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Abstract

Concurrency Control in Event-Driven Programs

by

Yonglun Li

The University of Wisconsin–Milwaukee, 2023
Under the Supervision of Professor Tian Zhao

Functional reactive programming (FRP) is a programming paradigm that utilizes the

concepts of functional programming and time-varying data types to create event-driven

applications. In this paradigm, data types in which values can change over time are

primitives and can be applied to functions. These values are composable and can be

combined with functions to create values that react to changes in values from multiple

sources. Events can be modeled as values that change in discrete time steps. Computation

can be encoded as values that produce events, with combination operators, it enables us

to write concurrent event-driven programs by combining the concurrent computation as

events. Combined with the denotational approach of functional programming, we can

write programs in a concise manner.

The style of event-driven programming has been widely adopted for developing graphical

user interface applications, since they need to process events concurrently to stay respon-

sive. This makes FRP a fitting approach for managing complex state and handling of

events concurrently.

In recent years, real-time systems such as IoT (internet of things) applications have

become an important field of computation. Applying FRP to real-time systems is still

an active area of research. For IoT applications, they are commonly tasked to perform

data capturing in real time and transmit them to other devices. They need to exchange

data with other applications over the internet and respond in a timely manner. The data

needs to be processed, for simple analysis or more computation intensive work such as

machine learning. Designing applications that perform these tasks and remain efficient

ii



and responsive can be challenging.

In this thesis, we demonstrate that FRP is a suitable approach for real-time applications.

These applications require soft real-time requirements, where systems can tolerate tasks

that fail to meet the deadline and the results of these tasks might still be useful. First,

we design the concurrency abstractions needed for supporting asynchronous computation

and use it as the basis for building the FRP abstraction. Our implementation is in

Haskell, a functional programming language with a rich type system that allows us to

model abstractions with ease. The concurrency abstraction is based on some of the

ideas from the Haskell solution for asynchronous computation, which elegantly supports

cancelation in a composable way.

Based on the Haskell implementation, we extend our design with operators that are more

suitable for building web applications. We translate our implementation to JavaScript

as it is more commonly used for web application development, and implementing the

RxJS interface. RxJS is a popular JavaScript library for reactive programming in web

applications. By implementing the RxJS interface, we argue that our programming model

implemented in Haskell is also applicable in mainstream languages such as JavaScript.
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Chapter 1

Introduction

Functional reactive programming (FRP) is a programming paradigm that utilizes a

denotational approach for creating programs with time-varying values. To explain it in a

simple way, time-varying values can be understood as values that change over time. They

are primitive constructs in FPR and are composable in the way that the time-varying

values are represented in the continuous time domain, thus they can be composed and

transformed without losing precision by prematurely sampling the values. It is these

properties of composability and denotational that make this an interesting approach.

FRP was first introduced in Fran [16] in 1997 for creating animations and graphical

user interfaces (GUI). Over the years, it has also been applied to different fields of ap-

plications such as game development [38, 12], data processing [4], real-time systems [55],

distributed systems [35, 41, 42], and are very much active in research. One of our goals

in this thesis is to apply the FRP approach for creating real-time IoT applications. In

addition, we also adapt our design for real-time Web applications. There are existing

programming language extensions and libraries inspired by the FRP approach that is

popular in Web development, such as FlapJax and RxJS, to provide a pattern for writ-

ing asynchronous programs. These libraries focus on providing an abstraction for better

concurrency control because they are difficult to program correctly as the flow of the

programs does not follow a linear execution. However, they deviate from the concepts

of the classic FRP and introduce additional concepts that focus on discrete changes in

values and the propagation of events. With side effects in asynchronous computation, it

becomes difficult to understand the precise meaning of the resulting program. As such,

they have often been complained about as being difficult to program and debug.
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1.1 Functional Reactive Programming (FRP)

FRP is a programming paradigm introduced originally for creating animation and

graphical user interfaces. The concepts of FRP are based on functional programming

and reactive systems where programmers define time-varying values and combine them

to create values that react to changes.

FRP introduces two types of value as primitives, behavior and event. A behavior is

a function of time and Events are occurrences of sorts that happen at certain points in

time.

Behavior a = Time → a

Event a = [(Time, a)]

Behaviors can be thought of as a function of time, representing a value that changes

as time changes. Events represent occurrences of value that occur at some discrete time.

These two types of values are the basis of FPR programs. In addition, a set of operators

are provided for transforming these time-varying reactive values. Behaviors and events

can be composed with operators and combined into a program that can describe complex

behaviors. As an example, an animation of a ball bounding on the ground can be modeled

using a behavior to represent the position of the ball, composed with operators and

functions that simulate applying gravitational force onto the ball. The behavior can be

further composed to create events of the ball touching the ground, reacting to the event

by bounding the ball in the opposite direction. The animation sequence can be generated

by sampling at any time as required for the desired frame rate.

1.2 Variations of FRP

In classic FRP, the original implementation suffers the problem of space-time leak.

This problem occurs because a behavior could depend on past values that accumulate

over time, leading the values to be kept in memory (space leak). Because Haskell fea-

tures lazy evaluation strategy, it may need to evaluate the accumulated computation of
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a behavior at the same time (time leak). A solution to the space-time leak is to use the

Arrows abstraction in the category theory [29]. In this arrowized FRP variant, behaviors

are represented as signal functions and composed using arrowized combinators like func-

tion composition where signals are not first-class values. A well-known implementation

of arrowized FRP is the Yampa [12] library. Another variation of FRP attempts to ad-

dress the space-time leaks problem by limiting the amount of historic data to store and

enforcing strict evaluation when applying certain operators. In Krishnaswami’s [26] FRP,

its implementation uses a strategy to ensure there is no space-time leak by restricting

reactive value that depends on future time to be only evaluated in the future and deleting

all old values when the clock advances.

There are other variations of FPR that tackle different problems in FRP. Traditionally,

FRP has pull-based implementation. Events that derive from behaviors must be polled

periodically in order to detect the occurrence of events. Push-pull FRP [15] implements

an evaluation strategy that combines the push and pull based approach that is driven

by push events instead of depending on direct evaluation by polling. It also abandoned

the notion of continuous time domain, where the reactive value of behaviors changes

discretely. Many other derivatives also take on this semantics as it allows them to have

a simpler and more efficient implementation for data-driven applications.

Other similar push-based FRP such as FrTime [11], Flapjax [34], Scala React [32],

ReactiveX [50], and Elm [13] wait on event occurrences and only run when an event

occurs. Though this provides timely responses to events and avoids re-computation when

events do not occur, there may be glitches where the events propagated from the same

source are not evaluated at the same time. Solutions to this problem usually involve a

central planner that oversees the event dispatching and propagation. For example, in the

original Elm, first-order signals form a graph where a global dispatcher takes events from

their sources and push updates through the graph. In Flapjax, where a dataflow graph

is used, the graph nodes are updated based on topological order. In Monadic FRP [47],

a program runs in a loop where at each iteration, it collects a set of future events, uses

blocking IO to wait for one of the events to occur, and then starts the next iteration with
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Figure 1.1: A program that monitors the current THD and the power of an inverter.
The solid lines represent asynchronous tasks and the dashed lines represent synchronous
tasks.

the event.

1.3 Real-time IoT Applications

Industrial IoT applications commonly perform tasks such as data capturing, stor-

age, analysis, and display. These applications typically involve sensory devices collecting

data and sending them over the network to a centralized platform where it is further

processed for analytics. For example, we could have networks of sensors collecting data

and calculating the Key Performance Indicators (KPI) for users to monitor the health

of the systems. For a more demanding application, the data collected could be used in

algorithms to make prediction on when maintenance is necessary. These algorithms may

take much more time to complete compared to those in simpler applications.

Let us consider an application that monitors the health of an electric system. KPIs

are calculated based on sensors reading from the voltage, current and among other mea-

surements. Some calculations require high frequency of measured data. For example, a

Total Harmonic Distortion (THD) calculation of a current signal requires discrete sam-

pling at a rate that can reproduce the continuous signal. Depending on the input signal

frequency, the amount of data collected could push the network to its limit. In some

cases, the calculation may involve a moving window of historical data, whose window size

can vary per signal.

For this example application, some of the key challenges are the followings. Sensor

data sent over the network needs to be handled in real-time in-order without creating
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excessive back-pressure. If there is a decrease in network speed, it is better to decrease

the sampling rate of signals to adjust to available network bandwidth than to increase

latency or lose data. Many devices could be connected to the system, so requests must

be handled concurrently. In the events of issue being detected, such as a sensor going

offline, we need to dynamically reconfigure the processing pipeline in the KPIs calculation

to handle the failures. Because of these challenges, building IoT applications can be a

complex task.

Chapter 2 will present our FRP based approach for real-time IoT applications. Since

the research of FPR and many of its variations were presented in Haskell, our implemen-

tation will also be presented first in Haskell, along with their JavaScript implementation.

1.4 Concurrent Programming with JavaScript

In practice, IoT applications are often written in high-level programming languages

that support concurrency for both ease of use and performance reasons. JavaScript is a

popular choice because it is simple to learn and widely used in web technologies. However,

JavaScript has many issues. For concurrent programming, the lack of flexible concurrency

control in JavaScript makes it harder to maintain complex programs. Since JavaScript

uses an event loop to drive concurrency, traditionally JavaScript programs have rely

on using callback functions with side effects to program a concurrent application. The

callback functions would be registered to the event loop, so that when an event occurs,

the callback function is executed. Since JavaScript is single-threaded, it has no issue with

race conditions that are common in a true multi-threaded program. However, data race

may still exist when shared states have changed between the execution of the callback

functions. For example, a long-running computation is broken into multiple callback

functions, due to some IO operations. These callback functions are intended to run in

sequence one after another. However, at runtime, the event loop may schedule to execute

some other callbacks when it is in the middle of the sequence of callbacks, potentially

changing the value in the shared state. A simple solution is to use additional variables to
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keep track of the changes in between execution of callback functions. But as the program

becomes more complex, it becomes harder to maintain.

Using many callbacks in the code creates another issue called the callback hell, where

many callbacks are nested inside callbacks. In JavaScript, the solution is to use promise.

The callback function, wrapped inside the promise object, resolves or rejects the Promise

by calling the continuation. Multiple promise objects can be chained to run in sequence,

allowing more modular code. However, there is no way to cancel a promise chain.

1.5 Reactive Extensions for Data Streaming

RxJS, or reactive extension for JavaScript, is a reactive programming library for

JavaScript, which has been integrated into frameworks such as Angular and React to

handle user interface and other asynchronous events. Due to the success of these frame-

works, they popularized the use of RxJS in other event-driven applications. By itself,

RxJS is a library based on the ideas of Observables, an abstraction for synchronous or

asynchronous data streams. Operators are provided to manipulate values in data streams,

or compose to make new Observables. However, RxJS can be difficult to program and

debug due to its declarative and asynchronous nature since the declarative program logic

greatly differs from the usual imperative programming style. Debugging is difficult be-

cause the program logic is also not directly reflected in the control flow logic represented

by the call stack at the break point. Studies have found that users often have to resort

to inserting print statements in the source code [1]. There are tools designed to give a

visual representation of the RxJS program data flow in hope that the programmer can

realize the mistakes they make. But the core issue is that these problems can be solved by

presenting a formal model for the RxJS programs in order fully understand the expected

behavior.

Since JavaScript does not have concurrency abstraction that supports cancellation,

oftentimes programmers are resorted to using a flag in callback functions as a way to syn-

chronize and cancel asynchronous computation. In Chapter 3, we will take our concur-
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rency abstraction implemented in Haskell and re-implement it in JavaScript. In Chapter

4, using the concurrency abstraction in JavaScript, we will extend it by implementing the

RxJS abstraction and present a formal operational semantics for RxJS programs.

1.6 Overview

This thesis is divided into three main chapters as follows:

In Chapter 2, we begin by discussing the problems in developing IoT applications

that motivate us to find a better way to do concurrent programming with soft real-time

capability. The rest of the chapter describes our solution based on the push-push FRP

implemented in Haskell. We designed a reactive stream abstraction for real-time IoT

applications. The design is based on the push and pull model to support efficient and

high-throughput real-time data processing. As part of the implementation in Haskell,

we designed a concurrency model which we will use as a model for transitioning to

a JavaScript implementation. We call this abstraction AsyncM defined in section 2.2.

Finally, there is a brief discussion of the implementation performance and the related

works.

Chapter 3 presents a concurrency abstraction in JavaScript featuring operative can-

cellation. The motivation for needing this abstraction is because JavaScript does not

have a concurrency model that supports cancellation. Our contribution is to provide a

thread-like concurrency model for JavaScript, similar to the Promise abstraction, with

proper support for synchronization and cancellation. The implementation is based on

AsyncM that is implemented in Haskell, adding the ability to pause and resume. An

operational semantics for this abstraction is also described (section 3.4). The runtime

performance and the related works are discussed in the end.

Chapter 4 presents a formal model for RxJS programs. We provide an implementation

of RxJS using the concurrency abstraction in Chapter 3, implementing the core set of

operators in RxJS. We provide an operational semantics for implemented operators, with

reduction rules modeling data flow logic as a subscription graph and reactive changes as

7



event propagation. Through this formal model, we describe how to debug RxJS programs

like traditional debuggers, where we can set break-points and pause execution of the RxJS

program and get back a stack trace that actually reflects the program flow.

The final chapter is the conclusion that summarizes the work done in this thesis and

the plan for future work that could be done.
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Chapter 2

Asynchronous Stream for Reactive IoT Programming

2.1 Introduction

With the proliferation of the web, increasingly more electronics are being attached to

networks. Industrial electrical systems which once required offline controls and displays

are now able to communicate and be controlled through the web. The increased demand

for these IoT devices causes an increased demand in their reliability too. Occasionally

the sole purpose of being connected to the web is to run these reliability checks. We

call these “checks” key performance indicators (KPI). KPIs are calculations performed

on signals (such as voltages or current readings from sensors) which can tell an end-user

the health of the system. As a simple example, a system could perform an efficiency

calculation for an internet-enabled solar panel to determine whether the solar panel is

performing according to the manufacturer’s efficiency rating. If the panel is not, the user

would know to further investigate the device.

However, KPIs are often more complex than just a low sampling-rate point-wise cal-

culation. Some KPIs can push networks to their limits. For example, a total harmonic

distortion (THD) calculation of a current signal requires discrete sampling at a rate that

can reproduce the original continuous signal. Depending on the input signal’s frequency,

it could force the sampling rate to be 10Khz or more. On top of that, the calculation

involves a moving window, whose window size can vary per signal. A complete system

could have many devices each with many signals each with their own KPI calculations. To

monitor the health of such a system, software must be able to notify users of changes to

the KPIs and react to changes with low latency without causing excessive back-pressure.

A monitoring system that runs computations on high frequency data from multiple

devices must be concurrent, reactive, and composable. Concurrency is necessary so that
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one device’s computations do not block another device’s, as well as to keep the latency low

by processing multiple KPIs at once. Reactivity allows the system to scale dynamically in

unstable environments. For example, if devices can set sampling rates on signals, during

a decrease in network speed it would be advantageous to alter the sampling rate of the

signals to avoid back-pressure. Composability is important to ensure program correctness

is preserved when combining KPI processes on different signals.

2.1.1 Challenges of IoT Data Processing

An industrial IoT application runs in real-time with a large amount of data, performs

frequent IO operations, and reacts to asynchronous events. In a workflow where we

monitor the performance of a power inverter by capturing the voltage and current signals

of the inverter, computing KPIs such as the power of the inverter and the THD of the

current, storing the raw signals in a database, and displaying the KPIs on a dashboard.

These tasks have different constraints on their speed and run with different sampling

rates. For example, the signals may be captured and stored at a sampling rate of 20KHz

but down-sampled to 10KHz for power and THD calculation, and the KPIs are displayed

at 60Hz. To reduce latency, some tasks such as data capturing, storage, and display

should be implemented asynchronously. However, there cannot be glitches for tasks such

as inverter power, which must multiply the voltage and current sampled at the same

time. Moreover, if the network and system load increases, some of the tasks may slow

down, which can cause latency, memory leak, or data loss. To deal with this, each task

can update its sampling rate to maintain its speed, which means that some tasks need to

re-sample their input.

2.1.2 Functional Reactive Programming

A reactive programming model is a natural choice to process signals and allow for

dynamic reactions to data. Reactive programming is a broad area of study ranging

from pull-based FRP (e.g. Fran [16], Yampa [12], monadic stream functions [40, 4], FRP

Now [48]), to push-based designs (e.g. Reactive Extensions [50], FrTime [11], Flapjax [34],
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Scala React [32], Elm [13], Monadic FRP [47]), to hybrid model (e.g. push-pull FRP [15]).

However, none of the existing models has the ideal characteristics that are specialized for

IoT data that can scale sampling rates to its environment.

The core concepts of FRP [16] are behaviors and events, where a behavior is a con-

tinuous time function that can switch on events. In the existing FRP designs, the events

and the behaviors have the same time domain. However, in IoT applications, the time

parameter of IoT data analysis is the data time (i.e. when the data is sampled at the

remote sensors, which may be in the arbitrary past if it is historical data), not the sys-

tem time when the network events containing the IoT samples are received by the IoT

programs.

The push-based models [34, 32, 13] use separate mechanisms such as signal graph to

prevent harmful glitches by ensuring global ordering of events. While this works well

for applications such as graphic interface, it is not suitable for IoT data. For example,

the current and voltage data in Figure 1.1 should match their sampling time but the

network events containing the data do not need to be globally ordered. Some pull-based

models [48, 4] use scheduler or type-level clocks to combine asynchronous events and

synchronous data at different sampling rate. However, they do not distinguish event time

from the behavior time, which is necessary for adjusting sampling rate of the data in

response to the changes in network and system load.

2.1.3 Proposed Solution

Our solution is based on the observation that separate stages of IoT computation

can be implemented by either push or pull models, which can be connected by simple

mechanisms like buffering and timeout loops (or clocks). We define push-based streams

for handling system events. The push-streams can be converted to pull-based streams

through buffering. We then use those pull-streams for pure computations such as KPI

calculations. The pull-streams are driven by clocks to form push-streams for asynchronous

computation related to storage, display, and user interface.

With this design, the push-streams do not need to maintain global ordering of the
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asynchronous events since any synchronous computation that they are part of is driven

by the same clock that pulls data from buffers, which ensures their ordering. The pull-

streams do not interact with asynchronous IO directly since they only pull data from

buffers.

Figure 2.1: A use case of the push-pull model, where the solid lines represent push
computation or push/pull conversion, the dashed lines represent pull computation, and
the dotted lines represent dynamic adjustment to the push-streams.

Figure 2.1 illustrates a push-pull implementation of the workflow in Figure 1.1. The

voltage (current) data is captured from the voltage (current) sensor using a push stream,

which sends a stream of requests to capture the data and then emits the responses in the

order in which the requests are sent. The stream sends data requests asynchronously to

reduce latency and can adjust the sampling rate of the requested data to sustain its speed.

The push streams are converted to pull streams (i.e. behaviors) through a buffering and

a stepper function and the pull streams are used to compute power KPI. The conversion

to pull-streams is to ensure that the voltage and current data can be synchronized and

to allow re-sampling since the sampling rate of the push streams may change over time.

The current data is also used to compute the THD of the current. The THD calculation

includes Fourier transform on a sliding window of the current, which is computationally

intensive and may need to increase the stride of the sliding window to maintain real-time

speed. Since the current data for THD and power is pulled independently, the push

stream for current is multicast into two push-streams before converting to pull streams.

The power and THD of current are paired together and sent to display but since the

12



display is asynchronous, the power and THD behavior is converted to a push stream first

with a reactimate function that samples the data around 60Hz. Similar method can be

used to save the data to a storage (the details are omitted).

2.1.4 Contributions

Our design for push-stream is adapted from the Reactive Value abstraction proposed

in push-pull FRP [15]. A reactive value is a value followed by another reactive value that

occurs in the future. Reactive values are composable through a monadic interface. Join-

ing higher-order reactive values requires racing two future reactive values. The original

proposal was to use Haskell’s threads. However, many IoT applications are implemented

in dynamic languages that use event loops for concurrency. Also, our push streams can

be shared through multicast or be converted to pull streams through buffering. This

creates multiple streams with independent controls. A stream may continue to run even

if its results are no longer used, which can cause memory leak.

Thus, our first contribution is a design of a reactive stream that represents future

values using AsyncM, which is a form of continuation monad that implicitly carries a list

of cancellation tokens. This design is lightweight and works with event loops or threads.

Using AsyncM, we can race or cancel future values. If we cancel an AsyncM value, then

any nested AsyncM values are cancelled as well, which is crucial for the dynamic switching

of push-pull streams.

The second contribution is a hybrid push-pull design that supports high-throughput

real-time data processing. The push-streams can make independent adjustment to their

computation parameters to maintain real-time data speed. The pure functions on data

can be implemented as synchronous computation on pull-streams.

For the rest of the chapter, we first introduce the design of a cancellable continua-

tion monad in Section 2.2, which is the foundation for our hybrid push-pull model. In

Section 2.3, we describe the monadic interface of our push-based stream and how it can

be used to process IoT data in real-time. In Section 2.4, we show how pull-based sig-

nals/behaviors can be derived from push-streams, how to run signals/behaviors as push
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streams, how to run computations with independently adjusted sampling rates. We dis-

cuss implementation and performance in Section 2.5 and related work in Section 2.6. The

implementation is at https://github.com/tianzhao/asyncm.

2.2 Cancellable Continuation Monad

To implement an asynchronous and reactive model, we need an abstraction to repre-

sent asynchronous computation. The abstraction should not depend on threads so that it

can be implemented in a single-threaded language like JavaScript. The abstraction should

also support cancellation semantics so that a reactive stream can run independently, be

shareable, and be stopped when it is no longer needed.

Our design is a continuation monad called AsyncM, which supports collaborative can-

cellation. Each AsyncM m runs with a progress value p so that if p is cancelled, m will stop

at a checkpoint where it checks the cancellation status of p. The cancellation semantics

is modular as AsyncM is composed with monadic bind and the progress value is threaded

through the bind operator.

AsyncM is defined in Listing 2.1, which is a function that takes a Progress value and

a continuation callback k, and passes its asynchronous result to k. A Progress value is a

list of cancellation tokens, each of which has the “MVar ()” type, which either is empty

(meaning alive) or has the unit value () (meaning cancelled).

type AsyncM a = Progress -> (a -> IO ()) -> IO ()

type Progress = [MVar ()]

Listing 2.1: The definition of AsyncM

AsyncM is an instance of Functor, Monad, and MonadIO (where an IO action can be lifted

to an AsyncM using liftIO) since it can be defined with monad transformers as follows.

newtype AsyncM a = AsyncM {

runAsyncM :: ReaderT Progress (ContT () IO) a

}

deriving (Functor , Applicative , Monad , MonadIO)

We can run an AsyncM for its side effect by calling it with an empty continuation.
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-- run an AsyncM for its side effect

runM :: AsyncM a -> IO ()

runM m = m [] (\_ -> return ())

For example, the download function defined below downloads an HTTP document

and saves it to a file, but if the download is not completed in 2 seconds, the downloaded

document is not saved.

download :: String -> Path -> AsyncM ()

download url path = do r <- anyM (http url) (timeout 2000)

case r of Left str -> save path str

Right _ -> return ()

timeout :: Int -> AsyncM ()

timeout n = \p k -> do async (threadDelay (n*10^3) >>= k)

return ()

http :: String -> AsyncM ByteString

http url = \p k -> do async (simpleHttp url >>= k)

return ()

save :: Path -> ByteString -> AsyncM ()

save path str = \p k -> writeFile path str >> k ()

The functions for racing and canceling AsyncMs are defined in Listing 2.2. Racing m1

and m2 is just to run them in parallel with a new progress value, where m1 and m2 should

check whether the progress is still alive (with aliveM) and cancel it (with cancelM) before

completion; otherwise the continuation k may be called twice.

The functions for Progress values are also in Listing 2.2. To cancel a Progress value,

we put () in the head token, and to test whether a progress is alive, we check all of that

value’s cancellation tokens so an AsyncM can be cancelled in any context.

anyM :: AsyncM a -> AsyncM b -> AsyncM (Either a b)

anyM m1 m2 = raceM (do x1 <- m1

commitM

return (Left x1))

(do x2 <- m2

commitM

return (Right x2))

commitM = ifAliveM >> cancelM
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raceM :: AsyncM a -> AsyncM a -> AsyncM a

raceM m1 m2 = \p k -> do p' <- consP p

m1 p' k

m2 p' k

ifAliveM :: AsyncM ()

ifAliveM = \p k -> do b <- isAliveP p

if b then k () else return ()

cancelM :: AsyncM ()

cancelM = \p k -> do b <- cancelP p

if b then k () else return ()

-- extend the progress p with a new cancellation token

consP :: Progress -> IO Progress

consP p = (:p) <$> newEmptyMVar

-- test whether a progress is cancelled

isAliveP [] = return True

isAliveP (v:p) =

do b <- isEmptyMVar v

if b then isAliveP p else return False

-- try cancel a progress and return true if succeeds

cancelP :: Progress -> IO Bool

cancelP (v:_) = tryPutMVar v ()

Listing 2.2: Concurrency control with AsyncM.

As another example, download’ attempts to download a document from a list of

alternative URLs and if any download completes in 2 seconds, it is saved, and the program

exits. Otherwise, the next URL in the list is tried.

download ' :: [String] -> Path -> AsyncM ()

download ' [] _ = return ()

download ' (url:rest) path =

do r <- anyM (http url) (timeout 2000)

case r of Left str -> save path str

Right _ -> download ' rest path

Since download’ contains the checkpoint isAliveM, we can stop the entire download

process (e.g. after 5 seconds) as follows.

download '' :: [String] -> Path -> AsyncM ()

download '' lst path =
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anyM (download ' lst path) (timeout 5000)

Note that for a finitely nested anyM, the cost of ifAliveM is not significant compared

to the IO within the anyM. However, if a function is called recursively within an anyM,

the size of the progress grows with each recursive call and the cost of ifAliveM increases

correspondingly. To avoid performance issues, long-running recursive calls should occur

outside of anyM (e.g. the push-stream’s monadic join in Section 2.3.2).

Promises are similar to the continuation monads for concurrency [10, 28], which allow

asynchronous callbacks be chained together without deeply nested scopes. One difference

is that a Promise object, once constructed, starts immediately while continuation monads

are started explicitly.

1 new Promise ((resolve , reject) => {

2 // call resolve with results

3 // or call reject with error

4 )}

A Promise is instantiated with an executor function with two parameters: resolve and

reject. A Promise runs exactly once, which results in a fulfilled state (if resolve is called)

or a rejected state (if reject is called or an exception is thrown). If neither functions are

called, then the Promise object remains in a pending state. Promises can be sequenced

using then method and exceptions can be handled using catch method.

1 p.then(x => { /* returns a promise */ })

2 .catch(e => { /* handle error */ })

Our design is a cancellable concurrency monad with a thread ID. We implement it as

a reader monad that wraps a function that takes a thread ID (of the type Progress) and

returns a Promise object.

1 Progress -> Promise a

We define a JavaScript class AsyncM to represent this concurrency monad.

1 class AsyncM {

2 // run :: Progress -> Promise a

3 constructor (run) { this.run = run; }

4

5 // pure :: a -> AsyncM a

6 static pure = x => new AsyncM (
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7 p => Promise.resolve(x)

8 )

9 // fmap :: AsyncM a -> (a -> b) -> AsyncM b

10 fmap = f => new AsyncM (

11 p => this.run(p).then(f)

12 )

13 //bind :: AsyncM a -> (a->AsyncM b) -> AsyncM b

14 bind = f => new AsyncM (

15 p => this.run(p).then(x => f(x).run(p))

16 )

17 }

The static method pure converts a constant value to an AsyncM that always return

that value. The fmap method applies a function to this AsyncM while the bind method

composes this AsyncM with a function that returns an AsyncM. These methods allow

AsyncMs to be composed so that a Progress value can be passed implicitly through the

AsyncM computation. This style of composition does come with syntactic overhead since

it prevents the direct use of async and await keywords for composing Promises.

1 // lift :: ((a -> ()) -> ()) -> AsyncM a

2 static lift = f => new AsyncM (p =>

3 new Promise ((resolve , reject) => {

4 // cancel by throwing an exception

5 let c = _ => reject("interrupted");

6

7 if (!p.cancelled) { // check thread status

8 p.addCanceller(c); // add a canceller

9

10 // remove canceller when 'f' completes

11 let k = x => {

12 p.removeCanceller(c)

13 resolve(x);

14 }

15 f(k) // starts an asynchronous operation

16 }

17 else c(); // cancel if the thread is dead

18 })

19 )

20

21 static timeout = n => AsyncM.lift(k =>

22 setTimeout(k, n))

An AsyncM that runs an asynchronous operation is constructed with the lift method,
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whose parameter f performs an asynchronous operation such as setTimeout. The lift

method also enables cancellation, which may happen when this AsyncM is blocked on its

call to f . The AsyncM returns a resolved Promise if f completes with a result and it

returns a rejected Promise if it is cancelled. For simplicity, the error handling of f is

not described, which involves passing f a handler h so that if f raises an error e, then h

removes the canceller c and calls the reject function with e.

2.3 Push-Based Reactive Stream

In many classic FRP implementations [16, 15], a behavior is a function from time to

value, and an event source is a list of time/value pairs. A behavior can switch to new

behaviors by reacting to the occurrence of events using a switch operator. Classic FRP

samples the behavior values and detects event occurrences synchronously. However, IoT

sensors are often distributed and synchronous sampling of sensor telemetries can cause

unacceptable delay due to network latency. In addition, the overhead of synchronous

sampling is unsuitable for high-frequency data such as the electrical signals that may

be sampled at 10KHz or more. Thus, an asynchronous implementation is necessary for

reactive IoT computations.

We adopt a push-based design for representing the stream of discrete events (similar

to the Reactive value of push-pull FRP [15]). A value of the type “Stream a” contains

a “Maybe a” value and a future stream “AsyncM (Stream a)”.

-- the reactive stream

data Stream a = Next (Maybe a) (AStream a)

-- the future reactive stream

type AStream a = AsyncM (Stream a)

The Maybe type is used for stream values because not all streams in IoT applications

have sensible initial values when started. For example, if we set the initial value of a

voltage stream to 0, there could be a KPI calculation which divides some signal by the

voltage – producing a division by zero. In this case, Nothing should be the initial value,

which will be skipped in KPI calculation.
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-- a stream that starts with Nothing

repeatS :: AsyncM a -> Stream a

repeatS m = Nothing `Next ` repeatA m

-- an asynchronous stream by repeating m

repeatA :: AsyncM a -> AStream a

repeatA m = do a <- m

ifAliveM -- cancellation checkpoint

return (Just a `Next ` repeatA m)

Listing 2.3: Make a stream by running an AsyncM repeatedly.

We can make a stream with repeatS m (Listing 2.3) that waits for the value of m, checks

the progress status, and then repeats itself. For instance, repeatS (timeout 1000) is a

stream of 1 second intervals.

For the rest of the chapter, we assume there exists a function getData that captures

sensor data by a sampling period in seconds and a duration in milliseconds.

getData :: String -- name of the sensor

-> Int -- capturing time in milliseconds

-> Double -- sampling period in seconds

-> AsyncM [Double] -- resulting data batch

For example, repeatS (getData "Va" 1000 0.0002) is a stream of data batches, where

each batch contains 1000 milliseconds of voltage data with a sampling period of 0.0002

seconds (or 5000 Hz). Streams like this can capture data from multiple sensors without

accumulative delay.

A stream can be run with runS that sends the stream events to a function k which

has side effects (e.g. saving data), where the Nothing events are skipped.

runS :: Stream a -- stream to run

-> (a -> IO ()) -- side -effecting function

-> AsyncM () -- resulting computation

runS (a `Next ` ms) k =

do ifAliveM -- cancellation checkpoint

liftIO (f a) -- run 'k' with event 'a'

s <- ms

runS s k

where -- no effect for the Nothing event

f Nothing = return ()

20



f (Just x) = k x

Listing 2.4: Run a stream with a callback function.

2.3.1 Functor

Stream is a functor, where its fmap method (<$>) recursively applies f to the stream

events. Since a is a Maybe value, “f <$> a” is Nothing if a is Nothing and is “Just (f x)”

if a is “Just x”.

instance Functor Stream where

fmap f (a `Next ` ms) = (f <$> a) `Next ` (fmap f <$> ms)

For example, the code below calculates the KPI of a sensor signal, saves it to a

database, and at the same time, displays it on a user interface. The function kpi calculates

a KPI value for every second of sensor samples, and forkM starts an AsyncM without

waiting for it to complete.

let s = kpi <$> repeatS (getData "Va" 1000 0.0002)

in do forkM (runS s writeDB)

forkM (runS s display)

-- run m with a new progress p' and return p' immediately

forkM :: Async a -> Async Progress

forkM m = \p k -> do -- p' extends p with a new token

p' <- consP

-- discard the result of m

m p' (\_ -> return ())

k p' -- return p' right away

Listing 2.5: Run an AsyncM and return its progress value.

However, this example has a flaw since it captures sensor data and computes its KPI

twice. A better version below avoids recomputing the stream s by broadcasting its values

to an Emitter e, and then events from e are received by two separate streams for saving

to a database and displaying.

let s = kpi <$> repeatS (getData "Va" 1000 0.0002)

in do (e, _) <- broadcast s

let s' = receive e

forkM (runS s' writeDB)

forkM (runS s' display)
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The call “broadcast s” creates a new emitter e, emits each value of s to e, and

returns e, whose values are received by the stream “receive e”. Since we use runS to

broadcast the stream s, the Nothing events in s are skipped.

Both broadcast and receive (Listing 2.6) can be cancelled since both contain the

checkpoint isAliveM (where the checkpoint of broadcast is in runS). Also, broadcast

can be cancelled explicitly through the Progress value it returns.

-- broadcast the events of a stream to an emitter

broadcast :: Stream a -> AsyncM (Emitter a, Progress)

broadcast s = do e <- liftIO newEmitter

-- keep emitting events of s to e

p <- forkM (runS s (emit e))

-- return progress for cancellation

return (e, p)

receive :: Emitter a -> Stream a

receive e = Nothing `Next ` h

where h = do a <- listen e -- listen for event on e

ifAliveM -- cancel checkpoint

return (Just a `Next ` h)

Listing 2.6: Broadcast a stream to an emitter to enable sharing.

The function listen takes an emitter e and returns an AsyncM that yields the future

value of e by registering a callback on e. The call “emit e a” writes a to e, fires any

callbacks registered on e, and then clears the callback list.

data Emitter a = Emitter (MVar a) -- the previous event

(MVar [a -> IO ()]) -- callbacks

newEmitter = pure Emitter <*> newEmptyMVar <*> newMVar []

-- listen for an event on an emitter

listen :: Emitter a -> AsyncM a

listen (Emitter _ kv) =

-- add 'k' to the callback list of the emitter

\_ k -> modifyMVar_ kv (\lst -> return (k : lst))

-- emit an event 'a' to the emitter

emit :: Emitter a -> a -> IO ()

emit (Emitter av kv) a = do

tryTakeMVar av -- clear previous event
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putMVar av a -- set current event

lst <- swapMVar kv [] -- clear callback list

forM_ lst (\k -> k a) -- fire registered callbacks

Listing 2.7: Create, listen, or emit an event to an emitter.

2.3.2 Monad

Stream has a monad interface defined in Listing 2.8, where ‘return x’ is a stream

with just x followed by neverM, which is an AsyncM that never completes. The bind

operator >>= is defined with a join function that flattens a stream of stream.

instance Monad Stream where

-- neverM is an AsyncM that never completes

return x = Just x `Next ` neverM

-- join the Stream of Stream 'fmap k s'

s >>= k = join (fmap k s)

join :: Stream (Stream a) -> Stream a

join (Nothing `Next ` mss) = Nothing `Next ` (join <$> mss)

join (Just s `Next ` mss) = switch s mss

Listing 2.8: Monad interface of reactive stream

The join function has two cases. In the first case, the inner stream is Nothing and

we skip it, and continue to join the future outer stream. In the second case, we use the

switch function in Listing 2.9 to run the inner stream s until the future outer stream

mss emits.

1 switch :: Stream a -> AStream (Stream a) -> Stream a

2 switch (a `Next ` ms) mss = a `Next ` (h ms =<< spawnM mss)

3 where h ms mss =

4 let

5 f (Left ss) = join ss

6 f (Right (a `Next ` ms ')) = a `Next ` h ms' mss

7 in

8 f <$> anyM mss (unscopeM ms)

Listing 2.9: Switch the inner stream when the future outer stream emits.

The switch function races the future inner stream ms with the future outer stream mss

(line 8) using anyM. If mss wins the race with a new outer stream ss, then we abandon
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ms and continue with “join ss” (line 5). If ms wins the race with an event a, then a is

emitted and we continue the race of the next future inner stream ms’ with mss (line 6).

The switch function calls the local function h (defined at line 3) to perform the race.

If ms wins the race, the call reduces to “h ms’ mss” (line 6), where ms’ is the next

future inner stream. Notice that mss is reused in the recursion, which is problematic

for two reasons. First, mss may contain an asynchronous request (e.g. a timeout) that

returns after the response is received. In this case, each run of mss will start a new

request with a new completion time. Second, mss may be a composite AsyncM (e.g.

another race), so restarting it wastes runtime. Therefore, when switch starts, it runs

“h ms =<< spawnM mss” at line 2 to cache the result of mss using “spawnM mss”, which

starts mss and returns an AsyncM that waits for the result of mss.

We race ms and mss in “anyM mss (unscopeM ms)” (line 8), where unscopeM runs ms

with the progress outside anyM. This is needed since anyM cancels its progress (and any

AsyncM running with the progress) once the race completes but there may be a pending

AsyncM started inside ms (e.g. using spawnM) that has not completed when ms wins the

race.

1 neverM :: AsyncM a -- never complete by not calling 'k'

2 neverM = \p k -> return ()

3

4 -- avoid cancelling 'm' inside a race

5 unscopeM :: AsyncM a -> AsyncM a

6 unscopeM m = \p k -> m (tail p) k

7

8 -- start m and return an AsyncM waiting for m's result

9 spawnM :: AsyncM a -> AsyncM (AsyncM a)

10 spawnM m = \p k -> do e <- newEmitter

11 m p (emit e)

12 k (wait e)

13

14 -- try reading a future event from the emitter and

15 -- register a callback if the event is not available

16 wait :: Emitter a -> AsyncM a

17 wait (Emitter av kv) = \p k ->

18 do a <- tryReadMVar av

19 case a of Just x -> k x
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20 Nothing -> swapMVar kv [k]

Listing 2.10: Auxiliary functions to run AsyncM.

The function spawnM in Listing 2.10 starts an AsyncM with a callback that writes its

result to an emitter e at line 11, and then returns “wait e” at line 12 to wait for the

result. To avoid memory leaks, “wait e” only keeps one callback in e (using swapMVar

at line 19) since wait e (returned from spawnM) can be started many times, but only the

last instance is needed.

Use of Monad Interface Our monadic interface is convenient for switching. For

example, we can define a stream below that displays the KPI of a sensor chosen by users,

where sensorSource is an AsyncM that waits on user input to choose the sensor for KPI

calculation.

let s = do src <- repeatS sensorSource

repeatS (getData src 1000 0.0002)

in runS (kpi <$> s) display

Using switch, we can define functions such as stopS that stops a stream after n

milliseconds.

stopS n s = s `switch ` do timeout n

return (Nothing `Next ` neverM)

2.3.3 Buffered Stream

There is usually some latency between capturing IoT sensor data and the KPI cal-

culation. For example, it may take 2 seconds to run “getData "Va" 1000 0.0002” to

retrieve 1 second of samples (with 1 second of network delay). If we only send a request

after receiving the response from the previous request, then the samples between two

successive requests will be lost. We may be able to hide this latency using a queue and

two streams: the first stream sends the requests at a regular interval and pushes the

future response for each request to the front of the queue. The second stream extracts

the future response from the end of the queue and waits for it to resolve. If the latency

is not due to the lack of network bandwidth, it may be able to be hidden this way.
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Figure 2.2: Illustration of the workflow of fetchS.

The example below creates a request stream at line 3 that sends a data request

every second. Another stream response at line 5 is created using the fetchS function

(Listing 2.11).

1 let clock = repeatS (timeout 1000)

2 -- request :: Stream (AsyncM [Double ])

3 request = getData "Va" 1000 0.0002 <$ clock

4 -- response :: Stream [Double]

5 response = fetchS request

6 in runS (fmap kpi response) display

The fetchS function in Listing 2.11 spawns an AsyncM for each request in the request

stream, and writes it to a channel (line 3). It returns a new stream (line 6) that reads

each AsyncM from the channel and waits for it to yield a result. The workflow of fetchS

is shown in Figure 2.2.

1 -- take a request stream and return a response stream

2 fetchS :: Stream (AsyncM a) -> Stream a

3 fetchS sm = Nothing `Next ` do

4 c <- liftIO newChan

5 forkM $ runS (sm >>= liftS . spawnM) (writeChan c)

6 repeatA $ join $ liftIO (readChan c)

7

8 -- lift an AsyncM to a Stream

9 liftS :: AsyncM a -> Stream a

10 liftS m = Nothing `Next ` (m >>= return . return)

Listing 2.11: Fetch data by sending requests in a stream.

In Listing 2.11, the expression “sm >>= liftS . spawnM” at line 5 converts the

stream of requests sm to a stream of future responses using spawnM. At line 6, “liftIO (readChan c)”

has the type AsyncM (AsyncM [Double]), which is flattened by join to AsyncM [Double]

that reads a response from the channel and waits for it to complete.
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2.3.4 Real-Time Push Stream

The fetchS function can help reduce the latency and increase the throughput of IoT

data retrieval. However, the data retrieval throughput is also subject to limitations such

as network bandwidth. For the previous example, if the amount of data being transmitted

exceeds the network bandwidth, then the latency between IoT data capturing and KPI

calculation will gradually increase, and the KPI calculation will no longer be in real-time.

One way to prevent this problem is to monitor the speed of the response stream and if

it is lower than the speed of the request stream, then we reduce the amount of data for

each request (e.g. by lowering the sensor sampling rate).

To measure the speed of the response stream, we can use the countS function in

Listing 2.12 to count the events of a stream during a time interval. The countS function

is based on foldS, which folds a stream of functions for a duration, and returns the last

event.

-- count the number of events of s in n milliseconds

countS :: Int -> Stream a -> AsyncM Int

countS n s = foldS n 0 ((+1) <$ s)

-- fold s for n milliseconds with the initial value c

foldS :: Int -> a -> Stream (a -> a) -> AsyncM a

foldS n c s = do r <- lastS (accumulate c s) (timeout n)

return $ fromJust r

-- accumulate s with the initial value a

accumulate :: a -> Stream (a -> a) -> Stream a

accumulate a (f `Next ` ms) =

let a' = maybe a ($ a) f

in Just a' `Next ` (accumulate a' <$> ms)

-- return the last event of s when m returns

lastS :: Stream a -> AsyncM () -> AsyncM (Maybe a)

lastS s m = spawnM m >>= h s

where h (a `Next ` ms) m = do

r <- anyM ms m

case r of Left s -> h s m

Right () -> return a

Listing 2.12: Count the events of a stream in a period of time.
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The function foldS calls accumulate (Listing 2.12) to recursively apply a stream of

functions to an initial value, then uses lastS to stop the accumulation and returns the

last value. Note that countS does not include Nothing since accumulate emits the same

value if f is Nothing.

Using countS, we can implement a stream that makes runtime adjustments to sus-

tain its speed. For example, the getBatch function in Listing 2.13 returns a stream of

sample batches from a data source, where the sampling rate is adjusted based on the

request/response speed. The function req_fun (line 4) takes the sampling-period dt and

returns a request stream for 1 second of data sampled at 1/dt Hz. The call to controlS

at line 6 compares the number of requests sent and responses received within 10 seconds

and adjusts dt by a ratio of 1.1 if the numbers are not equal.

1 getBatch :: String -> Stream (Double , [Double ])

2 getBatch src =

3 let clock = repeatS (timeout 1000)

4 req_fun dt = getData src 1000 dt <$ clock

5 adjust b dt = if b then dt*1.1 else dt/1.1

6 in controlS req_fun (10^4) 0.0002 adjust

Listing 2.13: A data stream with adjustable sampling period.

1 controlS :: (t -> Stream (AsyncM a)) -- request function

2 -> Int -- duration (in ms)

3 -> t -- request parameter

4 -> (Bool -> t -> t) -- adjust function

5 -> Stream (t, a) -- result stream

6

7 controlS req_fun duration dt adjust = join $ h dt

8 where h dt = do

9 -- multicast creates shareable streams

10 (request , p1) <- multicast $ req_fun dt

11 (response , p2) <- multicast $ fetchS request

12

13 let mss = do -- account for initial latency

14 timeout duration

15 -- measure request/response speed

16 (x, y) <- allM (countS duration response)

17 (countS duration request)

18 if x == y then mss

19 else do -- cancel multicast streams
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Figure 2.3: Illustration of the workflow of controlS.

20 liftIO (cancelP p1 >> cancelP p2)

21 -- restart adjusted stream

22 return $ h $ adjust (x < y) dt

23 -- make a stream of response stream

24 Just ((,) dt <$> response) `Next ` mss

25

26 -- run two AsyncMs and wait for both to return

27 allM :: AsyncM a -> AsyncM b -> AsyncM (a, b)

Listing 2.14: Make a request stream that can adjust to the speed of the response.

The function controlS (Listing 2.14) takes a request function req_fun, a duration,

a request parameter dt, an adjustment function, and outputs a response stream that can

self-adjust based on the relative request/response speed. The controlS function builds

a stream of stream at line 23 with a response stream that runs until a new stream is

emitted from mss (when the speed of request and response differs). The nested stream

is joined at line 6, and the request parameter dt is added to the response stream at line

23. The basic workflow of controlS is shown in Figure 2.3.

The controlS function uses the multicast function in Listing 2.15 to make shareable

streams such as request and response. However, the multicast streams will keep running

even if they are not used. To avoid redundant computation, we cancel them by cancelling

their Progress values at line 19 (Listing 2.14) when the stream switching occurs.

multicast :: Stream a -> Stream (Stream a, Progress)

multicast s =

Nothing `Next ` do (e, p) <- broadcast s

return $ return (receive e, p)

Listing 2.15: Make a shareable and cancellable stream.
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2.4 Pull-Based Data Stream

While IoT data is often captured, stored, and displayed asynchronously, it is more

convenient to analyze IoT data (e.g. calculating KPI) synchronously. For example,

suppose we capture the voltage and current of an inverter in two push streams, whose

data arrive in the following order.

Time 0 1 2 3 4 5

voltage V1 v2 V3

current I1 I2 I3

If we use the monad interface of Stream to compute the inverter power, we will produce

incorrect output below.

Time 0 1 2 3 4 5

power V1*I1 V2*I1 V2*I2 V3*I2 V3*I3

Since the voltage and current of the same data time may arrive at different system times,

we have to match the voltage and current events by their sampling timestamps, which

is costly. But, if the two streams are buffered, they can be processed synchronously by

pulling their events from the respective buffers to yield the correct output.

Time 0 1 2 3 4 5

power V1*I1 V2*I2 V3*I3

For this purpose, we define the Signal type in Listing 2.16, which is a recursive data

structure that provides discrete data events on demand. Signal is an Applicative Functor,

where the app operation gf <*> ga is defined as pairwise applications of the function

signal gf to argument signal ga.

-- Pull -based stream

newtype Signal m a = Signal {runSignal :: m (a, Signal a)}

instance (Monad m) => Functor (Signal m) where

fmap f g = Signal $ do (a, g') <- runSignal g

return (f a, fmap f g')

instance (Monad m) => Applicative (Signal m) where

pure a = Signal $ return (a, pure a)

gf <*> gx = do (f, gf ') <- runSignal gf

(x, gx ') <- runSignal gx
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return (f x, gf' <*> gx ')

Listing 2.16: The definition of pull-based Signal stream.

2.4.1 Push Pull Conversion

The function push2pull (Listing 2.17) converts a push-stream s to a pull-signal by

sending the events of s to a channel buffer and returning a signal that reads from the

channel. We run a signal using the reactimate function that returns a Stream that emits

the signal values with a fixed delay.

push2pull :: Stream a -> AsyncM (Signal IO a)

push2pull s = do

-- make an event buffer

c <- liftIO newChan

-- write events of 's' to the buffer

forkM $ runS s $ writeChan c

-- read events from the buffer

let g = Signal $ do a <- readChan c

return (a, g)

return g

-- run signal with event delay

reactimate :: Int -> Signal IO a -> Stream a

reactimate delay g = Nothing `Next ` h g

where h g = do timeout delay

ifAliveM

(a, g') <- liftIO $ runSignal g

return $ Just a `Next ` h g'

Listing 2.17: Conversion between Stream and Signal.

It is more convenient to calculate KPI with Signals. For example, the function power

below computes the power of an inverter and returns the results in a stream of batches.

Each event in “power 1000 0.0002” is a batch of 5000 samples since the sampling period

is 0.0002 seconds, and each batch contains 1000 milliseconds of data.

power :: Int -> Double -> Stream [Double]

power duration dt = do

clock <- multicast $ repeatS (timeout duration)

-- a stream of requests for a given source

let req src = getData src duration dt <$ clock
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-- convert a request stream to a signal

let req2signal s = liftS (push2pull (fetchS s))

voltage <- req2signal (req "Va") -- Signal IO [Double]

current <- req2signal (req "Ia") -- Signal IO [Double]

let power = pure (zipWith (*)) <*> voltage <*> current

reactimate 1 power -- run Signal as a push stream

Signal of data batches is not suitable for computation that needs to change sampling

rate or operate on a moving window of data samples. We can create the voltage (and

current) streams by calling fetchS on a stream of data requests that capture 1 sample per

request. However, this is inefficient due to the overhead of sampling and transmission. A

more realistic solution is to fetch data as a signal of batches and then convert the batch

signal into sample signal.

In Section 2.3.3, we gave an example of a stream of voltage batches with varying

sampling rate to match the speed of request and response. This creates a problem when

we have a stream of voltages and a stream of currents with possibly different sampling

rates. We need to re-sample the data before inverter power can be calculated, which

requires the sampling period be included in the signal events. Moreover, KPIs such as

THD (which can measure the quality of an inverter signal) take the sampling period as

input. For these reasons, we need to have signals with time.

2.4.2 Event

Event is a signal of sampling-period and value pairs. Since the sensor signal converted

from a request stream may have varying sampling rate, the sampling period should be

included in the signal, which forms a sequence of delta-time and value pairs.

type DTime = Double -- sampling period

-- Event is a signal of sampling -period and value pairs

type Event a = Signal IO (DTime , a)

IoT data can be retrieved as an Event with a given sampling period using the function
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Figure 2.4: Illustration of the workflow of computing inverter power.

fetchE in Listing 2.18, which uses fetchS to retrieve a stream of the responses to the

requests sent with a sampling period dt, and then pairs the results with dt.

-- fetch Event Signal

fetchE :: (DTime -> Stream (AsyncM a)) -- request stream

-> DTime -- sampling period

-> AsyncM (Event a) -- event signal

fetchE req_fun dt =

push2pull $ (,) dt <$> fetchS (req_fun dt)

Listing 2.18: Convert a request Stream to an Event.

An Event of batches can be easily converted to an Event of samples using the unbatch

function in Listing 2.19, where the sampling period of a batch is repeated in the unbatched

samples. When the sampling period of a batch changes, the corresponding sampling

period of the unbatched samples changes as well.

-- flatten the Event of batches to an Event of samples

unbatch :: Event [a] -> Event a

unbatch eb = Signal $ do

((dt, b), eb ') <- runSignal eb

h dt b eb '

where h _ [] eb' = runSignal $ unbatch eb '

h dt (a:b) eb ' =

return ((dt , a), Signal $ h dt b eb ')

Listing 2.19: Convert batch Event to sample Event.

An event of samples is not only easier for KPI calculations, but also allows re-sampling

so that IoT data of varying sampling rate can be used in a computation with a constant

sampling rate through re-sampling.

2.4.3 Behavior

To support re-sampling, below we define the Behavior type as a signal that takes a

sampling-period as input. Each value of the behavior is the summary of some sample
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values over a given sampling period.

type Behavior a = Signal (ReaderT DTime IO) a

stepper :: ([(DTime , a)] -> a) -- summary function

-> Event a -- input Event

-> Behavior a -- output Behavior

stepper sum ev = Signal $ ReaderT $ \t -> h [] t ev

where h lst t ev = do

((t', a), ev ') <- runSignal ev

if (t == t')

then return (sum ((t,a):lst), stepper sum ev ')

else if (t < t')

then return (sum ((t,a):lst), stepper sum

$ Signal $ return ((t'-t, a), ev '))

else h ((t',a):lst) (t-t') ev'

A stepper function can be defined to convert an Event to a Behavior with the help

of a summary function that summarizes a sequence of time/value pairs to a value. The

idea is to repeat the sample value of the Event for up-sampling (when the sampling

period of the Behavior is shorter than that of the Event), and use the summary function

for down-sampling (when the sampling period of the Behavior is longer). The summary

function depends on the IoT data, which may be numeric values or discrete states.

Using the Behavior abstraction, we can calculate inverter power using two streams

with variable sampling rates. For example, below is a code snippet that first obtains two

self-adjusting streams by calling getBatch (Listing 2.13) and then converts the streams

to behaviors using stream2behavior (Listing 2.20). The workflow of computing in-

verter power is shown in Figure 2.4, where getBatch produces voltage/current batches

Stream (DTime, [Double]), which are streams of sampling period and data batch pairs.

do voltage <- stream2behavior (getBatch "Va")

current <- stream2behavior (getBatch "Ia")

let power = pure (*) <*> voltage <*> current

runS (reactimateB 1 0.001 power) display

The stream2behavior function goes through the steps of converting a push-stream

to an Event of batches, to an Event of samples, and to a Behavior.

avg :: [(DTime , Double )] -> Double -- weighted average
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stream2behavior :: Stream (DTime , [Double ])

-> AsyncM (Behavior Double)

stream2behavior s =

(stepper avg . unbatch) <$> push2pull s

Listing 2.20: Convert a batch stream to a behavior

We run a behavior using the function reactimateB in Listing 2.21, which turns a

behavior to a push-stream given a delay and sampling period.

reactimateB :: Int -- delay between pulls

-> DTime -- sampling period

-> Behavior a -- input behavior

-> Stream (DTime , a) -- output stream

reactimateB delay dt b = Next Nothing (h b)

where h b = do

timeout delay

ifAliveM

(a, b') <- liftIO $ (runReaderT $ runSignal g) dt

return $ Just (dt, a) `Next ` h b'

Listing 2.21: Run a behavior as a stream.

KPI calculations can be expensive. For example, calculating THD for dozens of

electrical signals can overwhelm some systems. To avoid this problem, we can measure

the data speed by adding up the sampling periods of the stream reactimated from a

behavior and divide it by the system time used. If the ratio is less than 1 (or a number

less than 1 considering runtime overhead), then it is operating at less than real-time speed

and computation load should be reduced. The speedS function in Listing 2.22 is for this

purpose.

-- measure the total amount of sample time

-- within an given interval of system time

speedS :: Int -- duration in milliseconds

-> Stream (DTime , a) -- stream of time/value pairs

-> AsyncM Double -- relative data speed

speedS n s =

f <$> (foldS n 0.0 $ (\(dt,_) t -> t + dt) <$> s)
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where f t = t * 1000.0 / fromIntegral n

Listing 2.22: Measure the data speed of a Behavior.

Note that the sampling-rate of a stream reactimated from a behavior can be in-

dependent from the sampling-rate of the streams that the behavior depends on. For

example, suppose that a stream of voltage samples is captured at 10KHz and is saved to

a database. If the behavior for KPI calculations cannot run in real-time for this amount

of data, then the behavior can be reactimated at a lower sampling rate (e.g. 5Khz).

The data can still be captured at 10KHz and be saved to the database, but when the

10KHz stream is converted to the behavior, it is down-sampled by the stepper function.

-- convert a Behavior into an Event of data batches

window :: Int -- window size

-> Int -- stride

-> DTime -- sampling period

-> Behavior a -> Event [a]

-- up -sample a Behavior by a factor

upsample :: Int -- up-sample factor

-> Behavior a -> Behavior [a]

-- down -sample a Behavior by a factor

downsample :: Int -- down -sample factor

-> ([(DTime , a)] -> a) -- summary function

-> Behavior a -> Behavior a

Listing 2.23: Utility functions for Behavior

Additional operations such as up/down sampling can be defined to support computa-

tion that operates at different frequency. A window function (Listing 2.23) is especially

useful for IoT data since KPIs such as THD takes batches of samples in order to calcu-

late the harmonics of the electric signals. The window function can generate data batches

based on a specific window size and stride (the number of samples to skip between two

consecutive batches).

Assume we have a thd function that takes a sampling period and a list of values

and returns the THD value. The thd_stream function below produces a stream of THD

values from an inverter current behavior by calling the window function to make batch
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input to the thd function.

thd :: DTime -> [Double] -> Double -- return THD value

thd_stream :: Int -> Int -> DTime -> Behavior Double

-> Stream (DTime , Double)

thd_stream size stride dt behavior =

reactimate 1 $ f <$> window size stride dt behavior

where f (dt ', w) = (dt', thd dt w)

We can use speedS function to measure the data speed of a stream and make runtime

adjustment. The code below computes the THD of inverter current by first creating a

stream of sliding windows of 5000 samples with the sampling period of 0.0002 seconds

(line 5). The stride of the sliding window is 100, which means that one THD value is

computed every 100× 0.0002 = 0.2 seconds. Since larger stride means less computation,

we can adjust the stride (line 10) if the data speed is outside the range of 0.9 to 1.1.

1 adjust :: Bool -> Int -> Int -- adjust the stride

2

3 do current <- stream2behavior (getBatch "Ia")

4 let f stride = do

5 stream <- thd_stream 5000 stride 0.0002 current

6 (s, p) <- multicast stream

7 let mss = do x <- speedS 1000 s -- measure speed

8 if 0.9 < x && x < 1.1 then mss

9 else do liftIO cancelP p

10 f $ adjust (x < 0.9) stride

11 Just s `Next ` mss

12 join $ f 100

2.5 Discussion

Our definition of Stream is similar to the monadic stream MStream in [40]. In partic-

ular, AsyncM (Stream a) can be defined as MStream AsyncM (Just a). However, the

monadic interface of Stream depends on AsyncM. Also, for better efficiency, the Stream

type in our implementation includes an End case. This change avoids the need to race

any AsyncM with neverM even though the latter can never win a race.

data Stream a = Next (Maybe a) (AStream a)
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Figure 2.5: The peak memory use (MB) of the test programs containing 2 to 128 push
streams of 10KHz samples.

| End (Maybe a)

instance Monad Stream where

-- return x = Just x `Next ` neverM

return x = End (Just x)

The definition of Signal is structurally identical to MStream. We choose this name to

mean sensor signal instead of the FRP signal [12], which is a time to value function.

This design intends to work with high-frequency IoT data (e.g. 5–20KHz) but our

push streams are driven by clocks of much lower frequency. IoT sensor data is often

transmitted in batches due to the limitation of the sensors and the transmission links.

Our design is to handle the batches of high-frequency samples asynchronously (e.g. data

capture, storage, display) and to process the individual samples synchronously (e.g. KPI

calculation). The clocks that drive the push streams may operate in the range of 1–100Hz.

Performance To evaluate the overhead of our design, we ran tests that use several

push streams to emit 10KHz of numeric data. The push streams are converted to behav-

iors, which are combined into one behavior using Behavior’s applicative interface and

arithmetic operators. The final behavior is reactimated to a push-stream that prints

the results. The tests primarily measure the memory overhead of push/pull conversion,

unbatching, and resampling. The peak memory use of the tests is shown in Figure 2.5,

where the memory use is close to linear to the number of data streams.

The tests were run with one physical thread on an Intel i7 processor (4 cores). We

do not have precise measurements of the runtime overhead but for 128 data streams, the
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CPU usage is about 4% and for 64 data streams, it is about 2%.

2.6 Related Work

Push-Pull Our work was influenced by push-pull FRP [15], which was a modernization

of Fran [16]. Push-pull FRP models a behavior as a reactive time function, where a push-

event can cause a pull-based behavior to switch to another one. Reactive is recursively

defined as a value followed by a future Reactive where the racing of future values is

implemented with threads. Our push-stream shares the same structure as Reactive and

its monadic interface. The difference is that we implement the future value using AsyncM.

Racing future values with AsyncM is lightweight, does not involve threads so that it is

suitable for dynamic languages with event loops. Moreover, a stream is also run as an

AsyncM, which can be shared through multicast.

Variations of classic FRP First-class behaviors can lead to space-time leaks and

wasteful re-computation. Jeltsch [24] used phantom types to tie discrete push-signals to

specific start time to avoid restarting a signal after switching and used memoization to

avoid duplicated computation of signals. The paper’s motivation is related to stateful

signals such as the one that counts network traffic. Such a signal is recomputed if used in

multiple places and gets restarted after switching. Our push-stream does not prevent this

type of issue through types. Instead, we can multicast a stream so that multiple uses

will not cause re-computation and switching will not cause restart. Krishnaswami [26]

used a static approach to ensure that past values cannot be accessed and Patai [39]

achieved similar goals by distinguishing streams and streams of streams at the type level.

FRP Now [48] provided a variation to Fran that does not cause space leaks and also

supports asynchronous IO. This approach erases past values with an optimization based

on mutable memory. It handles asynchronous IO in a behavior by running the IO on a

new thread, which passes the results as an event to the next round of the clock that runs

the behavior.

39



Arrowized FRP Another type of solution to the space-time leak problem is to use

the Arrows abstraction [29]. Yampa is an arrowized FRP variant which composes signal

functions using arrow combinators where signals are not first-class values. A drawback

of the arrowized approach is that it requires inputs and outputs be threaded throughout

the entire program, and imposes a point-free style of programming [12]. Scalable FRP [9]

improved on Yampa by providing an imperative implementation which has most of the

expressiveness of Yampa with better performance. Arrowized FRP has been generalized

into a monad stream function in Ivan Perez’s Dunai [40], which can model FRP signals

and stateful reactive programming by stacking different monads. A later version called

Rhine [4] introduced type-level clocks for processing data at different rates, where syn-

chronous processes are run with an atomic clock on signal functions while asynchronous

processes are run with schedules on resampling buffers. Rhine statically checks for cor-

rect composition involving clocks, and concurrent data is processed by threads that pass

results through channels.

Dataflow Languages Before FRP, dataflow languages (e.g. Lucid [54]) and syn-

chronous dataflow languages (e.g. Lustre [46] and SIGNAL [27]) provided an efficient and

correct solution to real-time processing of signals. However, they are limited in power,

as their dataflow graphs are static, and they do not support a form of first-class signals.

In these models, signals use implicit time based on the ordering of events, rather than an

explicit continuous time or discrete time interval. Without switching operator, adjusting

sample rates to external factors is not possible with these languages. Hiphop.js [7] is

a dataflow programming language that builds on the programming model of Esterel [5]

and allows mixing of synchronous and asynchronous programming. Hophop.js focuses

on Web orchestration with a declarative interface while our design is on real-time data

processing.

Distributed Reactive Programming Distributed FRP focuses on solving issues such

as glitch-freedom, scalability, and fault-tolerance that arise differently compared to non-

distributed systems. QPROP [37] is a propagation algorithm designed for distributed
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systems. It works by exploring the graph to find the dependency nodes before start

propagation and its variant supports dynamic graph changes. XFRP [51] is a distributed

FRP language based on actor model that compiles to Erlang. Though our model can

interact with remote data sources and sinks, it is not a distributed design.

2.7 Summary

In this chapter, we presented a push-pull reactive programming model for IoT data

processing which uses asynchronous streams for processing events and synchronous signals

for processing data. Separating asynchronous streams from synchronous signals allows

our model to isolate side-effecting computation which can run asynchronously such as

fetching batches of data via HTTP requests from the pure synchronous computation of

processing data.

Furthermore, we demonstrated how the model can be used for real-time processing of

high sampling-rate signals while reacting to changes in processing speed by adjusting the

sampling rate. This dynamic switching is afforded by the AsyncM monad, a continuation

monad with implicitly threaded cancellation tokens, which is the basis for our asyn-

chronous computations that allows for multi-threaded as well as single-threaded event

loop implementations.
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Chapter 3

A Concurrency Model with Cooperative

Cancellation Concurrency for JavaScript

In the previous chapter, we presented the reactive abstractions for real-time IoT ap-

plications, implemented in Haskell. In this chapter, we propose a concurrency model for

JavaScript with thread-like abstractions and cooperative cancellation. JavaScript uses an

event-driven model, where an active computation runs until it completes or blocks for an

event while concurrent computations wait for other events as callbacks. With the intro-

duction of Promises, the control flow of callbacks can be written in a more direct style.

However, the event-based model is still a source of confusion with regard to execution

order, race conditions, and termination.

3.1 Introduction

JavaScript provides concurrency through its event loop, where a computation either

runs or waits for an event as a listener. As JavaScript applications grow in complexity,

it is common to have numerous callbacks with complex dependencies, which makes it

difficult to identify concurrent computations. The introduction of Promises [14] allowed

the control flow of event callbacks be written in a more direct style. A Promise object

can encapsulate an event callback. Once constructed, the Promise object starts immedi-

ately and upon completion, it either resolves successfully with a result or rejects with an

error value. When combined with async and await keywords, the Promise abstraction

allows asynchronous operations be composed with synchronous operations in a sequential

program.

It may seem unnecessary to provide a thread-based concurrency model for JavaScript

since Promises already behave like threads with non-preemptive scheduling and the meth-
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ods to wait for their completion such as race() and all(). However, a Promise does not

provide utilities for thread synchronization and for cancellation. User-defined constructs

for such purposes may not have well-defined semantics, which can result in unexpected

behavior. Without proper cancellation, a JavaScript program may contain abandoned

computations running in the background, producing unexpected side effects. In this chap-

ter, we propose a concurrency model implemented as a library with a formal semantics of

thread synchronization and cancellation. A thread, once started, runs until it completes,

is blocked on an event, is paused, or is cancelled. A paused thread can be resumed or

cancelled.

In this chapter, we make the following contributions.

• We motivate the need of a JavaScript concurrency model with cancellation seman-

tics in Section 3.2.

• We propose a library-based design1 using the reader monad to represent thread-

like abstractions in Section 3.3. The reader monad implicitly passes a thread ID

throughout a computation so that it can be cancelled, paused, and resumed.

• We define a primitive like Haskell’s MVar and show how it supports communication

and cancellation in Section 3.3.5 and how other primitives such as bounded buffer

can be defined in Section 3.5.

• We give an operational semantics of our concurrency model in Section 3.4.

• We discuss the usability and overhead in Section 3.6.

3.2 Thread-like Concurrency

JavaScript concurrency is based on event handling via its event loop. Event sources

behave like stateful objects that dispatch events to registered listeners. The desire to have

thread-like behavior resulted in libraries such as node-fibers, which is an implementation

of coroutine in node-js with non-preemptive scheduling. This work is not to replicate

1https://github.com/tianzhao/thread
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such capabilities, or suggest a solution of parallel computation using web workers, or

leverage the idle time of event-loop for synchronous operations. Our focus is on thread-like

abstraction for asynchronous computation, where each thread continues to run until it is

blocked, paused, or cancelled. Our goal is help reduce concurrency errors in JavaScript by

bringing back the familiar concepts of thread, synchronization primitives, and cancellation

mechanisms.

Event races are common types of concurrency errors in JavaScript programs where

multiple events arrive in an order or at a rate that is not expected by the programming

logic, resulting in unexpected effects [44, 49, 23]. For example, event-race errors can be

caused by the concurrent access to an external resource (e.g. a web service) if it does not

protect against such access. These errors can be difficult to debug since they are reflected

in the incorrect states at the external resource instead of at the JavaScript program.

Furthermore, research indicates that even well-tested JavaScript applications often do

not adequately cover event-dependent or asynchronous callbacks [19], inviting alternative

methods to identify issues in such constructs.

While Promises [14] have helped reduce deeply-nested callbacks, its semantics is still

complex [30, 36] and the number and breadth of issues reported on platforms like Stack

Overflow indicate that users often struggle to understand its proper use. Static methods

like Promise Graph [31] were proposed to track when Promises are defined and activat-

ed/resolved as a step toward helping developers identify issues, it still does not indicate

when pieces may execute in parallel and may cause concurrency errors.

We argue that the thread abstraction has several advantages over Promises.

• The first advantage is conceptual. To run an operation in a separate thread, one

must start the thread explicitly. However, a Promise object is concurrent by default.

If a Promise object is run for its side effect, one can easily forget to sequence it

(e.g. using await) without realizing that it may run in a different order.

• Secondly, since threads have a well-defined abstraction boundary, it is easier to

recognize concurrent access to shared resources so that synchronization primitives

can be used to protect their access.
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• Thirdly, Promise objects do not have methods for cancellation. While we can use

the race() method (which waits for and returns the first value produced by a col-

lection of Promise objects) to implement a task such as to timeout an asynchronous

operation, the operation does not actually stop – only its results are abandoned.

Though JavaScript is not preemptive, cancelling a thread at the earliest opportunity

can reduce unintended side effects from the abandoned operations.

3.3 Concurrency with Cancellation

3.3.1 Thread ID and Cancellation

The thread IDs are used for cancellation. A thread ID is a Progress object, which

forms a tree, where each tree node has a cancellation flag and a set of canceller functions.

1 class Progress {

2 constructor(parent) {

3 if (parent) {

4 this.parent = parent;

5 parent.children.push(this);

6 }}

7 cancelled = false

8 children = []

9 cancellers = [] }

To start a thread, we simply run an AsyncM with a new Progress object and return

it.

1 class AsyncM {

2 start = _ => {

3 let p = new Progress ()

4 let f = _ => this.run(p)

5 setTimeout(f, 0) // start f asynchronously

6 return p

7 }}

When a lifted AsyncM is run with a Progress object p, a canceller function is added

to p. If the AsyncM completes, the canceller is removed. If the AsyncM is cancelled before

its completion, then the canceller runs, which causes the AsyncM to return a rejected

Promise.

For example, the variable m below fetches data using an ajax call, performs some
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Figure 3.1: Thread cancellation through timeout.

computation, and sends the results for display. We start m with a thread ID t, which is

used to cancel m if it is not completed within a second.

1 let m = AsyncM.lift(ajax) // fetch data

2 .fmap(compute) // synchronous action

3 .bind(display) // visualize data

4

5 let t = m.start() // starts m with thread ID t

6

7 AsyncM.timeout (1000)

8 .fmap(_ => t.cancel ())

9 .start() // starts a timeout thread

As shown in Figure 3.1, the timeout thread references the thread ID of m and may

use it to cancel m when m is blocked on an event (e.g. when m calls the ajax or

display function). However, like other non-preemptive designs, the timeout will not

have immediate effects if it occurs while a synchronous operation like compute is running.

Unlike a Promise object, which runs immediately after its composition, the composi-

tion of an AsyncM object is separate from its execution, which helps identify the concurrent

operations. One can delay the execution of a Promise by defining a function that returns

a Promise (such as an async function). However, there is no syntactic difference between

calling an async function and calling a regular function. It is easy to forget the difference

between calling an async function with or without using await to wait for its completion.

3.3.2 Asynchronous Exception

When a thread ID t is cancelled, an interrupt exception is sent to the thread running

with t. This design is similar to the asynchronous exception of Concurrent Haskell [33],

except that our interrupt exception can only be received at some locations. In our case,

the exception is received immediately if the thread is blocked, resulting in a rejected
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Promise. Otherwise, the exception is received when the thread makes a blocking call or

checks the status of the thread ID. For example, if a thread cancels another thread, the

effect is immediate. However, if a thread cancels itself, there may be some delay.

The interrupt exceptions may be received by an AsyncM such as AsyncM.lift(f).

When this AsyncM runs, it first checks whether its Progress p is alive. If it is not alive,

then it returns a rejected Promise. Otherwise, it adds a canceller c to the progress object

p so that if p is cancelled, then c will be called to cause an interrupt exception.

The interrupt exception of the previous example can be handled with the catchmethod

as shown below.

1 class AsyncM {

2 catch = h => new AsyncM(p =>

3 this.run(p).catch(h))

4 }

5 let m = AsyncM.lift(ajax) // fetch data

6 .fmap(compute) // synchronous action

7 .bind(display) // visualize data

8 .catch(print) // print exception

3.3.3 Fork and Hierarchical Cancellation

Other than starting an independent thread, we can also fork a child thread with a

Progress object that is a child of the current Progress. The parent Progress has a

reference to the child progress so that if the parent is cancelled, so is the child. When

the forked thread completes, the reference from a parent Progress to its child Progress

is removed using the unlink method to avoid memory leak.

1 class AsyncM {

2 fork = _ => new AsyncM (async p => {

3 const p1 = new Progress(p)

4 // start the thread asynchronously

5 // unlink the reference from p to p1

6 // after the thread completes

7 AsyncM.timeout (0).bind(_ => this).run(p1)

8 .finally(_ => p1.unlink ());

9 return p1;

10 })

11 }

12 class Progress {

13 // remove the parent to child reference

14 unlink = _ => {

15 let p = this.parent

16 if(p) p.children = p.children
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17 .filter(c => c != this)

18 }

19 // call all cancellers recursively

20 cancel = _ => {

21 this.cancelled = true // set cancel flag

22 this.cancellers.forEach(c => c())

23 this.children.forEach(c => c.cancel ())

24 this.cancellers = [] // clear cancellers

25 }

26 }

The cancel method of the Progress class sets the cancellation flag, calls each regis-

tered canceller to signal interrupts, and recursively cancels its children.

Using fork, we can run the m thread in the last example as a child of the timeout

thread so that both threads can be cancelled by a user action such as pressing a “stop”

button.

1 // run 'm' as a child of the timer thread

2 let t = m.fork()

3 .bind(t1 => AsyncM.timeout (1000)

4 .fmap(_ => {

5 t1.cancel ()

6 console.log("timeout")

7 })

8 ).start ()

9

10 // user cancels 'm' and the timer thread

11 $("#stop").one('click ', _ => t.cancel ())

The above example has 3 possible outcomes:

1. m completes,

2. m is cancelled by the timer, which prints ‘timeout’ message, and

3. user stops both m and the timer thread.

If it is inconvenient to use fork and bind, one can also run threads directly with Progress

objects as shown below.

1 let t = new Progress ()

2 let t1 = new Progress(t)

3

4 m.run(t1) // run m with t1

5

6 AsyncM.timeout (1000)

7 .fmap(_ => {

8 t1.cancel ()
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9 console.log("timeout")

10 }).run(t) // run timer with t

11

12 $("#stop").one('click ', _ => t.cancel ())

We can also use a Progress like a cancellation token. For example, we can start a

set of threads by calling their run methods with a Progress t or the children of t so that

any thread in the group can cancel the group through t.

3.3.4 Pause and Resume Threads

Our threads can be paused and resumed. This is useful in cases such as debugging and

the implementation of user interfaces. For example, users can pause threads in browser

console to check the states of the program or add controls to user interface to pause and

resume animation threads such as real-time data charts.

1 $("#pause").on('click ', _ => t.pause())

2 $("#resume").on('click ', _ => t.resume ())

We can add buttons to the previous example to allow users to pause and resume the

timer andm threads. Unlike thread cancellation, which throws exceptions to the cancelled

threads, thread suspension is based on polling. A thread returning from a blocking call

checks whether it is paused and if so, it adds its continuation to the progress object, on

which the pause method is called. This means that pausing a thread does not suspend

its asynchronous calls but the handlers to the calls.

Like cancellation, thread suspension is hierarchical. If we pause a thread t, then t

and its children are paused. Also, while a paused thread can be cancelled, a cancelled

thread cannot be resumed. Pausing a cancelled or completed thread has no effect. For

our example, if t.pause() is called before the timer and m complete, then m may be

suspended after the ajax or display call returns while the timer thread will not advance

beyond the timeout.

To reduce unintended side effects, a thread can only be resumed by the same Progress

that the thread is paused with. That is, the threads that are paused together can only

be resumed together. For example, if m is paused by the call t.pause(), then it can

only be resumed by the call t.resume(). A thread can be paused or resumed by any
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code with access to its thread ID. Thus, it is possible that a paused thread t can remain

paused forever, if the thread that will resume t is cancelled.

1 static lift = f => new AsyncM (

2 p => new Promise(

3 (resolve , reject) => {

4 let c = _ => reject("interrupted");

5

6 if (!p.cancelled) {

7 p.addCanceller(c);

8

9 let k = x => {

10 p.removeCanceller(c)

11

12 // suspend the thread if it is paused

13 if (! p.isPaused(_ => resolve(x)))

14 resolve(x);

15 }

16 f(k)

17 }

18 else c();

19 }

20 )

21 )

The lift method above is revised to poll the pause status of a thread. It checks

whether its Progress p is paused after the lifted function f returns and if so, it adds the

resolve continuation to p.

1 class Progress {

2 paused = false // pause status flag

3 pending = [] // pending thread continuations

4

5 pause = _ => { this.paused = true }

6

7 isPaused = k => { // k: thread continuation

8 if (this.paused) {

9 this.pending.push(k)

10 return true

11 }

12 else if (this.parent) {

13 return this.parent.isPaused(k)

14 }

15 else {

16 return false

17 }

18 }

19 // resume paused threads

20 resume = _ => {

21 this.paused = false

22 if (! this.cancelled)

23 this.pending.forEach(k => setTimeout(k, 0))

24 this.pending = []

25 }
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26 }

The Progress class is added a pause-status flag and a list of the pending thread

continuations. The pause method simply sets the status flag to true while the isPaused

method checks the status of this progress and its ancestors recursively and adds the

continuation k is to the paused Progress. The resume method restarts paused threads

by calling the pending continuations after a timeout.

3.3.5 Synchronization Mechanism

In JavaScript, an event race can be caused by the concurrent access to shared re-

sources. To help prevent event races, we include synchronization primitives similar to

Haskell’s MVar, which can be used as locks to protect resources from concurrent access.

For example, in a real-life application2, a bug was caused by an user interface that sends

concurrent requests to a remote service without support for concurrent access. If a user

sends a new request before the previous request completes, then the new request will

cause an internal error in the remote service.

The code below illustrates this problem, where the response to the request is sent to

an user callback cb.

1 $("#button").on("click", _ => sendRequest(cb))

A simple fix is to use a flag to stop the handler from responding to the button click

before a request completes.

1 let flag = true

2 $("#button").on("click", _ => {

3 if (flag) {

4 flag = false;

5 sendRequest(x => {

6 flag = true

7 cb(x)

8 })

9 }

10 })

However, this fix is not ideal since some clicks would lead to a response while others do

not. If we want each button click to trigger a response safely, we can use a synchronization

2https://github.com/TryGhost/Ghost/issues/1834
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primitive like MVar.

A MVar object m can hold one value and is either empty or full. A thread that puts

value in m blocks if m is full. A thread that takes value from m blocks if m is empty. If

multiple take (or put) threads are blocked on m, only the first one on queue is allowed

to proceed after m is filled (or emptied).

1 let m = new MVar() // create a lock

2 $("#button").on("click", _ =>

3 m.put(0) // obtain the lock

4 .bind(_ => AsyncM.lift(sendRequest))

5 .bind(x => m.take() // release lock

6 .fmap(_ => cb(x)))

7 .start()

8 )

In the code above, m is used as a lock to ensure that sendRequest is called once at a

time. If the button is clicked before the previous request completes, the new request will

be blocked on m until the previous request releases the lock.

Like threads blocked on events, threads blocked on a MVar can also be cancelled. The

put method shown below adds a canceller c to the Progress object p if it is blocked

(i.e. the MVar is full) and the canceller is removed when the thread unblocks (i.e. MVar

is emptied). The canceller would remove the thread from the list of threads pending on

the MVar and throw an exception.

1 class MVar {

2 isEmpty = true;

3 pending = []; // pending put or take threads

4

5 // put :: MVar a -> a -> AsyncM ()

6 put = x => new AsyncM(p => new Promise(

7 (resolve , reject) => {

8 if (!this.isEmpty) { // block if not empty

9 let k = _ => { // 'put' continuation

10 p.removeCanceller(c)

11 this._put(x)

12 setTimeout(resolve , 0) // resume later

13 }

14 let c = _ => { // removes pending thread

15 this.pending =

16 this.pending.filter(t => t != k)

17 reject("interrupted"); // raise exception

18 }

19 p.addCanceller(c) // enable cancellation

20 this.pending.push(k)

21 }

22 else { // put 'x' and continue if empty
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23 this._put(x)

24 resolve ()

25 }

26 }))

27 // put 'x' in MVar when it is empty

28 _put = x => {

29 this.isEmpty = false

30 this.value = x

31

32 // wake up a pending 'take' thread

33 if (this.pending.length > 0)

34 this.pending.shift ()()

35 }

36

37 // the 'take' method is similar

38 }

The take method (details omitted) registers a canceller (identical to that of the put

method) with the Progress p if it is blocked (i.e. the MVar is empty). This canceller will

be removed when the take thread unblocks.

Like other synchronization mechanisms, our MVar is susceptible to deadlocks. For

example, a take thread blocked on an empty MVar m is in a deadlock state if it also holds

locks that prevent other threads from putting data in m. However, since JavaScript is

not preemptive, it is less likely to enter a deadlock state due to non-determinism than a

language with preemptive scheduling.

It may be possible to simulate priority-based scheduling by assigning a priority level

to each thread when it is started. MVar could be modified so that it wakes up the pending

threads based on their priorities. A thread can then yield to other threads by blocking

itself on the modified MVar.

3.4 Operational Semantics

In this section, we formalize our design by giving an operational semantics in the style

of Concurrent Haskell. This semantics includes two sets of rules: asynchronous rules for

the reduction of AsyncM, which encodes thread computation and is possibly blocking, and

synchronous rules for other non-blocking computation.

In Figure 4.4, we define terms and values. The symbol V ranges over values such as

constants, thread ID, MVars, functions, and AsyncM values.
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f ::= x => M Functions

A ::= AsyncM values
| pure(V ) return value
| throw(c) throw exception
| lift(f) asynchronous action

| A.bind(f) monadic bind
| A.catch(f) handle exception
| A.fork() fork a child thread

| m.put(V ) put value in MVar
| m.take() take value from Mvar

V ::= Value
| c constant
| undef undefined value
| t thread ID (progress)
| m MVar
| f
| A

M,N ::= Terms
| V
| x variable
| M.start() start a thread
| M.cancel() cancel a thread
| M.pause() pause a thread
| M.resume() resume a thread
| new MVar allocate MVar

| M (N) call
| M ? N1 : N2 branch
| . . .

t ::= Thread ID
| p root progress
| t · p child progress

u ::= Main or thread ID
| ϵ ID of main
| t

Figure 3.2: The syntax of AsyncM, values, and terms
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P,Q,R ::= States

| LMMu live thread with ID u

| LMM•t stuck thread

| LMM◦t ready thread

| LMu completed thread

| ⟨⟩m empty MVar named m

| ⟨V ⟩m MVar m filled with V

| Jt cancelK t is cancelled

| Jt/ti pauseK ti is paused by t

| Jt/ti resumeK ti is resumed by t

| νx.P restriction

| P | Q parallel composition

Figure 3.3: The syntax of program states

The symbol A ranges over AsyncM which includes primitives such as pure(V ) that

returns value V , throw(c) that throws an error c, and lift(f) that runs asynchronous

function f and waits for its results. AsyncM also includes combinators: A.bind(f) that

passes the value of A to f , A.catch(f) that catches the error of A with f , and A.fork()

that runs A in a child thread.

The symbols M and N range over terms, which include values, function call, branch,

new MVar, and the term to start/cancel/pause/resume a thread. We omit other terms

such as M.bind(f), which should be reduced to the value A.bind(f) before being reduced

as a monad.

The symbol t ranges over thread ID, which is either a root Progress p or a child

Progress t · p with t as the parent. For the main program, we use ϵ to denote its ID.

3.4.1 Program Transitions

We define our semantics by describing the transitions between program states. A

program state (Figure 3.3) is a parallel composition of threads, MVars, and the cancel/-

pause/resume actions on threads.

A thread is either alive LMMu, stuck LMM•t , or ready LMM◦t , where the subscript is the
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P | Q ≡ Q | P (Comm)

P | (Q | R) ≡ (P | Q) | R (Assoc)

νx.νy.P ≡ νy.νx.P (Swap)

(νx.P ) | Q ≡ νx.(P | Q), x ̸∈ fn(Q) (Extrude)

νx.P ≡ νy.P [y/x], x ̸∈ fn(P ) (Alpha)

Figure 3.4: Structural congruence

live(LMMu)
live(P )

live(νx.P )

live(P )

live(P | Q)

live(Q)

live(P | Q)

P
α−→ Q ¬live(R)

P | R α−→ Q | R
(Par)

P
α−→ Q

νx.P
α−→ νx.Q

(Nu)

P ≡ P ′ P ′ α−→ Q′ Q′ ≡ Q

P
α−→ Q

(Equiv)

Figure 3.5: Structural transitions

thread ID. A live thread is currently running, the stuck threads are waiting for events or

blocked on MVars, and a ready thread will run when there is no other live thread. The

initial program state is the main thread LMMϵ.

A program state can transition to the next state with or without a label, which is

written as: P
α−→ Q. The label, if present, represents an asynchronous event c received

by the JavaScript event loop: P
?c−→ Q.

The transitions of the program states are supported by the equivalence relation ≡

defined in Figure 3.4 – identical to the one in Concurrent Haskell [33, 45].

The structural transitions of program states are defined in Figure 3.5. Since JavaScript

is not preemptive, there can be at most one live thread at any time. To model this

behavior, we place a restriction in Rule (Par) so that the transition from P to Q can

cause transition from P | R to Q | R only if R does not contain live threads. In other

words, while a live thread is running, no other threads can become alive.
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LE[pure(V ).bind(f)]Mt −→ LE[f(V )]Mt (Bind)

LE[pure(V ).catch(f)]Mt −→ LE[pure(V )]Mt (Propagate-Value)

LE[throw(c).catch(f)]Mt −→ LE[f(c)]Mt (Catch)

LE[throw(c).bind(f)]Mt −→ LE[throw(c)]Mt (Propagate-Error)

LE[A.fork()]Mt −→ νp.(LAM◦t·p | LE[pure(t · p)]Mt), (Fork)

p ̸∈ fn(E, A)

LE[lift(f)]Mt −→ LE[lift(f)]M•t (Stuck-Async)

LE[lift(f)]M•t
?c−→ LE[pure(c)]Mt (Async)

⟨⟩m | LE[m.put(V )]Mbt −→ ⟨V ⟩m | LE[pure(undef)]Mt (Put-MVar)

⟨V ⟩m | LE[m.take()]Mbt −→ ⟨⟩m | LE[pure(V )]Mt (Take-MVar)

⟨V ′⟩m | LE[m.put(V )]Mt −→ ⟨V ′⟩m | LE[m.put(V )]M•t (Stuck-Put-MVar)

⟨⟩m | LE[m.take()]Mt −→ ⟨⟩m | LE[m.take()]M•t (Stuck-Take-MVar)

Figure 3.6: Transition rules for AsyncM values

3.4.2 Transition Rules

This section explains the transition rules for AsyncM values (Figure 3.6), the rules for

terms (Figure 3.7), and the rules for the actions on threads (Figure 3.8). The transition

rules for AsyncM values describe the thread computation, which takes place within an

evaluation context E defined below.

E ::= [·] | E.bind(f) | E.catch(f)

Bind and Catch Rule (Bind) describes how a value is passed to the sequenced function.

Rule (Catch) describes how an error is caught by a handler. The two propagate rules

describe how values and errors are propagated through catch and bind.

Fork Rule (Fork) says that a child thread is forked with an ID that is the child of the

current ID. The child thread starts in the ready state (denoted by the superscript ◦) so

that the parent thread can continue to run.
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Async Rules (Stuck-Async) and (Async) describe how the expression lift(f) runs the

asynchronous function f and waits for its result c as an event. lift(f) first transitions to

a stuck state denoted by the superscript •. After receiving an event, the stuck thread

LE[lift(f)]M•t transitions to a state that returns the event value c.

MVar Rule (Put-MVar) says the thread LE[m.put(V )]Mbt fills an empty MVar ⟨⟩m with

its value V , where the superscript b means that the thread is either alive or stuck. If m

has value, then by Rule (Stuck-Put-MVar), m.put(V ) transitions to a stuck state. Rules

for m.take() are similar.

Terms The transitions of terms (shown in Figure 3.7) take place within the context F

defined below.

F ::= [·]

| F (M)

| f (F)

| F ? M1 : M2

| F.start()

| F.fork()

| pure(F)

| F.bind(f)

| F.catch(f)

| F.put(M)

| m.put(F)

| F.take()

| F.cancel()

| F.pause()

| F.resume()
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LF[A.start()]Mu −→ νp.(LAM◦p | LF[p]Mu), p ̸∈ fn(F, A) (Start)

LF[new MV ar]Mu −→ νm.(⟨⟩m | LF[m]Mu), m ̸∈ fn(F) (New-MVar)

LF[(x => M)(V )]Mu, −→ LF[M [V/x]]Mu (Call)

LF[true ? M1 : M2]Mu, −→ LF[M1]Mu (True)

LF[false ? M1 : M2]Mu, −→ LF[M2]Mu (False)

LAM◦t −→ LAMt (Run)

Lpure(V )Mt −→ LMt (Value-End)

Lthrow(c)Mt −→ LMt (Error-End)

LV Mϵ −→ LMϵ (Main-End)

LMu | P −→ P (GC)

Figure 3.7: Transition rules for terms, run thread, and termination

The terms include expressions like new MVar, function call, and branch, whose transitions

are non-blocking. That is, a live thread will continue to be alive after the transition. Rule

(Start) describes how A.start() starts a new thread with a root progress as its thread ID.

The new thread is also in the ready state so that the calling thread can continue to run.

Run and Termination By Rule (Run), a thread in ready state can transition to a live

thread; and by Rule (Par) in Figure 3.5, this transition is allowed if there is no other live

threads. This semantics is implemented by running the thread with a 0 second timeout so

that a ready thread is scheduled to run by the JavaScript event loop after other threads

complete or become stuck. Figure 3.7 also includes the rules for thread termination,

which states that a forked or started thread terminates if it returns a value or throws an

error while the main thread terminates when it reduces to a value. Rule (GC) says that

a terminated thread is removed from the program.

Thread Actions Figure 3.8 defines the transition rules for terms that cancel, pause,

and resume threads. Rule (Cancel) states that the term t.cancel() reduces an unde-

fined value while producing actions to cancel threads with ID ti that satisfies the rela-

tion prefix(t, ti). The actions are denoted by the set {Jti cancelK}prefix(t,ti). The relation
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LF[t.cancel()]Mu −→ LF[undef]Mu | {Jti cancelK}prefix(t,ti) (Cancel)

LF[t.pause()]Mu −→ LF[undef]Mu | {Jt/ti pauseK}prefix(t,ti) (Pause)

LF[t.resume()]Mu −→ LF[undef]Mu | {Jt/ti resumeK}prefix(t,ti) (Resume)

Jt cancelK | LE[V ]M•t −→ LE[throw(“interrupted”)]Mt (Cancel-Stuck)

Jt cancelK | LE[lift(f)]Mt −→ LE[throw(“interrupted”)]Mt (Cancel-Async)

Jt/ti pauseK | LE[lift(f)]M•ti
?c−→ LE[pure(c)]M•,tti (Pause-Stuck)

Jt/ti resumeK | LE[pure(c)]M•,tti −→ LE[pure(c)]Mti (Resume-Paused)

Figure 3.8: Transition rules for cancellation, pause, and resumption. Rule (Cancel-Stuck)
has higher priority than Rule (Async).

prefix(t, ti) is defined below, which means that t either equals ti or is an ancestor of ti.

prefix(t, t)
prefix(t, u)

prefix(t, u · p)

In other words, t.cancel() will cancel any threads running with t or the children of t as

thread IDs. By Rule (Cancel-Stuck), the cancel action will cause a stuck thread to throw

an exception. This rule takes precedence over Rule (Async) so that a stuck thread, if

cancelled, will always terminate. By Rule (Cancel-Async), the cancel action will cause a

live thread with an asynchronous operation to throw an exception. The rule is applicable

when a thread is cancelling itself.

Rule (Pause) describes how t.pause() reduces to the undef value in its context and

produces a set of the pause actions {Jt/ti pauseK}prefix(t,ti). By Rule (Pause-Stuck), each

of the pause actions can pause a stuck thread when it unblocks, which transitions to

another stuck thread LE[pure(c)]M•,tti . The superscript t indicates that this thread can only

be resumed by the call t.resume() according to the rules (Resume) and (Resume-Paused).

3.5 Additional Constructs

Race and All We provide a race combinator to conduct a race among a list of threads

and an all combinator to run a list of threads concurrently and to wait for their results.

The composed threads can be cancelled altogether without any additional logic due to
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our cancellation mechanism.

If we race a list of threads, the losing threads will also be cancelled. The race method

below first allocates a child Progress p1 and then runs the component threads with p1.

When one of the threads wins the race, the call p1.cancel() terminates the rest of the

threads.

1 // race :: [AsyncM a] -> AsyncM a

2 static race = lst => new AsyncM (p => {

3 let p1 = new Progress(p);

4 return Promise.race(lst.map(a => a.run(p1)))

5 .finally(_ => {

6 p1.cancel (); // cancel losing threads

7 p1.unlink (); // remove p to p1 link

8 });

9 })

10

11 // race :: [AsyncM a] -> AsyncM [a]

12 static all = lst => new AsyncM (p =>

13 Promise.all(lst.map(a => a.run(p)))

14 )

Channel We can use MVar to implement other primitives. For example, we have im-

plemented a buffered channel using a MVar to hold the pending readers when the channel

is empty and to hold the pending writers when the channel is full. Any threads that are

blocked on a channel can be cancelled because they are blocked on its MVar.

Safe points All asynchronous operations defined with lift are potential points of can-

cellation. An alternative is to run these operations using Promises instead and to poll the

cancellation status at specific check points. The ifAlive method below can be composed

with other AsyncMs as a safe point for cancellation.

1 static ifAlive = new AsyncM (async p => {

2 if (! p.cancelled) return;

3 else throw("interrupted");

4 });

Control flow Implementing control flow with AsyncM is more awkward than using

async/await. For simple cases such as infinite loops, we can use methods like loop below.

1 // e.g. a.loop() runs forever unless cancelled

2 class AsyncM {
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Figure 3.9: A data streaming application, where Va, Vb, Vc, Vdc, Vrms are voltages and Ia,
Ib, Ic, Idc, Irms are currents.

3 loop = _ => new AsyncM (async p => {

4 while (true) { await this.run(p) }

5 })

6 }

For more complex control flow, it is better to compose the AsyncMs indirectly by first con-

verting them to Promises, which can be composed with await. The composed Promises

can then be converted back to an AsyncM object using an async function with a Progress

parameter.

3.6 Evaluation

Our model is implemented with 400 lines of JavaScript. To evaluate its usability, we

used it in two applications.

Figure 3.10: The architecture of the data streaming application in Figure 3.9, where A,
B, C, and V are threads.

Data streaming The first application (Figure 3.9) streams the voltage and current

signals (sampled at 1KHz) from a remote source and visualizes them in two real-time

charts. The voltage and current charts can be paused/resumed separately and can be

stopped simultaneously.
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To hide network latency, this application uses a thread (Thread A in Figure 3.10) to

fetch data in batches at a regular interval and to push each data request to the request

channel. Thread B reads a data request from the request channel, waits for it to complete,

and writes its result to the voltage channel and the current channel using the AsyncM.all

method. Thread V retrieves a batch of data from the voltage channel and displays the

voltage data incrementally in a chart (e.g. by updating the chart with 10 new samples

every 10 ms). Thread C performs similar actions for the current data.

All 4 threads run independently and communicate through the channels, which allows

the speeds of data transmission and chart rendering to match. For example, if data

transmission is faster than chart rendering, one or both of the data channels will become

full, causing Thread B to block and the request channel to become full, which blocks

Thread A. Also, we can pause the voltage (or the current) chart by pausing Thread V

(or Thread C). Note that if Thread V is paused, the voltage channel will become full

if Thread B keeps writing to it, which eventually blocks Thread B from writing to the

current channel even if it is not full. Thus, if a chart is paused, Thread B may be cancelled

and restarted so that it only writes data to the channel of the running chart.

Our thread abstractions help reduce the complexity of this application, where the

channels manage thread synchronization, hierarchical thread cancellation allows all threads

be cancelled as a group, and the ability to pause and resume threads makes it easy to

pause and resume chart animations.

Figure 3.11: The subscription of a RxJS Observable using 2 threads (arrow circles) and
an emitter (middle circle).

RxJS The second application3 is a subset of RxJS interface implemented with our

thread library. RxJS4 is a popular JavaScript library for reactive programming, which rep-

3https://github.com/tianzhao/rxjs
4http://reactivex.io
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resents event streams as dataflow graphs. The core abstraction of RxJS is the Observable

interface, which emits events to its observers connected through the Subscription ob-

jects. Despite its popularity, RxJS is difficult to debug [1] since, unlike the functional

designs of reactive programming [15, 56], RxJS is imperative and its control flow does

not correspond to its dataflow, which is hard to inspect with debuggers.

In our design, each Observable is implemented with a function that takes an emitter

object and returns a thread that emits events to the emitter. As shown in Figure 3.11,

when an Observable is subscribed, two threads are started: one is the Observable thread

that emits events to an emitter, while the other thread calls a continuation k with the

events received from the emitter. When the Subscription is unsubscribed, both threads

are cancelled through a shared thread ID. Within an Observable, if an inner Observable

is subscribed, its thread is the child of the parent Observable’s thread. Therefore, when

an Observable is unsubscribed, its inner Observables are unsubscribed automatically

due to the hierarchical cancellation of our thread model.

Our version of RxJS is easier to debug since the dataflow graph of a RxJS expression

is embedded in the returned Subscription object, which contains an emitter, a thread

ID, and the references to the Subscriptions to the inner Observables. Users can debug

a RxJS program by navigating the Subscription object to examine the dataflow graph,

inspecting its emitter for the past events, and checking its thread ID for the status of the

subscription threads.

Runtime overhead The most significant overhead in our design is due to the AsyncM.lift

method, which allocates continuations and adds/removes cancellers. The table below

shows in milliseconds the amount of time it takes to run a trivial synchronous and asyn-

chronous computation (0s timeout) over a number of iterations. For synchronous compu-

tation, the overhead of lift is significant compared to Promise-based implementation.

However, for asynchronous computation, the overhead due to lift is less noticeable.
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iterations Synchronous Asynchronous
AsyncM Promise AsyncM Promise

100 1.12 0.16 158.38 147.61
500 5.16 0.33 753.66 721.82
1000 5.42 0.55 1479.62 1458.18
5000 11.76 2.47 7314.38 7292.97
10000 17.99 4.92 14628.99 14590.47

Table 3.1: Measured baseline runtime overhead

3.7 Related Work

Promises This work enhances JavaScript’s Promises [14] by providing a thread-like

concurrency model with cooperative cancellation. While Promises (together with async

and await) allow us to write asynchronous programs in JavaScript in sequential style, the

execution order of the programs is not always clear. JavaScript’s event loop maintains

separate queues for tasks (e.g. timeouts) and micro-tasks (e.g. Promises). Promises are

executed in the order in which they are added to the micro-task queue. For example, the

execution of two Promise chains can interleave even if they are all synchronous. Even if we

call an async function without awaiting for its result, its synchronous portion still runs

first. Also, the resolve and reject functions of a Promise can be saved and invoked

later by some other code, which can cause further interleaving of Promise execution.

Consequently, a Promise chain may not have exclusive access to shared states in between

asynchronous operations, which can lead to subtle race conditions. By wrapping Promises

inside AsyncMs, we ensure that the threads must be explicitly started, the synchronous

part of a thread has exclusive access to the shared states, and the locks such as MVars

can be used to protect shared states between threads.

Promises also do not have builtin methods for cancellation but hand-crafted solution

can easily forget pending callbacks or Promises, which leads to unintended side effects.

Our proposal is intended to complement Promises by providing a more consistent way

to terminate unused computation.
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Coroutine The exact definition for coroutines varies between languages, but they are

generally understood as non-preemptive thread-like concepts [52, 25, 18]. They are non-

preemptive in the way that control of execution can be suspended and transferred explic-

itly. A JavaScript generator is a limited form of coroutine that allows computation to

switch back and forth between a generator and its caller through the yield mechanism.

Together with Promises, generators can be used to compose asynchronous computation

using for..of or for await..of loops. Python’s asyncio library is an asynchronous

framework that supports non-preemptive scheduling and also cancellation [20]. It pro-

vides low-level API that allows scheduling work from a different OS thread, in which case

thread-safety needs to be considered.

Concurrency monad Claessen [10] described the use of continuation monad for con-

currency in Haskell. The design permits a limited form of concurrency on monadic

computations without adding primitives to the language. The concurrency monad builds

on the continuation monad, where computations can be evaluated concurrently by in-

terleaving evaluation of lifted operations. By implementing it as a monadic transformer,

the existing monads can be extended with concurrency operations and can be entirely

defined as a library without introducing new language primitives. This idea was later

adopted by Li and Zidancwic [28] in their scalable network services that provide type-safe

abstractions for both events and threads. They use a continuation monad to build traces

that are scheduled by the event loops.

Asynchronous Exception Asynchronous exception is introduced in Concurrent Haskell [33],

which allows one thread to throw an asynchronous exception to another thread. The asyn-

chronous exception raises a synchronous exception in the receiving thread, which can be

handled or cause the thread to terminate. Since Concurrent Haskell has preemptive

scheduling, the asynchronous exception can interrupt the receiving thread at any point.

To protect critical regions, Concurrent Haskell includes block and unblock primitives to

mask the regions that cannot be interrupted. Despite this, threads blocked on MVar or

IO can always be interrupted to reduce the chance of deadlock.
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We adopt a similar strategy by throwing interrupt exception to target threads. How-

ever, since JavaScript is not preemptive, the interrupt exceptions are only received at

the locations where the threads are blocked or polling the thread status. To disable the

interrupt exceptions, we can run an AsyncM with a new Progress using the block method

below.

1 class AsyncM {

2 block = _ =>

3 new AsyncM(_ => this.run(new Progress ())) }

Our operational semantics is also modeled after that of Concurrent Haskell [33], where

the reduction of processes is based on the chemical abstract machine [6, 8].

Cooperative Cancellation AC [22] introduced language constructs to insert code

blocks for asynchronous IO in native languages like C/C++. Each of these blocks is

delimited by the do..finish keywords. Within a block, the keywords async and cancel

can be used to start an asynchronous operation and to cancel it, respectively. The cancel

keyword can be used with a label to indicate which async operation to cancel, but it

must be used within the enclosing do..finish block. Cancelling an async operation will

propagate cancellation into any nested async branches recursively. The execution of a

do..finish block does not complete until all async operations within it are finished or

cancelled.

.NET uses cancellation tokens for cooperative cancellation, where the concurrent tasks

use their cancellation tokens to decide how to handle cancellation requests. The design

distinguishes the cancellation source, which is used for requesting cancellation, from the

tokens, which are used for polling cancellation status, registering cancellation callbacks,

and enabling blocked tasks to wait for cancel events. A task can react to multiple can-

cellation tokens by linking them in a new cancellation source. F# [43, 53] provides an

asynchronous programming model through CPS transformation on its async expressions.

The language supports cancellation by implicitly threading cancellation tokens (derived

from a cancellation source) through the program execution. Cancellation tokens are

checked at IO primitives and various control flow constructs.
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Our cancellation mechanism is similar to the cancellation tokens in that a thread reacts

to the cancellation requests at some program points. However, we integrate cancellation

into a thread model, where a thread ID is both the cancellation source and token. The

hierarchical structure of threads allows a child thread to react to a cancellation request

to its parent thread without explicitly linking cancellation tokens.

3.8 Summary

We needed an abstraction to represent asynchronous computation since JavaScript

does not have a standard way to handle cancellation. So we designed an implementation

in Haskell and leverage its powerful type system to allows us use it as a model to reim-

plement in other languages such as JavaScript and Python that are less type-safe. But

writing directly using our JavaScript implementation, and similarly in Python, can still

be cumbersome because the lack of static type checking, and can be difficult to debug

problems at runtime.

We have presented a thread-based concurrency model for JavaScript that can cancel,

pause, and resume threads. The thread abstraction makes it easier to reason about

asynchronous programs while synchronization primitives can protect shared resources.

These advantages help reduce the occurrences of race conditions. The ability to cancel

threads helps prevent the side effects of unwanted computation. The ability to pause and

resume threads may be used for debugging concurrency errors in a browser environment

and providing a simple way to suspend computation such as animation.

This design is implemented as a JavaScript library and since each AsyncM wraps a

Promise function, it is compatible with the Promise abstraction and can be integrated

with other types of programs using async and await to implement complex logic. The

overhead of thread abstractions and cancellation is not significant relative to the compu-

tation time of the asynchronous operations that they support.
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Chapter 4

Semantics and Debugging

In previous chapters, we have implemented abstractions to better handle concurrent

event-based programs. In this chapter, we focus on RxJS, a popular JavaScript library for

writing reactive programs. We will present an implementation of the RxJS abstraction

using our own concurrency abstraction as the foundation, and provide a formal model

for the RxJS programs. Our motivation for this work is to provide a precise semantics

for the RxJS programs in an effort to make testing and debugging easier.

4.1 Introduction

RxJS is a reactive programming library for JavaScript, which has been integrated

in frameworks such as Angular and React to handle UI and other asynchronous events.

Despite its success, debugging of RxJS programs is still difficult. A recent study [1]

examined the challenges in debugging RxJS programs due to the disparity between the

declarative interface for defining dataflow logic [2] and the imperative implementation

based on the Observer Pattern [21]. As pointed out in [1], traditional debugger does

not offer much help in identifying the cause of the bugs since the dataflow logic of RxJS

programs is not directly reflected in the control flow logic represented by the call stacks at

the break points. A RxJS program constructs and mutates dataflow graphs and pushes

events through the graphs to perform pure computation and to produce side effects. The

dataflow graphs are implicit constructs that are not readily accessible to users during

the debugging phase. To find the cause of an error, one needs to examine the states

of the dataflow graphs, which include the graph shapes and the events at each graph

node. Programmers often resort to indirect approaches such as printing event traces and

drawing dataflow graphs by instrumenting the source program or using debugging tools
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such as rxjs-spy, rxviz, and rxjs-playground. While these methods are useful, they are

informal, require manual inspection, and does not scale to larger programs.

In this chapter, we present a formal semantics for a selected subset of RxJS operators

to provide a precise definition of their meaning. Using the semantics as a model, we can

define some debugging related applications to help discover problems in RxJS programs.

The semantics models RxJS runtime with a heap that contains the subscription graph,

where each node is a subscription, and a queue that contains the external and internal

events. The reduction of a RxJS program alternates between graph construction phase

and reactive phase where events are propagated through the graph. Using the semantics

as a model, we can define a representation of stack trace specific to the RxJS programs,

a set of rules to check subscription states, and a runtime invariant of the subscription

graph to ensure that the error for each event source can be uniquely identified.

Based on this semantics, we have implemented a large subset of RxJS using a thread-

like abstraction using concurrency monad [57, 56], where each thread can be cancelled

via its thread ID. We use this thread abstraction to implement the subscription to an

observable so that unsubscribe operation is the same as thread cancellation. When an

observable is subscribed, it returns a subscription that holds an emitter, a thread ID, and

the subscriptions to the source and child observables if any. Through the subscription

object, users can cancel the subscription or use it to navigate the dataflow graphs, check

the state of each node, and examine the previous events.

In this chapter, we make the following contributions:

1. We give a motivational example in Section 4.2 to demonstrate how semantics can

help identify problems in a RxJS program.

2. In Section 3.4, we present a formal model of RxJS by defining an operational seman-

tics for a selected subset of RxJS operators. The semantics provides a simplified

model for reasoning about the expected and unexpected behavior of a RxJS pro-

gram.

3. In Section 4.6.1, we provide some example applications of the semantics for debug-
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ging purposes, which include stack-trace suitable for reactive programs, unexpected

states of observables, and checking invariant on subscription graph,

4. We describe an implementation of RxJS library that conforms to this semantics in

Section 4.5.

5. The related works are discussed in Section 4.7.

4.2 Subscription as Dataflow Graph

In this section, we use the following example to motivate the need of a formal semantics

for RxJS. This example is a simple type-ahead client, which sends a query request each

time the user types a character in a text box. If a previous query does not complete

before a new request, then old query is canceled. If a query is answered on time, then

the result is displayed.

1 let subscription =

2 fromEvent('#type -ahead', 'keyup ') // input

3 .map(e => e.target.value) // input text

4 .switchMap(x => from(query(x))) // query

5 .subscribe(display ); // display results

Figure 4.1: The subscription graph of the type-ahead example.

The structure of the subscription graph is shown in Figure 4.1, where the arrows point

to the source or child of each subscription. The subscription graph mirrors the dataflow,

from which we can also examine the past events emitted by each observable. There are

three types of events emitted by an observable.

1. next(v), which holds event value v;

2. end, which indicates that the observable completes;
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3. error, which signals an exception and it recursively propagates to the subscribers

until it is either caught by a catchError observable or by the root subscriber.

Observable that throws an error is cancelled.

Using the subscription graph, users can find the source of errors more easily. For

example, the type-ahead server returns an error for certain inputs. The user wants to

catch the error by inserting a catchError operator so that the error does not stop the

client.

1 let subscription =

2 fromEvent('#type -ahead', 'keyup ')

3 .map(e => e.target.value)

4 .switchMap(x => from(query(x)))

5 .catchError(_ => of('error ')) // A bug

6 .subscribe(display );

The code above shows the initial attempt of catching error but it fails to keep the type-

ahead client running – it still terminates if an error is emitted. The cause of the problem

is that the catchError protects the switchMap, and when it catches an error, it must

terminate the entire switchMap instead of the from observable.

Figure 4.2: The initial attempt to catch query errors.

This relation is illustrated in Figure 4.2. Note that while it is possible to spot this

problem by inspecting the source code, it is much harder to identify similar problems

in larger applications. A systematic solution should allow automatic analysis of the

subscription graph to detect similar problems. For example, we can require that every

source observable such as fromEvent or from be uniquely protected by a catchError or

a root subscriber. In Figure 4.2, both the fromEvent and from are guarded by the same

catchError, which may indicate a potential problem.

We can fix the bug by placing the catchError within the switchMap operator as

shown below.
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1 let subscription =

2 fromEvent('#type -ahead', 'keyup ')

3 .map(e => e.target.value)

4 .switchMap(x =>

5 from(query(x))

6 .catchError(_ => of('error '))

7 ) // catch error and emit a string event

8 .subscribe(display );

The resulting subscription graph is shown in Figure 4.3, where fromEvent is protected

by the root subscriber while from is protected by catchError.

Figure 4.3: The correct handling of query errors.

While the subscription graph is static in this example, in general, a subscription graph

may change at runtime. This means that the checking of the subscription graph should

be done at runtime when the graph is updated. However, to avoid unnecessary overhead,

the runtime checking should be limited to graph updates that may cause a violation of

the invariant. To understand how to check this invariant, in the next section, we present

a formal semantics to a selected set of RxJS operators.

4.3 RxJS

RxJS is a reactive programming library for JavaScript. It is a popular library used for

web applications and it is integrated in frameworks such as Angular and React to handle

UI and other asynchronous events. It provides numerous operators to create, combine,

transform, and filter discrete events and to handle errors. These operators may be stateful

and have side effects, which makes it difficult to understand the precise meaning of the

resulting computation. While the interface is functional, it differs from the classical FRP

that it only operates on discrete events.

Studies have found that users often have to resort to inserting print statements or using

debugging tools such as rxjs-spy, rxviz, and rxjs-playground. While these methods are
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e ∈ Expression ::= x
| o
| e.sub(f)
| e.unsub()
| o.sub()
| x = o.share()
| e; e′

| x ⇒ e
| e(e′)

o ∈ Observable ::= x
| fromEvent(elm, evt)
| combine(o1, o2)
| concat(o1, o2)
| o.every(f)
| o.catchError(f)
| o.take(n)
| o.map(f)
| o.switchMap(f)

Figure 4.4: The syntax of λrx, where the shaded terms are runtime entities.

useful, they are informal, require manual inspection, and do not scale to larger programs.

4.4 Operational Semantics for RxJS

In this section, we define a formal model of RxJS computation using a selected subset

of RxJS operators, which we call λrx. We will first present the syntax of RxJS operators

for creating, combine, transform observables. Then we will presents runtime values and

the operational semantics for evaluation and event propagation.

4.4.1 Syntax

The syntax of λrx is shown in Figure 4.4, where e ranges over expressions such as

variables, observables, subscribe operations e.sub(f), unsubscribe operations e.unsub(),

create shared observables, sequences, functions, and function calls. The subscribe oper-

ation e.sub(f) starts an observable e and calls a function f with the observable events

as inputs. The unsubscribe operation stops the subscription to an observable. An al-
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ternative subscribe operation o.sub() subscribes to the observable o without calling a

side-effecting function on observable events and it evaluates to a reference r to the sub-

scription on the observable o. The assignment expression x = o.share() is used to share

the observable o through the variable x.

The variable o ranges over x (for shared observables) and observable expressions, which

include one or two operators from each group of RxJS operators detailed as follows.

• fromEvent(elm, evt) is a creation operator that creates a primitive observable that

emits events of type evt from a DOM element elm.

• combine(o1, o2) is a combination operator that combines the latest events from o1

and o2.

• concat(o1, o2) is a combination operator that concatenates the event streams of o1

and o2.

• o.every(f) is a conditional operator that emits true if all events from o satisfy the

predicate f and emits false otherwise.

• o.catchError(f) is an error handling operator that emits next events from o but if

o emits an error, then it stops o and emits events from f() instead.

• o.share() is a multicasting operator that shares the events of o with multiple sub-

scribers and manages the lifetime of o using reference counting. When the shared

observable is first subscribed, it is transformed to share(o, r), where r points to a

subscription of o.

• o.take(n) is a filtering operator that takes up to n events from o.

• o.map(f) is a transformation operator that for each event value v of o, it emits f(v).

• o.switchMap(f) is also a transformation operator that for each event value v of o,

it emits the events of the new inner observable f(v) after it stops the existing inner

observable if any.
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s ∈ Subscription ::= fromEvent(elm, evt)
| combine(r1, r2, v1, v2, n)
| concat(r1, o2)
| every(r, f)
| catchError(r, f)
| sharing(x)
| take(r, n)
| map(r, f)
| switchMap(r1, f, r2, b)
| sub(r, f)

v ∈ Value ::= n | o | true | false | ϵ | x ⇒ e

h ∈ Shared ::= o.share()
observable | share(o, r)

H ∈ Heap ::= {x 7→ h; . . . ; r 7→ s; . . .}
Q ∈ Queue ::= [(t, r), . . .]

t ∈ Event :: next(v)
| end
| error

Figure 4.5: The runtime values of λrx, where x points to shared observables and r points
to the subscriptions in the heap.

4.4.2 Runtime Values

A subscribe operation o.sub() evaluates to a subscription, which is a runtime value

shown in Figure 4.5.

Each observable operator has a corresponding subscription value, which may carry

additional state information of the subscription. We store the subscriptions in a heap H

that maps references (denoted by r) to subscriptions. Each subscription can refer to its

source subscriptions through the references, which is detailed as follows.

• combine(r1, r2, v1, v2, n) contains r1 and r2, which are the subscriptions to the source

observables. It also contains v1 and v2, which are either the last events or undefined

(denoted by ϵ). n is the number of source observables that have completed.

• concat(r1, o2) contains the subscription r1 and an observable expression o2 that

starts once r1 completes.

• every(r, f), catchError(r, f), and map(r, f) contain the subscription r to their
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E ::= ·
| E.sub(f)
| E.unsub()
| E; e
| E(e)
| v(E)

Figure 4.6: The evaluation context for expressions

source observable.

• sharing(x) contains x that references a shared observable share(o, r), where r is a

subscription to o.

• take(r, n) contains the subscription r to its source observable and the remaining

number of events n.

• switchMap(r1, f, r2, b) contains the subscriptions to the outer and inner observables

r1, r2, and b, which is a Boolean that indicates whether the inner or outer observable

has ended.

A queue Q is used to temporarily hold events that are emitted from observables but

have not yet been received by the subscribers. Q holds a list of pairs (t, r), where t is

an event and r refers to the subscription that emitted the event. Each event is either a

next(v) event with value v, an error, or an end event that signals the completion of an

observable. The event queue can be used to model some variations of event scheduling

in RxJS.

4.4.3 Evaluation of Expressions

The evaluation rules for expressions are shown in Figure 4.7, where each rule has the

form of H, e → H ′, e′. The expressions such as assignment and unsubscribe operation are

evaluated for their side effects.

The expression o.sub(f) is the starting point of RxJS computation, where the observ-

able o is subscribed so that its events are used to run f for its side effects. By Rule Esub1,
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H, v → H, v EV al

r is fresh H, o.sub() → H ′, r′

H, o.sub(f) → H ′[r 7→ sub(r′, f)], r
ESub1

r is fresh H, o.sub()⇝ H ′, s

H, o.sub() → H ′[r 7→ s], r
ESub2

H, x = o.share() → H[x 7→ o.share()], ϵ EAssign

H, r.unsub()⇝ H ′

H, r.unsub() → H ′\{r 7→ H ′(r)}, ϵ
EUnsub

H, e → H ′, e′

H,E[e] → H ′, E[e′]
ECong

H, v; e → H, e ESeq

H, (x ⇒ e)(v) → H, [v/x]e ECall

Figure 4.7: The evaluation rules for expressions

the subscribe operation evaluates to a reference r that points to sub(r′, f), which listens

on the events of r′ to run f and r′ references the subscription to o. By Rule Esub2, o.sub()

reduces to a fresh reference that maps to the subscription value s evaluated from o.sub().

The evaluation of o.sub() to a subscription value is defined by the rules in Figure 4.8.

Subscribe Operations In λrx, each subscribe operation reduces to a reference r that

is mapped to a subscription value s in the heap. The subscribers to s receives its events

through r such that the subscriptions are linked as a graph through references like r.

A subscribe operation o.sub() may cause additional subscriptions to the observables in

o. This behavior is detailed in Figure 4.8. For example, in Rule Scombine, the subscription

to a ‘combine’ observable leads to the subscriptions to its source observables o1 and o2.

Most of the RxJS operators create cold observables [50], each of which has a single

subscriber. The group of multicast operators such as share create hot observables that

can be shared by multiple subscribers. Rule SShare1 says that when H(x) = o.share() is

subscribed the first time in a call x.sub(), o is subscribed and the heap H is updated so

that x is mapped to share(o, r), where r points to the subscription to o. By Rule SShare2,

each subsequent call to x.sub() reduces to sharing(x), which is a subscription value that

represents shared access to share(o, r).
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o = fromEvent(elm, evt)

H, o.sub()⇝ H, fromEvent(elm, evt)
SFrom

o = combine(o1, o2)
H, o1.sub() → H1, r1
H1, o2.sub() → H2, r2

H, o.sub()⇝ H2, combine(r1, r2, ϵ, ϵ, 0)
SCombine

o = H, concat(o1, o2)
H, o1.sub() → H1, r1

H, o.sub()⇝ H1, concat(r1, o2)
SConcat

o = o′.every(f) H, o′.sub() → H ′, r

H, o.sub()⇝ H ′, every(r, f)
SEvery

o = o′.catchError(f)
H, o′.sub() → H ′, r

H, o.sub()⇝ H ′, catchError(r, f)
SCatch

H(x) = o.share()
H, o.sub() → H ′, r

H ′′ = H ′[x 7→ share(o, r)]

H, x.sub()⇝ H ′′, sharing(x)
SShare1

H(x) = share(o, r)

H, x.sub()⇝ H, sharing(x)
SShare2

o = o′.take(n) H, o′.sub() → H ′, r

H, o.sub()⇝ H ′, take(r, n)
STake

o = o′.map(f) H, o′.sub() → H ′, r

H, o.sub()⇝ H ′, map(r, f)
SMap

o = o′.switchMap(f)
H, o′.sub() → H ′, r

H, o.sub()⇝ H ′, switchMap(r, f, ϵ, false)
SSwitch

Figure 4.8: The rules for subscribe operations.
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Unsubscribe Operations While the subscribe operation constructs the subscription

graph from the observables, the unsubscribe operation does the opposite by removing

the subscriptions to the observables from the heap. Rule EUnsub in Figure 4.7 evaluates

r.unsub() by first applying the rules for unsubscribe operation in Figure 4.9 and then

removing the mapping of r from the heap. The rules in Figure 4.9 apply the EUnsub rule

to the references in each subscription value to unsubscribe them recursively.

The only exceptions are the rules for the shared observable, which uses reference count-

ing to decide whether to unsubscribe its source. By Rule UShare1, if a shared observable

x is still used by another subscription r′, then the unsubscribe operation r.unsub() does

not change the heap. Otherwise, by Rule UShare2, the source observable of r will be

unsubscribed.

4.4.4 Event Propagation

Once a subscription graph is constructed, the next stage of computation is event

propagation, which may be interleaved with further modification to the subscription

graph. The event propagation computation is described by the rules in Figure 4.10

and 4.11, where each reduction step has the form of H,Q → H ′, Q′. Each rule (except

Rule RFrom) removes an event and subscription pair (t, r1) from the front of the event

queue Q and sends t to r1’s subscriber(s) – r, which may trigger further updates to the

heap and the queue.

Most of the rules are concerned with next(v) event and end event. By Rule RError,

the error event from a reference r is forwarded by default to the subscriber of r. This rule

applies to the error propagation of all observables except the shared observable, which is

handled by Rule RShare

By Rule RCatch, the error event of r′ can be handled by the subscription H(r) =

catchError(r′, f), which calls the error handler f to obtain an observable o, subscribes

to o, and maps r to the subscription to o. In the end, r′ is unsubscribed.

When processing events in the subscription graph, the new events may be added to

the back or the front of the queue. For example, by Rule RFrom, the event emitted
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H(r) = fromEvent(elm, evt)

H, r.unsub()⇝ H
UFrom

H(r) = combine(r1, r2, v1, v2, n)
H, r1.unsub() → H1

H1, r2.unsub() → H2

H, r.unsub()⇝ H2

UCombine

H(r) = concat(r1, o2)
H, r1.unsub() → H1

H, r.unsub()⇝ H1

UConcat

H(r) = every(r′, f) H, r′.unsub() → H ′

H, r.unsub()⇝ H ′ UEvery

H(r) = catchError(r′, f)
H, r′.unsub() → H ′

H, r.unsub()⇝ H ′ UCatch

H(r) = sharing(x)
∃r′ ̸= r. H(r′) = sharing(x)

H, r.unsub()⇝ H
UShare1

H(r) = sharing(x) H(x) = share(o, r′)
̸ ∃r′′ ̸= r. H(r′′) = sharing(x)

H, r′.unsub() → H ′

H, r.unsub()⇝ H ′[x 7→ o.share()]
UShare2

H(r) = take(r′, n) H, r′.unsub() → H ′

H, r.unsub()⇝ H ′ UTake

H(r) = map(r′, f) H, r′.unsub() → H ′

H, r.unsub()⇝ H ′ UMap

H(x) = switchMap(r1, f, r2, b)
H, r1.unsub() → H1

H1, r2.unsub() → H2

H, r.unsub()⇝ H2

USwitch

H(r) = sub(r′, f) H, r′.unsub() → H ′

H, r.unsub()⇝ H ′ USub

Figure 4.9: The rules for unsubscribe operations.
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from the subscription to fromEvent(elm, evt) is added to the back of the event queue.

This is consistent with the event handling of JavaScript, where asynchronous events are

processed in the macro task queue.

Other than external events such as those from DOM elements, there are also internal

events created by RxJS operators. For example, the combine operator emits the latest

values from its sources when one of them emits (after both have emitted). By Rule

RCombine2, the event of the combine operator is put in front of the queue so that it is

received immediately by the subscriber of this observable. Rule RCombine1 applies to the

case when one of the source observable has not emitted any event. By Rules RCombine3

and RCombine4, an end event is emitted after all source observables have completed. The

end event is also placed in front of the queue so that it is received immediately by the

subscriber.

By Rules RConcat1 and RConcat2, concat(o1, o2) combines the event streams of o1 and

o2 sequentially such that it subscribes to o1 first and after o1 completes, it subscribes to

o2. The observable o.every(f) emits a false value immediately if an event value from o

does not satisfy the predicate function f (by Rule REvery1). It emits a true value after

all its events satisfy f (by Rules REvery2 and REvery3).

By Rule RShare, the observable o.share() broadcasts the events of o to all subscribers

of the shared observable. The observable o.take(n) forwards the first n events of o to its

subscriber (by Rules RTake1 and RTake2) or until o emits an end event (by Rule RTake3).

Note that if the subscription r′ of o is still running after n events have been emitted, it

must be unsubscribed (Rule RTake2).

By Rules RMap1 and RMap2, the observable o.map(f) transforms each next(v) event

from o and re-emits the result. For o.switchMap(f), there are 5 rules: Rule RSwitch1 says

that the events from the inner observable are re-emitted. Rules RSwitch2 and RSwitch3

describe how the event next(v) from the outer observable interrupts the inner observable

(if any) and starts a new subscription to the observable evaluated from f(v). Rules

RSwitch4 and RSwitch5 say that if both of the outer and inner observables have completed,

then an end event is emitted.
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H(r) = fromEvent(elm, evt)
elm emits evt

H,Q → H,Q@[(next(evt), r)]
RFrom

H(r) = combine(ri, rj, vi, ϵ, n) i ̸= j
H ′ = H[r 7→ combine(ri, rj, v, ϵ, n)]

H, (next(v), ri) :: Q → H ′, Q
RCombine1

H(r) = combine(ri, rj, vi, vj, n) i ̸= j
H ′ = H[r 7→ combine(ri, rj, v, vj, n)]

Q′ = (next((v, vj)), r) :: Q

H, (next(v), ri) :: Q → H ′, Q′ RCombine2

H(r) = combine(ri, rj, vi, vj, 0) i ̸= j
H ′ = H[r 7→ combine(ri, rj, vi, vj, 1)]

H, (end, ri) :: Q → H ′, Q
RCombine3

H(r) = combine(ri, rj, vi, vj, 1) i ̸= j

H, (end, ri) :: Q → H, (end, r) :: Q
RCombine4

H(r) = concat(r1, o2)

H, (next(v), r1) :: Q → H, (next(v), r) :: Q
RConcat1

H(r) = concat(r1, o2)
H, o2.sub()⇝ H ′, s H ′′ = H ′[r 7→ s]

H, (end, r1) :: Q → H ′′, Q
RConcat2

H(r) = every(r1, f)
H, f(v) → H ′, false
H ′, r1.unsub() → H ′′

Q′ = [(next(false), r), (end, r)]@Q

H, (next(v), r1) :: Q → H ′′, Q′ REvery1

H(r) = every(r1, f)
H, f(v) → H ′, true

H, (next(v), r1) :: Q → H ′, Q
REvery2

H(r) = every(r1, f)
Q′ = [(next(true), r), (end, r)]@Q

H, (end, r1) :: Q → H,Q′ REvery3

H(r) = catchError(r1, f)
H, f() → H1, o H1, o.sub()⇝ H2, s

H2[r 7→ s], r1.unsub() → H ′

H, (error, r1) :: Q → H ′, Q
RCatch

r1 appears in H(r)

H, (error, r1) :: Q → H, (error, r) :: Q
RError

Figure 4.10: The reduction rules for subscriptions 1

83



Rules RSub1, RSub2, and RSub3 define the behavior of a top-level subscription o.sub(f),

which calls f with v for each next(v) event from o until an end event is emitted. It

stops the subscription to o if an error is emitted. Note that in RxJS, separate callback

functions can be given to handle the end and the error events but this detail is omitted

for simplicity.

Scheduler and Event Queue RxJS supports multiple types of event schedulers. By

default, internal events are scheduled synchronously. For example, the events of the

combine operator can be passed to its subscribers directly via function calls. However,

a subscription can run on schedulers such as the async scheduler, which is based on the

JavaScript queue for asynchronous events. The rules in Figure 4.10 and 4.11 correspond

to the default scheduler where the internal events are placed in front of the queue so that

they must be processed immediately. To emulate the behavior of an async scheduler, we

can modify the rules so that the internal events are placed at the end of Q so that they

are processed after the events on the queue are processed.

4.4.5 Additional Operators

RxJS has over 100 operators and this semantics only considered a subset selected

based on functionalities, which include combination, creation, error handling, multicast-

ing, filtering, and transformation. Other operators in these classes can be formalized in

similar ways with additional complexities such as buffering.

For example, the operator o.concatAll() subscribes to each of the observables emit-

ted from o and concatenates the resulting event streams. This operator uses a buffer to

hold the new observables emitted from o while waiting for the current observable to com-

plete. The operator zip(o1,o2) pairs events from o1 and o2 until one of them completes

and buffers are needed to hold events from either observables in case that they do not

emit at the same rate.

Some operators may be implemented using others. For example, o.combineAll()

combines the events from the observables emitted from o in tuples, which can be imple-
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∃x. H(x) = share(o, r)
∀i ∈ {1..n}. H(ri) = sharing(x)
Q′ = [(t, r1), . . . , (t, rn)]@Q

H, (t, r) :: Q → H,Q′ RShare

H(r) = take(r′, n) n ≥ 2
H ′ = H[r 7→ take(r′, n− 1)]

H, (t, r′) :: Q → H ′, (t, r) :: Q
RTake1

H(r) = take(r′, 1) H, r′.unsub() → H ′

H, (t, r′) :: Q → H ′, [(t, r), (end, r)]@Q
RTake2

H(r) = take(r′, n)

H, (end, r′) :: Q → H, (end, r) :: Q
RTake3

H(r) = map(r′, f) H, f(v) → H ′, v′

H, (next(v), r′) :: Q → H ′, (next(v′), r) :: Q
RMap1

H(r) = map(r′, f)

H, (end, r′) :: Q → H, (end, r) :: Q
RMap2

H(r) = switchMap(r1, f, r2, b)

H, (next(v), r2) :: Q → H, (next(v), r) :: Q
RSwitch1

H(r) = switchMap(r1, f, ϵ, b)
H, f(v) → H1, o H1, o.sub() → H2, r2
H3 = H2[r 7→ switchMap(r1, f, r2, b)]

H, (next(v), r1) :: Q → H3, Q
RSwitch2

H(r) = switchMap(r1, f, r2, b)
H, f(v) → H1, o H1, o.sub() → H2, r

′
2

H3 = H2[r 7→ switchMap(r1, f, r
′
2, false)]

H3, r2.unsub() → H ′

H, (next(v), r1) :: Q → H ′, Q
RSwitch3

H(r) = switchMap(r1, f, r2, true)
Q′ = (end, r) :: Q

H, (end, ri) :: Q → H,Q′ i ∈ {1, 2}
RSwitch4

H(r) = switchMap(r1, f, r2, false)
H ′ = H[r 7→ switchMap(r1, f, r2, true)]

H, (end, ri) :: Q → H ′, Q i ∈ {1, 2}
RSwitch5

H(r) = sub(r′, f) f(v)

H, (next(v), r′) :: Q → H,Q
RSub1

H(r) = sub(r′, f)

H, (end, r′) :: Q → H,Q
RSub2

H(r) = sub(r′, f) H, r′.unsub()⇝ H ′

H, (error, r′) :: Q → H ′, Q
RSub3

Figure 4.11: The reduction rules for subscriptions 2
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mented using combineLatest after collecting all the observables from o. The operator

o.endsWith(x) appends to the events from o with the value x, which can be implemented

with concat and the operator of (that creates an observable out of values).

The semantics of some operators is difficult to characterize concisely. For example,

the operator o.debounce(selector) controls the emission rate of o by racing its events

with the observable returned from the selector function. Other filter operators such as

distinct and throttle also have complex semantics related to the value and timing of

the events. Even more complex are the transformation operators that group the source

events using buffers or windows based on the event count, event timing, and timing

observables.

Lastly, the multicasting operators use classes like Subject to broadcast events from a

source observable to multiple subscribers. The operators such as window and groupBy can

use Subject to implement observables that emit events selected from a source observable.

The Subject class also has methods for direct event emission, which can be used to emit

events for a observable from any part of the program as a side effect. While we can

represent operators like share, we have not modeled this type of event emission.

4.5 Implementation

To provide a testing ground for the proposed semantics, we implemented a sub-

set of RxJS operators using a thread-like abstractions called AsyncM [57], which allows

asynchronous computation be implemented like a cancellable thread. This implementa-

tion includes 100 RxJS operators with about 2500 lines of code (https://github.com/

tianzhao/rxjs).

AsyncM allows us to chain asynchronous computation just like JavaScript promises

except that AsyncM can be interrupted via an associated progress object. This abstraction

provides a convenient way to implement observables like fromEvent, which waits for

external events in a loop.

Unlike the operational semantics, the implementation does not need to maintain an
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explicit queue to hold external events, since AsyncM uses promises to handle asynchronous

events. Also unlike the semantic, which uses heap variables to maintain bidirectional

relation between an observable and its sources, in the implementation, an observable uses

variables to access its sources but uses an emitter object to send events to its subscribers.

Subscription When an observable is subscribed, two threads are launched, which share

an emitter and a progress object that are stored in the returned subscription object. This

structure is shown in Figure 3.11.

The class for observable has a subscribe method that runs its argument k for each

event value until either the end event is emitted or an error has percolated to the top,

which cancels the subscription.

4.5.1 Composite Observable

The composition operators are derived from the methods of observable class. In this

section, we explain a few of the operators.

map The call o.map(f) applies a synchronous function f to each event value from o

except the end event. Any exception in f is caught and emitted as an error event. If the

input event is an error, then it is re-emitted by default.

switchMap The call o.switchMap(f) applies f to each event of the outer observable

o, which returns an inner observable. Each time the outer observable emits an event,

the current inner observable (if exists) is unsubscribed and a new inner observable is

subscribed.

The implementation of switchMap is similar to that of map in that any exception

raised in f is caught and emitted as an error event. The subscription to inner observable

is referenced as a child of the subscription to the switchMap. An error event from the

outer or the inner observable is re-emitted by default.

One tricky thing in switchMap is to determine when the end is. In RxJS, the end

event does not have a value. For example, of(1,2,3).filter(x=>x<3) will emit 1 and

87



2 and then end. Thus, we cannot determine the end of switchMap by observing the end

of the last inner observable since we do not know whether an inner observable is the last

one until the outer observable emits its end event.

The implementation of switchMap uses a flag to mark the end of the outer or the

inner observable. When the outer observable emits end event, switchMap will emit the

end event if the flag is set (which indicates that the current inner observable has ended).

Otherwise, it will set the flag and wait for the inner observable (which we now know is

the last one) to end.

concatAll A few of the RxJS operators are buffered such as concatAll, which con-

catenates a stream of observables as a single observable. Each inner observable must end

before the next one starts. To prevent the loss of the outer observable events, a channel

is used. A channel will block its read method if it is empty and block its write method if

it is full (if a bound is set). The channel class is also implemented with AsyncM so that

threads blocked on it can be cancelled.

The concatAll operator writes the inner observable emitted from the outer observable

into the channel buffer and subscribes to each inner observable read from the channel.

The concatAll observable ends when an end event is read from the channel.

share The RxJS observables are not shared by default so that each subscription starts

a new instance of an observable. RxJS allows an observable be shared through its share

operator, which returns a subject that starts running when it is first subscribed and emits

events shared by each subsequent subscription. The subject uses reference counting to

determine when it should end. That is, when the number of subscriptions drops to zero,

the subject terminates.

The subject class derives from the observable class and overrides its internal subscribe

method so that multiple subscriptions will listen on events from the same emitter.

catchError An observable may emit error events originated from a primitive or com-

posite observable due to causes such as a rejected promise or an exception in a map
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function. By default, if an error event is not handled, it will propagate outwards un-

til it reaches the top-level subscriber, when it will cause all subscriptions be cancelled.

An error event can be handled with the catchError operator, which cancels the source

observable and replaces it with a new one.

The catchError operator subscribes to its source observable with an error handler

that will stop the current subscription and replace it with the subscription to a new

observable. The new observable is returned from the argument function f given the error

value. However, if the call to f also fails with an exception, then catchError emits an

error event of its own instead.

Break point As explained in [1], the difficulties with debugging RxJS program include

the inability to set break points for expressions such as take(n) and that the stack trace

at a break point does not correspond to the dataflow states of the RxJS program. Our

design does provide the ability to inspect the dataflow graphs at break points through

the subscription objects. However, we have not implemented a way to add break points

to expressions like take(n) since it is only used to compose the observable and the

subsequent event-handling does not go through the call to take(n).

Stack trace We have implemented a strategy to capture the subscription graph and

the different stack traces when an error occurs. To capture the stack trace, an error

handler is used at places that would execute client code such as fmap and switchMap.

The error handler will catch any error thrown from the client code and since the handler

is at the topmost part of the stack running in the reactive code, we can easily separate

the two types of stack by removing the portion of the stack that share with the handler’s

stack.

We examine the stack trace by relying on a non-standard feature of all major Web

browsers and JavaScript runtime, so it is only possible if the exception value is an instance

of the built-in Error object. To trace the state of the reactive code, we only need to

capture the portion of the subscription graph prior to the error site. This is done by

following through the edge to the subscription sources.
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Runtime Safety Invariant The safety invariant is implemented by following the rules

in Figure 4.12. Starting from a root subscriber, we examine the subscription type and

make the appropriate assertion by recursively traversing to the source and child sub-

scriptions, checking whether each event source is covered by at least one catchError

operator. To enable rechecking of the subscription graph when a new subscription is

added, each subscription that we came across during the first traversal is assigned to a

location accessible to its source/child subscriptions. When a new subscription is added,

the subscription assigned previously can be used as a starting point for rechecking the

graph.

4.6 Testing and Debugging

4.6.1 Debugging with Subscription Graph

The semantics of λrx provides a simplified model for describing the debugging support

for RxJS programs. In this section, we discuss the representation of stack trace, detecting

unexpected states of observables, and checking the invariant of subscription graph.

4.6.2 Stack Trace

For sequential programs, debuggers can be used to set break-points to pause the

execution so that the programmers can examine the runtime states and discover the

sources of errors. The runtime state includes a call stack with a list of stack frames

that contains the local variables. The call stack can be dumped as a stack trace if a

program crashes due to an exception. However, for RxJS program, such a stack trace is

not very informative for debugging purposes. The dataflow information of a subscription

graph is obscured by the underlying implementation of RxJS. For example, the event

propagation in the subscription graph may appear as direct function calls, invocation of

callback listeners, or resolution of promises depending on the types of the events and the

event scheduler. Thus, we need a more abstract representation of the runtime state of a

RxJS program.
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The stack trace of a RxJS program may include the stack frames of normal function

calls and/or the dataflow paths from observables to their subscribers. There are three

types of stack traces in a RxJS program.

• The first type represents the construction phase of a subscription graph, where the

stack trace consists of only stack frames.

• The second type represents the reactive phase of the computation, where the trace

includes only dataflow paths. Since the only event source in λrx is asynchronous,

event propagation will not start until the synchronous computation has completed,

which means that the call stack is empty at this point.

• The third type includes dataflow paths followed by stack frames, which may occur

when an expression break-point is reached during event propagation. For example,

in o = o′.switchMap(f), when the outer observable o′ emits an event, the function

f runs. If a break-point within f is reached, then the stack trace will include the

dataflow path that leads to o and the call stack that leads to the break-point in f .

Break point In λrx, we can set break-points for expressions by placing labels. For

example, the expression eℓ has the break-point ℓ. When a computation reaches the

break-point ℓ as shown below, it pauses with the current heap H and call stack E.

H1, e1 → H2, e2
H1, E[eℓ1] → H2, E[e2]

We can set break-point for subscription s by attaching a label ℓ to the observable that

s is reduced from.

H, oℓ.sub()⇝ H ′, sℓ

If an event is received at or emitted from a subscription s with a break-point ℓ, where

H(r) = sℓ and H,Q → H ′, Q′, then the program pauses and allows programmers to

inspect the current state H ′ and Q′. This type of break-points can be enhanced with

filters to limit the type of events.
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Dataflow Path The stack trace may include dataflow path if a break-point is reached

at a subscription or at an expression that runs due to event propagation (e.g. switchMap).

The dataflow path should allow a programmer to trace the event sources from the break-

point. Since each subscription has references to its source subscriptions, we can follow

these references to recover the dataflow path. However, if a subscription has multiple

event sources (e.g. combine), then we must know the latest event source, which can be

implemented with a flag. Detailed data such as the last k events and their time-stamps

can be added to help with debugging.

4.6.3 Subscription State

We can debug a RxJS program by monitoring the state of a subscription. RxJS has

numerous operators and the subscription to each operator have multiple states. If a

subscription enters a state unexpected by the programmers, the resulting behavior may

cause an error that is hard to debug.

For example, the subscription to a combine observable will emit an event only after

both of its source observables have emitted at least one event. If one of the source

observable completes before emitting any value, then the combine observable will not

emit anything regardless how the other source observable behaves. Thus, it may be

useful to raise an alert that one of the source observables to a combine observable only

emits an end event. This may help identify the cause why a combine observable never

emits.

For the subscription concat(r1, o2), we can raise an alert if r1 completes without

emitting any value. This may be incorrect since the result of the concatenation would be

entirely that of o2, which may be unexpected.

For the subscription every(r1, f), if its source observable r1 ends before firing any

event, it will emit true and then complete instead of ending without emitting any value.

This behavior may not be expected either.

For the subscription switchMap(r1, f, r2, b), if the outer observable r1 emits before

the inner observable r2 emits any event, then the switchMap observable will not fire any
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safeH(fromEvent( , ), 1)

safeH(r1, n1) safeH(r2, n2) n1 + n2 ≤ n

safeH(combine(r1, r2, , , ), n)

safeH(r, n)

safeH(concat(r, ), n)

safeH(r, n)

safeH(every(r, ), n)

safeH(r, 1)

safeH(catchError(r, ), 0)

safeH(r, n)

safeH(sharing(r), n)

safeH(r, n)

safeH(take(r, ), n)

safeH(r, n)

safeH(map(r, ), n)

safeH(r1, n1) safeH(r2, n2) n1 + n2 ≤ n

safeH(switchMap(r1, , r2, ), n)

safeH(r, 1)

safeH(sub(r, ), 0)

safeH(H(r), n)

safeH(r, n)

∀r. H(r) = s = sub( , ) safeH(s, 0)

safe(H)

Figure 4.12: The safety rules that check the number of event sources guarded by a catch
observable or root subscriber.

events from r2. Furthermore, if r1 always emits events at a higher rate than r2, then

the switchMap may not emit anything. Thus, we may want to raise an alert if an inner

observable of switchMap is unsubscribed before it emits any event.

4.6.4 Runtime Invariant

When a RxJS program crashes, it is not always clear where the error comes from,

especially when there are multiple event sources. An unhandled error from any of the

event sources can cause the entire program to stop. One way to prevent this is to ensure

that all potential sources of errors are protected by a catch observable so that the source

of an error can be uniquely identified and the program can possibly recover from the

error. To this end, we can check the subscription graph to ensure that each catchError

(or the root subscriber) can trace to at most one event source without going through

another catchError.

Figure 4.12 shows the safety rules to check whether in a heap H, each event source

(i.e. fromEvent) is uniquely guarded by a catchError or root subscriber. The predicate

safeH(s, n) says that in the subscription s, there are at most n event sources that are not
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guarded by a catchError or sub. Given e, if ∅, e →∗ H, v, we can check the safety of

H by checking the predicate safeH(s, 0) for each s = sub(x, f) in H, where →∗ is the

transitive closure of →.

Since the subscription graph in the heap changes during computation, we also need

to recheck H when new subscriptions are added. Among the RxJS operators that we

considered, only concat, catchError, and switchMap operators will dynamically add

subscriptions to the heap. Note that since operators like map and every can execute

arbitrary expression, it can add subscriptions to the heap as well though this is not how

they are typically used. Thus, we can check the safety of a RxJS program e as follows:

• If ∅, e →∗ H, v, then safe(H) (as defined in Figure 4.12).

• If H,Q → H ′, Q′ by Rule RConcat2, RCatch, or RSwitch3, then safe(H ′).

For the updated heap, we can just check the new subscriptions instead of the entire heap

for better efficiency.

4.7 Related Work

4.7.1 FRP

Functional reactive programming (FRP) [16, 15] is a framework for modeling con-

tinuously changing behaviors that react to discrete events. Classic FRP is pull-based,

which detects events by polling in discrete time steps with the implication that the event

latency depends on the step size and the behaviors are checked for possible switching

every time step. Push-based FRP such as FrTime [11], Flapjax [34], Scala React [32],

ReactiveX [50], and Elm [13] provide timely responses to events and avoid re-computation

when events do not occur. They wait on event occurrences and only run when an event

occurs.

Many research efforts have been devoted to fix problems such as space-time leaks and

event glitches using methods such as global dispatcher [34], blocking IO [47], static analy-

sis [26], type-based restrictions [39], mutable memory [48], arrow-based abstractions [29,
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12, 9], and a combination of arrow and monad [40, 4]. In practice, however, most of the

research designs have not seen wide adoptions like ReactiveX and its JavaScript version

RxJS. Despite its flaws, such as the potential of glitches and space leaks, users find its

wide range of features appealing.

4.7.2 RxJS

The reference implementation1 of RxJS uses Observer Pattern, where an observable

passes events to its concrete observers through a generic observer interface. A composition

operator acts like a bridge between a source observable and a destination observer where

the composition logic is implemented as a decorator of the destination observer. Because

a source observable is connected to its intermediate and final observers through refer-

ences, each event is passed through specific method calls, which includes next, complete,

and error events. To check the events between an observable and its intermediate/final

observers, a user has to locate and monitor the correct method calls in many classes.

In our design, an observable emits events to its intermediate/final observers through

emitters and all types of events pass through the emitter where users can examine a

finite history of past events, which include event types, values, and (optional) timing

information.

In RxJS, a subscription object unsubscribes by mutating object states. In our de-

sign, observables are implemented using AsyncM that runs like cancellable threads. In a

composite observable, the subscriptions to the inner/source observables are child threads.

AsyncM supports hierarchical cancellation so that the cancellation of a thread also cancels

its child threads. This simplifies the implementation since to unsubscribe an observable,

all it takes is to cancel the subscription thread.

Debugging tools for RxJS This work is motivated by providing helpful debugging

information for reactive applications. Due to the complexity of RxJS, users often rely on

logging to find errors, which may be helped by logging tools like rxjs-spy2, which adds tag

1http://reactivex.io/rxjs
2https://github.com/cartant/rxjs-spy
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operators to RxJS so that a trace log can be monitored, paused, and replayed through

console. While logging tool reduces debugging workload, trace logs can be difficult to

interpret by visual inspection when numerous events are emitted. In comparison, our

formal semantics shows that the subscription graph can be inputs to test functions for

automated verification and error detection. Visualization tools such as RxFiddle [3],

and RxViz3, and rxjs-playground4 help visualize the dataflow graph and timing of event

emissions through (animated) marble diagrams. These tools are useful for understanding

the semantics of RxJS programs but like trace logs, the resulting diagrams have to be

manually inspected.

Concurrency AsyncM leverages promises [14] to provide a thread-like concurrency

model with cooperative cancellation. While promises do not have builtin methods for

cancellation, AsyncM enhances the promise constructs with a more consistent way to

terminate unused computation.

AsyncM is a form of concurrency monad, which is used by Claessen [10] for supporting

a simple form of concurrency in Haskell and by Li and Zidancwic [28] in their design

for scalable network services. The cancellation mechanism of AsyncM is similar to the

asynchronous exception of Concurrent Haskell [33], which allows a thread to terminate

another thread by throwing an asynchronous exception. However, since JavaScript is

not preemptive, the interrupt exceptions in our design are only received at the locations

where the threads are blocked or polling the thread status.

The progress object in our design is similar to the cancellation token of F# [43, 53] and

.Net5. The difference is that our design integrates cancellation into a thread model, where

a progress (i.e. thread ID) is both the cancellation source and token. The hierarchical

structure of threads allows a child thread to react to cancellation requests to its parent

threads without explicitly linking cancellation tokens.

3https://rxviz.com/
4https://github.com/hediet/rxjs-playground
5https://docs.microsoft.com/en-us/dotnet/standard/threading/

cancellation-in-managed-threads
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4.8 Summary

In this chapter, we defined a formal semantics for a selected set of operators in RxJS

library. The semantics clarifies the representation of stack trace for RxJS programs,

identifies potentially unexpected states of observables, and provides rules for checking

sufficient error handling. We provided an implementation of RxJS based on the semantics,

which uses an abstraction of cancellable threads to implement observables and their

subscriptions. The subscription graph and the events in each graph node are available

for debugging purpose.

Since JavaScript is single threaded, there are no simultaneous events. All external

events occur in a sequence while internal events are processed when they are generated and

before the external events. Thus, our semantics is deterministic, where the same sequence

of events to a subscription will trigger the same sequence of reduction rules and result in

the same reactive behavior. However, it is unclear whether RxJS is entirely deterministic

but using our implementation, programmers can expect predictable outcome.

There are a number of complications in RxJS that are not considered in the semantics.

For example, RxJS supports multiple forms of scheduling, which by default is synchronous

for internal events. A queue scheduler may be used to process interval events in the order

in which they are emitted. RxJS also supports ASAP scheduler that uses the queue

for promises and the async scheduler that schedules internal events using event loop or

animation frame. Our current semantics corresponds to the default scheduler though

it can be easily modified to model the async scheduler. However, separate queues are

needed for other type of schedulers. Also, operators like concatAll use buffer to hold

events until they are used but this may lead to lost events if the buffer is finite or out-of-

memory exception if the buffer is unbounded. Shared observables such as a subject can

start, stop, or fire events as the side effects of some other observables. These features

should be considered to provide accurate modeling of RxJS programs.
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Chapter 5

Conclusion

5.1 Summary of Contributions

Our goal is to make it easier for programmers to develop real-time IoT and Web

applications. In this thesis, we have studied different approaches of FPR solutions and

present our own solution for real-time IoT applications. Our implementation is a push-

pull reactive programming model to efficiently handle asynchronous data streams that

can be used for real-time processing of high sampling-rate signals. We implemented the

push-based reactive stream in order to minimize the latency in gathering data over the

network and then use pull-based constructs in the application logics. The data collected

from the push stream are stored in the buffer and resampled. This way we avoid the issue

with glitches. We also demonstrated how to apply the operators to dynamically switch

reactive streams in order to adjust the sampling-rate.

The presented implementation in Chapter 2 is written in Haskell. Implementing

the same abstraction in JavaScript post a challenge for us because JavaScript does not

have a concurrency model that supports cancellation. JavaScript uses an event-driven

concurrency model with callback functions, but callback functions are not composable

and it is often a source of confusion with regard to execution order, race conditions,

and termination. For these reasons, we implemented a thread-like concurrency model

called AsyncM based on the continuation monad and reader monad. Continuation monad

enables handling concurrency in single-threaded settings, while the reader monad is used

to thread an object for synchronizing and canceling asynchronous computation as if they

were threads. The operational semantics for AsyncM is also presented in the same chapter.

RxJS is a reactive programming library for JavaScript, commonly used for developing

Web applications. Difficult to use and debug are often cited problems for RxJS (and
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other similar reactive languages). We presented a formal semantics for a selected set of

operators and implemented them using AsyncM. Generally, it is accepted there is some

sort of a data-flow graph that represent the reactive program logic. With this formal

semantics, it gives us a simple model to reason about RxJS programs.

5.2 Future Work

Fault tolerance Having a strategy to handle failures is important for networking ap-

plications, especially for IoT applications since they are generally deployed to run for a

long period of time. Logical errors can be encoded in value to signify error states and

captured by program logic. But there are faults that are less detectable such as trans-

mission error which causes data alteration or complete loss of data [41]. A solution to

this type of fault can simply be adding redundancy [17]. Estimating the reliability of

the system is another proposed solution [42]. All these indicate that this topic warrants

great research in order to find out what needs to be implemented and how they impact

the abstractions at the language level.

Type checking We have written our implementation in both Haskell and JavaScript.

Haskell has a rich type system that always enforces the code to be type correct. However,

JavaScript does not. In Chapter 4 section 4.6, we implemented an invariant check that

analyzes the subscription graph at runtime, as an experiment to provide some help for

users to type check their programs. This method of checking was very limited and should

be explored in better ways to perform the check.
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