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Introduction: B cells, which have long been thought to be minor players in the

development of anti-tumor responses, have been implicated as key players in

lung cancer pathogenesis and response to checkpoint blockade in patients with

lung cancer. Enrichment of late-stage plasma and memory cells in the tumor

microenvironment has been shown in lung cancer, with the plasma cell

repertoire existing on a functional spectrum with suppressive phenotypes

correlating with outcome. B cell dynamics may be influenced by the

inflammatory microenvironment observed in smokers and between LUAD and

LUSC.

Methods: Here, we show through high-dimensional deep phenotyping using

mass cytometry (CyTOF), next generation RNA sequencing and multispectral

immunofluorescence imaging (VECTRA Polaris) that key differences exist in the B

cell repertoire between tumor and circulation in paired specimens from lung

adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC).

Results: In addition to the current literature, this study provides insight into the

in-depth description of the B cell contexture in Non-Small Cell Lung Cancer

(NSCLC) with reference to broad clinico-pathological parameters based on our

analysis of 56 patients. Our findings reinforce the phenomenon of B-cell

trafficking from distant circulatory compartments into the tumour

microenvironment (TME). The circulatory repertoire shows a predilection

toward plasma and memory phenotypes in LUAD however no major

differences exist between LUAD and LUSC at the level of the TME. B cell

repertoire, amongst other factors, may be influenced by the inflammatory

burden in the TME and circulation, that is, smokers and non-smokers. We have

further clearly demonstrated that the plasma cell repertoire exists on a functional

spectrum in lung cancer, and that the suppressive regulatory arm of this axis may

play a significant role in determining postoperative outcomes as well as following

checkpoint blockade. This will require further long-term functional correlation.
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Conclusion: B and Plasma cell repertoire is very diverse and heterogeneous

across different tissue compartments in lung cancer. Smoking status associates

with key differences in the immune milieu and the consequent inflammatory

microenvironment is likely responsible for the functional and phenotypic

spectrum we have seen in the plasma cell and B cell repertoire in this condition.
KEYWORDS

non-small cell carcinoma, B cell, B lymphocytes, plasma cell, regulatory B cell,
squamous cell carcinoma, adenocarcinoma
Introduction

Lung cancer is the leading cause of cancer-related death

worldwide (1). Surgery plays a crucial role in the diagnosis,

staging, and definitive management of non-small cell lung cancer

(NSCLC). Resection is the treatment of choice for stage I and II

NSCLC and an important component of the multimodality

approach for stage IIIA disease (2). The presence of occult micro-

metastatic circulating tumor cells at the time of surgery, which

cannot be detected by modern staging methods, is likely to drive

recurrence after resection of the tumor bulk (3). Immune responses

within the tumor microenvironment are increasingly implicated as

determining factors of tumor progression and aggressiveness (4).

Immune research in NSCLC has focused predominantly on T-cell

immune biology, however the immune response is a complex

interplay between the primary tumor and multiple immune cell

types in the tumor microenvironment (5). The role of B cells in

tumor survival has been extensively investigated in recent years, and

although much is yet to be determined, there is clearly both a pro-

and anti-tumor role in this disease (6). The presence of B cells has

been shown to correlate with improved survival and lower relapse

rates in ovarian, cervical, and NSCLC (7–9). Immunosuppressive B

cells that produce IL-10 are linked to a tumour microenvironment

that releases high levels of pro-inflammatory stimuli (10). B cell

presence has been associated with improved responses to

checkpoint blockade in various disease settings, along with the

presence of tertiary lymphoid structures (11–13). More recently,

plasma cells, which have long been thought to play a minor role in

the development of anti-tumor responses, have been implicated as

key players in the response to checkpoint blockade in lung cancer

patients (14–16). The underlying mechanisms and in-depth role of

plasma cells that make them central to clinical responses are still not

well understood.

To explore the relationship between B and plasma cells and

post-resection outcome in these early-stage cancers, we utilized

deep phenotyping techniques with a B cell-specific CyTOF panel,

robust high-dimensional display techniques, and regression models

to analyze the importance of specific B cell immunophenotypes in

the circulation and within the tumor microenvironment on various

clinical correlates, including disease-specific outcomes. We present

a mass cytometry-based atlas of the B-cell immune landscape in

NSCLC patients using blood and tumor samples. This work
02
expands considerably on our understanding of the immune cell

milieu in this disease.
Materials and methods

Experimental model and subject details

Peripheral blood mononuclear cell (PBMC) layers from age-

matched healthy donors were obtained from the Clinical

Immunology Service at the University of Birmingham (UoB).

Primary blood samples from advanced Non-Small Cell Lung Cancer

(NSCLC) patients were obtained before surgical resection of the

tumour in the outpatient clinic, tumour tissue was obtained fresh at

the time of surgery. Written consent was provided under the UoB

Research Ethics Approval, protocol 17/WM/0272. Tumour stage and

histological subtype with molecular profiling was determined by a

radiologist and pathologist respectively (Supplementary Table 1). The

study cohort is described in Supplementary Table 1. Median follow-up

in these patients is 3 years. Only one cancer exhibited an EGFR

mutation (EGFR+ exon 19 deletion adenocarcinoma). Forty cancers

(71%) were PDL1 negative.

We examined the risk factors as independent predictors of overall

and disease-free survival on multivariate testing (Supplementary

Table 2). Squamous cell carcinoma was associated with reduced risk

of death (HR 0.17, p-0.014) and male gender was associated with an

increased risk of death (HR 5.45, p=0.034). In terms of recurrence,

advanced stage (III) was associated with an increased risk (HR 25.6,

p=0.016) and adjuvant chemotherapy was associated with a reduced

risk (HR 0.04, p=0.018).
In-depth immunophenotyping of NSCLC
samples using mass cytometry

We performed large scale mass cytometry analysis of paired

NSCLC patient samples (peripheral blood samples and fresh

matched tumour tissue from patients with IASLC stage I-III

NSCLC (n=56) and 5 healthy age-matched donor samples

(peripheral blood only). All patient peripheral blood samples were

taken before surgical tumour resection. Cells were stained a B cell

antibody panel (34 antibody markers) created for this study
frontiersin.org
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(Supplementary Table 3). The panel was designed to detect the

expression of B cells at various stages of maturation (activated,

transitional, marginal zone, follicular, germinal centre, class-

switched and plasma) as well as rarer B cell populations such B

regulatory (Breg) cells. The panel also included markers for natural

killer cells, T cells and granulocytes.
Sample preparation and acquisition

Peripheral blood mononuclear cells were harvested using BD

vacutainer® CPT bottles (NH: ~130IU FICOLL™ 2.0ml).

Following centrifugation, the cells were washed twice with RPMI

1640, and re-suspended in freezing media (sterilised mix of 90%

heat inactivated foetal calf serum and 10% DMSO) at a density of 4-

10 x106/ml prior to cryostorage at -80°C.
Tumour dissociation

Fresh lung resections samples were immediately taken to the

histopathology suite where tissue from the tumour core and

periphery was sampled to ensure as much TME representation as

possible. One set of samples was immediately placed in sterile sealed

container containing Miltenyi Tumour Storage Solution and stored

in a fridge at 4°C [cell labelling and cytometric analysis specimen]

and the second set of samples was immediately placed in a sterile

sealed container containing formalin for fixation and stored in a

fridge at 4°C [VECTRA immunofluorescence analysis specimen].

All samples were transported to the laboratory for processing and

analysis within 24 hours.

For single cell analysis, tumour tissue was dissociated into a

single cell suspension by combining mechanical dissociation with

enzymatic degradation of the extracellular matrix, which maintains

the structural integrity of the tissue. This was carried out according

to the manufacturer protocol using the gentleMACS™ Octo

dissociator (Miltenyi Biotech). All reagents were supplied by

Miltenyi Biotech and reconstituted in a standardised way.
RNA extraction

Tumour RNA was extracted and purified using the Qiagen

RNeasy® Plus Mini Kit according to manufacturer protocol.

Tumour samples were defrosted according to the protocol

outlined above.
Cell staining for mass
cytometric acquisition

CyTOF antibody cocktails (cell surface and intracellular done

separately) were prepared using pre-determined optimal titres and

filtered using Ultrafree MC 0.1mm centrifugal filter units (Merck

Millipore) to remove antibody aggregates. Cryopreserved cells were

resuscitated for mass cytometry experiments by rapid thawing at
Frontiers in Immunology 03
37°C, slow dilution with wash media and then centrifugation to

pellet cells and remove freezing media. The cells were then filtered

through a 35mm nylon mesh using 5ml tubes with cell strainer caps

and then washed with MaxPar Cell Staining Buffer (CSB, Fluidigm).

Cells were then incubated with 5 µl of Fc receptor blocking reagent

(Human Trustain Fc blocking solution, Biolegend) for 10 min at

room temperature and then immediately incubated with surface

antibodies at room temperature for 30 min. During the last 2

minutes of this incubation, cells were incubated with 1 µM cisplatin

to allow live cell (cisplatin-)/dead cell (cisplatin+) discrimination.

The reaction was quenched with CSB (Fluidigm). Cells were then

fixed and permeabilised for intracellular antibody staining using

MaxPar Fix I Buffer (Fluidigm®) and MaxPar Perm-S Buffer

(Fluidigm®) (2 washes) respectively. Stimulation of cells prior to

intracellular antibody was not performed to avoid altering rare

cellular phenotypes and investigate constitutive expression

reflective of the microenvironment (17, 18). The cells were

resuspended and 2 µl of Heparin solution (2kU/ml stock) was

added to each sample to prevent non-specific binding of charged

eosinophils for a total of 10 minutes. The intracellular antibody

cocktail was then added to the cells. After gentle agitation, the

suspension was left to incubate for 30 minutes at room temperature.

Cells were then washed with buffer and resuspended in 500 µl of

Cell Intercalation Solution (1:1000 Nucleic acid Rh103 Intercalator:

Fix and Perm Buffer (Fluidigm®)) and incubated overnight at 4 °C.
Preparation for data acquisition

The next day, samples were washed twice with cell staining

buffer, re-suspended in 1 ml of MilliQ ddH2O, filtered through a

35-µm nylon mesh (5ml tubes with cell strainer caps, BD) and

counted. Before analysis, samples were resuspended in MilliQ

ddH2O supplemented with EQ four element calibration beads

(Fluidigm®) at a concentration of 0.5-1.0 x 106 cells/ml. Samples

were acquired at 300 events per second on a Helios instrument

(Fluidigm®) using the Helios 6.5.358 acquisition software

(Fluidigm®). We collected a minimum range of 750,000 – 1.2

million cells per samples in order to maximise chances of

detecting rarer B cell subsets. IL10 detection albeit low in the

unstimulated mass cytometry cohort, was reflective of likely Breg

populations given the surface phenotype. We performed

corroborative work on a stimulated cohort of melanoma cells

which showed no difference in IL10 when compared to the

parallel unstimulated cohort (19). Individual.fcs files collected

from each set of samples were concatenated using the. fcs

concatenation tool from Fluidigm® (CyTOF normalisation

software 2), and data were normalized based on EQ four element

signal shift over time using the same tool.
Antibody labelling and
conjugation protocol

In-depth characterization of B cells within our cohort was

performed using metal-tagged antibodies. Metal conjugated
frontiersin.org
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antibodies were purchased from Fluidigm or conjugated to

unlabelled antibodies in-house. All unlabelled antibodies were

purchased in carrier-free form and conjugated with the

corresponding metal tag using the MaxPAR antibody conjugation

kit (Fluidigm®) as per manufacturer’s instructions. Metal isotopes

were acquired from Fluidigm. The concentration of each antibody

was assessed after metal conjugation using a Nanodrop 2000

(ThermoFisher Scientific). Conjugated antibodies were diluted

using PBS-based antibody stabilizer supplemented with 0.05%

sodium azide (Sigma-Aldrich) to a final concentration of 200 µg/

ml and were subsequently titrated to an optimal concentration for

use. Provider, clone, and metal tag of each antibody used in this

study are provided in Supplementary Table 3.
Multiplex immunofluorescence analysis

The NSCLC samples were fixed in 4% isotonic formaldehyde

for no more than 24 hours, dehydrated and embedded in paraffin.

Sections (4-mm) were cut from each paraffin-embedded tissue and

stained with hematoxylin and eosin (HE) to evaluate

tumour pathology.

Formalin-fixed, paraffin-embedded (FFPE) tissue sections of

(4mm) were baked for 2 h at 60°C before staining. Deparaffinization

and antigen retrieval (pH9 for 20 minutes at 100°C) were performed

on the Leica BondRx Automated IHC stainer. Primary antibody

dilutions were optimized individually in a chromogenic DAB

staining. Control tissue was stained with the Bond Polymer

Refine Detection kit (DS9800) and evaluated by a pathologist for

specificity. Each marker was then assessed by a single fluorescence

staining, to optimise the fluorophores dilution and to generate a

library for spectral separation, using the Opal Polaris 7 Colour

Automation IHC Detection Kit (NEL871001KT) from Akoya

Biosciences. Each marker was tested in the six different positions

to evaluate the effect of the heat deactivation steps and the epitope

stability and determine their sequence in the panel accordingly

(Supplementary Table 4).

Slides were serially stained with the following antibodies: IL-10

(1:400), CD138 (RTU), anti-CD4 (1:200), -CD20 (1:200), -BCL6

(RTU) and CD8 (1:400), with an incubation of 30 minutes.

Secondary antibody used was OPAL POLYMER HRP MS + RB

(ARH1001EA) from Akoya Biosciences, incubated for 10 minutes.

TSA-conjugated fluorophores used to visualize each biomarker

were Opal 480, Opal 780, Opal 690, Opal 620, Opal 570 and Opal

520, with a 10-minute incubation. Opal 780 was incubated for 60

minutes, preceded by a 10-minute incubation in TSA-DIG. Slides

were mounted with ProLong Diamond Antifade Mountant (Fisher

Scientific Ltd, 15205739) and stored at 4°C before imaging. Image

acquisitions (20 × magnification as multispectral images) were

performed using the Vectra Polaris multispectral imaging

platform (Akoya Biosciences), with the entire slide image being

scanned and 7-10 representative regions of interest chosen by the

pathologist. DAPI was used to count number of cells per slide.

Negative controls (PBS instead of primary antibody) were run

simultaneously with these samples.
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Quantification and data analysis

Files (.fcs) were processed and normalised as described and

uploaded into Cytobank, populations of interest were manually

gated, biaxial marker expression was performed for visualisation in

Cytobank and events of interest were exported as. fcs files. CD19+

sample ‘clean-up’ was performed by gating on intact (103Rh+ DNA

stain), no beads (140Ce−), live (194/195Pt−), no T-cells CD3−

(141Pr), no immature granulocytes or natural killer cells CD16−

(209Bi), CD45+ (89Y), and CD19+ B cells.

For the downstream analysis, the fcs files were loaded into the R

(R Core Development Team, 2015). The signal intensities for each

channel were arcsinh transformed with a cofactor of 5 (x_transf

=asinh(x/5)). To facilitate differential discovery and analysis within

our dataset, we employed a hybrid R-based pipeline largely based on

the Bioconductor packages flowCore (20), FlowSOM (21),

CATALYST (22), and diffCYT (23).

High-resolution, unsupervised clustering, and meta-clustering

were performed using the FlowSOM and ConsensusClusterPlus

packages, which allowed for scaling of millions of cells; therefore, no

sub-sampling of the data was required (21, 22). Visualization of data

was performed using the CATALYST package, which employs the

ggplot2 R package as the graphical engine. To visualize high-

dimensional cell populations in two dimensions, the Uniform

Manifold Approximation and Projection (UMAP) algorithm (24)

was applied to represent the characteristics of the annotated cell

populations and identified biomarkers. Differential cell abundance

analysis was performed using generalized linear mixed models

(GLMM), and marker intensities using linear mixed models (LMM),

implemented via the diffCYT package (21, 22), using a false discovery

rate (FDR) adjustment (at 5% using the Benjamini-Hochberg method)

for multiple hypothesis testing. To identify the main cell subsets using

both B cell panels, FlowSOM was run with the parameter k ((x dim =

10 x ydim=10) = 100), defining the number of nearest neighbors, set to

100. The function thenmetacluster populations into two throughmaxk

(default 20) clusters (21). To confirm and extend our biological

discovery, the clustering algorithm was modified to detect a

maximum of eight meta-clusters after assessing the initial

unsupervised 20 meta-clusters for biological relevance, which was

performed to deduce which clusters were deemed most important

according to the algorithm. Furthermore, selective marker clustering

algorithms were run to ensure truemarker expression within clusters of

interest. To further define specific B cell clusters, runs were carried out

with Principal Component Analysis (PCA) pre-processing

incorporating all markers on the panel (including those for T cell

lineage) and then run without these markers (namely CD3, CD4, and

CD8) to exclude those that are not expressed on B cells and likely to

add “noise” in the cluster generation process and increase the impact of

the biologically relevant markers (25, 26).

RNA library preparation was carried out using the Lexogen

QuantSeq 3’ mRNA sequencing kit. FASTq files underwent quality

control with Trimmomatic and Cutadapt R packages (27, 28). The

high quality reads were then aligned to the genome in a process

known as “mapping” using HISAT2 or STAR with subsequent

quality control checks using RSeQC (29–31). The “counting” and
frontiersin.org
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generation of read count files were carried out with STAR (31),

HTSeq or Subread packages (32, 33). The raw read count files were

then imported into R for differential gene expression analysis with

DESEq2 (34). Gene Set Enrichment analysis (GSEA), Gene

ontology pathway analysis and KEGG pathway analysis were

performed using the gage, clusterProfiler and pathview packages

(35–37). Broadly speaking these analyses relied on ranking all genes

in the data set, identifying the rank positions of all members of the

gene set in the ranked data set and then calculating an enrichment

score (ES) that represents the difference between the observed

rankings and that which would be expected assuming a random

rank distribution.

Statistical significance was determined using a 2-tailed non-

parametric test for unpaired (Mann-Whitney U test) samples and

the Kruskal-Wallis test for more than two independent groups.

Univariate and Multivariate Stepwise Backward Elimination models

were constructed. Overall and Disease-Free Survival were

determined within the cohort, and inter-group differences were

calculated using the log-rank method, which was carried out in R

using the Survival and Survminer packages for Kaplan-Meier

analysis and Cox proportional hazards regression, respectively.

Suitable data cutpoints were determined using the pROC and

cutpointr R packages for ROC and bootstrap analyses,

respectively. Pairwise comparisons in longitudinal analyses were

performed using the pairwise Wilcoxon rank sum test. Statistical

significance was set to less than 0.05. Multiple comparison

correction was applied using the Benjamini-Hochberg method.
Data availability

Mass cytometry data: the data that support the findings of this

study are available from the corresponding author upon reasonable

request. This is largely owing to file size and logistics of patient

confidentiality, reverse pseudonymisation and need for data to be

kept at specific academic/research sites in line with the policies from

individual trial protocols. Source data are provided with this paper.

Correspondence and material requests should be directed to GWM.
Code availability

The authors declare that the code for reproducibility of data are

publicly available. Although the code was adapted from various sources,

the underlying code itself was not modified or changed in any way and

is readily available from the sources cited. The code can be made

available from the corresponding author upon reasonable request.
Results

In-depth immunophenotyping reveals
phenotypic diversity of circulating and
intratumoural B cell populations

CD19+ cells were taken forward into all further downstream

analyses. In order to map cell phenotypes, FlowSOM clustering was
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performed, and expression of B cell clusters across different tissue

compartments were visualised as a heatmap (Figure 1A) with

heterogeneity in marker level displayed at single cell level using UMAP.

We defined 20 distinct B cell clusters at various stages of

maturation (Figure 1A). We have enumerated all the clusters in

Table 1 (below) and described their likely phenotype based on

surface marker expression and drawn conclusions from the original

descriptions of these populations in the literature (38–50).

The mostly frequently observed cluster was of the follicular B

cell lineage (cluster 12, 43.41% of the total population (Figure 1A)

characterised by high expression of CD20, CD22 and IgD and with

lower levels of IgM. Activated (IgM+ IgD+ CD25+ CD27+) (cluster

16) and Transitional B cell (IgMhi IgDhi CD24hi CD38hi CD10hi

CD5+) clusters (cluster 20) comprised 7.8% and 0.99% of the total B

cell population respectively. Antibody secreting plasma cells were

characterised by low/dim CD19 expression and CD38 positivity

(cluster 7, 1.38%). Cluster 15 comprised 0.39% of the total B cell

population and was surface Ig- CD138hi CD19lo (CD79Bhi), this

may represent an atypical plasma cell population or an immature B

cell population. Memory B cells were observed at various stages of

maturation: Atypical IgD+ IgM- memory B cells (cluster 18, 0.32%),

fully affinity matured, class-switched B cells (CD27hi IgD- IgM-)

(cluster 14, 12.13%) and double negative memory B cells (CD27lo

IgD- IgM-) (cluster 13, 2.53%).

Several B regulatory cell clusters were also identified including

plasmablasts, PD-1+ CD5+ cells, PDL1+ cells and B10 populations

(45–48). These were characterised using surface markers such as

CD5, CD24, CD25, CD27, CD38, CD1d, TIM-1, PD1, PDL-1, TGF-

b and intracellular cytokine expression of IL-10, were observed to

varying frequencies (0.21%-2%). Clusters 1 and 9 are both likely to

represent ki67hi IL10+ CD27+ CD38+ plasmablasts. Clusters 2 and

8 represent immature PDL1+ IL10+ Bregs with cluster 8 also being

CD5hi. Cluster 19 is a PD1+ CD5hi CD25hi IL10+ Breg. All B cells

were unstimulated and thus IL-10 expression is representative of

the in vivo immune milieu of NSCLC patients and healthy donors.

Unsupervised multi-dimensional scaling (principal component

analysis) shows the broad differences in B cell repertoire between

blood and tumour samples (Figure 1B). There is clear separation of

these samples indicating differences in immunophenotype

expression in the different environments. We performed

comparative dimensionality reduction analyses (UMAP) between

the paired blood and tumour samples from each patient

(Figure 1C). On visual inspection, there are clear differences in

cluster expression between the two environments. Broad

enumeration of the two compartments identified a preponderance

of early, maturating follicular and memory B cells in the blood,

whereas more terminally differentiated plasma cells localised to the

tumour microenvironment (TME).

In blood, there is visually higher expression of the following:
Cluster 1 – ki67+ CD27hi CD38hi CD95hi IL10int plasmablasts

(Red)

Cluster 12 – CD20hi CD21hi CD22hi Follicular (Light Green)

Cluster 13 – CD27lo IgD- IgM- Double negative Memory

(Teal)
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Fron
Cluster 14 – CD27hi IgD- IgM- Class-switched Memory

(Aquamarine)

Cluster 16 – IgM+ IgD+ CD25+ CD27+ Activated (Mustard)

Cluster 17 – CD19+ IgDhi IgM+ CD24- CD27- resting Naïve B

cell (Lilac)
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Cluster 19 – CD5hi CD25hi CD24+ PD1+ IL10lo Breg (Dark

Grey)

Cluster 20 – IgMhi IgDhi CD24hi CD38hi CD10hi CD5+

Transitional/Breg spectrum (Light Grey)
In tumour, there is visually higher expression of the following.
D

A

B

E

C

FIGURE 1

B and Plasma cell repertoire differences at the blood and tumour level. (A) A heatmap demonstrating the predominant 20 clusters in the B cell
repertoire, as seen following FlowSOM clustering in the entire blood tumour population. Phenotyping markers are labelled along the x-axis. Clusters
are labelled along the right y axis along with proportions as percentages of the overall population. Median scaled expression is shown in the intensity
chart and used to determine expression of each marker. (B) Multi-dimensional scaling plot, Principal Component Analysis shows separation of CD19
+ blood and tumour populations. Blood is illustrated in red and tumour in green as indicated by the colour chart in the right-hand column. (C)
UMAP plots stratified according to condition, “blood” and “tumour”. All samples are randomly downsampled to account for equally representative
populations across samples. Clusters are labelled in the right-hand chart. Clear differences exist between the two compartments (blood and tumour)
as shown by the differential visual representation of each cluster. (D) Differential Abundance Heatmap illustrating 20 previously identified clusters (1A)
(left hand column) with relative normalised abundance of each cluster by tissue compartment and individual patient (main panel). Tissue type is
shown along the bottom x axis (B – blood, blue Line, T – tumour, orange line). The grey bars on the right-hand side indicate a p<0.05 accounting
for multiple correction testing with Benjamini Hochberg. The log fold change is with respect to tumour. Patient to patient variability was treated as a
random effect in order to improve the robustness of the model. A generalised linear mixed regression model was applied to determine significance
of differential abundance between conditions (blood and tumour); the top eight clusters were of statistical significance as shown by the grey bars (7,
17, 16, 14, 12, 53 and 13). (E) Diffusion map stratified according to condition, “blood” and “tumour”. All samples are randomly downsampled to
account for equally representative populations across samples.
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Fron
Cluster 2 – Immature PDL1+ IL10+ CD138+ CD38+ Breg/

Natural Regulatory Plasma (Peach)

Cluster 3 – Ig- CD19lo CD138dim likely non-B cell phenotype,

possibly Natural Killer T cell (Royal Blue

Cluster 5 – CD19lo Ig- CD38- CD24lo/- CD21lo Memory cells

(Deep Purple)

Cluster 7 – CD19lo CD38hi CD24- CD27lo IgD- Antibody

Secreting Plasma cells (Orange)
Median marker expression analysis (Supplementary Figure 1)

identified higher expression of early B cell and chemotactic surfaces

markers in the circulation (CD5, CD20, CD21, CD27 and CXCR5),

whereas expression of terminally differentiated and suppressive cells

was noted in the TME (CD95, CD138, PDL1).

Differential abundance analysis – blood
versus tumour

We performed a differential abundance (DA) analysis of the

defined cell populations (Figure 1D) reporting on all B cell clusters
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in the population. This method compares the proportions of cell

types between the two clinical conditions and aims to highlight the

populations that are present at significantly different ratios. In order

to gain power to detect differences between conditions, we utilised a

mixed model to model the response and patients were treated as a

random effect thus formally accounting for patient to patient

variability as described by Nowicka et al. (22, 51). DA analysis of

the overall cell population identified eight clusters as significantly

differentially abundant between the two environments

(Table 2) below.

Lavin et al. demonstrated significantly different innate cell

compartments in lung adenocarcinoma between healthy tissue

and cancerous tissues (52). We used the publicly available dataset

from this group and gated for CD19+ B cells and performed an

unsupervised comparative principal component analysis between

healthy lung tissue, blood, and tumour samples from stage I lung

adenocarcinoma patients. The antibody panels used by this study

were focused panels designed to interrogate specifically CD3+ T cell

and NK cell compartments. The panels included few B cell specific

markers other than CD19, CD27, CD38, PD1 and PDL-1 hence we

were only able to discern broad subsets of B cells (52). The MDS

plot (Supplementary Figure 2) illustrates separation between the

three tissue types suggesting differences in the CD19+ B cell

compartment between a) healthy and cancer tissue and b) blood

and tumour of NSCLC patients. This supports the gross differences

we observed in our dataset. We have ringed the broad populations

in Supplementary Figure 2 to better segregate the populations of

interest. Owing to the significant heterogeneity between the

antibody panel used by this group and ours, we were unable to

drill deeper into the observed phenotypes. However, differential

abundance analysis revealed several clusters which were

significantly higher in the blood than in the TME.
Plasma cell presence in the TME is on a
phenotypic and functional spectrum

Clusters 2, 3, 5 and 7 are visually demonstrated as more

abundant in the TME by the Diffusion Map (Figure 1E), the latter

three being significantly more abundant. The bifurcating vectors of

the diffusion map in Figure 1E represent two distinct axes of

differentiation. Cluster 5 (deep purple) which starts at the early

end of the maturation spectrum is a CD19lo Ig- differentiating early

plasma cell with potential to differentiate into an effector Ig

producing plasma cell or a natural regulatory suppressive type of

plasma cell. The top branch of diffusion map is made up of clusters

2 and 3 (peach and royal blue respectively) and these are

phenotypically and functionally similar, expressing low levels of

CD138, IL-10 and PDL1 indicating their suppressive nature. The

bottom branch of the diffusion map is predominantly centred on

cluster 7 (orange) which represents an effector Ig producing IL10-

plasma cell. Thus, the TME is comprised of a terminally

differentiated population of plasma cells which are being primed

to an effector or suppressive phenotype.

Figure 2A illustrates the B cell populations within the TME. On

deeper interrogation of these, we have identified several clusters (9–
TABLE 1 B cell populations identified in blood and tumour
compartments.

Cluster
Number

Population

1 ki67hi IL10+ CD27+ CD38+ Plasmablasts

2 Immature PDL1+ IL10+ CD138+ CD38+ Breg/Natural
Regulatory Plasma cell

3 Ig- CD19lo CD138dim likely non-B cell phenotype, possibly
Natural Killer T cell

4 Insignificant cluster (0.2%) cannot be identified

5 CD19lo Ig- CD38- CD24lo/- CD21lo Memory

6 ki67hi CD24 CD25 CD27 B10 Breg

7 CD19lo CD38hi CD24- CD27lo IgD- Antibody Secreting
Plasma cells

8 Immature PDL1+ IL10+ CD5hi Breg

9 ki67hi IL10+ CD27+ CD38+ Plasmablasts

10 Insignificant cluster (0.48%) cannot be identified

11 CD5hi CD10+ CD27hi CD38+ Transitional

12 Follicular (CD20hi CD22hi IgD+ IgMlo)

13 Double negative memory B cells (CD27lo IgD- IgM-)

14 Fully affinity matured, class-switched B cells (CD27hi IgD-
IgM-)

15 Ig- CD138hi CD19lo (CD79Bhi) Plasma cells*

16 Activated (IgM+ IgD+ CD25+ CD27+)

17 CD19+ IgDhi IgM+ CD24- CD27- resting Naïve B cell

18 IgD+ IgM- atypical memory B cells

19 PD1+ CD5hi CD25hi IL10+ Breg

20 Transitional (IgMhi IgDhi CD24hi CD38hi CD10hi CD5+)
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14) which exist on a phenotypic plasma cell spectrum. Cluster 14

(CD19- CD38hi IgG+ early plasma cell) shows early features of

plasma cell differentiation with CD19, high CD38 expression and

early IgG expression. Cluster 9 (CD138+ CD25hi IgG+ PDL1- IL10-

terminally differentiated plasma cell) then shows CD138 expression

with higher levels being expressed by cluster 13 which is a true

effector terminally differentiated plasma cell population. Cluster 13

(CD138hi IgGhi PDL1lo IL10- plasma cell) also shows early PDL1

expression which represents likely early transitioning to a
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regulatory plasma cell phenotype; cluster 10 (CD138int IgGint

PDL1int IL10int plasma cell/regulatory suppressive) displays

higher levels of PDL1 as well as producing IL10 becoming a

suppressive plasma cell population. Cluster 11 (ki67hi CD5+

CD10+ CD24hi CD25+ CD27+ PD1+ transitional) represents a

very early transitional cell population which has not yet become

suppressive (IL10-, CD10+, PD1+). This focused assessment of the

TME reinforces the phenotypic spectrum of infiltrating early/late

plasma cells.
TABLE 2 Significant clusters on DA testing between blood and tumour compartments.

Cluster Predominant
Abundance

P value

3 - Ig- CD19lo CD138dim likely non-B cell phenotype, possibly Natural Killer T cell Tumour 7.7*10-6

5 - CD19lo Ig- CD38- CD24lo/- CD21lo Memory cells Tumour 1.4*10-9

7 - CD19lo CD38hi CD24- CD27lo IgD- Antibody Secreting Plasma cells CD19lo CD38hi CD24- CD27lo IgD- Antibody
Secreting Plasma cells

Tumour 9.2*10-21

12 - Follicular Blood 5.7*10-11

13 - Double negative Memory Blood 1.2*10-3

14 - Class-switched Memory Blood 2.0*10-12

16 - Activated Blood 3.3*10-14

17 - CD19+ IgDhi IgM+ CD24- CD27- resting Naïve B cell Blood 9.7*10-17
A B

C

FIGURE 2

Intratumoural B and Plasma cell infiltration differs in early post-operative relapse. (A) INTRATUMOURAL (TME): Differential Abundance Heatmap
illustrating 20 previously identified clusters in the TME (B heatmap) (left hand column) with relative normalised abundance of each cluster by
recurrence and individual patient (main panel). Recurrence is shown along the bottom x axis (No recurrence - blue line, recurrence - orange line).
The grey bars on the right-hand side indicate a p<0.05 accounting for multiple correction testing with Benjamini Hochberg. Patient to patient
variability was treated as a random effect in order to improve the robustness of the model. A generalised linear mixed regression model was applied
to determine significance of differential abundance between conditions (recurrence and no recurrence); there was only one cluster of statistical
significance as shown by the grey bar (cluster 13, p=0.038). (B) A heatmap demonstrating the predominant 20 clusters in the B cell repertoire, as
seen following FlowSOM clustering in tumour only. Phenotyping markers are labelled along the x-axis. Clusters are labelled along the right y axis
along with proportions as percentages of the overall population. Median scaled expression is shown in the intensity chart and used to determine
expression of each marker. (C) UMAP plots stratified according to condition, “recurrence” and “no recurrence” in the tumour. All samples are
randomly downsampled to account for equally representative populations across samples. Clusters are labelled in the right-hand chart. Comparative
UMAP demonstrating higher visual intra-tumoural expression of cluster 13 (CD138+, aquamarine cluster in the grey box) in non-recurrence patients.
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Spatial analysis identifies localisation of
immunosuppressive populations

Multiplexed immunofluorescent assays for CD4, CD8, CD20,

CD138, IL-10 and BCL-6 were employed to visualise changes in

immune infiltrate composition across NSCLC and with reference to

those patients who developed post-operative recurrence. A

significantly higher proportion of suppressive B cells (regulatory

plasma CD138+ IL10+ and Breg CD20+ IL10+) infiltrate the

tumour stroma as opposed to the tumour nest (p<0.0001)

(Supplementary Figures 4, 5). There were not any overall or

compartmental differences in phenotype when stratified according

to histology, stage, presence of lymphovascular invasion, presence

of visceral pleural invasion or mortality.
Structure of the immune landscape
identifies phenotypes associated with
effector function which in turn correlate
with clinical outcome

We examined the differences in the B cell profile between

those patients that recurred and those that did not. Within the

TME, comparative testing revealed a single minimally significant

subtle difference in B cell repertoire between recurrence and non-

recurrence patients. Differential abundance testing revealed

cluster 13 (Figures 2A, B) (CD138hi IgGhi PDL1lo IL10- plasma

cell) to be significantly more abundant in non-recurrence patients

(Figure 2C, grey box) (p=0.03). There were no significant
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differences with respect to recurrence in the blood of

these patients.
Terminally differentiated effector and
natural regulatory plasma cells are more
abundant in ever smokers

We compared the B cell repertoire between never smokers and

ever smokers according to the two different compartments using

differential abundance analysis. Comparative cluster expression

between the two groups identified a number of significantly

differentially abundant clusters (Figure 3A, Supplementary

Figure 6), which are summarised below (Table 3). Principal

component analysis for blood (Supplementary Figure 7) shows a

clear separation between the two groups. Median marker expression

(Supplementary Figure 8) shows an increase of plasma cell markers,

CD138 and IgG in ever smokers, as well as a higher level of IL-10

expression. Never smokers exhibit elevated expression of early-stage

immature B cells, IgD, IgM and CD38 as well as homing

marker CXCR5.

Within the TME between the two groups, differential

abundance analysis (Figure 3B) demonstrated that there was

significantly higher infiltration of clusters 11 and 14 in ever

smokers (p=0.038). These represent ki67hi CD5+ CD10+ CD24hi

CD25+ CD27+ PD1+ transitional and CD19- CD38hi IgG+ early

plasma cell populations respectively (Supplementary Figure 9).

Plasma cell infiltration appears higher in ever smokers in both the

circulation and TME, but with clearly less marked phenotypic
A B

FIGURE 3

Differential B cell expression stratified to smoking status. (A) CIRCULATION (Blood): Differential Abundance Heatmap illustrating 20 previously
identified clusters in the circulation (Supplementary Figure 3 heatmap) (left hand column) with relative normalised abundance of each cluster by
smoking status and individual patient (main panel). Smoking status is shown along the bottom x axis (Ever smokers - blue line, never smokers -
orange line). The grey bars on the right-hand side indicate a p<0.05 accounting for multiple correction testing with Benjamini Hochberg. Patient to
patient variability was treated as a random effect in order to improve the robustness of the model. A generalised linear mixed regression model was
applied to determine significance of differential abundance between conditions (ever and never smokers); the top nine clusters were of statistical
significance as shown by the grey bars (10, 17, 16, 3, 19, 18, 20, 11 and 1). (B) INTRATUMOURAL (TME): Differential Abundance Heatmap illustrating
20 previously identified clusters in the TME (Figure 2B heatmap) (left hand column) with relative normalised abundance of each cluster by smoking
status and individual patient (main panel). Smoking status is shown along the bottom x axis (Ever smokers - blue line, never smokers - orange line).
The grey bars on the right-hand side indicate a p<0.05 accounting for multiple correction testing with Benjamini Hochberg. Patient to patient
variability was treated as a random effect in order to improve the robustness of the model. A generalised linear mixed regression model was applied
to determine significance of differential abundance between conditions (ever and never smokers); the top two clusters were of statistical significance
as shown by the grey bars (11 and 14).
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differences in the TME. CXCR5 expression is higher in

never smokers.
Next generation sequencing of TIBs in
LUAD and LUSC tumour specimens

We performed bulk RNA sequencing of tumour specimens

from both tumour tissues in 27 patients from our cohort. Following

filtering, normalisation, and variance stabilising transformation of

all genes sequenced in this dataset, 14739 genes were identified. Of

these, 789 genes were significantly (p<0.05) differentially expressed

between never smokers (n=9) and ever smokers (n=18); 99 had a

log fold change (LFC) > 0 i.e., upregulated in the never smoker

cohort and 690 had a LFC < 0 i.e., upregulated in the ever smoker

cohort. Bruton Tyrosine Kinase (BTK) expression was significantly

differentially expressed between groups, with higher expression in

ever smokers (p=0.0037, following Benjamini-Hochberg correction,

Figure 4A). Activation of immune responses, with cytokine

production pathways and antigen processing and signalling

pathways were significantly upregulated in ever smokers based on

Gene Set Enrichment Analysis and Gene Ontology Analysis

(Figure 4B). Critical pro-inflammatory genes and transcription

factors in the Nf-ĸB signalling pathway were upregulated in ever

smokers, whereas B-cell activating factor (BAFF) was identified as

an upregulated gene in never smokers in this pathway (Figure 4C).
Increased presence of terminally
differentiated plasma and memory
phenotypes in LUAD compared
with LUSC patients

We performed a differential abundance analysis in the blood and

TME compartments stratified by histological subtype (LUAD versus

LUSC). In the circulation (Figure 5A), three populations were identified
Frontiers in Immunology 10
as significantly more abundant in LUAD and are demarcated by the

blue boxes on the UMAPs in Supplementary Figure 10.

Cluster 3 – CD10+ CD38+ Transitional (royal blue) [p=0.0032]

Cluster 11 – CD138hi IgG+ ki67int Effector Plasma

(green) [p=0.018]

Cluster 18 – CD5hi CD25hi CD24int PD1+ Transitional/Breg

(light purple) [p=0.0086]

Importantly, within the TME, none of the populations were

significant between LUAD and LUSC on DA testing (Figure 5B)

and thus B cell changes in the tumour are histotype agnostic.
Discussion

Our study provides, to our knowledge, the most comprehensive

immune cellular atlas of the B cell repertoire in NSCLC which

focuses on the differences in B cell populations between the

circulation and TME. We have demonstrated using high

dimensional deep phenotyping that there are clear differences in

the B cell repertoire between the circulation and intratumoural

compartments. There is a preponderance of immature, naïve and

follicular cells in the circulation with a higher level of infiltrating

plasma cells in the TME. These plasma cells exist on a functional

and phenotypic spectrum. We showed that in never smokers a

higher proportion of immature B cells with high CXCR5 expression

and ever smokers displayed higher degrees of plasma cell infiltration

in both the TME and circulation. Functionally these cells exhibited a

natural regulatory suppressive phenotype. We did not detect a

significant B cell signature in different histological subtypes at the

tumour level, however LUADs displayed higher levels of circulating

terminally differentiated plasma cells and memory phenotypes.

Lastly, when stratifying according to post-operative outcome,

non-recurrence patients exhibited higher levels of infiltrating

effector Ig+ IL-10- plasma cells which likely function to augment

anti-cancer effector T cell responses, and directly mediate tumour

cell death via antibody-dependent mechanisms.

Tumor-infiltrating B cells (TILBs) and plasma cells have been

identified as important components of the TME and are linked to

outcomes in lung cancer and responses to checkpoint blockade in

advanced disease (11–13). Recently, a single cell analysis and spatial

mapping of lung adenocarcinoma has shown for the first time

highly enriched populations of plasma and memory B cells in tumor

tissues with high levels of differentiation and somatic

hypermutation (16). We significantly extend upon this study by

profiling B cells in both blood and TME compartments in over 50

patients incorporating both LUAD and LUSC histological subtypes.

We performed a direct comparison between blood and tumour and

demonstrated a lack of surrogacy between the two compartments.

Plasma cell infiltration was notably higher in the TME with more

naïve resident B cells at the follicular and early memory stage

residing within the circulation. Of note, we were able to detect an

atypical IgD+ IgM- memory population in the blood, this has been

described previously in the context of vaccine response and in

circulation (49, 50, 53–56). Our TME data matched that of Hao

et al. (16), however with the added granularity of the blood

compartment comparison. Hao et al. showed high levels of
TABLE 3 Significant clusters on DA analysis according to smoking
status.

Cluster (Blood) Predominant
Abundance

P value

1 – CD20+ CD22+ follicular Never smokers 2.7*10-2

18 – CD5hi CD25hi CD24int PD1+
transitional/Breg

Never smokers 4.6*10-3

3 – CD10+ CD38+ transitional Ever smokers 2.2*10-3

10 – CD20 CD21lo early Ever smokers 3.6*10-6

11 – CD138hi IgG+ ki67int effector plasma Ever smokers 2.2*10-2

16 – PDL1+ IL10+ CD27hi IgD- IgM-
class switched memory/regulatory)

Ever smokers 1.7*10-4

17 – CD138lo PDL1int IL-10lo natural
regulatory plasma cell

Ever smokers 3.6*10-6

20 – CD138lo PDL1int CD38int IL-10-
transitioning natural regulatory plasma cell

Ever smokers 9.7*10-3
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CXCL13 production in the tumor tissue, which evolved with cancer

progression, suggesting increased trafficking of these cells from

tumor-derived signals into the TME (16). Our data demonstrated

the circulating B cell populations were CXCR5+ which is analogous

to the Hao data but further shows that the follicular and memory

cells residing in the circulation, traffic into the TME dependent on
Frontiers in Immunology 11
the appropriate chemotactic/antigen-specific signal. Biologically,

this is likely to represent a tumour driven polarisation of naïve B

cells into terminally differentiated plasma cells which display an

effector or suppressive phenotype. Multispectral Spatial analysis of

the tumour tissue demonstrated a preponderance of suppressive cell

types (CD20+ IL-10+ and CD138+ IL-10+) in the tumour stroma as
A B

FIGURE 5

Differential B cell expression across histological subtypes. (A) CIRCULATION (Blood): Differential Abundance Heatmap illustrating 20 previously
identified clusters in the circulation (Supplementary Figure 3 heatmap) (left hand column) with relative normalised abundance of each cluster by
histological subtype and individual patient (main panel). Tumour type is shown along the bottom x axis (Adenocarcinoma (LUAD) - blue line,
Squamous cell carcinoma (LUSC) - orange line). The grey bars on the right-hand side indicate a p<0.05 accounting for multiple correction testing
with Benjamini Hochberg. Patient to patient variability was treated as a random effect in order to improve the robustness of the model. A generalised
linear mixed regression model was applied to determine significance of differential abundance between conditions (LUAD and LUSC); the top three
clusters were of statistical significance as shown by the grey bars (3, 18 and 11). (B) INTRATUMOURAL (TME): Differential Abundance Heatmap
illustrating 20 previously identified clusters in the TME (Figure 2B heatmap) (left hand column) with relative normalised abundance of each cluster by
histological subtype and individual patient (main panel). Tumour type is shown along the bottom x axis (Adenocarcinoma (LUAD) - blue line,
Squamous cell carcinoma (LUSC) - orange line). The grey bars on the right-hand side indicate a p<0.05 accounting for multiple correction testing
with Benjamini Hochberg. Patient to patient variability was treated as a random effect in order to improve the robustness of the model. A generalised
linear mixed regression model was applied to determine significance of differential abundance between conditions (LUAD and LUSC); none of the
clusters were of statistical significance.
A

B

C

FIGURE 4

Next generating sequencing data stratified according to smoking status. (A) Box plot to illustrate the differences in BTK and iBTK expression between
ever smokers and never smokers. Significance testing data is shown in the figure using differential gene expression analysis in R. (B) Gene set
enrichment and ontology analysis plot demonstrating the key biological pathways that were significantly upregulated in ever smokers. P value is
shown according to the colour chart on the right-hand side. (C) KEGG pathway analysis illustrated for Nf-ĸB signalling cascade. Genes highlighted in
red indicate significantly upregulated genes in never smokers, this includes only BAFF. Genes highlighted in green, indicate significantly upregulated
genes in ever smokers.
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opposed to the tumour nest. This localisation may be an immune

evasion mechanism to dampen anti-tumour effector populations

trafficking into the TME and to assist and facilitate the

aforementioned functional polarisation of inbound immune cells.

Hao et al. (16) comprehensively assessed the TILB repertoire in

tumor samples from 16 patients with LUAD using next-generation

sequencing techniques. Late-stage memory and plasma cells with

high levels of differentiation and somatic hypermutation, indicative

of class-switching clones, were enriched in these early-stage tumors.

We demonstrated similar infiltration of class-switched memory and

effector plasma cells in the TME in LUAD, as well as a higher

concentration of natural regulatory phenotypes compared to the

LUSC TME. Patients with LUAD demonstrated elevated levels of

effector plasma cells in the circulation compared to those with

LUSC. A preponderance of earlier stage, less differentiated

plasmablast/plasma cells was enriched in the LUSC TME.

CIBERSORT analysis of LUAD (n=492) and LUSC (n=488)

samples has shown similar plasma cell presence (9-10%); tumors

lacking memory B cell infiltration exhibited a poor prognosis (57).

A higher degree of immune heterogeneity has been postulated in

LUSC, based on scRNA-seq data (58). The mutational burden and

consequent neoantigen load in LUSC are often higher than those in

LUAD (30), with the former exhibiting stronger smoking histories

and p53 mutations. Trafficking of late-stage effector plasma cells

into a more hostile inflammatory TME, such as that seen in LUSC,

may explain the B cell dynamic differences between the two

histological subtypes at the level of the circulation. This is a

unique perspective offered by our analysis whereby comparative

expression between histotypes has been demonstrated in the

circulation but not in the TME.

Hao et al, showed in smokers, there is an increased prevalence

of TILBs, in particular IgA+ and IgG+ plasma and memory cells

(16). Elevated plasma cell infiltrates are correlated with better

survival and response to immunotherapy. In parallel to plasma

cell differentiation, memory cell infiltrate in these patients was more

skewed towards a class-switched or germinal centre phenotype with

lower degrees of BCR clonality in smokers and advanced-stage

cancers (16).

We showed that later stage terminally differentiated effector

plasma cells have been found in the circulation and TME of ever-

smokers. Furthermore, we detected higher levels of suppressive

natural regulatory plasma cells in the circulation of ever-smokers,

which correlated with the elevated median expression of IL-10 in

this group, presumably as a result of the greater inflammatory

environment in smokers. This was supported by our functional

RNA analysis of the tumour tissue from ever smokers, whereby

these patients significantly over-expressed pro-inflammatory genes

involved in Nf-ĸB signalling, in particular TNFa and IL-1b. Of
note, Bruton’s Tyrosine Kinase (BTK) expression was significantly

higher in ever smokers compared to never smokers and anti-

correlated with inhibitor of BTK (iBTK) expression. BTK is a

critical regulator of B cell development and has been investigated

as a potential prognostic factor in LUAD with elevated levels

corresponding to enriched immune cell activity and survival (59).

Compelling murine data has shown BTK to be a critical regulator of

matrix metalloproteinase-9 expression (MMP-9) in the alveoli and
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is a critical mediator of cigarette smoke induced inflammation in

the lung parenchyma. ApoE-/- mice exposed to cigarette showed less

alveolar damage when concurrently treated with BTK inhibitors or

had downstream siRNA induced silencing of MMP-9 activity (60).

Targeting this molecule in autoinflammatory conditions may help

to offset pulmonary hyperinflammation associated with cigarette

smoking and reduce cellular damage burden potentially slowing the

rate of carcinogenesis. B cell Activating Factor receptor (BAFF-R)

was shown to be elevated in never smokers in our dataset. Murine

data has shown that cigarette smoke may elevate BAFF expression

by innate inflammatory immune cells with results lung

inflammation (61–63). However, there is also evidence that

cigarette smoke inhibits BAFF expression in the long-term in

mice with resultant poor expression of mucosal IgA and hence

augmented pulmonary inflammation and a reduced capability to

cope with viral infection (64). There are likely various factors at play

with may result in this paradoxical effect on BAFF/BAFF-R

expression, in particular length of cigarette smoke exposure. Our

cohort of never smokers, were completely naïve to cigarette smoke

and may explain the uninhibited expression of BAFF-R. It is thus

important to bear in the mind that other factors may well be at play

in these patients that go beyond the smoking history, such as other

genetic (including allied autoinflammatory conditions) and

environmental factors (alcohol consumption, pollution index

according to geographical location and other dietary and

lifestyle factors).

Earlier stage B cells at the transitional and follicular stages were

observed in never-smokers in the circulation, with a much higher

median expression of CXCR5. Markedly elevated fractions of

plasma cells have been observed in the TME of LUAD patients

with a significant smoking history compared to never smokers;

decreased B-cell clonality in smokers was also demonstrated (16).

This also correlated with the degree of smoking history. This was

particularly true for the fully differentiated plasma cell phenotype.

Our data have demonstrated that there is a preponderance of late-

stage effector plasma cells in ever-smokers, as shown by elevated

CD138 and IgG expression in the circulation. As we have shown,

the plasma cell differentiation axis is on a spectrum, with

suppressive natural regulatory cells showing their presence in

ever-smokers. Never smokers exhibited an elevated presence of

early-stage B cells and transitional and follicular cells, with a

preponderance of CXCR5hi populations in the TME. The

CXCL13-CXCR5 B cell chemokine axis is crucial for B cell

recruitment and TLS formation. CXCR5+ B cells are highly

enriched in early-stage LUADs (16). TCGA data showed

progressive loss of CXCL13 expression with advancing

pathological stages in LUAD. Exposure to cigarette smoke

remodels the B cell repertoire not only in the TME but also in

circulation. Exposure to tobacco smoke in vitro affects the evolution

of the immune milieu in the LUAD TME (65, 66). Enrichment of

differentiated memory B cell populations correlates with poor

prognosis in tobacco-exposed LUAD (65). Significantly higher

levels of class-switched memory B cells have been observed in the

blood of current smokers (67). The number of point mutations in

smokers with lung cancer is 10-fold higher than that in never

smokers (34, 68, 69), and constant smoke-induced damage results
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in an evolving pattern of neoantigens in the lungs of these patients,

shaping the adaptive immune response. We have shown elevated

memory cells and differentiated B cells in ever-smokers, which

presumably reflects the higher antigenic load in these patients.

Indeed, high numbers of effector CD20+ cells in never smokers,

where there is a lower mutational burden, correlates with favourable

outcomes in LUAD (70). The lesser expression of “poised” CXCR5+

B cells in ever smokers, suggests that with increasing genomic

perturbations and evolutionary dynamics in smokers, the ability to

recruit effector subsets, activate anti-cancer responses and form TLS

may well be lost as a result of enhanced tumor escape.

Increased intratumoural plasma cell infiltration has been reported

to be associated with extended overall survival in NSCLC patients

receiving anti-PDL1 treatment (14). Single-cell RNA sequencing data

from the POPLAR trial (71) showed that the status of an immune

module, determined by the high correlation found among activated T

cells, IgG+ Plasma cells, and macrophages, termed lung cancer

activated molecule (LCAM1), is associated with better progression-

free survival in patients treated with anti-PDL1. The LCAM1hi status

showed a trend towards better overall survival in similarly treated

patients (15). Murine models of castrate-resistant prostate cancer

refractory to oxaliplatin treatment have demonstrated an increased

presence of IgA+ Plasma cells that induce exhaustion of CD8+ T cells

through PDL1 expression, as well as TGF-b and IL-10 production, a

true regulatory suppressive plasma cell phenotype (72). Removal of

this population enables the control of large tumors using oxaliplatin.

This same suppressive population has been shown to accumulate in

animal and human cases of inflammatory liver diseases, impeding

anticancer effector T cell responses (73). Blockade of PDL1 in

advanced-stage lung cancer could dampen the suppressive plasma

cell phenotypes at play in the TME, thus shifting the balance towards

the effector IgG-producing phenotypes.

We have demonstrated the infiltration of plasma cells into the

TME across a phenotypic spectrum. Suppressive regulatory B cells can

develop at any stage of B cell maturation, and the finding of CD138+

IL-10 producing plasmablasts provided evidence that this could occur

even at the terminally differentiated end of the spectrum, with these

cells demonstrating a BLIMP-1LO phenotype and expressing switched

IgG isotypes (47, 74). Plasma cell-derived cytokine-induced

suppression has been shown to play a role in dampening

inflammation within the CNS (75–79) and Recently, LAG-3+ IL-10

+ CD138hi plasma cells have been shown to rapidly induce IL-10 in a

Toll-like receptor-drivenmanner following antigenic challenge, as well

as being able to suppress IL-10 independently via PDL-1 and PDL-2,

thus posing a favourable immunotherapeutic target (40, 80).

Our findings reinforce the phenomenon of B-cell trafficking

from distant circulatory compartments into the TME. This differs

across different histological subtypes and is influenced by the

inflammatory burden in the TME, that is, smokers and non-

smokers. In addition to the current literature, this study provides

insight into the in-depth description of the B cell contexture in

NSCLC with reference to broad clinico-pathological parameters

which was previously limited to a small subset of adenocarcinoma

patients in tumour specimens only.

It is important to bear in mind that the B cell milieu makes up 5%

of the total PBMC fraction in the circulation of patients and the
Frontiers in Immunology 13
specific B cell phenotypes we are describing make up an even smaller

fraction of these B and plasma cells. This is an inherent limitation of

studying this area of immune biology and the significance we have

observed between conditions has been assessed in an unsupervised

and unbiaised manner treating patient to patient variability as a

random effect to ensure reliability of data. Further larger scale

cohort studies are required to confirm biological relevance however

this study nonetheless adds an important, detailed comparative

analysis to the lung cancer space with reference to B cell biology.

The technique and analysis will be limited by manual gating methods,

which are open to subjectivity, bias towards well-known subtypes, and

inefficiency in larger datasets. The development of integrated machine

learning methods will help bridge the gap with other OMICS data

analyses and help infer developmental trajectories directly from

cytometry data (81). Further Spatial mapping and functional studies

are warranted to determine the exact pathogenic mechanisms

underlying NSCLC. Nevertheless, this study provides increased

granularity and definition of the plasma cell spectrum in lung

cancer, and the dynamics of this axis in different histological and

clinical disease settings.
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SUPPLEMENTARY FIGURE 1

Scaled median marker expression box plots illustrates phenotyping marker
expression stratified to blood and tumour compartments across all cells in the
Frontiers in Immunology 14
population. Blood is illustrated in red and tumour in green as indicated by the
colour chart in the right-hand column.

SUPPLEMENTARY FIGURE 2

Multi-dimensional scaling plot, Principal Component Analysis shows

separation of CD19+ blood, tumour and normal lung tissue based on
public data from Lavin et al. (52).
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An overview of the demographic data of the cohort. This includes

histopathological data as well as outcome data (mortality, recurrence rates
and overall/disease-free survival).

SUPPLEMENTARY TABLE 2

Multivariate cox proportional hazards modelling illustrating the significant
independent predictors of overall and disease-free survival in our cohort.
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