University of St. Thomas, Minnesota
UST Research Online

The effects of swimming on bone density in female collegiate swimmers

M. Miller
S. Kojetin
L. M. Scibora

Follow this and additional works at: https://ir.stthomas.edu/mfcoh_hes_pub

This Article is brought to you for free and open access by the Department of Health and Exercise Science at UST Research Online. It has been accepted for inclusion in Health and Exercise Science Faculty/Staff Publications by an authorized administrator of UST Research Online. For more information, please contact asle4660@stthomas.edu.

 second pulse train on a relaxed muscle to measure peripheral fatigue. Changes in strength and in metabolic measures were analyzed with repeated measures ANOVA.

 $\mathrm{p}=0.322$]. Substrate use and RPEs did not differ between sexes.
 resistant than men, those differences might not be apparent until a greater duration of running is engaged in, e.g. ultramarathon distances.

1590 Board \#4 May 30 1:30 PM-3:30 PM
The Effects Of Swimming On Bone Density In Female Collegiate Swimmers.
Margaret Miller, Sarah Kojetin, Lesley M. Scibora. University of St. Thomas, St. Paul, MN.
(No relationships reported)
 (DXA)-measured hip and lumbar spine sites. However, little research has focused on skeletal sites stressed during swimming such as the upper arm.
PURPOSE: To determine potential site-specific bone strength adaptations at the humerus among collegiate swimmers compared to sedentary controls.

 (SSIp, mm^{3}) were measured at the midshaft (66%) tibia, humerus (50%), and radius 33% sites. Using DXA areal BMD (g/cm ${ }^{2}$) was assessed at the hip, humerus and radius sites.

Table 1: pQCT-derived Outcomes.

	Swim	Control	Significance ($\boldsymbol{p}<\mathbf{0 . 0 5 \text {) }}$
Radius 33\%			
Cortical Area (CoA, mm^{2})	78.4 ± 3.4	85.0 ± 3.6	0.215
Cortical Density (vBMD, mg/cm ${ }^{3}$)	1191.3 ± 8.6	1163.6 ± 9.1	0.051
Cortical Thickness (CoTh, mm)	3.1 ± 0.1	3.5 ± 0.1	0.097
SSIp (mg/mm ${ }^{4}$)	215.4 ± 13.2	227.0 ± 14.0	0.574
Humerus 50\%			
Cortical Area (CoA, mm^{2})	178.0 ± 6.8	172.5 ± 7.2	0.596
Cortical Density (vBMD, mg/cm ${ }^{3}$)	1170.5 ± 12.3	1173.0 ± 13.0	0.890
Cortical Thickness (CoTh, mm)	4.1 ± 0.1	4.0 ± 0.2	0.856
SSIp (mg/mm ${ }^{4}$)	886.0 ± 55.2	868.5 ± 58.4	0.835
Tibia 66\%			
Cortical Area (CoA, mm ${ }^{2}$)	270.1 ± 13.5	313.2 ± 14.2	0.045
Cortical Density (vBMD, mg/ cm^{3})	1074.4 ± 8.0	1143.1 ± 8.4	0.000
Cortical Thickness (CoTh, mm)	4.6 ± 0.2	5.0 ± 0.2	0.179
SSIp (mg/mm ${ }^{4}$)	2121.5 ± 134.2	2178.6 ± 134.3	0.764
Tibia 4\%			
Total Area (ToA, mm ${ }^{2}$)	139.4 ± 25.4	141.6 ± 26.9	0.953
Total Density (vBMD, mg/cm ${ }^{3}$)	507.0 ± 35.5	538.1 ± 38.5	0.571

 not yet measured.

1591 Board \#5 May 30 1:30 PM-3:30 PM

Sex Differences in Recovery from Extreme and Severe Intensity Exercise

Andrew M. Alexander, Shane M. Hammer, Kaylin D. Didier, Lillie M. Huckaby, Camryn N. Webster, Thomas J. Barstow, FACSM. Kansas State University, Manhattan, KS.
Email: andrewa06@ksu.edu
(No relationships reported)

 potentiated twitch force, Q_{tw}) had significantly recovered within 90 s following extreme intensity exercise and would otherwise be missed using contemporary protocols.
 those measured 2 min into recovery in both men and women, while remaining suppressed following severe exercise.

 two MVC, VA, and $Q_{t w}$ were averaged and compared to the first measurement immediately following task failure using paired t-tests.

 differences may not be evident following severe exercise.
 suggest that the measurements typically used to represent the condition of the muscle are taken too far post-exercise such that much of the recovery of the muscle has already occurred, especially following extreme exercise.

