estimated to be 74.4%, and so very similar to
before. If we assume, more dramatically, that the mean
follow-up time would be reduced by 1 year for males and
increased by 1 year for females, the power drops to 71.3%,
but the general picture is consistent that the power is
around 70%–75% regardless of whether options (i), (ii) or
(iii) are used to derive wij for the power calculation.

5 | DISCUSSION

In this paper we have proposed a new method to derive
the power of a planned IPD meta-analysis project aiming
to estimate a treatment-covariate interaction using ran-
domised trials with a time-to-event outcome. This builds
on our previous work focused on continuous and binary
outcomes.3,5 We outlined a five step approach that
extracts aggregate data from trial publications; makes an
assumption about the true (or minimally important)
value of the treatment-covariate interaction; derives Fish-
er's information matrix and an approximate estimate of
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the variance of each trial's interaction estimate; calculates
the variance of the summary interaction estimate from a
two-stage IPD meta-analysis; and calculates the power of
the planned IPD meta-analysis project. Our paper
focused mainly on the development of the new method,
and so further evaluation in other real examples and sim-
ulation studies would now be welcome.

We emphasise that our proposal is for use before IPD
are obtained (i.e., during the design and planning stage),
and assume that a meta-analysis of interaction estimates
is unavailable unless IPD are obtained. Without IPD, in
order to perform a meta-analysis of interaction estimates,
the meta-analysis researchers require bλi and var bλi� �

to be
available from trial publications. This is unlikely, as most
trials focus on the overall treatment effect, and will not
report treatment-covariate interactions (especially those
that are not significant). This motivates the collection of
IPD for meta-analysis, as it allows bλi and var bλi� �

to be
calculated directly, and our power calculation helps to
inform whether the IPD collection is worth the invest-
ment for this purpose. IPD meta-analysis projects may
still be valuable even if the power is low, for example, to
best summarise the uncertainty in existing evidence and
to guide further research, but the power calculation helps
provide more context for the decision to proceed or not.

We focused on a two-stage approach to IPD meta-
analysis as, by pooling interaction estimates derived from
solely within-trial information (i.e., based at the
participant-level), this avoids trial-level confounding and
aggregation bias that may occur in meta-regression based
on across-trial information,11,12 or in one-stage IPD meta-
analysis models that do not separate out within-trial and
across-trial relationships. When specified correctly with
the same assumptions (and estimation methods), one-
stage models and two-stage models should agree closely
unless most studies in the IPD meta-analysis are
small.13,14 Therefore, the power calculation proposed
should be applicable in most situations regardless of
whether a one-stage or two-stage approach is ultimately
used after IPD are obtained.

We also assumed a common-effect meta-analysis
model in the second stage, which assumes the true inter-
action is the same in each study. This is a pragmatic
approach, as otherwise accounting for heterogeneity
would require assumptions about the magnitude of het-
erogeneity, and the variance of the meta-analysis result
would need to account for the uncertainty in the hetero-
geneity estimate in practice. This is unnecessarily com-
plex for a power calculation onwards, in our opinion, but
consideration of how to allow for heterogeneity is
detailed elsewhere.6

A key issue for implementing the proposal is to obtain
the necessary aggregate data for each group in each trial
(Step 1 of our procedure). The number of participants

and events should be available for each group. Informa-
tion about covariate distributions may be more problem-
atic. Standard covariates like age and sex should be
summarised in each trial's table of baseline characteristics
(often referred to as ‘Table 1’), but other covariates may not
be. In this situation, trial investigators should be asked to
supply the summary information needed for the covariates
of interest. If they have promised their IPD (and thus are
willing to collaborate on the IPD meta-analysis project), this
should not be an onerous task for them.

We provided various options for deriving, based on
trial aggregate data, the variance of interaction estimates
for each trial under the assumption of an exponential sur-
vival distribution. Options (i) and (ii) are the most prag-
matic, especially option (i) which simply sets wij to be
ei=ni. Either approach is an approximation (e.g., SEs were
off by 10%–20% in the applied example of Figure 3), but it
still provides a pragmatic starting point. Without IPD,
knowing the actual distribution of exp yij

� �
is hugely

challenging, but if more refined values can be used, then
they should (see Figure 4). Further research might con-
sider using extracted information from published
Kaplan–Meier curves (e.g., event and censoring times for
each treatment group) for this purpose.

Further research should also evaluate the proposed
method in situations with strong departures from the
exponential survival distribution. Although we examined
our method in real datasets, including where there was mod-
erate deviation from a constant hazard (Figure 1), the
method is likely to perform less well in situations where the
exponential assumption (and thus a constant hazard) is
unsuitable. In ‘A conversation with Sir David Cox’ by Reid,15

Cox states that he generally prefers specifying survival
models parametrically as ‘various people have shown that
the answers are very insensitive to the parametric formula-
tion of the underlying distribution’. Whether this also applies
to our method could be evaluated in simulation studies.

In summary, we hope our proposal (and associated
Stata and R code) encourages readers to consider calcu-
lating the power of their planned IPD meta-analysis pro-
jects to examine treatment-covariate interactions with
time-to-event outcomes. Power is an important aspect in
deciding whether the IPD project is worth the invest-
ment, to be considered alongside other potential reasons
for why IPD adds value compared to a traditional aggre-
gate data meta-analysis.1
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