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ABSTRACT

NUMERICAL STUDY OF A ONE-DIMENSIONAL POISSON-NERNST–PLANCK ION
CHANNEL MODEL BY FINITE ELEMENT BACKWARD AND FORWARD EULER

METHODS

by

Michel Stanislas Korfhage

The University of Wisconsin-Milwaukee, 2023
Under the Supervision of Professor Dexuan Xie

This thesis presents a numerical study of a one-dimensional Poisson-Nernst-

Planck (PNP) ion channel model, which describes the transport of charged species

in an electrolyte under the influence of an electric field. We develop a new numer-

ical scheme for solving the PNP model by combining the method of lines with the

finite element and Euler’s forward and backward methods. We then implement

the scheme based on the finite element library from the FEniCS project. To val-

idate the accuracy of our numerical scheme, we construct an analytical solution

of the PNP model with source terms. We find in numerical tests that the back-

ward Euler method is more accurate and stable than the forward Euler method,

especially for larger time steps. Furthermore, we use our numerical scheme to in-

vestigate the properties of the PNPmodel for an electrolyte with two ionic species.

Our numerical results show that our numerical scheme can accurately capture the

solution behavior of the PNP model.

Keywords: Poisson-Nernst-Planck equations, ion channelmodeling, finite element

method, Euler methods, FEniCS library.
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1 Introduction

Cell membranes contain macromolecular pores, called ion channels. They are crucial

for the electrical signaling in nerves, muscles, and synapses. A variety of different

channels cooperate by opening and closing to support the nervous system [6, p. 1 f.].

These different channels are more or less permeable for some ions. E.g. Na channels

transport many Na+ ions. For many applications, it is important to model these chan-

nels by differential equations.

The Poisson-Nernst-Planck (PNP) equations are widely used to predict the behavior

of electrochemical systems, such as ion channels and fuel cells, and the transport of

ions in an electrolyte under the influence of an electric field [5], [10], [13]. It allows

to numerically calculate the electrostatic potential and ionic concentration functions

at a given point in space and time. In this thesis, we investigate the numerical solu-

tion of a one-dimensional PNP ion channel model using the method of lines, which

is a technique for solving partial differential equations (PDEs) by discretizing them in

space and then in time. Specifically, we use the finite element method (FEM) and the

forward and backward Euler methods to discretize the spatial domain and time in-

terval, respectively. We then develop a PNP numerical solver and implement it as a

Python package based on a finite element library from the FEniCS project [3]. More-

over, we use this package to study the behavior of the PNP model under different

conditions and compare the effects of various parameters on the solutions. To val-

idate our Python package and numerical solver, we construct analytical solutions of

the PNP model.

The thesis will start by reviewing the PNP model. We will then discretize it in the spa-

tial domain as a variational problem using the finite element method, and in the time

dimension by using the forward and backward Euler methods. We next introduce an

iterative scheme for solving each nonlinear finite element system generated from the

1



backward Euler method. We further describe how we implement and analyze these

methods. In the end, we conclude that the backward Euler method is able to produce

better approximations of the PNP model’s solution than the forward Euler method.

2



2 The PNP ion channel model

The transport of ions can be determined by Nernst-Planck equations and Poisson’s

equation, yielding the concentrations of ions and the electric field within the channel

[6, p. 315 ff.].

In previous work [14, p. 4 ff.], the three-dimensional coordinate system in space

was reduced to one dimension by selecting the normal direction of the membrane

as the axis to be examined. The potential density function, u(t, z), and the ionic con-

centration functions, ci(t, z), then became functions of one spatial variable, z, on an

interval 0 ≤ z ≤ L with L representing the membrane channel length. The time vari-

able, t, will be within the interval [0, te] with te being the time after which the partial

derivative of ci with respect to t is almost zero, meaning that the model has reached

the steady state with a stationary solution (i.e. independent of time). In this work, we

consider a non-stationary potential u and n concentrations ci as functions of z and t

and define them by a one-dimensional PNP ion channel model as follows:

∂ci(t, z)

∂t
=

∂

∂z
Di[Zici(t, z)

∂u

∂z
+
∂ci(t, z)

∂z
], i = 1, 2, . . . , n, (1a)

−εs
∂2u(t, z)

∂z2
= β

n∑
i=1

Zici(t, z) + ρ(z), (1b)

subject to the initial value conditions

ci(0, z) = gi(z), 0 ≤ z ≤ L, i = 1, 2, . . . , n, (1c)

u(0, z) = g(z), 0 ≤ z ≤ L, (1d)

3



and the Dirichlet boundary value conditions

ci(t, 0) = ci,0(t), ci(t, L) = ci,L(t), 0 ≤ t ≤ te, i = 1, 2, . . . , n, (1e)

u(t, 0) = u0(t), u(t, L) = uL(t), 0 ≤ t ≤ te, (1f)

where ρ denotes a permanent charge function; Di is a diffusion function of species

i; Zi is the charge of species i; n is the number of species in the ionic solution; εs is

the water permittivity constant; gi and g are initial value functions; ci,0, ci,L, u0, uL are

boundary value functions; and β is a physical constant.
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3 Formulation of the finite element problem

In order to perform a full discretization of the PNP model, we use the method of

lines. Following the method of lines, we first discretize the PNP model in the spatial

dimension using a finite element method. Leaving the time variable t as a parameter,

we reduced the PNP model to an ordinary differential equation (ODE) system [12,

p.10]. This ODE system is then discretized by using the forward or backward Euler

method.

3.1 Semi discretization in space

We start with a semi-discretization in space. Let Ω = (0, L) and V = H1(Ω), where

H1(Ω) is a Sobolev Space on Ω. A function f of H1(Ω) is in the Lebesgue space L2(Ω)

and its weak partial derivative ∂f
∂z

is again in L2(Ω) space [7, p. 49ff]. We also set

V0 = H1
0 (Ω), which is defined by

H1
0 (Ω) = {f ∈ H1(Ω)|f = 0 on the boundary ∂Ω of Ω}

For any test function v ∈ V0, we get a variational formulation of the PNP model (1) as

follows:

∫ L

0

∂ci(t, z)

∂t
vdz =

∫ L

0

∂

∂z
Di[Zici(t, z)

∂u

∂z
+
∂ci(t, z)

∂z
]vdz, i = 1, 2, . . . , n (2a)

−εs
∫ L

0

∂2u(t, z)

∂z2
vdz =

∫ L

0

[β
n∑

i=1

Zici(t, z) + ρ(z)]vdz (2b)

By applying integration by parts,

∫ L

0

vdu = −
∫ L

0

udv
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(2) is simplified as:

∫ L

0

∂ci(t, z)

∂t
vdz = −

∫ L

0

v′Di[Zici(t, z)
∂u

∂z
+
∂ci(t, z)

∂z
]dz, i = 1, 2, . . . , n, (3a)

εs

∫ L

0

v′
∂u(t, z)

∂z
dz = β

n∑
i=1

Zi

∫ L

0

ci(t, z)vdz +

∫ L

0

ρ(z)vdz. (3b)

We next construct a linear finite element function space, Vh, based on a mesh parti-

tion of Ω, xj = jh with the mesh size h = L
N+1

for j = 0, 1, 2, . . . , N,N + 1,

x0 = 0 x1 x2 … xN xN+1 = L

such that for each uh ∈ Vh, uh is a piecewise linear function,

uh(x) = ajx+ bj for xj−1 < x < xj, j = 1, 2, . . . , N + 1

and is continuous in Ω = (0, L). We then obtain a system of nonlinear finite element

equations as follows: Find u(·, t) ∈ Vh, ci(·, t) ∈ Vh, satisfying the boundary condi-

tions

ci(t, 0) = ci,0(t), ci(t, L) = ci,L(t), 0 ≤ t ≤ te, i = 1, 2, . . . , n,

u(t, 0) = u0(t), u(t, L) = uL(t), 0 ≤ t ≤ te,

such that for any v ∈ Vh,0,

∫ L

0

∂ci(t, z)

∂t
vdz = −

∫ L

0

v′Di[Zici(t, z)
∂u

∂z
+
∂ci(t, z)

∂z
]vdz, i = 1, 2, . . . , n

εs

∫ L

0

v′
∂u(t, z)

∂z
dz = β

n∑
i=1

Zi

∫ L

0

ci(t, z)vdz +

∫ L

0

ρ(z)vdz,

(4)

where Vh,0 = {v ∈ Vh|v(0) = 0, v(L) = 0}.
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3.2 Forward Euler method

We now consider time discretization of the finite element system (4). We construct

a time interval partitioning, tk = kτ for k = 0, 1, 2, . . ., with τ being the time step size.

In the following, the function at the k-th timestep, tk, will be denoted in the following

notation:

cki (z) = ci(tk, z), uk(z) = u(tk, z).

In the forward Euler method, the derivative at timestep tk is approximated by

dcki (z)

dt
≈ ck+1

i (z)− cki (z)

τ
(5)

We can apply (5) to (3a) to get

∫ L

0

ck+1
i − cki
τ

vdz +Di

∫ L

0

v′(Zic
k
i

duk

dz
+
dcki
dz

)dz = 0, i = 1, 2, . . . , n (6a)

which can be reformulated as

∫ L

0

ck+1
i vdz =

∫ L

0

cki vdz − τDi

∫ L

0

v′(Zic
k
i

duk

dz
+
dcki
dz

)dz, i = 1, 2, . . . , n (6b)

And for the potential function at t = tk+1, u
k+1(z), from (3b), we can get

εs

∫ L

0

v′
duk+1(z)

dz
dz = β

n∑
i=1

Zi

∫ L

0

ck+1
i (z)vdz +

∫ L

0

ρ(z)vdz (7)

From the initial value conditions of (1c), and (1d), we can get

c0i (z) = gi(z), u0(z) = g(z).

Therefore, the forward Euler method for solving the PNP model (1) at time step tk+1,

for k = 0, 1, 2, . . ., is given as follows:

7



For i = 1, 2, . . . , n, we first find ck+1
i ∈ Vh, which satisfy the boundary value conditions,

ck+1
i (0) = ci,0, ck+1

i (L) = ci,L,

such that

∫ L

0

ck+1
i vdz =

∫ L

0

cki vdz − τDi

∫ L

0

v′(Zic
k
i

duk

dz
+
dcki
dz

)dz, ∀v ∈ Vh,0. (8a)

We then find uk+1 ∈ Vh satisfying the boundary value conditions,

uk+1(0) = u0, uk+1(L) = uL,

such that

εs

∫ L

0

v′
duk+1(z)

dz
dz = β

n∑
i=1

Zi

∫ L

0

ck+1
i (z)vdz +

∫ L

0

ρ(z)vdz, ∀v ∈ Vh,0. (8b)

3.3 Backward Euler method

In the backward Euler method, the derivative at timestep tk+1 is approximated by

dck+1
i (z)

dt
≈ ck+1

i − cki
τ

(9)

By setting t = tk+1 and applying (9) to (3a), we get

∫ L

0

ck+1
i − cki
τ

vdz +Di

∫ L

0

v′(Zic
k+1
i

duk+1

dz
+
dck+1

i

dz
)dz = 0, i = 1, 2, . . . , n

(10a)

⇔
∫ L

0

ck+1
i vdz + τDi

∫ L

0

v′(Zic
k+1
i

duk+1

dz
+
dck+1

i

dz
)dz =

∫ L

0

cki vdz, i = 1, 2, . . . , n

(10b)

8



Similarly, we get an equation of uk+1 from (3b) as follows:

εs

∫ L

0

v′
duk+1(z)

dz
dz − β

n∑
i=1

Zi

∫ L

0

ck+1
i (z)vdz =

∫ L

0

ρ(z)vdz (11)

Hence, the backward Euler method for solving the PNP model (1) in the finite ele-

ment method is obtained as follows:

For k = 0, 1, 2, . . . , find uk+1 ∈ Vh, and ck+1
i ∈ Vh, for i = 1, 2, . . . , n satisfying the

boundary value conditions

uk+1(0) = u0, uk+1(L) = uL,

ck+1
i (0) = ci,0, ck+1

i (L) = ci,L,

such that for all v ∈ Vh,0,

∫ L

0

ck+1
i vdz + τDi

∫ L

0

v′(Zic
k+1
i

duk+1

dz
+
dck+1

i

dz
)dz =

∫ L

0

cki vdz, i = 1, 2, . . . , n, (12a)

εs

∫ L

0

v′
duk+1(z)

dz
dz − β

n∑
i=1

Zi

∫ L

0

ck+1
i (z)vdz =

∫ L

0

ρ(z)vdz, (12b)

where the initial value conditions are given by

c0i (z) = gi(z), u0(z) = g(z).

Hence, at each time step, a nonlinear system of (12) with n + 1 unknown functions,

{ck+1
i }ni=1 and u

k+1, is required to be solved numerically.

9



4 Numerical scheme for solving nonlinear finite ele-

ment systems

In order to solve the nonlinear finite element system (12), which is generated from the

backward Euler method, we construct a damped iterative scheme [14]. Let uk,(l) and

c
k,(l)
i denote the l-th iterates of uk and cki , at time step k respectively, for k = 1, 2, . . ..

With the initial iterates u0,(0) and c
0,(0)
i being known from the initial value conditions,

we define the updates uk,(l+1) and c
k,(l+1)
i as follows: For l = 0, 1, 2, . . . ,

c
k,(l+1)
i = c

k,(l)
i + ω(pi − c

k,(l)
i ), i = 1, 2, . . . , n, (13a)

uk,(l+1) = uk,(l) + ω(q − uk,(l)), (13b)

where ω denotes a damping parameter within the range (0, 1). pi is a solution to the

linear finite element variational problem: Find pi ∈ Vh satisfying pi(0) = ci,0 and pi(L) =

ci,L such that:

∫ L

0

pi(z)vdz + τDi

∫ L

0

v′(Zipi(z)
duk,(l)(z)

dz
+
dpi(z)

dz
)dz =

∫ L

0

c
k,(l)
i (z)vdz, ∀v ∈ Vh,0, (14)

q is a solution to the linear finite element variational problem: Find q ∈ Vh, satisfying

the boundary value conditions q(0) = u0 and q(L) = uL such that

εs

∫ L

0

v′
dq(z)

dz
dz = β

n∑
i=1

Zi

∫ L

0

c
k,(l+1)
i (z)vdz +

∫ L

0

ρ(z)vdz, ∀v ∈ Vh,0. (15)

The initial iterates c
k,(0)
i and uk,(0) are defined by

c
k,(0)
i = c

k−1,(lc)
i , (16a)

uk,(0) = uk−1,(lc), (16b)

10



where lc is the number of iterations at which the following iteration termination rule

is satisfied:

max
1≤i≤n

||ck,(l+1)
i − c

k,(l)
i || < ε, ||uk,(l+1) − uk,(l)|| < ε, (17)

where ε denotes a tolerance (e.g. ε = 10−5). The iteration will be performed for a

maximum of 300 times unless the iteration termination rule (17) is satisfied.

11



5 Implementation and numerical results

We implemented our numerical scheme based on a popular open-source finite ele-

ment library, DOLFIN, which has a high-level Python interface [3]. This work used the

legacy DOLFIN library instead of themore recent DOLFINx. To simplify the installation

of the library and ensure consistent resultswhen executing ondifferentmachines, the

code was executed inside a docker container by using a provided docker image [2],

which includes a working installation of FEniCS version 2019.1.0. The implementation

process was done on a Jupyter notebook, which is a simple notebook interface for ex-

ecuting Python code step by step and showing the results [11].

The implemented solver was executed for different test cases. Here we set the per-

manent charge function ρ to be a constant (−10), n = 2 for a solution of table salt

NaCl with a diffusion constant D1 = 0.133 for Na+ ions, D2 = 0.203 for Cl– ions, εs = 78,

β ≈ 4.2414, and the spatial partition number N = 256.

5.1 Test 1

In this test case, we set L = 40 to get a mesh size of h = 0.15625. The boundary

conditions were defined as follows: For k = 0, 1, 2, . . . ,

uk(0) = −2, uk(L) = 2, (18a)

ck1(0) = 0.1, ck1(L) = 0.5, (18b)

ck2(0) = 0.1, ck2(L) = 0.5. (18c)

The calculations were performed by the backward Euler method for time steps τ =

0.1, τ = 0.05, τ = 0.025, τ = 0.0125.

The finite element solution at τ = 0.1 is reported in Figure 1, which converges to the

steady solution of the PNPmodel, found in the previouswork [14]. Independent of the

12



(a) Concentration of Na+, c1(t, z), in Test 1 (b) Concentration of Cl–, c2(t, z), in Test 1

(c) Potential, u(t, z), in Test 1

Figure 1: Finite element solution (c1,c2,u) of the PNP model in Test 1 with τ = 0.1.
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selected τ , the solver converged to the mentioned steady-state solution. However,

smaller time steps increased the time the scheme needed to calculate the solution.

At τ = 0.1, 70 seconds CPU time was used. It increased to 415 seconds for τ = 0.0125.

5.2 Construction of analytical solutions for verification of numer-

ical results

To be able to verify the correctness of numerical solutions over the entire time inter-

val, we construct two analytic solutions of the PNP model with source terms. Simi-

lar work was done in [9] for the following PNP equations with source terms fi, i =

1, 2, . . . , n+ 1:

∂ci(t, z)

∂t
=

1

A(z)

∂

∂z
A(z)Di[Zici

∂ψ

∂z
+
∂ci
∂z

] + fi(t, z), i = 1, 2, ..., n, (19a)

− 1

A(z)

∂

∂z
(εsA(z)

∂ψ

∂z
) = β

n∑
i=1

Zici + ρ(z) + fn+1(t, z), (19b)

where A(z) is a cross-sectional area on a 3D geometry of the ion channel. We set

A(z) = 1, L = 1, and n = 2 for our model,

∂c1(t, z)

∂t
=

∂

∂z
D1[Z1c1

∂ψ

∂z
+
∂c1
∂z

] + f1(t, z), (20a)

∂c2(t, z)

∂t
=

∂

∂z
D2[Z2c2

∂ψ

∂z
+
∂c2
∂z

] + f2(t, z), (20b)

−εs
∂2ψ

∂z2
= β[Z1c1 + Z2c2] + ρ(z) + f3(t, z), (20c)

where 0 ≤ z ≤ 1 and t ≥ 0. We need to determine the source terms f1,f2, and f3, the

boundary value conditions, and the initial value conditions to yield a PNP test model

with an analytical solution.
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5.2.1 Analytical solution A

We choose the analytical solution (c1, c2, u) to be the same as in [9, p.13]:

c1(t, z) = z2(1− z)e−t, (21a)

c2(t, z) = z2(1− z)2e−t, (21b)

ψ(t, z) = −z
5(3− 2z)

60
e−t. (21c)

We can get their partial derivatives as follows:

∂c1(t, z)

∂t
= −c1(t, z),

∂c1(t, z)

∂z
= (2z − 3z2)e−t, (22a)

∂c2(t, z)

∂t
= −c2(t, z),

∂c2(t, z)

∂z
= (4z3 − 6z2 + 2z)e−t, (22b)

∂ψ(t, z)

∂z
= −z

4(5− 4z)

20
e−t,

∂2ψ(t, z)

∂z2
= −z3(−z + 1)e−t. (22c)

Applying these derivatives to (20) yields the following source terms:

f1 = (z3 − z2 +D1(6z − 2))e−t +D1Z1
32z7 − 63z6 + 30z5

20
e−2t, (23a)

f2 =[−z4 + 2z3 − (1 + 12D2)z
2 +D2(12z + 2)]e−t

+D2Z2
−18z8 + 52z7 − 49z6 + 15z5

10
e−2t,

(23b)

f3 = [−(εs + βZ2)z
4 + (εs + β(Z1 + 2Z2))z

3 − β(Z1 + Z2)z
2]e−t − ρ(z). (23c)

From the exact solutions of (21), the boundary conditions, forL = 1, can be derived

15



as follows:

c1,0(t) = 0, c1,L(t) = (−L3 + L2)e−t = 0, (24a)

c2,0(t) = 0, c2,L(t) = (L4 − 3L3 + L2)e−t = −e−t, (24b)

ψ0(t) = 0, ψL(t) =
3L5 − 2L6

60
e−t =

1

60
e−t. (24c)

And the initial value conditions:

c1(0, z) = z2(1− z), (25a)

c2(0, z) = z2(1− z)2, (25b)

ψ(0, z) = −z
5(3− 2z)

60
. (25c)

A combination of (20) with (23), (24), (25) gives an initial value problem with an ana-

lytical solution. This initial value problem however has a zero steady solution c1 = 0,

c2 = 0, ψ = 0, throughout the entire spatial domain, which does not make any sense

in physics. We, therefore, need to find another initial value problem to evaluate the

validity of the model.

5.2.2 Analytical solution B

We construct analytical solution B in the expressions:

c1(t, z) = 2z3 − 3z2 + 5ze−t, (26a)

c2(t, z) = 3z3 − 2z + 4(L− z)e−t, (26b)

ψ(t, z) = 4z3 − 7z2 + z(3− 2z)e−t. (26c)
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Clearly,

lim
t→∞

c1(t, z) = 2z3 − 3z2, (27a)

lim
t→∞

c2(t, z) = 3z3 − 2z, (27b)

lim
t→∞

ψ(t, z) = 4z3 − 7z2. (27c)

which give a nonzero steady solution in cubic terms. A graph of the solution given in

(26) is displayed in Figure 2.

With L = 1, the partial derivatives can be found as follows:

∂c1(t, z)

∂t
= −5ze−t,

∂c1(t, z)

∂z
= 6z2 − 6z + 5e−t, (28a)

∂c2(t, z)

∂t
= 4(z − L)e−t = 4(z − 1)e−t,

∂c2(t, z)

∂z
= 9z2 − 2− 4e−t, (28b)

∂ψ(t, z)

∂z
= 12z2 − 14z + (3− 4z)e−t,

∂2ψ(t, z)

∂z2
= 24z − 14− 4e−t. (28c)

We then get the source terms of (20) as shown below:

f1 =− 5ze−t −D1[Z1(120z
4 − 32e−tz3 − 256z3 + 234e−tz2+

126z2 − 40e−2tz − 158e−tz + 15e−2t) + 12z − 6]

=−D1[Z1(120z
4 − 256z3 + 126z2) + 12z − 6]

+ (−5z + 32D1Z1z
3 − 234D1Z1z

2 +D1Z1158z)e
−t

+D1Z1(40z − 15)e−2t,

(29a)
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f2 =4(z − L)e−t −D2[Z2(180z
4 − 48e−tz3 − 168z3 − 117e−tz2 − 72z2 + 32e−2tz

+ 128e−tz + 96Le−tz + 56z − 12e−2t − 16Le−2t − 6e−t − 56Le−t) + 18z]

=−D2[Z2(180z
4 − 168z3 − 72z2 + 56z) + 18z]

+ [4(z − L) +D2Z2(48z
3 + 117z2 − 128z − 96Lz + 6 + 56L)]e−t

+ [D2Z2(−32z + 12 + 16L)]e−2t

=−D2[Z2(180z
4 − 168z3 − 72z2 + 56z) + 18z]

+ [4(z − 1) +D2Z2(48z
3 + 117z2 − 128z − 96z + 6 + 56)]e−t

+ [D2Z2(−32z + 12 + 16)]e−2t,

(29b)

f3 =− εs(24z − 14− 4e−t)− β[Z1(2z
3 − 3z2 + 5ze−t)

+ Z2(3z
3 − 2z + 4(L− z)e−t)]− ρ(z)

=− εs(24z − 14− 4e−t)− β[Z1(2z
3 − 3z2 + 5ze−t)

+ Z2(3z
3 − 2z + 4(1− z)e−t)]− ρ(z).

(29c)

From the exact solution (c1, c2, ψ) of (26) and L = 1, the boundary conditions can

be derived as follows:

c1,0(t) = 0, c1,L(t) = 2L3 − 3L2 + 5Le−t = −1 + 5e−t, (30a)

c2,0(t) = 4Le−t = 4e−t, c2,L(t) = 3L3 − 2L = 1, (30b)

ψ0(t) = 0, ψL(t) = 4L3 − 7L2 + L(3− 2L)e−t = −3 + e−t. (30c)

18



Figure 2: Surface plots of the analytical solutions (c1,c2,ψ) of (26) for our PNP testmodel
defined by (20), (29), (30), and (31).

And the initial value conditions are given by

c1(0, z) = 2z3 − 3z2 + 5z, (31a)

c2(0, z) = 3z3 − 2z + 4(L− z) = 3z3 − 2z + 4(1− z), (31b)

ψ(0, z) = 4z3 − 7z2 + z(3− 2z). (31c)

Consequently, we have obtained another PNP test model defined by (20), (29), (30),

and (31), whose analytical solution is given in (26).

5.2.3 Performance of our backward Euler method

We solved the PNP test model by our backward Euler method with τ = 0.1. A solution

was considered to have reached the steady state once the change of the concentra-
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Figure 3: Surface plots of the numerical solution generated by our backward Euler
methodwith τ = 0.1, and h = 0.00390625 for the PNP testmodelwith analytical solution
(26).
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tion and potential between two consecutive time steps was less than 10−3. We used

our damped iterative scheme to solve each related nonlinear system. We reached the

threshold for the steady state at tk = 6.3with k = 63 for the constructed test case. For

the calculation of the concentration and potential functions at the first 15 time steps,

the scheme used the maximum of 300 iterations. Performing these 300 iterations

took around 1 to 1.5 seconds on my laptop computer A. Afterwards the iteration was

stopped earlier as the iteration termination rule was satisfied (ε = 10−5). For example,

the scheme performed 78 iterations at tk = 4.9 with k = 49 to find an acceptable so-

lution, which took around 0.4 seconds in CPU time. In total, a little less than a minute

was taken to find the numerical solution reported in Figure 3.

We compared the numerical solution with the analytical solution in Figure 4, showing

that there exist large errors at the very first time steps and the further the distance

to the boundaries, the worse the approximation of the numerical solution. The best

accuracy is achieved for the potential function, where the error appears to be not

changing with time and has a maximum value of about 0.08. The two concentration

functions, on the other hand, show a spike right at the beginning. The function c2

reaches its maximum error with about 1.6 at the first time step at z ≈ 0.3. For the

later time steps the error decreases constantly.

To get a more precise view of the precision per time step, we calculated the errors in

the maximum norm of the spatial dimension as functions of time t in Figure 5. From

the figure, we can see that the numerical accuracy can be improved significantly once

the stable state is reached.

5.2.4 Test results by the forward Euler method

The forward Eulermethod, on the other hand, creates an explicit systemof equations.

Therefore, the calculation of each time step is faster than the backward Eulermethod.

However, the solutions may be oscillating heavily towards the boundaries of the spa-
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Figure 4: Surface plots of the absolute errors ||c1 − c1,h||, ||c2 − c2,h||, and ||ψ − ψh|| of
the numerical solution (c1,h, c2,h, ψh). The numerical solution (c1,h,c2,h,ψh) was found by
the backward Euler method with τ = 0.1, and h = 0.00390625 and the exact solution
(c1, c2, ψ) is given in (26).
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Figure 5: Errors between the numerical solution (c1,h, c2,h, ψh) generated by the back-
ward Eulermethod and the exact solution (c1, c2, ψ) in themaximumnormas functions
of time t.
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Figure 6: A comparison of the concentrations c1,h and c2,h calculated by the forward
Euler method with time step τ = 10−4 with the analytical concentrations c1 and c2 for
the PNP test model.

tial domain. This behavior is being analyzed by the stability zone of the algorithm. For

the numerical solution to our example to be stable and a good approximation of the

exact solution, the time step cannot exceed a given value, depending on the stiffness

of the solution [1, p.304 f.].

This, however, causes issues even for small time steps τ . The Figure 6 shows the

numerical solutions at time tk = kτ with time step τ = 10−4 and k = 0, 3, 6, 9. The

numerical solution of c2 at t6 = 6 · 10−4 shows some oscillation towards the bound-

aries, which the exact solution does not at all indicate. Note that the concentration c2

approximately reaches the steady state for t > 6. Hence, the forward Euler method

is not able to approximate it with the time step size τ = 10−4.

Further decreasing the time step size to τ = 10−5, we found that the forward Euler

method produced a good numerical solution for 0 ≤ t ≤ 0.01 as displayed in Figure
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Figure 7: A comparison of the concentrations c1,h and c2,h calculated by the forward
Euler method with time step τ = 10−5 with the analytical concentrations c1 and c2 for
the PNP test model.
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7. However, even though the calculation per time step can be done very fast by the

forward Euler method compared to the backward Euler method, computing the so-

lution in this small time interval already took about 10 seconds. Extrapolating this

duration to the calculation over 0 ≤ t ≤ 6, the calculation would take approximately

6000 seconds. This makes the forward Euler method too expensive in comparison to

the backward Euler method.
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6 Conclusions

The numerical study of the PNP model we present in this thesis provides valuable

insights into the transport of charged species throughout an electrolyte under the in-

fluence of an electric field. We developed a new numerical scheme for solving a PNP

model and evaluated its ability to approximate the potential function and the concen-

tration functions of ions around an ion channel over time. We created a variational

problem by the finite element method and the forward/backward Euler method. We

successfully implemented our numerical scheme in Python using the DOLFIN library.

In order to validate numerical solutions, we constructed a PNP test model with an

analytical solution being given in algebraic expressions.

With the analytical solution, we found that the backward Euler method was able to

find good approximations of the PNP test model in a reasonable amount of time. The

forward Euler method, however, turned out to have stability issues. Decreasing the

time step can improve the stability. However, the time for calculating the solution

would be increased to an unfeasible level.

Overall, we have shown that the combination of the finite element method and the

backward Euler method can be a promising approach for solving a PNP model. Our

Python package can thereby be a valuable tool for investigating the behavior of ion

transport across the cell membrane via an ion channel.
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Appendices
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A Hardware

HP Pavilion x360 14-dh0306ng

Microprocessor Intel® Core™ i5-8265U (1.6 GHz base frequency,
up to 3.9 GHz with Intel® Turbo Boost Technology,
6 MB cache, 4 cores)

Memory, standard 16 GB DDR4-2400 SDRAM (2 x 8 GB)
Hard drive 512 GB PCIe® NVMe™ M.2 SSD
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B Software

OS Arch Linux
OS-kernel Linux 6.2.2-arch1-1 x86_64
Docker Docker version 23.0.1, build a5ee5b1dfc
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