

Wayne State University

Medical Student Research Symposium

School of Medicine

March 2023

The Top 50 Most Cited Articles on the Medial Patellofemoral Ligament (MPFL): A Bibliometric Analysis

Varag Abed University of Kentucky, varag.abed@uky.edu

Alex DuVall Wayne State University, hj2153@wayne.edu

Jonathan D. Rexroth *Wayne State University*, hf8668@wayne.edu

Alyssa Goodwin Wayne State University, alyssa.goodwin@med.wayne.edu

Joseph Liu University of Southern California, josephnliu@gmail.com

Follow this and additional works at: https://digitalcommons.wayne.edu/som_srs See next page for additional authors Part of the Biomechanics Commons, Clinical Epidemiology Commons, Community Health and Preventive Medicine Commons, Epidemiology Commons, Exercise Science Commons, Medical Anatomy Commons, Musculoskeletal, Neural, and Ocular Physiology Commons, Musculoskeletal System Commons, Orthopedics Commons, and the Sports Medicine Commons

Recommended Citation

Abed, Varag; DuVall, Alex; Rexroth, Jonathan D.; Goodwin, Alyssa; Liu, Joseph; and Stone, Austin, "The Top 50 Most Cited Articles on the Medial Patellofemoral Ligament (MPFL): A Bibliometric Analysis" (2023). *Medical Student Research Symposium*. 278. https://digitalcommons.wayne.edu/som_srs/278

This Research Abstract is brought to you for free and open access by the School of Medicine at DigitalCommons@WayneState. It has been accepted for inclusion in Medical Student Research Symposium by an authorized administrator of DigitalCommons@WayneState.

Authors

Varag Abed, Alex DuVall, Jonathan D. Rexroth, Alyssa Goodwin, Joseph Liu, and Austin Stone

The Top 50 Most Cited Articles on the Medial Patellofemoral Ligament (MPFL): A Bibliometric Analysis

1 2

3 Abstract:

4 Objectives: To determine which original articles on the topic of the medial patellofemoral
5 ligament (MPFL) have been cited the most in the literature utilizing a bibliometric approach.
6 Secondarily, to determine temporal trends between article types.

Methods: Articles on the topic of the MPFL were identified by utilizing the Web of Science
Database. The search yielded 1,596 results and the top 50 cited original articles were collected
for further analysis. The following information was gathered for all included articles: title, first
author's name, journal name, year of publication, impact factor of the journal in 2021, total
number of citations of the article, average citations per year (ACY), geographic origin,
institutions, research theme, and keywords. Articles were then grouped into one of three
categories: cadaveric/anatomic, clinical, and radiologic.

14 **Results:** The total number of citations was 10,393. Publication dates ranged from 1992 to 2015

and majority of articles originated in the United States (38%). Most were published between the

16 years 2000-2009 (66%) and in the journal, American Journal of Sports Medicine (34%). The

17 mean ACY was $11.73 \pm$ SD 5.86 and the Kawasaki Municipal Hospital was the institution with

the most articles included in the top 50 (n=6, 12%). The top-cited articles focused on 3 themes:

19 cadaveric/anatomic (n=18, 36%), clinical (n=25, 50%), and radiologic (n=7, 14%).

20 Cadaveric/anatomic articles had the highest average number of citations at 271.4 ± 153.9 ,

- followed by radiologic (173.3 \pm 53.0) and clinical articles (171.8 \pm 102.4). The two most
- common keywords were "medial patellofemoral ligament" (53%) and "patella" (23%). Over

time, clinical articles were more likely to be included in the top 50 list, compared to

24 cadaveric/anatomic/radiologic articles.

Conclusion: The current study showcased that the MPFL is a growing area of research. The
most impactful articles relate to cadaveric/anatomic articles; however, over time, clinical articles
became more prevalent.

28 Keywords: MPFL, bibliometric, epidemiology, medial patellofemoral ligament, top cited

29 Introduction:

The medial patellofemoral ligament (MPFL) is a commonly injured ligament in the knee 30 [1]. With injury, there is a potential for lateral patellar dislocations, especially in children [2]. 31 Multiple treatment modalities have been offered to treat MPFL injuries depending on severity, 32 ranging from conservative measure like physical therapy to more invasive measures, such as 33 surgery [3]. Over the decades, new techniques have been developed to continually improve on 34 the procedure [4]. In the general population, the incidence of lateral patellar dislocations ranges 35 from 5.8-7 cases per 100,000 person-years to 29 cases per 100,000 person-years in children aged 36 10-17 [2], indicating the importance of innovation. Generally, 60% of first-time patellar 37 dislocations occur during physical activity or sports either through direct contact or through a 38 non-contact mechanism involving external rotation of the leg with a planted foot [2], placing 39 athletes at an increased risk. 40

Collecting and analyzing the most impactful research studies throughout the years can
help clinicians better understand the progression of MPFL literature. Specifically, with a
bibliometric analysis, synthesizing multiple studies can be a helpful tool in mapping studies [5].
This is in contrast to narrative reviews, as they have the potential of introducing bias from the

researchers performing the study [5]. There have been multiple bibliometric studies done in the
past, including on the anterior cruciate ligament (ACL) [5,6], posterior cruciate ligament (PCL)
[7], and meniscus [8]. In performing a bibliometric analysis, there exists an opportunity for
insight into the trending topics in any particular field by quantitatively analyzing studies. It can
be seen which topics are trending by quantitatively analyzing studies in any particular field,
potentially guiding direction of future research [9].
The purpose of this study is to determine which original articles on the topic of the MPFL

have been cited the most in the literature utilizing a bibliometric approach. Secondarily, todetermine temporal trends between article types.

54 Methods:

55 *Collection and Allocation of Articles*

All relevant articles on MPFL were searched by using the Web of Science database, 56 which includes the Web of Science Core Collection, Biological Abstracts, BIOSIS Citation 57 Index, Current Contents Connect, Data Citation Index, Derwent Innovations Index, KCI-Korean 58 Journal Database, MEDLINE, SciELO Citation Index, and Zoological Record. Two researchers 59 60 independently identified articles for inclusion to enhance the search sensitivity. The search terms were "MPFL" OR "Medial Patellofemoral Ligament." 61 The search was performed on August 4th, 2022, and yielded 1,596 results in total. 62 63 Filtering the search results via "article" resulted in 1,463 articles. Original articles and registry data were included, whereas meta-analyses, systematic reviews, guidelines, and other review 64

articles were excluded. All articles and registry data were ranked by the number of citations;

- articles with <70 citations were excluded to reduce the workload. This resulted in 127
- 67 publications included for analysis. After review, the title and abstract of each article were

categorized by 2 independent investigators based on the inclusion criteria. The three categories
included: cadaveric/anatomic, clinical, and radiologic. Duplicates were removed, and any
disagreements were discussed with the senior author until a consensus was reached. After the
review of all included articles, 94 articles remained. These articles were arranged according to
number of citations and the top 50 most cited articles were included in the final analysis (Figure
I).

74 Data Extraction

The following information was listed for all articles: title, first author's name, journal
name, year of publication, impact factor of the journal in 2021, total number of citations of the
article, average citations per year (ACY), geographic origin, institutions, research theme, and
keywords.

79 **Results:**

80 The 50 most cited articles arranged by citation rank are shown in **Appendix Table I**.

81 The total number of citations was 10,393 (mean [SD] = 207.86 [126.57]), including 2,403

82 citations (343.29 [193.15]) before the 2000s, 6,622 citations (200.67 [108.76]) in the 2000s, and

1,368 citations (136.8 [15.11]) in the 2010s. Of note, 3 articles were cited >500 times. Overall,

the mean ACY for all 50 articles was $11.73 \pm (SD) 5.86$.

85 Characteristics of the Top 10 Most Cited Articles Per Year

The top 10 most cited articles by average citations per year (ACY) are listed in **Table I**. The number of ACY ranged from 14.06 to 33.53. Most of these articles (n=7) were published before 2010. The mean number of total citations was 371.80, and the mean citation rank was 12.60.

90 Table I. Top 10 Articles with the Largest Number of Average Citations Per Year

Rank	Article	Citations	Citation Rank	ACY
1	Fithian et al, Am J Sports Med (2004)[10]	637	1	33.53
2	LaPrade et al, J. Bone Jt. Surg Am (2007)[11]	478	4	29.88
3	Desio et al, Am J Sports Med (1998)[12]	615	2	24.60
4	Schöttle et al, Am J Sports Med (2007)[13]	376	6	23.50
5	Steensen et al, Am J Sports Med (2015)[14]	149	28	18.63
6	Conlan et al, J. Bone Jt. Surg Am (1993)[15]	555	3	18.50
7	Hautamaa et al, Clin. Orthop. Relat. Res. (1998)[16]	384	5	15.36
8	Wagner et al, <i>Knee Surg. Sports Traumatol. Arthrosc.</i> (2013)[17]	144	32	14.40
9	Parikh et al, Am J Sports Med (2013)[18]	141	35	14.10
10	Elias et al, Am J Sports Med (2006)[19]	239	10	14.06

92 Characteristics of the Top 10 Most Cited

93 The article with most overall citations (n=637) involved the epidemiology of acute 94 patellar dislocation and was published in the *American Journal of Sports Medicine* in 2004 by 95 Fithian et al. [10] This study demonstrated that patient who present with a prior history of 96 instability are more likely to be female, older, and have a greater risk of continued patellar 97 instability than those with a first-time dislocation. The second most cited article was by Desio et 98 al. [12] and was published in the *American Journal of Sports Medicine* in 1998. It was an 99 anatomical study showing that the medial patellofemoral ligament was the primary restraint to

100	lateral patellar translation at 20 degrees of flexion. The third most cited article was published in
101	the Journal of Bone and Joint Surgery-American Volume by Conlan et. al. in 1993 [15]. This
102	anatomical study characterized medial patellofemoral ligament insertions. The smallest number
103	of citations in the top 50 articles was 120. The research topics and conclusions of the top 10 most
104	cited articles are presented in Table II.

Table II. Topics and Conclusions of the Top 10 Overall Cited Articles.

Rank	Article	First Author	Topics and Conclusions
1	Epidemiology and Natural History of Acute Patellar Dislocation	Fithian [10]	Study demonstrating that patellar dislocators who present with a prior history of instability were more likely to be female, older, and have a greater risk of subsequent patellar instability episodes than first-time dislocators.

2	Soft Tissue Restraints to Lateral Patellar Translation in the Human Knee	Desio [12]	Study showing that the medial patellofemoral ligament was the primary restraint to lateral patellar translation at 20 degrees of flexion, contributing 60% of the total restraining force.
3	Evaluation of the Medial Soft- Tissue Restraints of the Extensor Mechanism of the Knee	Conlan [15]	Study characterizing medial patellofemoral ligament insertions and demonstrating that this ligament is the major medial soft-tissue restraint preventing lateral displacement of the distal knee-extensor mechanism.
4	The Anatomy of the Medial Part of the Knee	LaPrade [11]	Study characterizing the average relative location of medial patellofemoral ligament attachments (on the femur 1.9mm anterior and 3.8mm distal to the adductor tubercle).
5	Medial Soft Tissue Restraints in Lateral Patellar Instability and Repair	Hautamaa [16]	Study demonstrating that the medial patellofemoral ligament was the major medial ligamentous stabilizer of the patella.
6	Radiographic Landmarks for Femoral Tunnel Placement in Medial Patellofemoral Ligament Reconstruction	Schöttle [13]	Study characterizing the radiographic landmarks for medial patellofemoral ligament insertion.
7	Acute Dislocation of the Patella - A Correlative Pathoanatomic Study	Sallay [20]	Study characterizing the pathoanatomy associated with patellar dislocation and reporting the preliminary results of early surgical repair.
8	Acute Lateral Patellar Dislocation at MR Imaging: Injury Patterns of Medial Patellar Soft-Tissue Restraints and Osteochondral Injuries of the Inferomedial Patella	Elias [21]	Study assessing magnetic resonance imaging findings after acute lateral patellar restraints with emphasis on medial patella restraints and describing a medial patellar impaction deformity.
9	Clinical and Radiological Outcome of Medial patellofemoral Ligament Reconstruction with a	Schöttle [22]	Study assessing clinical and radiological outcome after linear MPFL reconstruction

	Semitendinosus Autograft for Patella Instability		using an ipsilateral Semitendinosus tendon autograft after a 4-year follow-up.
10	Technical Errors During Medial Patellofemoral Ligament Reconstruction Could Overload Medial Patellofemoral Cartilage - A Computational Analysis	Elias [19]	Study analyzing how errors in graft length and position in medial patellofemoral ligament reconstruction affect the force and pressure applied to the ligament cartilage.

- 107 MPFL, medial patellofemoral ligament; MR, magnetic resonance
- 108 *Time Distribution of Publications*
- 109 The year of publication ranged from 1992 to 2015, and the majority of the articles were
- published in the 2000s (66%). Articles published before 2000 and those published after 2010
- accounted for 14% and 20%, respectively (**Figure II**).
- 112 The years with the greatest number of articles were 2005 (n=5) and 2006 (n=5), followed
- by 2000 (n=4). The citation density revealed a slight trend toward increasing frequency of
- 114 citations for the more recent articles (**Figure III**).
- 115 *Country of Origin*
- 116 The top 50 most cited articles originated from 12 countries. The country with the greatest
- number of published articles was the United States (n=19), followed by Japan (n=10), Germany
- 118 (n=5), Brazil and England (n=4 each). Denmark contributed 3 articles, whereas Canada,
- 119 Australia, Finland, Greece, and Switzerland each contributed 1 article. In the United States, Ohio
- 120 was the state that published the most articles (n=4), followed by Utah (n=3) and California (n=2).
- 121 New York, Minnesota, Michigan, Louisiana, Indiana, Colorado, Alabama, Texas, Oregon, and
- 122 Massachusetts all had 1 article in the list.

- 124 *Distribution of Journals*
- 125 All of the top-cited articles were published in 14 journals, led by *American Journal of*
- 126 Sports Medicine (n=17), followed by Arthroscopy (n=9), Knee Surgery, Sports Traumatology,
- 127 *Arthroscopy* (n=6), and *The Knee* (n=4). The remainder are described in **Table III**.
- 128
- **Table III.** Journals in Which the Top 50 Most Cited Articles Were Published

Journal	Country	Impact Factor (2021)	No. of Articles	No. of Citations
American Journal of Sports Medicine	USA	7.01	17	4,010
Arthroscopy - The Journal of Arthroscopic and Related Surgery	USA	5.97	9	1,387
Knee Surgery, Sports Traumatology, Arthroscopy	Germany	4.11	6	1,094
The Knee	UK	2.42	4	707
Journal of Bone and Joint Surgery - American Volume	USA	6.56	3	1,154
Journal of Bone and Joint Surgery - British Volume	UK	3.31	3	497
Acta Orthopaedica Belgica	Belgium	0.35	1	121
Clinical Orthopaedics and Related Research	USA	4.76	1	384
International Orthopaedics	Germany	3.48	1	200
Journal of Computer Assisted Tomography	USA	2.08	1	135
Medicine and Science in Sports and Exercise	USA	6.29	1	148

Radiographics	USA	6.31	1	166
Radiology	USA	29.15	1	258
The American Journal of Knee Surgery	USA	2.50	1	132

130 *Distribution of Institutions*

131 The most cited research institution was the Kawasaki Municipal Hospital (n=6), followed

by Mount Carmel Health System and the University of Utah (n=3 each). The Imperial College of

133 London, Hiroshima University, Aarhus University, University of Toronto, and the Federal

134 University of Rio Grande do Sul each contributed 2 articles. The remaining institutions,

according to the number of the most cited articles, are listed in **Figure IV**.

136 High-Impact Authors

137 A total of 6 first authors have published ≥ 2 publications within the top 50 most cited

138 articles (**Table IV**). The most prolific first author was E. Nomura (n=7) from Kawasaki

139 Municipal Hospital and later from the University of Fukui School of Medicine.

Table IV. Authors with 2 or more cited articles.

Author	No. of Articles	Institution	Rank of Articles	Total No. of Citations
E. Nomura	7	Kawasaki Municipal Hospital, Kawasaki, Kanagawa, Japan	16, 17, 18, 34, 39, 43, 44	1,116
R. Steensen	3	Mount Carmel Health System	15, 28, 46	480
P. Schöttle	2	Free & Humboldt University, Berlin, Germany	6, 9	616

S. Christiansen	2	Aarhus University Hospital, Aarhus, Denmark	19, 22	351
M. Deie	2	Hiroshima University, Hiroshima, Japan	21, 26	325
J. Gomes	2	Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil	27, 29	299

141 *Distribution of Themes*

142 The top-cited articles focused on 3 themes: cadaveric/anatomic (n=18), clinical (n=25),

143 and radiologic (n=7). Cadaveric/anatomic articles had the highest average number of citations at

144 271.4 \pm 153.9, followed by radiologic (173.3 \pm 53.0) and clinical articles (171.8 \pm 102.4). The

total number of citations for each theme is showcased in **Figure V**.

146 *Article Trends*

147 When plotting the trends of the three articles themes: anatomical/epidemiologic, clinical, and

radiologic, a trend arose that showcased clinically focused articles were more likely to be

included in the top 50 list in recent years compared to the other two. (Figure VI).

150 *Distribution of Keywords*

151 Keywords of each article (n=47) were analyzed to determine the top 10 most common

152 keywords. The most common keyword was "medial patellofemoral ligament" (53% of papers),

- 153 followed by "patella" (23%), "patellar dislocation" (17%), "knee" (17%), "dislocation" (17%),
- 154 "reconstruction" (15%), "dislocation" (13%), "recurrent dislocation" (13%), "MPFL

155 Reconstruction" (11%), and "joint" (9%).

156 **Discussion:**

In the present study, we utilized bibliometric indicators to provide insight into the reach of publications surrounding the medial patellofemoral ligament. Importantly, these results revealed the most cited articles that have influenced the evolution of MPFL literature and treatments. By identifying and distinguishing important aspects of these articles, we hoped to uncover the historical pathway that led to current articles and guidelines today.

162 The top 50 articles in the field of MPFL were cited a mean of 208 times, comparable to 163 the mean in other fields such as ACL reconstruction [5], spine deformity [23], or cervical spine surgery [24]. Many of the articles were published in the 2000s (66%) and 2010s (20%) with only 164 165 14% percent published from 1990-1999. This draws on the speculation that articles gain value 20 years after the date of publication [25]. An important confounding effect is that older articles are 166 cited more frequently, whereas new articles may not influence writers as dramatically. Many 167 article writers use references from other papers to guide their review of the literature, therefore 168 recently published articles have a disadvantage due to inadequate time to accumulate citations 169 [5]. When articles are ranked by ACY, there is a shift in this trend, revealing more frequent 170 citing of recent articles. The majority of top 10 articles by ACY are published before 2010 with a 171 172 mean number of citations of 372. It has been discussed previously that ACY may be more 173 reflective of the impact of an article's future citation success [5]. This is supported by the idea that an article with a high number of citations, but a low ACY has accumulated citations 174 overtime, but is no longer a strong influence in the literature [5]. 175

Many of the journals (57%) and articles (38%) in this paper are associated with the United States (US). The explanation for this phenomenon is three-fold. The US is a leader in publishing, US authors usually publish in US journals and cite US articles, and US associated reviews preferentially accept US-based articles.[26] The most popular journal in the 50 most

cited articles was *AJSM*, with 17 articles published in the journal for a total of 4,010 citations. *AJSM* is a well-known and respected journal which may explain the extent of its influence. Its impact factor was most recently reported as 7.01 (2021). Additionally, this search revealed the most popular research themes. The most common research theme found in our study was clinical (n=25).

185 Cadaveric/anatomic articles had the highest average number of citations when compared to clinical or radiologic articles. These articles are important in discussing the basic science, 186 osseous landmarks, and relationships between structures to guide the diagnosis and treatment in 187 188 MPFL injury. Then, throughout the years, clinical articles became more prevalent in the top 50 list, showcasing the progression of MPFL literature. Over the past two decades, the field of 189 190 patellofemoral instability has changed vastly [27]. There has been a shift from anatomic studies to biomechanical ones, evaluating surgical techniques. For example, in 2007, Schöttle et al. 191 established Schöttle's point, which is a radiographic landmark for intraoperative femoral MPFL 192 insertion [13]. As anatomic characteristics became well understood, a shift into more clinical 193 outcome-based articles was seen [27]. In 2013, Fulkerson and Edgar described the medial 194 quadriceps tendon-femoral ligament (MOTFL), which is a prominent anatomic structure 195 196 extending from the deep quadriceps tendon to the adductor tubercle region. Reconstruction of this structure has shown to stabilize the patellofemoral joint without drilling into the patella, 197 198 resulting in a reduced risk of patellar fracture compared to MPFL reconstruction [28]. Later in 199 2017, Tanaka published a review on the Medial Patellofemoral Complex (MPFC). This was defined as the static medial stabilizer of the patella located in layer II of the medial knee, deep to 200 the vastus medialis obliquus (VMO), 0.44 ± 0.19 mm at its midpoint [29]. It consists of both the 201 202 MPFL and MQTFL. As athletes are at an increased risk for patellar dislocations [1], the return-

to-play (RTP) has been reported to be 85% following MPFC surgery. However, only 68% return
to the same level of play at an average of 7 months [30].

Overall, the present study can aid future researchers in constructing ideas that build upon these topics to continuously improve the MPFL literature. With social determinants of health (SDOH) becoming a hot-button topic in recent years, future research can be performed to not only determine anatomic risk factors for failure following reconstruction, but patient demographics as well.

This study was not without limitations. Self-citation was not accounted for and excluded. Also, since only original articles were included, there were systematic reviews and guidelines that had more citations than some of the included articles that did not get analyzed. Next, a "snowball" effect has been demonstrated in previous literature, which states that authors prefer to cite articles that already have a large number of citations [5,31]. Finally, since majority of articles were research themes were not clinical, level of evidence was not collected and analyzed.

216 **Conclusion:**

The current study showcased that the MPFL is a growing area of research. The most impactful articles relate to cadaveric/anatomic articles; however, over time, clinical articles became more prevalent.

220 **Conflicts of Interest:** None

221

222

223

224

226 **References:**

- 2271.Krebs C, Tranovich M, Andrews K, et al. The medial patellofemoral ligament: Review of the228literature. J Orthop. 2018 Jun;15(2):596-599.
- Kluczynski MA, Miranda L, Marzo JM. Prevalence and Site of Medial Patellofemoral Ligament
 Injuries in Patients With Acute Lateral Patellar Dislocations: A Systematic Review and Meta analysis. Orthop J Sports Med. 2020 Dec;8(12):2325967120967338.
- Ji G, Wang S, Wang X, et al. Surgical versus Nonsurgical Treatments of Acute Primary Patellar
 Dislocation with Special Emphasis on the MPFL Injury Patterns. J Knee Surg. 2017
 May;30(4):378-384.
- Csintalan RP, Latt LD, Fornalski S, et al. Medial patellofemoral ligament (MPFL) reconstruction
 for the treatment of patellofemoral instability. J Knee Surg. 2014 Apr;27(2):139-46.
- Tang N, Zhang W, George DM, et al. The Top 100 Most Cited Articles on Anterior Cruciate
 Ligament Reconstruction: A Bibliometric Analysis. Orthop J Sports Med. 2021
 Feb;9(2):2325967120976372.
- Allahabadi S, Feeley SE, Lansdown DA, et al. Influential Articles on Pediatric and Adolescent
 Anterior Cruciate Ligament Injuries: A Bibliometric Analysis. Orthop J Sports Med. 2021
 Jun;9(6):23259671211010772.
- Kumar A, Sinha S, Arora R, et al. The 50 Top-Cited Articles on the Posterior Cruciate Ligament: A
 Bibliometric Analysis and Review. Orthop J Sports Med. 2021 Nov;9(11):23259671211057851.
- Alomar AZ, Al Jedia KM, Shadid AM, et al. Concurrent Research Around Meniscus: A Bibliometric
 Analysis and Review of the Top Fifty Cited Papers. Indian J Orthop. 2022 May;56(5):785-796.
- Soytas RB. A Bibliometric Analysis of Publications on COVID-19 and Older Adults. Ann Geriatr
 Med Res. 2021 Sep;25(3):197-203.
- Fithian DC, Paxton EW, Stone ML, et al. Epidemiology and natural history of acute patellar
 dislocation. Am J Sports Med. 2004 Jul-Aug;32(5):1114-21.
- 25111.LaPrade RF, Engebretsen AH, Ly TV, et al. The anatomy of the medial part of the knee. J Bone252Joint Surg Am. 2007 Sep;89(9):2000-10.
- 25312.Desio SM, Burks RT, Bachus KN. Soft tissue restraints to lateral patellar translation in the human254knee. Am J Sports Med. 1998 Jan-Feb;26(1):59-65.
- Schottle PB, Schmeling A, Rosenstiel N, et al. Radiographic landmarks for femoral tunnel
 placement in medial patellofemoral ligament reconstruction. Am J Sports Med. 2007
 May;35(5):801-4.
- Steensen RN, Bentley JC, Trinh TQ, et al. The prevalence and combined prevalences of anatomic
 factors associated with recurrent patellar dislocation: a magnetic resonance imaging study. Am J
 Sports Med. 2015 Apr;43(4):921-7.
- 26115.Conlan T, Garth WP, Jr., Lemons JE. Evaluation of the medial soft-tissue restraints of the262extensor mechanism of the knee. J Bone Joint Surg Am. 1993 May;75(5):682-93.
- 16. Hautamaa PV, Fithian DC, Kaufman KR, et al. Medial soft tissue restraints in lateral patellar
 instability and repair. Clin Orthop Relat Res. 1998 Apr(349):174-82.
- Wagner D, Pfalzer F, Hingelbaum S, et al. The influence of risk factors on clinical outcomes
 following anatomical medial patellofemoral ligament (MPFL) reconstruction using the gracilis
 tendon. Knee Surg Sports Traumatol Arthrosc. 2013 Feb;21(2):318-24.
- Parikh SN, Nathan ST, Wall EJ, et al. Complications of medial patellofemoral ligament
 reconstruction in young patients. Am J Sports Med. 2013 May;41(5):1030-8.
- Elias JJ, Cosgarea AJ. Technical errors during medial patellofemoral ligament reconstruction
 could overload medial patellofemoral cartilage: a computational analysis. Am J Sports Med.
 2006 Sep;34(9):1478-85.

273 274	20.	Sallay PI, Poggi J, Speer KP, et al. Acute dislocation of the patella. A correlative pathoanatomic study. Am J Sports Med. 1996 Jan-Feb;24(1):52-60.
274	21.	Elias DA, White LM, Fithian DC. Acute lateral patellar dislocation at MR imaging: injury patterns
276	21.	of medial patellar soft-tissue restraints and osteochondral injuries of the inferomedial patella.
277		Radiology. 2002 Dec;225(3):736-43.
278	22.	Schottle PB, Fucentese SF, Romero J. Clinical and radiological outcome of medial patellofemoral
279		ligament reconstruction with a semitendinosus autograft for patella instability. Knee Surg Sports
280		Traumatol Arthrosc. 2005 Oct;13(7):516-21.
281	23.	Zhang Y, Wumaier M, He D, et al. The 100 Top-Cited Articles on Spinal Deformity: A Bibliometric
282		Analysis. Spine (Phila Pa 1976). 2020 Feb 15;45(4):275-283.
283	24.	Skovrlj B, Steinberger J, Guzman JZ, et al. The 100 Most Influential Articles in Cervical Spine
284		Surgery. Global Spine J. 2016 Feb;6(1):69-79.
285	25.	Baltussen A, Kindler CH. Citation classics in anesthetic journals. Anesth Analg. 2004
286		Feb;98(2):443-451.
287	26.	Campbell FM. National bias: a comparison of citation practices by health professionals. Bull Med
288		Libr Assoc. 1990 Oct;78(4):376-82.
289	27.	Agarwalla A, Yao K, Darden C, et al. Assessment and Trends of the Methodological Quality of the
290		Top 50 Most Cited Articles on Patellar Instability. Orthop J Sports Med. 2021
291	20	Jan;9(1):2325967120972016.
292	28.	Fulkerson JP, Edgar C. Medial quadriceps tendon-femoral ligament: surgical anatomy and reconstruction technique to prevent patella instability. Arthrosc Tech. 2013 May;2(2):e125-8.
293 294	20	Tanaka MJ. The Anatomy of the Medial Patellofemoral Complex. Sports Med Arthrosc Rev. 2017
294 295	29.	Jun;25(2):e8-e11.
295	30.	Lampros RE, Wiater AL, Tanaka MJ. Rehabilitation and Return to Sport After Medial
297	50.	Patellofemoral Complex Reconstruction. Arthrosc Sports Med Rehabil. 2022 Jan;4(1):e133-e140.
298	31.	Choong MK, Galgani F, Dunn AG, et al. Automatic evidence retrieval for systematic reviews. J
299	0	Med Internet Res. 2014 Oct 1;16(10):e223.
300		
301	Figure	I. Flowchart Illustrating the Procedure of Allocation of Articles
302	Figure	e II. Time Distribution of the Top 50 Cited Articles
303	Figure	e III. Time Dependent Citation Density Trend
304	Figure	e IV. Institutional Distribution of All Articles (Number of Articles at Bottom of Bar)
305	Figure	v. Theme and Citation Distribution of Articles
306	Figure	VI. Trend of Articles Throughout the Years
	0	

312 Appendix:

- **Table I.** Rank, title, country of Origin, ACY, and citations for each of the top 50 most cited
- 314 MPFL articles.
- 315

Rank	Paper	Country	ACY	No. of Citations
1	Epidemiology and Natural History of Acute Patellar Dislocation	USA (CA)	33.53	637
2	Soft Tissue Restraints to Lateral Patellar Translation in the Human Knee	USA (UT)	24.60	615
3	Evaluation of the Medial Soft-Tissue Restraints of the Extensor Mechanism of the Knee	USA (AL)	18.50	555
4	The Anatomy of the Medial Part of the Knee	USA (MN)	29.87	478
5	Medial Soft Tissue Restraints in Lateral Patellar Instability and Repair	USA (CA)	15.36	384
6	Radiographic Landmarks for Femoral Tunnel Placement in Medial Patellofemoral Ligament Reconstruction	Germany	23.50	376

7	Acute Dislocation of the Patella - A Correlative Pathoanatomic Study	USA (IN)	13.63	368
8	Acute Lateral Patellar Dislocation at MR Imaging: Injury Patterns of Medial Patellar Soft-Tissue Restraints and Osteochondral Injuries of the Inferomedial Patella	Canada	12.29	258
9	Clinical and Radiological Outcome of Medial patellofemoral Ligament Reconstruction with a Semitendinosus Autograft for Patella Instability	Switzerland	13.33	240
10	Technical Errors During Medial Patellofemoral Ligament Reconstruction Could Overload Medial Patellofemoral Cartilage - A Computational Analysis	USA (CO)	14.06	239
11	The Anatomy and Reconstruction of the Medial Patellofemoral Ligament	Australia	11.95	239
12	Medial Patellofemoral Ligament Reconstruction in Patients with Lateral Patellar Instability and Trochlear Dysplasia	USA (MI)	13.35	227

13	Tensile Strength of the Medial Patellofemoral Ligament Before and After Repair or Reconstruction	England	12.28	221
14	Results of Medial Patellofemoral Ligament Reconstruction in the Treatment of Patellar Dislocation	USA (LA)	9.64	212
15	The Anatomy and Isometry of the Medial Patellofemoral Ligament - Implications for Reconstruction	USA (OH)	11.00	209
16	Anatomical Analysis of the Medial Patellofemoral Ligament of the Knee, Especially the Femoral Attachment	Japan	11.17	201
17	Classification of Lesions of the Medial Patello- Femoral Ligament in Patellar Dislocation	Japan	8.33	200
18	Medial Patellofemoral Ligament Restraint in Lateral Patellar Translation and Reconstruction	Japan	8.52	196
19	Reconstruction of the Medial Patellofemoral Ligament with Gracilis Tendon Autograft in Transverse Patellar Drill Holes	Denmark	12.27	184

20	Cadaveric Study on Static Medial Patellar Stabilizers: The Dynamizing Role of the Vastus Medialis Obliquus on Medial Patellofemoral Ligament	Greece	10.76	183
21	A Long-Term Follow-up Study After Medial Patellofemoral Ligament Reconstruction Using the Transferred Semitendinosus Tendon for Patellar Dislocation	Japan	9.50	171
22	Isolated Repair of the Medial Patellofemoral Ligament in Primary Dislocation of the Patella: A Prospective Randomized Study	Denmark	11.13	167
23	MR Imaging of Patellar Instability: Injury Patterns and Assessment of Risk Factors	Germany	12.77	166
24	Immediate Surgical Repair of the Medial Patellar Stabilizers for Acute Patellar Dislocation - A Review of Eight Cases	USA (NY)	7.00	161
25	The Medial Patellofemoral Ligament: A Dissection Study	Denmark	7.38	155

26	Reconstruction of the Medial Patellofemoral Ligament for the Treatment of Habitual or Recurrent Dislocation of the Patella in Children	Japan	7.70	154
27	Medial Patellofemoral Ligament Reconstruction with Semitendinosus Autograft for Chronic Patellar Instability: A Follow-up Study	Brazil	7.84	150
28	The Prevalence and Combined Prevalences of Anatomic Factors Associated with Recurrent Patellar Dislocation a Magnetic Resonance Imaging Study	USA (OH)	18.63	149
29	Medial Patellofemoral Ligament Reconstruction for Recurrent Dislocation of the Patella - A Preliminary-Report	Brazil	4.81	149
30	Incidence and Risk Factors of Acute Traumatic Primary Patellar Dislocation	Finland	9.87	148

31	Traumatic Patellar Dislocation Nonoperative Treatment Compared with MPFL Reconstruction Using Patellar Tendon	Brazil	13.18	145
32	The Influence of Risk Factors on Clinical Outcomes Following Anatomical Medial Patellofemoral Ligament (MPFL) Reconstruction Using the Gracilis Tendon	Germany	14.40	144
33	Conservative Versus Surgical Treatment for Repair of the Medial Patellofemoral Ligament in Acute Dislocations of the Patella	Brazil	10.29	144
34	A Mid-Term Follow-up of Medial Patellofemoral Ligament Reconstruction Using an Artificial Ligament for Recurrent Patellar Dislocation	Japan	6.17	142
35	Complications of Medial Patellofemoral Ligament Reconstruction in Young Patients	USA (OH)	14.10	141

36	Magnetic Resonance Imaging Characteristics of the Medial Patellofemoral Ligament Lesion in Acute Lateral Patellar Dislocations Considering Trochlear Dysplasia, Patella Alta, and Tibial Tuberosity- Trochlear Groove Distance	Germany	10.46	136
37	Medial Patellofemoral Ligament Injury Following Acute Transient Dislocation of the Patella: MR Findings with Surgical Correlation in 14 Patients	USA (TX)	6.14	135
38	Biomechanical Evaluation of Lateral Patellar Dislocations.	USA (UT)	5.28	132
39	Correlation of MR Imaging Findings and Open Exploration of Medial Patellofemoral Ligament Injuries in Acute Patellar Dislocations	Japan	6.19	130
40	The Anatomy of the Medial Patellofemoral Ligament	USA (OR)	9.21	129
41	Isolated Medial Patellofemoral Ligament Reconstruction for Recurrent Patellar Dislocation	England	8.93	125

42	The Medial Patellofemoral Ligament Location of Femoral Attachment and Length Change Patterns Resulting from Anatomic and Nonanatomic Attachments	England	11.27	124
43	Long-Term Follow-up and Knee Osteoarthritis Change After Medial Patellofemoral Ligament Reconstruction for Recurrent Patellar Dislocation	Japan	7.75	124
44	Hybrid Medial Patellofemoral Ligament Reconstruction Using the Semitendinous Tendon for Recurrent Patellar Dislocation: Minimum 3 Years' Follow-up	Japan	7.24	123
45	Medial Patellofemoral Ligament Reconstruction a Prospective Outcome Assessment of a Large Single Centre Series	England	11.09	122
46	A Simple Technique for Reconstruction of the Medial Patellofemoral Ligament Using a Quadriceps Tendon Graft	USA (OH)	6.78	122
47	Surgical Management of Articular Cartilage Defects of the Knee	USA (MA)	9.31	121

48	Clinical Results of Isolated Reconstruction of the Medial Patellofemoral Ligament for Recurrent Dislocation and Subluxation of the Patella.	Japan	7.12	121
49	The Effect of Reconstruction of the Medial Patellofemoral Ligament on Patellar Tracking	USA (UT)	5.26	121
50	Anatomic Reconstruction of the Medial Patellofemoral Ligament in Children and Adolescents with Open Growth Plates Surgical Technique and Clinical Outcome	Germany	12.00	120