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1  |   BACKGROU N D

Randomised trials are the backbone of evidence-based 
medicine, and over the past decades the quality of their 
implementation has improved and risk of bias decreased.1 
Each day the reports of more than 75 randomised trials are 
published and this number is increasing year on year.2 For 
a well-conducted, well-reported randomised trial, correct 

interpretation of its findings is essential to ensure that only 
truly effective interventions are adopted, truly ineffective 
interventions are disregarded and, where uncertainty exists, 
this is acknowledged and recognised.3

Interpretation of trial findings depends on context, risk 
of bias, other scientific evidence and, importantly, the pri-
mary or other key outcome results.4,5 Frequentist statistical 
approaches are most commonly used in practice, which, for 
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Abstract
Objective: To investigate whether a Bayesian interpretation might help prevent mis-
interpretation of statistical findings and support authors to differentiate evidence of 
no effect from statistical uncertainty.
Design: A Bayesian re-analysis to determine posterior probabilities of clinically impor-
tant effects (e.g., a large effect is set at a 4 percentage point difference and a trivial effect 
to be within a 0.5 percentage point difference). Posterior probabilities greater than 95% 
are considered as strong statistical evidence, and less than 95% as inconclusive.
Sample: 150 major women’s health trials with binary outcomes.
Main Outcome Measures: Posterior probabilities of large, moderate, small and triv-
ial effects.
Results: Under frequentist methods, 48 (32%) were statistically significant (p-
value ≤ 0.05) and 102 (68%) statistically non-significant. The frequentist and Bayesian 
point estimates and confidence intervals showed strong concordance. Of the statisti-
cally non-significant trials (n = 102), the Bayesian approach classified the majority 
(94, 92%) as inconclusive, neither able to confirm or refute effectiveness. A small 
number of statistically non-significant findings (8, 8%) were classified as having 
strong statistical evidence of an effect.
Conclusions: Whilst almost all trials report confidence intervals, in practice most 
statistical findings are interpreted on the basis of statistical significance, mostly con-
cluding evidence of no effect. Findings here suggest the majority are likely uncertain. 
A Bayesian approach could help differentiate evidence of no effect from statistical 
uncertainty.
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Bayesian interpretation, randomised controlled trials, statististical significance
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example in the case of a binary outcome, includes report-
ing the proportions with the outcome of interest in each 
arm, a corresponding absolute or relative difference and 
its 95% confidence interval.6 Reporting guidelines, such as 
the CONSORT statement, include confidence intervals as 
a minimum reporting requirement.7 Unfortunately, many 
researchers ultimately interpret the primary and other key 
outcomes based on whether the confidence interval includes 
the null – and are thus implicitly reverting to interpretation 
based on statistical significance.8,9

The following two case studies illustrate the problem. The 
INFANT trial (n = 46 614) evaluated the use of computerised 
interpretation of cardiotocographs on the occurrence of ad-
verse neonatal outcomes.10 The primary outcome occurred 
in 171/23 351 (0.73%) in the treatment arm versus 172/23 263 
(0.74%) in the control. The difference was not statistically 
significant, with a risk ratio of 1.01, 95% confidence interval 
(CI) 0.82–1.25. In the conclusion, this result was interpreted 
as ‘continuous electronic fetal monitoring in labour does not 
improve clinical outcomes’. This might be construed as mis-
interpretation of statistical significance.6 However, inspec-
tion of the finding on the risk difference scale (percentage 
points risk difference = −0.00, 95% CI −0.16 to 0.15) reveals 
any difference in outcomes is almost certainly smaller than 
half a percentage point (upper bound of 95% confidence in-
terval 0.15 percentage points) in adverse neonatal outcomes. 
Yet, implicit in this interpretation is that this small reduction 
is not clinically important. Thus, not reporting effect sizes on 
a clinically interpretable scale and not explicitly interpreting 
the range of effect sizes supported by the confidence inter-
val, the mechanism by which this conclusion was reached is 
not transparent. This is problematic, because it lends itself to 
a perpetuation of misinterpretation in other smaller trials, 
as well as making assumptions about sizes of effects that are 
clinically important without making this explicit.

To illustrate how non-statistically significant results are 
often misinterpreted, we consider a second case study. This 
trial compared titrated-dose oral misoprostol (intervention) 
with static-dose to increase the likelihood of a vaginal birth. 
The risk ratio was 0.98 (95% CI 0.77–1.24) based on 47/73 
events (64%) in the treatment arm and 48/73 (66%) events in 
the control arm.11 Similar to the first case study, this primary 
outcome result was interpreted as evidence of ‘similarity’. Yet, 
in this trial the difference in percentage points was −1.36 (95% 
CI −16.83 to 14.09). This confidence interval indicates consid-
erable uncertainty, providing evidence that this intervention 
might either increase or reduce this outcome by a consider-
able amount. Thus, in this example, the interpretation of the 
primary outcome as showing evidence of ‘similarity’ is highly 
misleading – a more accurate interpretation is that unfortu-
nately the study is too small to tell us anything conclusive.

These case studies illustrate how non-statistically sig-
nificant outcomes can be misinterpreted as evidence of no 
effect; and, moreover, even when results are sufficiently 
precise to rule out clinically important effects, trialists still 
persist in interpreting key outcomes based on statistical 
significance.12-14

2  |   OBJEC TI V E S

To illustrate how a Bayesian approach might help mitigate 
some of the problems around the misinterpretation of statisti-
cal findings, we undertook a Bayesian re-analysis of a con-
temporary sample of women's health randomised trials with 
binary primary outcomes. We first illustrate how the Bayesian 
and frequentist analyses show strong concordance. We then 
formulate a mechanism for how a Bayesian interpretation can 
be implemented by introducing the concept of the strength of 
statistical evidence and clinically important effect sizes. We 
illustrate the approach for an example set of large, moderate, 
small and trivial effect sizes (as well as unanticipated harm), 
and varying degrees of strength of statistical evidence. We 
contrast the interpretation of the Bayesian analysis with that 
from a frequentist interpretation.

3  |   M ETHODS

3.1  |  Search strategy

We identified individually randomised, two-arm superiority 
trials (1:1 randomisation ratio) with a binary primary 
outcome, whose primary report of findings was published in 
one of seven English language high-impact general medical 
and specialty journals, between January 2015 and December 
2020: New England Journal of Medicine, Lancet, JAMA (the 
Journal of the American Medical Association), BMJ, BJOG 
(British Journal of Obstetrics and Gynaecology), American 
Journal of Obstetrics & Gynaecology and Obstetrics & 
Gynaecology. We included trials evaluating pharmacological 
and non-pharmacological interventions targeted at women 
to improve fertility, maternal or fetal, or perinatal outcomes. 
We made no restrictions on the type of comparator or setting, 
but excluded non-inferiority and equivalence trials. We made 
a post-hoc decision to exclude any trials with zero events (or 
100% with the event), in either of the study arms, and studies 
where the primary outcome was unclear. The searches 
were conducted in EMBASE and MEDLINE on the Ovid 
platform, restricting the journal name (to one of the seven 
included journals) and limiting the search to randomised 
controlled trials published between 2015 and 2020. The list 
of identified studies was imported into Covidence. An initial 
title and abstract screen were performed, followed by a full 
text screen. All screening was conducted independently and 
in duplicate (PM and RL), with discrepancies resolved by 
discussion or, where needed, arbitration by a third author 
(KH or MT). The protocol for the review is registered on 
PROSPERO (PROSPERO 2021 CRD42021236171).

3.2  |  Data extraction

Where available, we extracted absolute event numbers (i.e. 
numerators and denominators in each arm) for the primary 
analysis of the primary outcome; where authors only reported 
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denominators and percentages, these were extracted instead. 
We also extracted the journal; intervention type, classified 
as pharmacological, procedural (e.g. a surgical technique or 
type of dressing), non-pharmacological (e.g. psychotherapy, 
or lifestyle changes), diagnostic or a mixture; and the 
primary outcome type (classified as adverse fetal outcome, 
adverse maternal outcome, live birth or other). We also 
classified each trial as to whether higher or lower event rates 
were desirable (e.g. reduction of adverse fetal outcomes or 
increased detection of adverse fetal outcome). Two authors 
(PM and RL) independently extracted data in duplicate and 
resolved any discrepancies by discussion.

3.3  |  Data analysis

We used the extracted or derived number of events and total 
sample size for each arm to create individual level data for 
each trial. The contrast of interest is that of the absolute or 
relative difference between the proportion with the outcome 
in the treatment arm versus control arm. For trials in which 
lower event rates are desirable, negative values suggest 
benefit of the intervention; for trials in which higher event 
rates are desirable, we reversed the calculation. Thus, all 
absolute differences less than 0 (or relative differences less 
than 1) were indicative of treatment benefit.

For each trial these data were then used to estimate the risk 
ratio and risk difference, 95% confidence intervals (CI) and 
P-values under a frequentist approach. This analysis was im-
plemented in STATA 17 using the cc function (STATA 17).15 
Any cases of non-convergence were noted. For the Bayesian 

analysis we estimated risk ratios, and risk differences using 
binomial regression with a log link, and binomial regression 
with an identity link, respectively. We used a vague prior 
throughout (normal distribution with mean zero and stan-
dard deviation 10 000) to model the risk difference or log risk 
ratio. We report point estimates and associated 95% credible 
intervals (CrI). This analysis was implemented in STATA 17 
using the bayes function with default options (Metropolis–
Hastings algorithm using 12 500 iterations removing the 
first 2500 burn-in iterations, no thinning and starting points 
based on iterative reweighted least-squares estimates). Again, 
any cases of non-convergence were noted.

We then determined, based on the Bayesian model, the 
posterior probabilities of a large, moderate and small ben-
eficial effect, and evidence of at most a trivial effect. For il-
lustration only, we defined a large beneficial effect to be a 
risk difference greater than (−) 4 percentage points (pp); a 
moderate beneficial effect as a risk difference greater than 
(−) 1 percentage points; a small beneficial effect as a risk dif-
ference greater than (−) 0.5 percentage points; and a trivial 
effect to be within 0.5 percentage points difference (either 
way) from the null (Figure 1). We defined an unanticipated 
harmful effect as a difference of at least 0.5 pp in the unan-
ticipated direction (i.e. harm). In addition, we calculated 
the posterior probability of a risk difference greater than 0 
percentage points (‘any beneficial effect’). To estimate these 
posterior probabilities, we used the bayestest interval com-
mand, which uses the simulated posterior distribution of 
model parameters estimated using the bayes command.

These cut-points for large, moderate and small effects are 
used for illustration only, and we suggest in practice these be 

F I G U R E  1   Proposed classification of large, small, moderate and trivial effect sizes.
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grounded by effect sizes of clinical importance in the par-
ticular trial context. Working on scales that are known to be 
more interpretable can help to this end; consideration of ef-
fect sizes of other common interventions might also help. For 
example, the values we have chosen are equivalent to num-
bers needed to treat (NNT) of 25, 100 and 200, respectively. 
The use of aspirin for stroke prevention has an NNT in the 
region of 300 over 10 years16; the use of aspirin after stroke 
has an NNT in the region of 150 over 3 years to prevent a 
non-fatal heart attack;17 whereas the use of dexamethasone 
in COVID-19 has an NNT in the region of 40 (RECOVERY, 
2021).18 Thus, although our choice is to some extent arbitrary 
and not context-specific, these values are unlikely to be very 
dissimilar to those chosen in practice. By evaluating ‘trivial 
effects’ we implicitly consider evidence of no benefit.

We then quantified the strength of the statistical evidence 
of this range of effect sizes. We suggest posterior probabili-
ties >95% might be considered as strong statistical evidence, 
posterior probabilities between 90% and 94% are classified 
as moderate statistical evidence, and anything <90% is clas-
sified as weak statistical evidence. In a sensitivity analysis 
we set 97.5% as the cut-point for strong statistical evidence, 
95% for moderate statistical evidence and anything <95% for 
weak statistical evidence. Conventionally posterior proba-
bilities are reported without any such categorisation,19-22 al-
though others have also proposed categorising, for example 
using >80%, 90% or 95% posterior probabilities as convinc-
ing evidence.23,24 Finally, we classified the overall statistical 
evidence as strong if there was strong statistical evidence of 
either at least a small effect (which includes moderate and 
larger effects), a trivial effect or an unanticipated harmful 
effect.

4  |   R E SU LTS

4.1  |  Characteristics of included trials

The search was performed on 4 March 2021 (Figure 2); the 
characteristics of the 150 trials, published between 2015 and 
2020, and assessed to be eligible are summarised in Table 1. 
The studies were roughly evenly distributed across the seven 
journals, albeit with proportionately fewer published in 
both JAMA (12, 8%) and the BMJ (9, 6%). Most were testing 
a pharmacological intervention (59, 39%), a procedural in-
tervention (48, 32%) or a non-pharmacological intervention 
(27, 18%). The most common outcome type was either ad-
verse fetal (27, 18%) or adverse maternal outcomes (46, 31%). 
The average prevalence of the outcome (in the control arm) 
was 22% (interquartile range [IQR] 10–41%). The major-
ity (98, 65%) of the trials were trying to reduce the primary 
outcome (e.g. reduction in adverse fetal outcome) and, in a 
smaller number (52, 35%), the objective was to increase the 
primary outcome (e.g. increase the live birth rate). For those 
52 trials with an objective to increase the primary outcome, 
the comparisons that follow relate to control-intervention 
rather than intervention-control. The median number of 

participants randomised (total across both arms) was 503 
(IQR 238–1092).

4.2  |  Frequentist and Bayesian results

Of the 150 trials, approximately a third (48, 32%) were 
statistically significant according to our frequentist re-
analysis (Table 2). Across all 150 trials under the Bayesian re-
analysis, the average percentage point difference was −1.73 
(IQR −7.18 to 0.77) and the average risk ratio was 0.92 (IQR 
0.73–1.07) (Table 2). When estimating the risk ratio and risk 
difference, the occurrence of non-convergence was low (4% 
and 0%, respectively). The average posterior probability of 
any beneficial effect (risk difference ≤0) was 0.79 (IQR 0.40–
0.99). The frequentist and Bayesian approaches all led to 
similar inferences, as indicated by the similarity of the point 
estimates and confidence intervals/credible intervals, and 
this was the case for both absolute and relative measures of 
effect (Figure S1, Table 2). Thus, there is a strong one-to-one 
alignment between the two analytical approaches.

4.3  |  Classification of strength of 
statistical evidence

Among the 102 non-statistically significant trials, eight (8%) 
had strong statistical evidence whereas 94 (92%) of the studies 
yielded moderate or weak (posterior probability <95%) statis-
tical evidence (Table 3). Of the eight trials classified as having 
strong statistical evidence, three (3%) had strong statistical 
evidence (posterior probability ≥95%) of at least a small ben-
efit (NNT <200). None of these had strong statistical evidence 
of large benefit (NNT <25) or moderate benefit (NNT <100). 
A further two (2%) were classified as having strong statistical 
evidence of a trivial effect (percentage point difference within 
0.5 of 0) and three (3%) were classified as having strong statis-
tical evidence (posterior probability ≥95%) of harm (percent-
age point risk difference ≥0.5 pp).

Of those trials where the primary outcome was statisti-
cally significant, 47 (98%) were classified as having strong 
statistical evidence (Table 3). Moreover, many (40, 83%) were 
classified as having strong statistical evidence of at least a 
moderate effect, and many (24, 50%) were classified as hav-
ing strong statistical evidence of a large effect. In addition, 
five (10%) of statistically significant trials were classified as 
having strong statistical evidence of an unanticipated harm-
ful effect, although these would also have been interpreted as 
evidence of harm under the frequentist approach.

Over all 150 trials there was strong statistical evidence 
(posterior probability ≥95%) in around one-third of the 
studies (55, 37%). When we increased the stringency of the 
statistical evidence so that strong statistical evidence was 
classified as posterior probabilities >97.5%, the certainty of 
all conclusions decreased: the proportion of trials classified 
as having strong statistical evidence decreased from 37% to 
29% (Table S1, Figure 3). In only two of the trials was there 
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strong statistical evidence of a trivial effect. Of the 102 non-
statistically significant trials, in only two (2%) was there 
strong statistical evidence (both for a trivial effect).

5  |   DISCUSSION

5.1  |  Summary of findings

Almost all trials fail to interpret values supported by their 
confidence intervals.12-14 A Bayesian approach to interpreta-
tion might help distinguish those studies for which there is 
evidence the intervention does not work, from those for which 
the studies were probably too small and the resulting findings 
inconclusive. We first provide reassurance that the two ana-
lytical techniques have a strong one-to-one correspondence. 
Secondly, we illustrate how a Bayesian interpretation of the 
102 statistically non-significant trials in this sample, can dif-
ferentiate those for which there is statistical evidence of no 
effect (a small minority) from those for which there is consid-
erable statistical uncertainty (the majority).

The approach requires the specification of effect sizes that 
are clinically important. Although this is not expected to be 
an easy task, the Bayesian approach is transparent about this, 
whereas the frequentist approach mostly ignores this is a 
necessary condition for interpreting confidence intervals.25 

On the other hand, the frequentist strict interpretation of 
P-values ensures that the floodgates do not open for declar-
ing any intervention as effective – whereas the Bayesian ap-
proach proposed here might be viewed as opening the gate 
a little more to prevent it being shut on interventions that 
might well be effective.

5.2  |  Research in context

5.2.1  |  Detecting uncertainty

Although the 95% confidence intervals and 95% credible in-
tervals were highly consistent across the two approaches, the 
Bayesian approach to interpretation allowed identification 
of trials with wide confidence intervals which supported 
both benefit and harm, and were thus inconclusive. This ap-
plied to around two-thirds of the studies in this sample. Our 
results underscore that many studies are under-powered to 
detect small but still meaningful effects (the average total 
sample size was in the region of 500). Returning to the second 
case study, the comparison of titrated-dose oral misoprostol 
(intervention) with static-dose oral misoprostol (control), 
where the reported risk ratio for the event of vaginal deliv-
ery was 0.98 (95% CI 0.77–1.24) based on 47/73 events in the 
treatment arm and 48/73 events in the control arm.11 Here 

F I G U R E  2   PRISMA flow chart for included randomised control trials.

Id
en

tif
ica

tio
n

Sc
re
en

in
g

El
ig
ib
ili
ty

In
clu

de
d

Records identified through database
searching
(n = 3055)

Records after duplicates removed
(n = 3047)

Studies included in quantitative synthesis
(n = 150)

Full-text articles assessed for eligibility
(n = 259)

Irrelevant records excluded
(n = 2788)

Full-text articles excluded (n = 109)
� Conference abstract (n = 32)
� Secondary analysis (n = 29)
� Non-dichotomous outcome (n =
24)

� Non-inferiority trial (n = 4)
� Unclear description of primary
outcome (n = 4)

� Trial arms >2 (n = 3)
� Duplicate (n = 2)
� Randomisation ratio not 1:1 (n = 2)
�Wrong population (n = 2)
� Cluster trial (n = 1)
� Commentary paper (n = 1)
� Non-randomised trial (n = 1)
� One or both arms with zero events
(n = 4)



6  |      HEMMING et al.

the strength of statistical evidence is <60% for all effect sizes, 
thus the Bayesian interpretation here is that the findings of 
this study are uncertain.

5.2.2  |  Detecting small effects

In a handful of studies, we were able to identify evidence of 
a trivial impact (that is, an effect size so small as to almost 
certainly not be of clinical importance), which we defined 
as a number needed to treat >200, but which in practice can 
be smaller or larger depending on the nature of the specific 
setting, intervention and outcome. The INFANT trial that in-
cluded nearly 50 000 participants, with the primary outcome 
occurring in 0.7%, that was not statistically significant (ad-
justed risk ratio 1.01, 95% CI 0.82–1.25), was a candidate study 
for being able to demonstrate no impact.10 For this study the 
posterior probability of a trivial effect (number needed to treat 
>200) was 100%. Although trials indeed need to be very large 
definitely to rule out small effects, this example nicely illus-
trates how the Bayesian approach can help with a definitive 
interpretation of a non-statistically significant outcome.

5.2.3  |  Unanticipated harmful effects

Although our focus was on posterior probabilities of ben-
eficial effects, it is possible that an intervention which is hy-
pothesized to bring about benefit, can actually have a harmful 
effect. We do not necessarily suggest that evaluating posterior 
probabilities of harmful effects should be routine, as poste-
rior probabilities of benefit in such settings would be low. 
Nonetheless, we did identify that a minority of trials had 
strong statistical evidence of effects in the unanticipated di-
rection. For example, in one trial delaying infertility treatment 

T A B L E  1   Characteristics of included studies.

Characteristic All

Journal n = 150

New England Journal of Medicine 24 (16.0%)

JAMA 12 (8.0%)

Lancet 23 (15.3%)

BMJ 9 (6.0%)

BJOG 25 (16.7%)

Obstetrics and Gynaecology 30 (20.0%)

American Journal of Obstetrics and Gynaecology 27 (18.0%)

Intervention type

Pharmacological 59 (39.3%)

Procedural 48 (32.0%)

Non-pharmacological/non-procedural 27 (18.0%)

Mixed 10 (6.7%)

Diagnostic 6 (4.0%)

Outcome type

Adverse fetal outcome 27 (18.0%)

Adverse maternal outcome 46 (30.7%)

Live birth 13 (8.7%)

Other 64 (42.7%)

Anticipated direction

Increase 52 (34.7%)

Decrease 98 (65.3%)

Average prevalencea

Percentage with outcome, median (IQR) 22 (10–41)

Study size (across both arms)

Number randomised, median (IQR) 503 (238–1092)

Number randomised (range) 12–46 614

IQR, interquartile range.
aAverage prevalence in the control arm.

T A B L E  2   Examination of consistency of inferences between Bayesian and frequentist approaches.

Frequentist (n = 150) Bayesian (n = 150)

Risk ratio

Non-convergence,a n (%) 0 (0%) 6 (4%)

Statistically significant,* n (%) 48 (32%) NA

P-value (or posterior probability of any effect) 0.21 (0.02–0.64) 0.76 (0.38–0.98)

Point estimate, median (IQR) 0.90 (IQR 0.72–1.04) 0.92 (IQR 0.73–1.07)

Risk difference

Non-convergence,a n (%) 0 (0%) 0 (0%)

Statistically significant,* n (%) 48 (32%) NA

P-value (or posterior probability of any effect) 0.21 (0.02–0.64) 0.79 (0.40–0.99)

Point estimate (median, IQR) −1.74 (IQR −7.33 to 0.70) −1.73 (IQR −7.18 to 0.77)

aSubsequent summaries are presented over results that converged.
*P ≤ 0.05.
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to after a 6-month lifestyle-intervention programme in obese 
women, statistically significantly reduced, rather than in-
creased, the proportion of women having a vaginal birth 
within 24 months.26 In practice we suggest that if trialists did 
observe a potential harmful effect, it could be useful to exam-
ine the probability of large, moderate or small harmful effects.

5.3  |  Limitations

5.3.1  |  Statistical versus scientific evidence

Our classification of the strength of statistical evidence was 
concerned with the inference based on the primary out-
come. In practice, researchers must consider much wider 
influences – for example, the scientific rigour of the trial, 
the context, costs and potential harms of the treatment.4,5 

We have not considered these factors but have instead tried 
to provide researchers with effective tools properly to in-
terpret key outcomes. Only after key outcomes have been 
interpreted can investigators properly consider the wider 
implications of whether the intervention should be used. 
Thus, although we have illustrated this technique on a 
sample of real trials, we do not attempt to make inferences 
about specific interventions, and for these reasons we have 
not undertaken a risk of bias assessment and do not recom-
mend our results be used to inform treatment decisions.

5.3.2  |  Retaining reproducibility

We used an arbitrary classification for the strength of the 
statistical evidence. When we increased the stringency of 
the statistical evidence by classifying posterior probabilities 

T A B L E  3   Classification of trials based on strength of statistical evidence of important beneficial effect sizes.

Statistically non-significant trials (n = 102)
Statistically significant trials 
(n = 48)

All 
(n = 150)

Overall strength of statistical evidencea

Strong statistical evidence 8 (7.8%) 47 (100%) 55 (36.7%)

Moderate or weak evidence 94 (92.2%) 1 (2.0%) 95 (63.3%)

At least a small beneficial effect (RD < −0.5 pp; NNT <200)

Strong statistical evidence 3 (2.9%) 42 (87.5%) 45 (30.0%)

Moderate statistical evidence 8 (7.8%) 0 (0.0%) 8 (5.3%)

Weak statistical evidence 91 (89.2%) 6 (12.5%) 97 (64.7%)

Large beneficial effect (RD < −4 pp; NNT <25)

Strong statistical evidence 0 (0.0%) 24 (50.0%) 24 (16.0%)

Moderate statistical evidence 0 (0.0%) 6 (12.5%) 6 (4.0%)

Weak statistical evidence 102 (100.0%) 18 (37.5%) 120 (80.0%)

Moderate beneficial effect (RD < −1 pp; NNT <100)

Strong statistical evidence 0 (0.0%) 40 (83.3%) 40 (26.7%)

Moderate statistical evidence 6 (5.9%) 1 (2.1%) 7 (4.7%)

Weak statistical evidence 96 (94.1%) 7 (14.6%) 103 (68.7%)

Trivial effect (RD > −0.1 pp and RD < 0.1 pp; NNT >200)

Strong statistical evidence 2 (2.0%) 0 (0.0%) 2 (1.3%)

Moderate statistical evidence 1 (1.0%) 0 (0.0%) 1 (0.7%)

Weak statistical evidence 99 (97.1%) 48 (100.0%) 147 (98.0%)

Unanticipated harmful effect (RD >0.1 pp)

Strong statistical evidence 3 (2.9%) 5 (10.4%) 8 (5.3%)

Moderate statistical evidence 3 (2.9%) 0 (0.0%) 3 (2.0%)

Weak statistical evidence 96 (94.1%) 43 (89.6%) 139 (92.7%)

Any beneficial effect (RD <0 pp)

Strong statistical evidence 8 (7.8%) 43 (89.6%) 51 (34.0%)

Moderate statistical evidence 9 (8.8%) 0 (0.0%) 9 (6.0%)

Weak statistical evidence 85 (83.3%) 5 (10.4%) 90 (60.0%)

Note: Strong statistical evidence: posterior probability ≥95%; moderate statistical evidence: posterior probability between 90% and 94%; weak statistical evidence posterior 
probability <94%.
pp, percentage points.
aOverall statistical evidence classified as strong if strong statistical evidence of either at least a small effect or a trivial effect or an unanticipated harmful effect. Italics are 
non-mutually exclusive categories.
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>97.5% as strong statistical evidence, the number of studies 
for which it was possible to conclude something definitive 
decreased. Lowering thresholds for strength of statistical 
evidence might lead to increases in non-reproducible re-
sults. Relatedly, a similar approach could be undertaken 
using P cut-points. However, the frequentist approach is 
tightly woven within a paradigm that strongly controls 
type-1 error (claiming there is an effect when it is a chance 
finding) and, as a consequence, opens the f loodgates for 
type-2 errors (claiming there is no effect where one exists). 
Thus, whatever approach adopted, care must be taken to 
ensure both types of errors are controlled. There are of 
course other ways to control type-1 errors, such as pre-
specification of primary outcomes and anticipated effects, 
as well as showing reproducibility in other settings. As with 
any classification system, the pros and cons of misclassi-
fication depend on context.27 For example, very stringent 
evidence might be required before the acceptance of an 
invasive surgical procedure, but perhaps less convincing 
evidence might be acceptable before recommending a low-
cost, low-harm, non-invasive therapy.4,5

5.3.3  |  Classification of size of effects

We have used somewhat arbitrary classifications for clinically 
important and trivial effect sizes.28 We thus suggest that 
with appropriate contextual knowledge, clinically important 
effect sizes should be defined at the planning stage.23 Creating 
an explicit necessity to specify clinically important effect 
sizes up front, should prompt decision makers to think about 
this important question at the planning stage rather than 

the interpretation stage. Although we only consider binary 
outcomes, the methods proposed can readily be extended 
to continuous outcomes, where the concepts of clinically 
important differences are often better established.29

5.3.4  |  Accessibility and implementation

Frequentist inference is by far the predominant method of in-
ference (Gupta 2012).13,30,31 Unlike the frequentist approach, a 
Bayesian analysis requires specification of prior distributions 
and this might be a perceived barrier to its use.22 In this appli-
cation we used standard informative priors illustrating how the 
approach can be used without dependency on ‘priors’, which 
might induce concerns of lack of reproducibility.32 The finding 
that the Bayesian and frequentist point estimates, confidence/
credible intervals and Ps/posterior probabilities showed strong 
concordance gives confidence that inferences are not depend-
ent on the chosen prior.19,20,21,22,33 Furthermore, the Bayesian 
approach is pitched here as an aid to interpretation and not as a 
technique that will radically change the numerical results; thus 
it might even have a place alongside a conventional frequentist 
analysis. However, the approach might also be used in conjunc-
tion with an informative prior, fully embracing the Bayesian 
philosophy, and this might be particularly important in rare 
diseases or interventions in difficult to recruit populations.

5.3.5  |  Generalisability

Our review was limited to trials in the area of women's health, 
but the proposal and its implications should be generalisable 

F I G U R E  3   Classification of trials into clinical important effect sizes: at (A) 95% and (B) 97.5% for strong statistical evidence.
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to other clinical areas with binary outcomes, albeit perhaps 
with some reconsideration of what constitutes clinically im-
portant effect sizes. In addition, our review was limited to 
trials in high impact journals, which might suggest that the 
true proportions of trials with statistically significant findings 
(~one-third) or with strong statistical evidence (~one-third) in 
the wider medical literature might be lower than in our review. 
As others have suggested, when considered from a perspective 
of clinically important effects, there is no real difference in 
superiority, non-inferiority and equivalence trials.25 We thus 
suggest this approach could be used for the interpretation of 
non-inferiority as well as superiority trials.34

6  |   CONCLUSION

The key findings of most randomised trials are interpreted on 
the basis of statistical significance – leading to many interven-
tions being declared as ineffective when the findings are statis-
tically uncertain (type-2 error). This is a well-known problem. 
In part, this problem of misinterpretation arises because a 
strict frequentist interpretation of statistical significance prior-
itises not misclassifying treatments as effective when they are 
not (type-1 error). In so doing, this perpetuates the problem of 
treatments being declared as ineffective when they are actually 
uncertain. A Bayesian interpretation of findings, alongside re-
porting of confidence intervals and effect sizes, may help strike 
a balance between minimising both types of errors.
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