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Abstract
A random graph model on a host graph H is said to

be 1-independent if for every pair of vertex-disjoint sub-

sets A,B of E(H), the state of edges (absent or present) in A
is independent of the state of edges in B. For an infinite

connected graph H, the 1-independent critical percolation
probability p1,c(H) is the infimum of the p ∈ [0, 1] such

that every 1-independent random graph model on H in

which each edge is present with probability at least p almost

surely contains an infinite connected component. Balister

and Bollobás observed in 2012 that p1,c(Z𝑑) tends to a limit

in

[
1

2
, 1

]
as 𝑑 → ∞, and they asked for the value of this

limit. We make progress on a related problem by showing

that

lim
n→∞

p1,c(Z2 × Kn) = 4 − 2

√
3 = 0.5358 … .

In fact, we show that the equality above remains true if the

sequence of complete graphs Kn is replaced by a sequence

of weakly pseudorandom graphs on n vertices with average

degree 𝜔(log n). We conjecture the answer to Balister and

Bollobás’s question is also 4 − 2

√
3.
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888 FALGAS-RAVRY AND PFENNINGER

1 INTRODUCTION

1.1 Background

Percolation theory lies at the interface of probability theory, statistical physics and combinatorics.

Its object of study is, roughly speaking, the connectivity properties of random subgraphs of infinite

connected graphs, and in particular the points at which these undergo drastic transitions such as the

emergence of infinite components. Since its inception in Oxford in the late 1950s, percolation theory

has become a rich field of study (see e.g., the monographs [9, 15, 22]). One of the cornerstones of the

discipline is the Harris–Kesten theorem [17, 18], which states that if each edge of the integer square

lattice Z2
is open independently at random with probability p, then if p ≤ 1

2
almost surely all connected

components of open edges are finite, while if p >

1

2
almost surely there exists an infinite connected

component of open edges. Thus 1∕2 is what is known as the critical probability for independent bond
percolation on Z2

.

In general, given an infinite connected graph H, determining the critical probability for independent

bond percolation on H is a hard problem, with the answer known exactly only in a handful of cases.

There is thus great interest in methods for rigorously estimating such critical probabilities. One of the

most powerful and effective techniques for doing just that was developed by Balister et al. [5], and

relies on comparing percolation processes with locally dependent bond percolation on Z2
(to be more

precise: 1-independent bond percolation; see below for a definition). The method of Balister, Bollobás

and Walters has proved influential, and has been widely applied to obtain the best rigorous confidence

interval estimates for the value of the critical parameter in a wide range of models, see, for example, [1,

3–8, 12, 13, 16, 24].

However, as noted by the authors of [5] and again by Balister and Bollobás [2] in 2012, locally

dependent bond percolation is poorly understood. To quote from the latter work, “[given that]

1-independent percolation models have become a key tool in establishing bounds on critical probabil-

ities [… ], it is perhaps surprising that some of the most basic questions about 1-independent models

are open.” In particular, there is no known locally dependent analog of the Harris–Kesten theorem, nor

even until now much of a sense of what the corresponding 1-independent critical probability ought to

be. In this article, we contribute to the broader project initiated by Balister and Bollobás of addressing

the gap in our knowledge about 1-independent bond percolation by making some first steps toward a

1-independent Harris–Kesten theorem. To state our results and place them in their proper context, we

first need to give some definitions.

Let H = (V ,E) be a graph. Given a probability measure 𝜇 on subsets of E, a 𝜇-random graph
H

𝜇
is a random spanning subgraph of H whose edge-set is chosen randomly from subsets of E

according to the law given by 𝜇. Each probability measure 𝜇 on subsets of E thus gives rise to a

random graph model on the host graph H, and we use the two terms (probability measure 𝜇 on

subsets of E/random graph model H
𝜇

on H) interchangeably. In this article we will be interested

in random graph models where the state (present/absent) of edges is dependent only on the states

of nearby edges. Recall that the graph distance between two subsets A,B ⊆ E is the length of the

shortest path in H from an endpoint of an edge in A to an endpoint of an edge in B. So in particu-

lar if an edge in A shares a vertex with an edge in B, then the graph distance from A to B is zero,

while if A and B are supported on disjoint vertex-sets, then the graph distance from A to B is at

least one.

Definition 1.1 (k-independence). A random graph model H
𝜇

on a host graph H is k-independent if

whenever A,B are disjoint subsets of E(H) such that the graph distance between A and B is at least k,
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FALGAS-RAVRY AND PFENNINGER 889

the random variables E(H
𝜇
) ∩ A and E(H

𝜇
) ∩ B are mutually independent. If H

𝜇
is k-independent, we

say that the associated probability measure 𝜇 is a k-independent measure, or k-ipm, on H.

Letk,≥p(H) denote the collection of all k-independent measures 𝜇 on E(H) in which each edge

of H is included in H
𝜇

with probability at least p. We define k,≤p(H) mutatis mutandis, and let

1,p(H) denotek,≥p ∩k,≤p—in other wordsk,p is the collection of all k-ipm 𝜇 on H in which

each edge of H is included in H
𝜇

with probability exactly p.

Observe that a 0-independent measure 𝜇 is what is known as a Bernoulli or product measure on E:

each edge in E is included in H
𝜇

at random independently of all the others. We refer to such measures

as independent measures. The collection 0,p(H) thus consists of a single measure, the p-random
measure, in which each edge of H is included in the associated random graph with probability p,

independently of all the other edges. When the host graph H is Kn, the complete graph on n vertices,

this gives rise to the celebrated Erdős–Rényi random graph model, while when H = Z2
this is exactly

the independent bond percolation model considered in the Harris–Kesten theorem.

In this article, we will focus instead on1,≥p(H) and1,p(H), whose probability measures allow

for some local dependence between the edges. A simple and well-studied example of a model from

1,p(H) is given by site percolation: build a random spanning subgraph Hsite

𝜃

of H by assigning each

vertex v ∈ V(H) a state Sv independently at random, with Sv = 1 with probability 𝜃 and Sv = 0

otherwise, and including an edge uv ∈ E(H) in Hsite

𝜃

if and only if Su = Sv = 1. Each edge in this

random graph is open with probability p = 𝜃

2
, and the model is clearly 1-independent since “random-

ness resides in the vertices,” and so what happens inside two disjoint vertex sets is independent. More

generally, any state-based model obtained by first assigning independent random states Sv to vertices

v ∈ V(H) and then adding an edge uv according to some deterministic or probabilistic rule depending

only on the ordered pair (Su, Sv)will give rise to a 1-ipm on H. State-based models are a generalization

of the probabilistic notion of a two-block factor, see [20] for details.

Given a 1-ipm 𝜇 on an infinite connected graph H, we say that 𝜇 percolates if H
𝜇

almost surely

(i.e., with probability 1) contains an infinite connected component.
1

Definition 1.2. Given an infinite connected graph H, we define the 1-independent critical percola-

tion probability for H to be

p1,c(H) ∶= inf
{

p ≥ 0 ∶ ∀𝜇 ∈1,≥p(H), 𝜇 percolates
}
.

Remark 1.3. Given 𝜇 ∈ 1,≥p(H) we can obtain a random graph H
𝜈

from H
𝜇

by deleting each

edge uv of H
𝜇

independently at random with probability 1−p∕
(
P
[
uv ∈ E(H

𝜇
)
])

. Clearly H
𝜇

stochas-

tically dominates (i.e., is a supergraph of) H
𝜈

and 𝜈 ∈1,p(H). Thus the definition of p1,c(H) above

is unchanged if we replace1,≥p(H) by1,p(H).

Remark 1.4. The probability p1,c(H) is in fact one of five natural critical probabilities for

1-independent percolation one could consider, all of which are distinct in general—see [10, Section

11.3, Corollary 50 and Question 53].

Balister et al. [5] devised a highly effective method for giving rigorous confidence interval

results for critical parameters in percolation theory via comparison with 1-independent models on the

1
Note the existence of an infinite connected component is a tail event, in the sense that one cannot create or destroy an infinite

connected component by changing the state of finitely many edges, so that by a 1-independent version of Kolmogorov’s zero–one

law, H
𝜇

contains an infinite connected component with probability 0 or 1 (see the discussion below Theorem 1 in [9, Chapter 2]).
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890 FALGAS-RAVRY AND PFENNINGER

square integer lattice Z2
. Their method relies on estimating the probability of certain finite, bounded

events (usually via Monte Carlo methods, whence the confidence intervals) and on bounds on the

1-independent critical probability p1,c(Z2). Work of Liggett et al. [20] on stochastic domination of inde-

pendent models by 1-independent models implied p1,c(Z2) < 1. Balister et al. [5, Theorem 2] obtained

the effective upper bound p1,c(Z2) < 0.8639 via a renormalization argument; this upper bound has

not been improved since, and the authors of [5] noted “it would be of interest to give significantly

better bounds for p1,c(Z2); unfortunately, we cannot even hazard a guess as to [its] value.” The ques-

tion of determining p1,c(Z2) was raised again by Balister and Bollobás [2, Question 2], who noted the

difficulty of the problem:

Problem 1.5 (1-independent Harris–Kesten problem). Determine p1,c(Z2).

Balister and Bollobás [2] observed that a simple modification of site percolation due to to Newman

shows that p1,c(Z2) ≥ (𝜃s)2+(1 − 𝜃s)2, where 𝜃s = 𝜃s(Z2) is the critical probability for site percolation

in Z2
. Since it is known that 𝜃s ∈ [0.556, 0.679492] (see [26, 27]), this shows that p1,c(Z2) ≥ 0.5062.

Non-rigorous simulation-based estimates 𝜃s ≈ 0.597246 [28] improve this to a non-rigorous lower

bound of 0.5172. Recently, Day, Hancock and the first author gave significant improvements on these

lower bounds. In [10, Theorem 7], they constructed measures based on an idea from the first author’s

PhD thesis [14, Theorem 62] showing that for any 𝑑 ∈ N, p1,c(Z𝑑) ≥ 4 − 2

√
3 = 0.5358 … . They in

fact showed p1,c(H) ≥ 4− 2

√
3 for any host graph H satisfying what they call the finite 2-percolation

property (see Section 3 for a formal definition), a family which includes the graphs Z2 × Kn for any

n ∈ N. (Recall that the Cartesian product H ×Kn of a graph H with Kn is the graph whose vertices are

the pairs (v, i) ∈ V(H) × {1, 2, … n} and in which two distinct vertices (v, i) and (v′, i′) are joined by

an edge if either v = v′ or vv′ is an edge of H and i = i′; see Section 1.4 for an illustration and a more

general definition of the Cartesian product of two graphs.) Further, the same authors gave a different

construction [10, Theorem 8] showing that

p1,c(Z2) ≥ (𝜃s)2 +
1 − 𝜃s

2
, (1.1)

where 𝜃s = 𝜃s(Z2) is the critical probability for site percolation in Z2
. Using the aforementioned

simulation-based estimates for 𝜃s, this gives a non-rigorous lower bound of 0.5549 on p1,c(Z2).
All these lower bounds remain far apart from the upper bound of 0.8639 from [5], and, as noted

in [5], part of the difficulty of Problem 1.5 has been the absence of a clear candidate conjecture to

aim for.

In view of the difficulty of Problem 1.5, there has been interest in increasing our understand-

ing of 1-independent models on other host graphs than Z2
. Balister and Bollobás noted p1,c(Z𝑑) is

non-increasing in 𝑑 and must therefore converge to a limit as 𝑑 → ∞. They showed this limit is at

least 1∕2 and posed the following problem [2, Question 2]:

Problem 1.6 (Balister and Bollobás problem). Determine lim
𝑑→∞ p1,c(Z𝑑).

By the construction of Day, Falgas-Ravry and Hancock mentioned above, this limit is in fact at

least 4 − 2

√
3; the only known upper bound is again the 0.8639 upper bound on p1,c(Z2) from [5].

Balister and Bollobás have further studied 1-independent models on infinite trees, obtaining in this

setting 1-independent analogs of classical results of Lyons [21] for independent bond percolation. Day,

Hancock and the first author for their part gave a number of results on the connectivity of 1-independent

random graphs on paths and complete graphs, and on the almost sure emergence of arbitrarily long

 10982418, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21129 by U

niversity O
f B

irm
ingham

 E
resources A

nd Serials T
eam

, W
iley O

nline L
ibrary on [14/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FALGAS-RAVRY AND PFENNINGER 891

paths in 1-independent models. More precisely, they introduced the Long Paths critical probability
p1,LP(H) of H, given by

p1,LP(H) ∶= inf
{

p ∈ [0, 1] ∶ ∀𝜇 ∈1,p,∀𝓁 ∈ N, P
[
H

𝜇
contains a path of length 𝓁

]
> 0

}
,

and showed p1,LP(Z) = 3∕4, p1,LP(Z × K2) = 2∕3. Since the sequence p1,LP(Z × Kn) is non-increasing

in n, it tends to a limit in [0, 1] as n → ∞. Day, Hancock and the first author showed in [10, Theorem

12(v)] that this limit lies in the interval [4 − 2

√
3, 5∕9] and asked [10, Problem 54]:

Problem 1.7 (Day, Falgas-Ravry and Hancock). Determine limn→∞ p1,LP(Z × Kn).

1.2 Contributions of this article

Our main result in this article is determining the limit of the 1-independent critical probability for

percolation in Z2 × Kn as n → ∞:

Theorem 1.8. The following hold:

(i) if p > 4 − 2

√
3 is fixed, then there exists N ∈ N such that p1,c

(
Z2 × KN

)
≤ p;

(ii) for every n ∈ N, p1,c
(
Z2 × Kn

)
≥ 4 − 2

√
3.

In particular, we have limn→∞ p1,c(Z2 × Kn) = 4 − 2

√
3 = 0.5358 … .

As a corollary to the key result in our proof of Theorem 1.8, we also obtain a solution to the problem

of Day, Falgas-Ravry and Hancock on long paths in 1-independent percolation, Problem 1.7 above:

Theorem 1.9. limn→∞ p1,LP (Z × Kn) = 4 − 2

√
3.

In fact, we are able to show the conclusions of Theorems 1.8 and 1.9 still hold if we replace the

complete graph Kn by a suitable pseudorandom graph. Recall that the study of pseudorandom graphs

originates in the ground-breaking work of Thomason [25]. In this article we shall use the following

notion of weak pseudorandomness (see Condition (3) in the survey of Krivelevich and Sudakov [19]):

Definition 1.10. Let q = q(n) be a sequence in [0, 1]. A sequence (Gn)n∈N of n-vertex graphs is

weakly q-pseudorandom if

max

{||||e(Gn[U]) − q |U|2
2

|||| ∶ U ⊆ V(Gn)
}
= o(qn2).

Note that if (Gn)n∈N is a sequence of weakly q-pseudorandom graphs, then for any U1,U2 ⊆ V(Gn)
with U1 ∩ U2 = ∅, we have

e(Gn[U1,U2]) = q |U1| |U2| + o(qn2).

Theorem 1.11. Let q = q(n) satisfy nq(n) ≫ log n. Then for any sequence (Gn)n∈N of n-vertex
graphs which is weakly q-pseudorandom, we have limn→∞ p1,c(Z2 × Gn) = 4 − 2

√
3.

Theorem 1.12. Let q = q(n) satisfy nq(n) ≫ log n. Then for any sequence (Gn)n∈N of n-vertex
graphs which is weakly q-pseudorandom, we have limn→∞ p1,LP(Z × Gn) = 4 − 2

√
3.
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892 FALGAS-RAVRY AND PFENNINGER

We conjecture that the conclusion of Theorem 1.8 still holds if we replace the complete graph Kn
by an n-dimensional hypercube.

Conjecture 1.13. limn→∞ p1,c(Z2 × Qn) = 4 − 2

√
3.

Observe that, since Z2 × Qn is a subgraph of Zn+2
and p1,c(Zn+2) ≥ 4 − 2

√
3 [10, Theorem 7],

Conjecture 1.13 implies that the answer to the problem of Balister and Bollobás (Problem 1.6 above)

is 4 − 2

√
3. In fact, we make the following bolder conjecture:

Conjecture 1.14 (1-independent percolation in high dimension). There exists 𝑑 ≥ 3 such that

p1,c(Z𝑑) = 4 − 2

√
3.

Finally we prove some modest results on component evolution in 1-independent models on Kn and

on pseudorandom graphs. The main point of these results is that “the two-state measure minimizes

the size of the largest component,” a heuristic which in turn guides our Conjecture 1.13. Here by the

two-state measure, we mean the following variant of site percolation, due to Newman (see [23]):

Definition 1.15 (Two-state measure). Let H be a graph, and let p ∈
[

1

2
, 1

]
. The two-state measure

𝜇2s,p ∈1,p(H) is constructed as follows: assign to each vertex v ∈ V(H) a state Sv independently and

uniformly at random, with Sv = 1 with probability 𝜃 = 𝜃(p) = (1+
√

2p − 1)∕2 and Sv = 0 otherwise.

Then let H
𝜇

2s,p be the random subgraph of H obtained by including an edge if and only if its endpoints

are in the same state.

Day, Hancock and the first author showed in [10, Theorem 16] that 𝜇2s,p minimizes the probability

of connected subgraphs over all 1-ipm 𝜇 ∈ 1,p(K2n). We show below that it also minimizes the

probability of having a component of size greater than n. Explicitly, given a set of edges F ⊆ E(H) in a

graph H, we let Ci(F) denote the ith largest connected component in the associated subgraph (V(H),F)
of H. Then:

Proposition 1.16. Set p2n = 1

2

(
1 − tan

2

(
𝜋

4n

))
and H = K2n. Then for all p ∈ [p2n, 1],

min
{
P
[|C1(H𝜇

)| > n
]
∶ 𝜇 ∈1,≥p(K2n)

}
= 1 −

(
2n
n

)(
1 − p

2

)n

.

Further, we show that the two-state measure also asymptotically minimizes the likely size of a

largest component in 1-independent models on pseudorandom graphs:

Theorem 1.17. Let r ∈ N, and let p ∈
(

1

r+1
,

1

r

]
be fixed. Let (Hn)n∈N be a sequence of weakly

q-pseudorandom graphs on n vertices with q = q(n)≫ log(n)∕n. Then the following hold for H = Hn:

(i) For every 𝜇 ∈1,p(H), with probability 1 − o(1) we have |C1(H𝜇
)| ≥ (1 − o(1))

1+
√

(r+1)p−1

r

r+1
n.

(ii) There exists 𝜇 ∈ 1,p(H) such that with probability 1 − o(1) the random graph H
𝜇

satisfies

|C1(H𝜇
)| ≤ (1 + o(1))

1+
√

(r+1)p−1

r

r+1
n.

This leads us to the natural conjecture that the two-state measure asymptotically minimizes the

size of a largest component in 1-independent models on the hypercube Qn:
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FALGAS-RAVRY AND PFENNINGER 893

Conjecture 1.18. Let p ∈ ( 1

2
, 1] be fixed, and let H = Qn. Then for all 𝜇 ∈ 1,≥p(Qn), with

probability 1 − o(1) we have |C1

(
H

𝜇

) | ≥
(

1+
√

2p−1

2
− o(1)

)
2

n
.

We suspect that a proof of this conjecture combined with the ideas in the present paper would yield

a proof of Conjecture 1.13.

Overall, our results would lead us to speculate that the true value of p1,c(Z2) is probably a lot

closer to the lower bound of 0.5549 from (1.1) than to the upper bound of 0.8639 obtained from

renormalization arguments in [5]. However a rigorous proof of improved upper bounds on p1,c(Z2)
remains elusive for the time being.

1.3 Organization of the article

The key step in the proof of our main results, Theorem 2.1, is proved in Section 2; it establishes that

p = 4 − 2

√
3 is the threshold for ensuring there is a high probability in any 1-independent model

of finding a path between the largest components in two disjoint copies of Kn joined by a match-

ing. The argument in a sense captures “what makes the 4 − 2

√
3 measure of [10, 14] tick.” We

then use Theorem 2.1 in Section 3 to prove Theorems 1.8–1.12. Our component evolution results,

Proposition 1.16 and Theorem 1.17 are proved in Section 4.

1.4 Notation

Given n ∈ N we write [n] for the discrete interval {1, 2, … , n}. We write S(2) for the collection of all

unordered pairs from a set S. We use standard graph-theoretic notation throughout the article. Given

a graph H, we use V = V(H) and E = E(H) to refer to its vertex-set and edge-set respectively, and

write e(H) for the size of E(H). Given X ⊆ V , we write H[X] for the subgraph of H induced by X,

that is, the graph (X,E(H) ∩X(2)). For disjoint subsets X,Y of V we also write H[X,Y] for the bipartite

subgraph of H induced by X ⊔ Y , that is the graph (X ∪ Y , {xy ∈ E(H) ∶ x ∈ X, y ∈ Y}). We denote

by Kn the complete graph on n vertices, Kn = ([n], [n](2)).
The Cartesian product of two graphs G1 and G2 is the graph G1 × G2 with V(G1 × G2) =

{(v1, v2) ∶ v1 ∈ V(G1), v2 ∈ V(G2)} and E(G1 × G2) consisting of all pairs {(u1, u2), (v1, v2)} with

either u1 = v1 ∈ V(G1) and u2v2 ∈ E(G2) or u1v1 ∈ E(G1) and u2 = v2 ∈ V(G2). In particular if

G1 = K2, that is, a single edge, then G1 × G2 is the bunkbed graph of G2 consisting of two disjoint

copies of G2, the left copy {1} × G2 and the right copy {2} × G2, together with a perfect matching

joining each vertex (1, v) in the left copy to its image (2, v) in the right copy. See Figure 1 for an

example.

Finally we use the standard Landau notation for asymptotic behavior: given functions f , g ∶ N →
R, we write f = O(g) if |f (n)| ≤ C|g(n)| for some C > 0 and all n sufficiently large, and f = o(g) if

limn→∞ |f (n)∕g(n)| = 0. We use f = Ω(g) and f = 𝜔(g) to denote g = O(f ) and g = o(f ), respectively.

We also sometimes use f ≪ g and f ≫ g as a shorthand for f = o(g) and f = 𝜔(g), respectively. Given

FIGURE 1 The Cartesian product K2 × K3
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894 FALGAS-RAVRY AND PFENNINGER

a sequence of events (En)n∈N in some probability space, we say that En occurs with high probability
(whp) if P[En] = 1 − o(1).

2 WHEN LEFT MEETS RIGHT: JOINING THE LARGEST COMPONENTS
ON EITHER SIDE OF K2 × Gn

Let (Gn)n∈N be a sequence of weakly q-pseudorandom n-vertex graphs where qn ≫ log n. Consider

the Cartesian product H = K2 ×Gn. Given 𝜇 ∈1,p(H), let “Left meets Right” denote the event that

the 𝜇-random graph H
𝜇

contains a connected component containing both strictly more than half of

the vertices in {1} × [n] and strictly more than half of the vertices in {2} × [n]. Our main result in this

section is showing that the event “Left meets Right” undergoes a sharp transition at p = 4 − 2

√
3, in

the sense that for p ≤ 4 − 2

√
3 it is possible to construct 1-independent measures 𝜇 ∈1,p(H) such

that whp the event “Left meets Right” does not occur, while for p > 4− 2

√
3 it occurs whp regardless

of the choice of 𝜇.

Theorem 2.1.

(i) Let p > 4 − 2

√
3 be fixed. Then for every 𝜇 ∈1,p(H),

P
[
Left meets Right

]
= 1 − o(1).

(ii) Let 1

2
< p ≤ 4 − 2

√
3 be fixed. Then there exists 𝜇 ∈1,≥p(H) such that

P
[
Left meets Right

]
= o(1).

For p ∈
(

1

2
, 1

]
, let 𝜃 = 𝜃(p) be given by

𝜃(p) ∶=
1 +

√
2p − 1

2
.

The quantity 𝜃 will play an important role in the proof of both parts of Theorem 2.1. Observe that

𝜃 ∈ [p, 1] and satisfies

𝜃

2 + (1 − 𝜃)2 = p and 2𝜃(1 − 𝜃) = 1 − p.

Using the latter of these relations, we see that for p ∈ [0, 1],

𝜃

√
p ≤ 1 − p = 2𝜃(1 − 𝜃) ⇔ p ≤ 4(1 − 𝜃)2 = 2p − 2

√
2p − 1 ⇔ 8p − 4 ≤ p2

⇔ p ≤ 4 − 2

√
3. (2.1)

Our proofs will also make extensive use of the following Chernoff bound: given a binomial random

variable X ∼ Binom(N, p) and 𝜀 ∈ (0, 1), we have

P
[|X − Np| ≥ 𝜀Np

]
≤ 2e−

𝜀

2Np
3 . (2.2)
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FALGAS-RAVRY AND PFENNINGER 895

2.1 Lower bound construction: Proof of Theorem 2.1(ii)

For each 1∕2 < p ≤ 4 − 2

√
3, we construct a state-based measure 𝜇F ∈ ≥p(K2 × Gn), based on

the ideas behind constructions in [10, 14]. Assume without loss of generality that V(Gn) = [n]. We

randomly assign to each vertex (i, v) ∈ [2] × [n] a state Sv ∈ {0, 1, ⋆}, independently of all the other

vertices, with

(a) S(1,v) = 1 with probability 𝜃 and S(1,v) = 0 otherwise;

(b) S(2,v) = 0 with probability
√

p and S(2,v) = ⋆ otherwise.

We then include edges of H = K2 × Gn in our random subgraph H
𝜇F according to the following

rules:

(i) an edge {(1, u), (1, v)} is included if S(1,u) = S(1,v);
(ii) an edge {(2, u), (2, v)} is included if S(2,u) = S(2,v) = 0;

(iii) an edge {(1, v), (2, v)} is included if S(2,v) = ⋆ or if S(1,v) = S(2,v) = 0.

See Figure 2 for an illustration of the construction. Since 𝜇F is state-based, it is clearly a 1-ipm.

Our state distributions (a)–(b) imply that every edge in the left copy of Gn is open (included in our

random graph) with probability 𝜃

2 + (1 − 𝜃)2 = p (by the edge-rule (i) above), and that every edge in

the right copy of Gn is open with probability (
√

p)2 = p (by the edge-rule (ii) above). On the other

hand, (by the edge-rule (iii) above) an edge {(1, v), (2, v)} from the left copy to the right copy is closed

if and only if S(1,v) = 1 and S(2,v) = 0, which by (2.1) occurs with probability 𝜃

√
p ≤ 1 − p provided

p ≤ 4 − 2

√
3. Thus 𝜇F ∈1,≥p(K2 × Gn) as claimed.

All that remains to show is that for this measure the event “Left meets Right” occurs with prob-

ability o(1) in the random graph H
𝜇F . Observe that the construction of 𝜇F ensures there is no path

in H
𝜇F from the vertices in {1} × [n] in state 1 to the vertices in {2} × [n] in state 0. Indeed the

only edges of H
𝜇F in which the endpoints are in different states are those edges containing a ver-

tex (2, v) in state S(2,v) = ⋆. Since by construction vertices in state ⋆ have degree exactly one in

H
𝜇F , it follows that there is no component of H

𝜇F containing both vertices in state 1 and vertices in

state 0.

Since the expected number of vertices in {1} × [n] in state 1 is 𝜃n > pn and the expected number

of vertices in {2} × [n] in state 0 is
√

pn > pn, and since states are assigned independently, it follows

FIGURE 2 The lower bound construction
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896 FALGAS-RAVRY AND PFENNINGER

from (2.2) that for all fixed p with 1∕2 < p ≤ 4 − 2

√
3, with probability 1 − o(1) there is no con-

nected component in H
𝜇F containing at least half of the vertices of both {1} × [n] and {2} × [n]. Thus

“Left meets Right” occurs with probability o(1) for H
𝜇F , as claimed. □

2.2 Upper bound: Proof of Theorem 2.1(i)

Suppose p > 4 − 2

√
3 is fixed. We shall show that for n sufficiently large this implies that for any

𝜇 ∈ 1,p(H), whp “Left meets Right” occurs. Our strategy for doing this is as follows: first of all

we show in Lemma 2.5 that, for each i ∈ [2], in any fixed tripartition ⊔

3

j=1
Vj of {i} × [n], whp each

of the parts Vj contains roughly the expected number of edges of H
𝜇
, that is, (p + o(1)) e(H[Vj]).

This immediately implies that whp there is a component CL of H
𝜇

containing strictly more than

half of the vertices of {1} × [n], and another component CR containing at least half of the vertices

of {2} × [n].
If these two components CL and CR are not the same, then we color vertices of [2]×[n] green if they

lie in a small component of H
𝜇
[{i}× [n]] for some i ∈ [2], and otherwise red if they are part of CL and

blue if not (so in particular vertices in CR are colored blue). This gives rise to a partition of [n] into 9

sets Vc,c′ , corresponding to the possible ordered color pairs assigned to the vertex pairs ((1, v), (2, v)),
v ∈ [n]. Since whp at least (p− o(1))n of the n edges from {1} × [n] to {2} × [n] are present in H

𝜇
, we

can combine the probabilistic information from Lemma 2.5 to show that whp the relative sizes of the

Vc,c′ almost satisfy a certain system  = (p) of inequalities (2.7)–(2.10) (or more precisely that we

can extract from the |Vc,c′ |∕n a solution to (p
⋆
) for some p

⋆
a little smaller than p). For p > 4− 2

√
3

and n sufficiently large, we are able to show this leads to a contradiction (Lemma 2.6). Having outlined

our proof strategy, we now fill in the details. We shall use the following path-decomposition theorem

due to Dean and Kouider.

Theorem 2.2 (Dean and Kouider [11]). Let G be an n-vertex graph. Then there exists a set  of
edge-disjoint paths in G such that || ≤ 2n

3
and

⋃
P∈ E(P) = E(G).

Recall that a matching in a graph is a set of vertex-disjoint edges.

Corollary 2.3. Let 𝜀 > 0 and let G be an n-vertex graph with e(G) ≥ 2n∕𝜀. Then there exists a set
 of edge-disjoint matchings in G such that

(M1) || ≤ 2n,

(M2) ||E(G) ⧵
⋃

M∈M|| ≤ 2𝜀e(G), and
(M3) |M| ≥ 𝜀e(G)

2n
for every M ∈.

Proof. By Theorem 2.2, there exists a set  of edge-disjoint paths in G such that || ≤ 2n
3

and

E(G) =
⋃

P∈ E(P). Let short = {P ∈  ∶ e(P) ≤ 2𝜀
e(G)

n
}. Let  be the set of matchings

obtained by decomposing each path in  ⧵ short into two matchings. We have || ≤ 2 || ≤ 2n.

Moreover, each M ∈  satisfies |M| ≥
⌊
𝜀e(G)

n

⌋
≥

𝜀e(G)
2n

. Finally, ||E(G) ⧵
⋃

M∈ E(M)|| ≤ 2n
3
⋅

2𝜀
e(G)

n
≤ 2𝜀e(G). ▪

Matchings are useful in a 1-independent context since the states of their edges (present or absent)

are independent. We can thus combine Corollary 2.3 with a Chernoff bound to show the number of

edges in a 1-independent model is concentrated around its mean.
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FALGAS-RAVRY AND PFENNINGER 897

Lemma 2.4. Let 𝜀 > 0 and p ∈ (0, 1]. Let G be an n-vertex graph with e(G) ≥ 2n∕𝜀 and let
𝜇 ∈1,p(G). Then

P
[
e(G

𝜇
) ≤ (1 − 3𝜀)pe(G)

]
≤ 4n exp

(
−𝜀

3pe(G)
6n

)
.

Proof. We apply Corollary 2.3 to obtain a set of edge-disjoint matchings in G such that properties

(M1) to (M3) hold. For every M ∈, we have |M| ≥ 𝜀e(G)
2n

. Thus by (2.2) and 1-independence,

P
[
e(G

𝜇
∩M) ≤ (1 − 𝜀)p |M|] ≤ 2 exp

(
−𝜀

3pe(G)
6n

)
.

By a union bound, we have

P
[
e(G

𝜇
∩M) ≥ (1 − 𝜀)p |M| for all M ∈

]
≥ 1 − 2|M| exp

(
−𝜀

3pe(G)
6n

)

≥ 1 − 4n exp

(
−𝜀

3pe(G)
6n

)
.

Thus with probability at least 1 − 4n exp

(
− 𝜀

3pe(G)
6n

)
we have

e(G
𝜇
) ≥

∑
M∈

(1 − 𝜀)p |M| ≥ (1 − 𝜀)p(1 − 2𝜀)e(G) ≥ (1 − 3𝜀)pe(G).

This completes the proof. ▪

Lemma 2.5. Let p ∈
(

1

2
, 1

]
, and let 𝜀 = 𝜀(p) > 0 be fixed and sufficiently small. Let G be an

n-vertex graph satisfying

||||e(G[U]) − q |U|2
2

|||| ≤
𝜀

2

4
qn2

(2.3)

for all U ⊆ V(G), where q(n) ≫ log n
n

. Consider a fixed tripartition V(G) = V1 ⊔ V2 ⊔ V3. Then for
every 𝜇 ∈1,p(G), the following hold whp:

(P1) e(G
𝜇
[Vi]) ≥ pq |Vi|2

2
− 𝜀qn2 for every i ∈ [3].

(P2) e(G
𝜇
[Vi,Vj]) ≥ pq |Vi| ||Vj|| − 𝜀qn2 for all 1 ≤ i < j ≤ 3.

(P3) For every i ∈ [3] with |Vi| ≥ 𝜀

1∕4n, G
𝜇
[Vi] contains a unique largest connected component Ci

of order at least (𝜃 − 𝜀

1∕4) |Vi|.
(P4) For all 1 ≤ i < j ≤ 3 with |Vi| , ||Vj|| ≥ 𝜀

1∕4n, there exists a path from Ci to Cj in G
𝜇
[Vi,Vj].

(P5) There is a unique largest connected component C in G
𝜇

such that |C| ≥ (𝜃 − 3𝜀
1∕4)n and for

each i ∈ [3] with |Vi| ≥ 𝜀

1∕4n, Ci ⊆ C.

Proof. We first show that (P1) holds whp. Fix i ∈ [3]. If |Vi| ≤
√
𝜀n, then (P1) trivially holds. Hence

we assume that |Vi| ≥
√
𝜀n. By our pseudorandomness assumption (2.3) on G we have e(G[Vi]) ≥

q |Vi|2

2
− 𝜀

2
qn2

(which for n sufficiently large is greater than
2n
𝜀

so that we can apply Lemma 2.4). Thus

we have
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898 FALGAS-RAVRY AND PFENNINGER

P

[
e(G

𝜇
[Vi]) ≤ pq |Vi|2

2
− 𝜀qn2

]
≤ P

[
e(G

𝜇
[Vi]) ≤ pe(G[Vi]) −

𝜀

2
qn2

]

≤ P

[
e(G

𝜇
[Vi]) ≤

(
1 − 𝜀

3

)
pe(G[Vi])

]

≤ 4n exp

(
−Ω

(e(G[Vi])
n

))
= 4n exp(−Ω(qn)) = o(1),

where the inequality in the third line follows from Lemma 2.4. So (P1) holds whp.

Next we show that (P2) holds whp. Fix 1 ≤ i < j ≤ 3. If |Vi| ≤ 𝜀n or ||Vj|| ≤ 𝜀n, then (P2) trivially

holds. Hence we may assume that |Vi| , ||Vj|| ≥ 𝜀n. By (2.3) applied three times (to Vi, Vj and Vi ∪ Vj),

we have e(G[Vi,Vj]) ≥ q |Vi| ||Vj||−3
𝜀

2

4
qn2

. In particular, e(G[Vi,Vj]) ≥ 𝜀

2

4
qn2

, which for n sufficiently

large is greater than
2n
𝜀

. We now apply Lemma 2.4 to show that (P2) holds whp. We have

P
[
e(G

𝜇
[Vi,Vj]) ≤ pq |Vi| ||Vj|| − 𝜀qn2

]
≤ P

[
e(G

𝜇
[Vi,Vj]) ≤ pe(G[Vi,Vj]) −

𝜀

2
qn2

]

≤ P

[
e(G

𝜇
[Vi,Vj]) ≤

(
1 − 𝜀

3

)
pe(G[Vi,Vj])

]

≤ 4n exp

(
−Ω

(
e(G[Vi,Vj])

n

))
= 4n exp(−Ω(qn)) = o(1).

So (P2) holds whp.

Now we show that (P1) implies (P3). Assume that (P1) holds. Fix i ∈ [3] and assume that |Vi| ≥
𝜀

1∕4n. Let C ⊆ Vi be a largest connected component in G
𝜇
[Vi] and suppose for a contradiction that

|C| ≤ (𝜃 − 𝜀

1∕4) |Vi|.
If |C| ≤ |Vi|

2
, then there is a partition of Vi into at most 4 sets, each of size at most

|Vi|
2

, such that

every connected component of G
𝜇
[Vi] is entirely contained in one of the sets of the partition. Indeed,

such a partition can be obtained by starting with a partition of Vi into the connected components

of G
𝜇
[Vi] and then as long as the partition contains two parts of size at most

|Vi|
4

choosing two such parts

arbitrarily and merging them into a single part. Since for any quadruple (x1, x2, x3, x4) with
1

2
≥ xi ≥ 0

and
∑

i xi = 1 we have
∑

i (xi)2 ≤ 1

2
, it follows from (P1) and (2.3) that

pq |Vi|2
2

− 𝜀qn2
≤ e(G

𝜇
[Vi]) ≤ q |Vi|2

4
+ 𝜀

2qn2
.

Rearranging terms, this gives

(
p − 1

2

)
q𝜀

1∕2n2

2
≤

(
p − 1

2

)
q |Vi|2

2
≤ q(𝜀 + 𝜀

2)n2
,

which is a contradiction for 𝜀 chosen sufficiently small. Thus we may assume |C| ≥ |Vi|
2

. Now by (P1)

and (2.3) again, we have

pq |Vi|2
2

− 𝜀qn2
≤ e(G

𝜇
[Vi]) ≤ e(G

𝜇
[C]) + e(G

𝜇
[Vi ⧵ C]) ≤ q |C|2

2
+ q (|Vi| − |C|)2

2
+ 𝜀

2

2
qn2

.

Dividing by q |Vi|2

2
and using |Vi| ≥ 𝜀

1∕4n, we deduce that

p − 3

√
𝜀 ≤

( |C|
|Vi|

)2

+
(

1 − |C|
|Vi|

)2

. (2.4)
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FALGAS-RAVRY AND PFENNINGER 899

Since x → x2 + (1 − x)2 is an increasing function in the interval

[
1

2
, 1

]
,

1

2
|Vi| ≤ |C| ≤ (𝜃 − 𝜀

1∕4) |Vi|,
and 𝜃

2 + (1 − 𝜃)2 = p, we have

( |C|
|Vi|

)2

+
(

1 − |C|
|Vi|

)2

≤ (𝜃 − 𝜀

1∕4)2 + (1 − 𝜃 + 𝜀

1∕4)2

= 𝜃

2 + (1 − 𝜃)2 − 2𝜀
1∕4(2𝜃 − 1) + 2

√
𝜀 ≤ p − 4

√
𝜀,

contradicting (2.4). Hence |C| ≥ (𝜃 − 𝜀

1∕4) |Vi|. Note that since 𝜃 − 𝜀

1∕4
> 1∕2 (for 𝜀 = 𝜀(p) chosen

sufficiently small), C is the unique largest component in G
𝜇
[Vi]. So (P3) holds whp.

Next we show that (P2) and (P3) together imply (P4). Assume that (P2) and (P3) hold. Fix 1 ≤ i <
j ≤ 3 and assume that |Vi| , ||Vj|| ≥ 𝜀

1∕4n. Suppose for a contradiction that there is no path in G
𝜇
[Vi,Vj]

from Ci to Cj. Let Ai ⊆ Vi and Aj ⊆ Vj be the sets of vertices which cannot be reached by a path in

G
𝜇
[Vi,Vj] from Cj and Ci, respectively. Since there is no path from Ci to Cj, we must have Ci ⊆ Ai

and Cj ⊆ Aj. By (P2), by the definition of Ai and Aj, and by (2.3) (applied in Ai, Aj, Vi ⧵ Ai, Vj ⧵ Aj,

Ai ∪ (Vj ⧵ Aj) and Aj ∪ (Vi ⧵ Ai)), we have

pq |Vi| ||Vj|| − 𝜀qn2
≤ e(G

𝜇
[Vi,Vj]) ≤ e(G

𝜇
[Ai,Vj ⧵ Aj]) + e(G

𝜇
[Vi ⧵ Ai,Aj])

≤ q |Ai| (||Vj|| − ||Aj||) + q ||Aj|| (|Vi| − |Ai|) + 3𝜀
2

2
qn2

. (2.5)

Let xi = |Ai|
|Vi| and xj = |Aj|

|Vj| . By (P3), xi ≥
|Ci|
|Vi| ≥ 𝜃 − 𝜀

1∕4 ≥
1

2
and similarly xj ≥

1

2
. From (2.5) we get

by dividing by q |Vi| ||Vj|| and using |Vi| , ||Vj|| ≥ 𝜀

1∕4n, that

p − 2

√
𝜀 ≤ xi(1 − xj) + xj(1 − xi) = xi + xj − 2xixj ≤

1

2
, (2.6)

where the last inequality follows since (x, y) → x+y−2xy is non-increasing in both x and y for x, y ≥ 1

2
.

Note that (2.6) gives a contradiction for 𝜀 sufficiently small since p >

1

2
. So (P4) holds whp.

Finally, we observe that (P5) follows directly from (P3) and (P4). Indeed let k ∈ [3] denote the

number of i ∈ [3] for which |Vi| ≥ 𝜀

1∕4n (note we can guarantee k ≥ 1 provided 𝜀 < 3
−4

). Then (P3)

and (P4) together imply there is a unique connected component C in G
𝜇

of size at least (𝜃 − 𝜀

1∕4)(1−
(3 − k)𝜀1∕4)n > (𝜃 − 3𝜀

1∕4)n and containing Ci for each i ∈ [3] with |Vi| ≥ 𝜀

1∕4n. ▪

Let (p) denote the collection of 3 × 3 matrices A with non-negative entries Aij ≥ 0, i, j ∈ [3],
satisfying the following inequalities:

A11 + A22 + p ≤
∑

i,j
Aij ≤ 1, (2.7)

A1j ≥
1

2

∑
i

Aij ∀j ∈ [3] and Ai1 ≥
1

2

∑
j

Aij ∀i ∈ [3], (2.8)

(
A1j

)2 +
(
A2j

)2

≥ p

(∑
i

Aij

)2

∀j ∈ [3], (2.9)

(Ai1)2 + (Ai2)2 ≥ p

(∑
j

Aij

)2

∀i ∈ [3]. (2.10)
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900 FALGAS-RAVRY AND PFENNINGER

The key step in our proof of Theorem 2.1 will be, assuming that “Left meets Right” does not occur

whp, to use Lemma 2.5 to exhibit a partition of [n] into 9 parts whose relative sizes can be used to

find a solution to (p
⋆
), for some p

⋆
satisfying 4 − 2

√
3 < p

⋆
< p. We will then be able to use the

following lemma to derive a contradiction.

Lemma 2.6. For 4 − 2

√
3 < p ≤ 1, (p) = ∅.

Proof. Suppose not and let A ∈ (p). Note that the bound for
∑

i,j Aij in (2.7) implies

A11 + A22 ≤ 1 − p. (2.11)

By transpose-symmetry of (p) and (2.7), we may assume without loss of generality that

w ∶= A21 + A31 + A32 + A33 ≥
p
2
. (2.12)

Note that if
∑

j A3j >
A

31

𝜃

, then, since x → x2 + (1 − x)2 is an increasing function of x in the interval[
1

2
, 1

]
and since A31 ≥

1

2

∑
j A33j by (2.8),

⎛
⎜⎜⎜⎝

A31∑
j

A3j

⎞
⎟⎟⎟⎠

2

+
⎛
⎜⎜⎜⎝

A32∑
j

A3j

⎞
⎟⎟⎟⎠

2

≤

⎛
⎜⎜⎜⎝

A31∑
j

A3j

⎞
⎟⎟⎟⎠

2

+
⎛
⎜⎜⎜⎝
1 − A31∑

j
A3j

⎞
⎟⎟⎟⎠

2

< 𝜃

2 + (1 − 𝜃)2 = p,

contradicting (2.10). Hence

∑
j

A3j ≤
A31

𝜃

. (2.13)

By an analogous argument, we have
∑

i Ai1 ≤
A

11

𝜃

and thus

A21 ≤ A21 + A31 ≤
1 − 𝜃

𝜃

A11. (2.14)

Now, by (2.13) we have w ≤ A21 + A
31

𝜃

. By (2.9), we have that

A31 ≤

√
(A11)2 + (A21)2√

p
− A11 − A21.

Substituting this expression into our upper bound on w, we get

w ≤ −(1 − 𝜃)A21

𝜃

− A11

𝜃

+
√
(A11)2 + (A21)2

𝜃

√
p

.

For A11 fixed, the continuous function fA
11
(y) = −(1−𝜃)y

𝜃

− A
11

𝜃

+
√
(A

11
)2+y2

𝜃

√
p

is convex in (0,+∞) as its

derivative f ′A
11

(y) = −(1−𝜃)
𝜃

+ 1

𝜃

√
p
√
(A

11
∕y)2+1

is increasing in y in that interval. By (2.14), 0 ≤ A21 ≤

1−𝜃
𝜃

A11, which together with the convexity of fA
11

gives:
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FALGAS-RAVRY AND PFENNINGER 901

w ≤ max

{
fA

11
(0), fA

11

(
1 − 𝜃

𝜃

A11

)}

≤ max

⎧
⎪⎪⎨⎪⎪⎩

−A11

𝜃

+ A11

𝜃

√
p
, −

(
1 − 𝜃

𝜃

)2

A11 −
A11

𝜃

+ A11

√
1 +

(
1−𝜃
𝜃

)2

𝜃

√
p

⎫
⎪⎪⎬⎪⎪⎭

≤ max

{
A11

𝜃

(
1√
p
− 1

)
,

A11

𝜃

(1 − 𝜃)

}

≤ max

{
1 − p
𝜃

(
1√
p
− 1

)
,

1 − p
𝜃

(1 − 𝜃)

}
,

where the last inequality follows from the upper bound (2.11) on A11. We now claim that this

contradicts (2.12), that is, that

max

{
1 − p
𝜃

(
1√
p
− 1

)
,

1 − p
𝜃

(1 − 𝜃)

}
<

p
2
.

Note that p → 1−p
𝜃

(
1√
p
− 1

)
− p

2
and p → 1−p

𝜃

(1− 𝜃) − p
2

are both strictly decreasing functions (as 𝜃

is increasing in p). Hence to prove the claim above, it suffices to show that for p = 4 − 2

√
3, we have

1−p
𝜃

(
1√
p
− 1

)
≤

p
2

and
1−p
𝜃

(1 − 𝜃) ≤ p
2
. Let p = 4 − 2

√
3. Note that (

√
3 − 1)2 = 4 − 2

√
3 and

(2 −
√

3)2 = 7 − 4

√
3. Hence

√
p =

√
3 − 1,

√
2p − 1 = 2 −

√
3 , and 𝜃 = (3 −

√
3)∕2. Now it is

easy to check that

1√
p
− 1 = 1 − 𝜃 = 𝜃

(1 − p)
p
2
=

√
3 − 1

2
,

which completes the proof. ▪

We are now ready to complete the proof of Theorem 2.1(i).

Proof. Let p > 4 − 2

√
3 be fixed. Let 𝜀 = 𝜀(p) > 0 be fixed and chosen sufficiently small. Let

p
⋆
= 1

2

(
4 − 2

√
3 + p

)
. Finally, let n be sufficiently large so that for G = Gn the pseudorandomness

assumption (2.3) holds, and let 𝜇 ∈1,p(H), where H = K2 × Gn.

For i ∈ [2], let Gi
𝜇
= H

𝜇
[{i}×[n]]. For i, j ∈ [2]with i ≠ j, let ij be the event that for any partition

({i} × V1) ⊔ ({i} × V2) ⊔ ({i} × V3) of {i} × [n] such that {i} × V1 and {i} × V2 are each a union of

components of order at least 𝜀
1∕4n in Gi

𝜇
, we have that Gj

𝜇
satisfies (P1) to (P5) of Lemma 2.5 with

{j} × V1, {j} × V2, {j} × V3 playing the roles of V1, V2, V3. Given Gi
𝜇

and 𝜀 fixed, the number of such

partitions is at most 3
𝜀

−1∕4 = O(1). Hence Lemma 2.5 implies that ij holds whp.

Further, by 1-independence and (2.2), whp there are at least (p − 𝜀)n edges in the matching

H
𝜇
[{1} × [n], {2} × [n]]. Let good be the event that 12 and 21 both occur and that in addition

e(H
𝜇
[{1} × [n], {2} × [n]]) ≥ (p − 𝜀)n. Then good holds whp. We claim that if good holds, then so

does “Left meets Right” (which implies the statement of the theorem).
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902 FALGAS-RAVRY AND PFENNINGER

Suppose for a contradiction that good holds but “Left meets Right” does not. For i ∈ [2], let Ci

be the unique largest connected component in Gi
𝜇

(this exist by (P5)). Let U1 ⊔ U2 ⊔ U3 = [n] and

W1 ⊔ W2 ⊔ W3 = [n] be such that the following hold.

(a) {1} × U1 is the union of C1
and all connected components in G1

𝜇
of order at least 𝜀

1∕4n that can

be reached from C1
by a path in H

𝜇
.

(b) {1} × U2 is the union of all other connected components in G1
𝜇

of order at least 𝜀
1∕4n.

(c) {1} × U3 is the union of all connected components of order less than 𝜀

1∕4n in G1
𝜇
.

(d) {2} × W1 is the union of all connected components in G2
𝜇

of order at least 𝜀
1∕4n that cannot be

reached from C1
by a path in H

𝜇
.

(e) {2}×W2 is the union of all connected components in G2
𝜇

of order at least 𝜀
1∕4n that can be reached

from C1
by a path in H

𝜇
.

(f) {2} ×W3 is the union of all connected components in G2
𝜇

of order less than 𝜀

1∕4n.

We can think of these partitions as giving us a 3-coloring of the vertices in V(H): a vertex in {i}×Vn
is colored red if it belongs to a large component in Gi

𝜇
and can be reached from C1

in H
𝜇
, blue if it

belongs to a large component in Gi
𝜇

and cannot be reached by C1
in H

𝜇
, and green if it belongs to a

small component in Gi
𝜇
. The key properties of this coloring are that the large components C1

and C2

in G1
𝜇

and G2
𝜇

are colored red and blue respectively, that there are no edges from red vertices to blue

vertices, and that the green vertices span few edges in Gi
𝜇
, i ∈ [2]. Our 3-coloring of V(H) gives rise to

a partition of [n] into 9 sets in a natural way, by considering the possible color pairs for ((1, v), (2, v)),
v ∈ [n]. This partition is illustrated in Figure 3.

We now investigate the relative sizes of this 9-partition. For i, j ∈ [3], let Vij = Ui∩Wj. Since there

is no path from C1
to C2

in H
𝜇
, there are no edges present in the bipartite graphs H

𝜇
[{1}×V11, {2}×V11]

and H
𝜇
[{1}×V22, {2}×V22]. Since good holds, there are at least (p−𝜀)n edges in H

𝜇
[{1}×[n], {2}×[n]]

in total, which implies

|V11| + |V22| ≤ (1 − p + 𝜀)n. (2.15)

Moreover,
∑

i,j
||Vij|| = n. Hence

∑
i,j

||Vij|| − |V11| − |V22| ≥ (p − 𝜀)n. (2.16)

FIGURE 3 The partition of V(H)
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FALGAS-RAVRY AND PFENNINGER 903

For j ∈ [3], if |Wj| ≥ 𝜀

1∕4n, we have by (P3) to (P5) that there is a unique largest connected compo-

nent C1

j in G1
𝜇
[{1} ×Wj], and that this component satisfies C1

j ⊆ C1
and |C1

j | ≥ (𝜃 − 𝜀

1∕4)|Wj|, which

for 𝜀 = 𝜀(p) chosen sufficiently small is greater than
1

2
|Wj|. Translating this in terms of our 9-partition,

we have that for all j ∈ [3] such that
∑

i Vij ≥ 𝜀

1∕4n

||V1j|| ≥ 1

2

∑
i

||Vij|| (2.17)

holds. By a symmetric argument, for every i ∈ [3] such that
∑

j Vij ≥ 𝜀

1∕4n we have

|Vi1| ≥ 1

2

∑
j

||Vij|| . (2.18)

Let j ∈ [3]. Note that G1
𝜇
[U3] contains only connected components of size at most 𝜀

1∕4n. These com-

ponents can be covered by at most
2

𝜀
1∕4

sets, each of order at least
𝜀

1∕4n
2

and at most 𝜀
1∕4n. By (2.3)

(which holds by our choice of n), each of these sets contains at most q 𝜀

1∕2n2

2
+ 𝜀

2

4
qn2

< q𝜀1∕2n2
edges.

Hence we have e(G1
𝜇
[U3]) ≤ 2𝜀

1∕4qn2
. Since V3j ⊆ U3, we have e(G1

𝜇
[V3j]) ≤ 2𝜀

1∕4qn2
. By (P1) and

the pseudorandomness assumption (2.3), we have

pq
||Wj||2

2
− 𝜀qn2

≤ e(G1
𝜇
[{1} ×Wj])

= e(G1
𝜇
[{1} × V1j]) + e(G1

𝜇
[{1} × V2j]) + e(G1

𝜇
[{1} × V3j])

≤ q
||V1j||2

2
+ q

||V2j||2
2

+ 2𝜀
1∕4qn2 + 𝜀

2

2
qn2

< q
||V1j||2

2
+ q

||V2j||2
2

+ 3𝜀
1∕4qn2

.

Hence, for every j ∈ [3] and 𝜀 chosen sufficiently small,

||V1j||2 + ||V2j||2 ≥ p

(∑
i

||Vij||
)2

− 7𝜀
1∕4n2

. (2.19)

Similarly, for every i ∈ [3],

|Vi1|2 + |Vi2|2 ≥ p

(∑
j

||Vij||
)2

− 7𝜀
1∕4n2

. (2.20)

Let A be the 3 × 3 matrix with entries

Aij =

{|Vij|
n
, if ||Vij|| ≥ 𝜀

1∕9n,
0, otherwise.

We claim that, provided 𝜀 = 𝜀(p) was chosen sufficiently small, A ∈ (p
⋆
). Indeed, A clearly has

nonnegative entries summing up to at most 1, thus the second inequality of (2.7) is satisfied, while the

first inequality (with p
⋆

instead of p) follows from (2.16) and an appropriately small choice of 𝜀 (more

specifically, we need p
⋆
≤ p − 𝜀 − 7𝜀

1∕9
). Indeed,
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904 FALGAS-RAVRY AND PFENNINGER

∑
i,j

Aij − A11 − A22 ≥

∑
i,j

||Vij||
n

− |V11|
n

− |V22|
n

− 7𝜀
1∕9
≥ p − 𝜀 − 7𝜀

1∕9
≥ p

⋆
,

where the penultimate inequality uses (2.16).

Next, consider j ∈ [3]. If
∑

i |Vi| ≥ 𝜀

1∕4n, then by (2.17) we have A1j ≥
1

2

∑
i Aij (regardless of

whether some of the Vij, i ∈ [3] have size less than 𝜀

1∕9n). Other the other hand if
∑

i |Vi| < 𝜀

1∕4n,

then A1j = A2j = A3j = 0. In either case, A1j ≥
1

2

∑
i Aij holds. By a symmetric argument we obtain

that Ai1 ≥
1

2

∑
j Aij holds for every i ∈ [3]. Thus (2.8) is satisfied by A.

Finally, pick j ∈ [3]. If |Vi2| ≥ 𝜀

1∕9n, then by (2.8) which we have just established and the definition

of Ai1, we have |Vi1| ≥ 𝜀

1∕9n also. In this case (2.19) and an appropriately small choice of 𝜀 ensure

that (A1j)2 + (A2j)2 ≥ p
⋆

(∑
i Aij

)2

. On the other hand, suppose |Vi2| < 𝜀

1∕9n. If |Vi1| < 𝜀

1∕9n, then

by (2.8) the inequality (A1j)2 + (A2j)2 ≥ p
⋆

(∑
i Aij

)2

holds trivially, since the right hand-side is zero.

So suppose that |Vi1| ≥ 𝜀

1∕9n > |Vi2|. Then (2.19), and p > 1∕2 imply that

|Vi1|2 > |Vi1|2 − |Vi2| (2p |Vi1| − (1 − p) |Vi2|) ≥ p(|Vi1| + |Vi3|)2 − 7𝜀
1∕4n2

.

Together with an appropriately small choice of 𝜀, this ensures (A1j)2 + (A2j)2 ≥ p
⋆

(∑
i Aij

)2

again.

Thus in every case (2.9) is satisfied by A (with p
⋆

instead of p). A symmetric argument shows A
satisfies (2.10) for p

⋆
as well.

Thus A ∈ (p
⋆
) as claimed. However, since p

⋆
> 4 − 2

√
3, Lemma 2.6 implies that (p

⋆
) = ∅,

a contradiction. Thus the event good, which holds whp, does imply the event “Left meets Right,”

proving the theorem. ▪

3 PROOF OF THEOREMS 1.8, 1.9, 1.11, AND 1.12

Our main theorems are all proved via a renormalization argument combined with Theorem 2.1. Given

two graphs G and H, we may view the Cartesian product H×G as a kind of “augmented” version of H,

and use any 1-independent random graph (H×G)
𝜇

on H×G to construct a new 1-independent random

graph H
𝜈

on H as follows: given an edge uv ∈ E(H), we let uv be present in H
𝜈

if in the restriction

of (H ×G)
𝜇

to {u, v} × V(G) there is a connected component containing strictly more than half of the

vertices in each of {u} × V(G) and {v} × V(G).
That H

𝜈
is a 1-independent random graph follows immediately from the fact that (H × G)

𝜇
was

1-independent: the states of edges inside vertex-disjoint edge-sets in H
𝜈

are determined by the states

of edges inside vertex-disjoint edge sets in (H × G)
𝜇
. Further, any path in H

𝜈
can be “lifted” up to

a path in (H × G)
𝜇

of equal or greater length: if uv, vw are present in H
𝜈
, then there exist connected

subgraphs Cuv and Cvw in (H×G)
𝜇

with Cuv ⊆ {u, v}×V(G), Cvw ⊆ {v,w}×V(G), Cuv∩({u} × V(G))
and Cvw ∩ ({w} × V(G)) both non-empty, and Cuv,Cv,w both containing strictly more than half of the

vertices in {v} × V(G) (and hence having non-empty intersection).

Now the likelihood of an edge uv being present in H
𝜈

is exactly the probability of the event corre-

sponding to “Left meets Right” occurring in the restriction of (H×G)
𝜇

to the vertex-set {u, v}×V(G)
(which induces a copy of K2 × G in H × G). Thus for p > 4 − 2

√
3 and a suitable choice of G, we

can use Theorem 2.1(i) to ensure that each edge in the 1-independent random graph H
𝜈

is present with

probability 1 − o(1). With such a high edge probability, we can then establish the almost sure exis-

tence of infinite components or long paths in H
𝜈

in a straightforward way—either by using results in

the literature, or by a direct argument.
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FALGAS-RAVRY AND PFENNINGER 905

On the other hand if p ≤ 4 − 2

√
3, we can use ideas from the lower bound construction in the

proof of Theorem 2.1(ii), which date back to [10, 14], in order to construct a 1-independent random

subgraph G of H ×Kn that fails to percolate (or, if H = Z, that only contain paths of length O(n)). For

the convenience of the reader, we sketch below how this works in the special case H = Z2
.

Take p = 4 − 2

√
3, and set 𝜃 = (1 +

√
2p − 1)∕2. Independently assign to each vertex (x, y, z) ∈

Z2 × V(Kn) a random state Sx,y,z ∈ {0, 1, ⋆} as follows:

• if ||(x, y)||∞ ≅ 0 mo𝑑 6, set Sx,y,z = 1 with probability 1;

• if ||(x, y)||∞ ≅ 1 mo𝑑 6, set Sx,y,z = 1 with probability 𝜃, and 0 otherwise;

• if ||(x, y)||∞ ≅ 2 mo𝑑 6, set Sx,y,z = 0 with probability
√

p, and ⋆ otherwise;

• if ||(x, y)||∞ ≅ 3 mo𝑑 6, set Sx,y,z = 0 with probability 1;

• if ||(x, y)||∞ ≅ 4 mo𝑑 6, set Sx,y,z = 0 with probability 𝜃, and 1 otherwise;

• if ||(x, y)||∞ ≅ 5 mo𝑑 6, set Sx,y,z = 1 with probability
√

p, and ⋆ otherwise.

We now use these random states to build a 1-independent random graph G as follows. Given an

edge{(x1, y1, z1), (x2, y2, z2)} of H × Kn, include it in G if one of the following holds:

• Sx
1
,y

1
,z

1
= Sx

2
,y

2
,z

2
≠ ⋆.

• ||(x1, y1)||∞ < ||(x2, y2)||∞ and Sx
2
,y

2
,z

2
= ⋆.

Then the choice of probabilities for our random states ensure each edge is open with probability at

least p = 4− 2

√
3, and our edge rules further imply that every connected component C in G meets at

most four consecutive cylinders r ∶= {(x, y, z) ∶ ||(x, y)||∞ = r}, r ∈ Z≥0 since, as is easily checked,

a connected component in G cannot both contain a vertex assigned state 0 and a vertex assigned state

1—we leave this as an exercise to the reader, and refer them to [10, Corollary 24] for a proof of this

fact in a more general setting. In particular, we have that G does not percolate.

Having thus outlined our proof ideas, we now fill in the details. First we formalize our renormal-

ization argument with the following lemma.

Lemma 3.1 (Renormalization lemma). Let H be a graph. Let q = q(n) satisfy nq(n)≫ log n, and let
(Gn)n∈N be a sequence of n-vertex graphs which is weakly q-pseudorandom. Then for every 𝜀 > 0 and
every p > 4− 2

√
3 fixed, there exists n0 such that for all n ≥ n0, G = Gn and 𝜇 ∈1,≥p(H ×G) there

exists 𝜈 ∈1,≥1−𝜀(H) and a coupling between H
𝜈

and (H ×G)
𝜇

such that there exists a path from u
to v in H

𝜈
only if there exists a path from {u} × V(G) to {v} × V(G) in (H ×G)

𝜇

.

Proof. Let p > 4−2

√
3 and 𝜀 > 0 be fixed. By Theorem 2.1(i), there exists n0 ∈ N such that for all

n ≥ n0 and all 𝜇 ∈1,≥p(K2 ×Gn), the 𝜇-probability of the event “Left meets Right” is at least 1− 𝜀.

For n ≥ n0, G = Gn and 𝜇 ∈ 1,≥p(H × G), define a random graph model H
𝜈

from (H ×G)
𝜇

as

follows: for each edge uv ∈ E(H), we add uv to H
𝜈

if and only if there is a connected component in

(H ×G)
𝜇

[{u, v}×V(Gn)] containing strictly more than half of the vertices in {u}×V(Gn) and strictly

more than half of the vertices {v}×V(Gn). The model H
𝜈

is clearly 1-independent, has edge-probability

at least 1 − 𝜀, and has the property that any path in H
𝜈

can be lifted up to a path in (H ×G)
𝜇

. This

proves the lemma. ▪

Recall that 2-neighbor bootstrap percolation on a graph G is a discrete-time process defined as

follows. At time t = 0, an initial set of infected vertices A = A0 is given. At every time t ≥ 1, every

vertex of G which has at least 2 neighbors in At−1 becomes infected and is added to At−1 to form At.

We denote by A the set of all vertices of G which are eventually infected, A =
⋃

t≥0
At. Following Day

et al. [10], we say that a graph G has the finite 2-percolation property if for every finite set of initially
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906 FALGAS-RAVRY AND PFENNINGER

infected vertices A, the set of eventually infected vertices A is finite. The content of [10, Corollary

24] is, informally, that the construction based on random-states we outlined above “works on all host

graphs that have the finite 2-percolation property.”

Proof of Theorem 1.11. Let H = Z2
. Pick 𝜀 > 0 such that 1 − 𝜀 > 0.8639. Then by Lemma 3.1,

for any p > 4 − 2

√
3, n sufficiently large and G = Gn, we can couple a random graph (H ×G)

𝜇

,

𝜇 ∈ 1,≥p(H) with a random graph H
𝜈
, 𝜇 ∈ 1,≥1−𝜀(H) such that if H

𝜈
percolates then so does

(H ×G)
𝜇

. Since p1,c(H) < 0.86339, as proved in [5, Theorem 2], it follows that p1,c(H × G) ≤ p.

Since p > 4− 2

√
3 was arbitrary, we have the claimed upper bound limn→∞ p1,c(H ×Gn) ≤ 4− 2

√
3.

The lower bound limn→∞ p1,c(H × Gn) ≥ 4 − 2

√
3 follows from [10, Corollary 24] and the fact that

Z2 × Gn is easily seen to have the finite 2-percolation property. Indeed, for any finite set of vertices A
in Z2 ×Gn, there is some finite N such that A ⊆ [N]2 ×V(Gn). Now every vertex outside [N]2 ×V(Gn)
has at most one neighbor in [N]2 × V(Gn), and thus can never be infected by a 2-neighbor bootstrap

percolation process started from A. ▪

Remark 3.2. The proof above in fact works in a more general setting than Z2
: suppose H has the finite

2-percolation property and satisfies p1,c(H) < 1. Let (Gn)n∈N be a sequence of weakly q-pseudorandom

n-vertex graphs with nq(n) ≫ log n. Then H × Gn also has the finite 2-percolation property, and the

proof above shows

lim
n→∞

p1,c(H × Gn) = 4 − 2

√
3.

Examples of graphs with the finite 2-percolation property include many of the standard lattices studied

in percolation theory, such as the honeycomb (hexagonal) lattice, the dice (rhombille) lattice or the

tetrakis (“Union Jack”) lattice.

Proof of Theorem 1.8. Since Kn is 1-pseudorandom, Theorem 1.8 is immediate from Theorem 1.11. ▪

Proof of Theorem 1.12. Let H = Z2
. Pick 𝜀 > 0 such that 1− 𝜀 > 3∕4. Then by Lemma 3.1, for any

p > 4−2

√
3, n sufficiently large and G = Gn, we can couple a random graph (H ×G)

𝜇

, 𝜇 ∈1,≥p(H)
with a random graph H

𝜈
, 𝜇 ∈ 1,≥1−𝜀(H) such that if H

𝜈
contains a path of length 𝓁 then so does

(H ×G)
𝜇

. Since p1,LP(H) = 3

4
, as proved in [10, Theorem 11(i)]

2
it follows that p1,LP(H × G) ≤ p.

Since p > 4−2

√
3 was arbitrary, we have the claimed upper bound limn→∞ p1,LP(H ×Gn) ≤ 4−2

√
3.

The lower bound limn→∞ p1,c(H × Gn) ≥ 4 − 2

√
3 was proved in [10, Theorem 12(v)] (with the same

construction as we outlined at the beginning of this section, adapted mutatis mutandis to the setting

H = Z). ▪

Proof of Theorem 1.9. Since Kn is 1-pseudorandom, Theorem 1.9 is immediate from Theorem 1.12. ▪

4 COMPONENT EVOLUTION IN 1-INDEPENDENT MODELS

Recall that the independence number 𝛼(G) of a graph G is the size of a largest independent (edge-free)

subset of V(G), and that a perfect matching in a graph G is a matching whose edges together cover all

2
For the proof of this theorem, all we need is p1,LP(H) < 1, and thus the weaker bound p1,LP(H) ≤ 1 − 1∕3e (which follows

directly from an application of the Lovász local lemma) would suffice for our purposes here.
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FALGAS-RAVRY AND PFENNINGER 907

the vertices in V(G). Moreover, a graph G is a complete multipartite graph if there exists a partition

of V(G) such that two vertices in V(G) are joined by an edge in G if and only if they are contained in

different parts of the partition. Finally, the complement Gc
of a graph G is the graph on V(G) whose

edges are the non-edges of G, Gc ∶= (V(G),V(G)(2) ⧵ E(G)).

Lemma 4.1. If G is a complete multipartite graph on 2n vertices with independence number 𝛼(G) ≤
n, then G contains at least n! perfect matchings.

Proof. Let G be a complete multipartite graph on 2n vertices with the minimum number of perfect

matchings subject to 𝛼(G) ≤ n. Let V1,V2, … ,Vr denote the parts of G with |V1| ≥ |V2| ≥ … ≥

|Vr|. If |Vr−1| + |Vr| ≤ n, then the graph G′
obtained from G by deleting all edges in G[Vr−1,Vr]

satisfies 𝛼(G′) ≤ n and has at most as many perfect matchings as G. We may therefore assume that

|Vr−1|+ |Vr| ≥ n, and thus in particular that r ≤ 3. Consider a perfect matching M in G and let i be the

number of edges in E(G[V1,V2])∩M. Clearly |E(G[V1,V3]) ∩M| = |V1|− i and |E(G[V2,V3]) ∩M| =
|V2|− i = |V3|− (|V1|− i). From this we deduce that i = 1

2
(|V1|+ |V2|− |V3|) = n− |V3|. Hence the

number PM(G) of perfect matchings in G is:

PM(G) =
(|V1|

i

)(|V2|
i

)( |V3|
|V1| − i

)
i!(|V2| − i)!(|V1| − i)! = |V1|! |V2|! |V3|!

(n − |V1|)!(n − |V2|)!(n − |V3|)! .

(Here

(|V1|
i

)(|V2|
i

)
i! counts the number of different ways of selecting i-sets of vertices from each

of V1 and V2 and joining them by a perfect matching, while

( |V
3
|

|V
1
|−i

)
(|V2| − i)!(|V1| − i)! counts the

number of ways of joining the vertices of V3 by a perfect matching to the remaining vertices of V1∪V2.)

If |V3| > 0, then let G′
be the complete tripartite graph with parts of size |V1| , |V2|+ 1, |V3|− 1. Note

that 𝛼(G′) ≤ n. By the formula above, we have

PM(G)
PM(G′)

= |V3| (n − |V3| + 1)
(|V2| + 1)(n − |V2|) ≥ 1,

since |V3| (n− |V3|+ 1) − (|V2|+ 1)(n− |V2|) = (|V2|− |V3|+ 1)(|V2|+ |V3|− n) ≥ 0 (as |V2| ≥ |V3|
and |V2| + |V3| ≥ n). It follows that PM(G) ≥ PM(Kn,n) = n! as claimed. ▪

Proof of Proposition 1.16. Let H = K2n. For all p ∈ [ 1

2
, 1], we may construct the two-state measure

𝜇2s,p ∈1,p(H) which satisfies:

P
[|C1(H𝜇

2s,p)| ≤ n
]
= P

[|C1(H𝜇
2s,p)| = n

]
=

(
2n
n

)
𝜃

n(1 − 𝜃)n =
(

2n
n

)(
1 − p

2

)n

,

proving the upper bound in that range. For p2n ≤ p ≤ 1

2
, we note that 𝜃 = 𝜃(p) is no longer a

real number. However, as shown in [10, Section 7.1], we may take a “complex limit” of the 2-state

measure 𝜇2s,p, and the conclusion above still holds.

For the lower bound, let C1,C2, … ,Cr be the connected components of a 𝜇-random subgraph H
𝜇

of K2n. Let G denote the complete multipartite graph associated with the partition ⊔iCi of V(K2n) =
[2n]. Observe that G is a subgraph of the complement Hc

𝜇
of H

𝜇
. If |Ci| ≤ n for all i, then 𝛼(G) ≤ n,

whence by Lemma 4.1 G contains at least n! perfect matchings. In particular, Hc
𝜇

must contain at

least n! perfect matchings. By Markov’s inequality, we thus have
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908 FALGAS-RAVRY AND PFENNINGER

P
[|C1(H𝜇

)| ≤ n
]
≤ P

[
Hc

𝜇
contains ≥ n! perfect matchings

]

≤
1

n!
E
[
#{perfect matchings in Hc

𝜇
}
]

= 1

n!

(
1

n!

n−1∏
i=0

(
2n − 2i

2

))
(1 − p)n =

(
2n
n

)(
1 − p

2

)n

.

(Here

(
1

n!
∏n−1

i=0

(
2n−2i

2

))
counts the number of perfect matchings in K2n by selecting n vertex-disjoint

edges sequentially one after the other, and dividing through by n!.) The lower bound follows. ▪

Proof of Theorem 1.17. Let p ∈
(

1

r+1
,

1

r

]
be fixed. Fix 𝜀 = 𝜀(p) > 0 sufficiently small. For n large

enough, we have by the pseudorandomness assumption on Hn that for every U ⊆ V(Hn), e(Hn[U]) ≤
q |U|2

2
+ 𝜀

2pqn2
. It then follows from Lemma 2.4 that whp

e(H
𝜇
) ≥ pqn2

2
(1 − 4𝜀

2), (4.1)

which is strictly greater than
qn2

2(r+1)
for 𝜀 = 𝜀(p) chosen sufficiently small. Assume (4.1). We show this

implies the claimed lower bound on the size of a largest component.

If |C1(H𝜇
)| ≤ n

r+1
− 𝜀n, then for 𝜀 sufficiently small there is a partition of V(H) into at most 2(r +

1) + 1 sets, each of which has size at most
n

r+1
− 𝜀n, such that every connected component of H

𝜇
is

wholly contained in one of the sets of the partition. Indeed, such a partition can be obtained by starting

with a partition of V(H) into the connected components of H
𝜇
, and then as long as the partition contains

two parts of size at most
1

2

(
n

r+1
− 𝜀n

)
, choosing two such parts arbitrarily and merging them into a

single part. Since for any (2r + 3)-tuple (x1, … , x2r+3) with
1

r+1
− 𝜀 ≥ xi ≥ 0 and

∑
i xi = 1 we have

∑
i (xi)2 ≤ (r + 1)

(
1

r+1
− 𝜀

)2

+ ((r + 1)𝜀)2, we have by our pseudorandomness assumption that

e(H
𝜇
) ≤ q(r + 1)

2

(
1

r + 1
− 𝜀

)2

n2 + q
2
((r + 1)𝜀)2n2 + (2r + 3)𝜀2pqn2

<

qn2

2(r + 1)

for 𝜀 sufficiently small, contradicting (4.1). Thus we may assume that |C1(H𝜇
)| > n

r+1
− 𝜀n.

If |C1(H𝜇
)| ≥ n

r
, then we have nothing to show. Finally if

n
r+1

− 𝜀n ≤ |C1(H𝜇
)| <

n
r
, then H

𝜇

contains at least r+1 components. Let 𝛼n denote the size of a largest component, where
1

r+1
−𝜀 < 𝛼 <

1

r
.

Then

(
r𝛼2 + (1 − r𝛼)2

)
qn2

2
+ (r + 2)𝜀2pqn2

≥ e(H
𝜇
) ≥ pqn2

2
(1 − 4𝜀

2).

Dividing through by qn2∕2, rearranging terms and using the fact 𝜀 is chosen sufficiently small, we get

r𝛼2 + (1 − r𝛼)2 ≥ p − 𝜀.

Solving for 𝛼, we get that

𝛼 ≥

1 +
√

(r+1)(p−𝜀)−1

r

r + 1
,

giving part (i).
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FALGAS-RAVRY AND PFENNINGER 909

For part (ii), consider the r + 1-state measure in which each vertex is assigned state r + 1 with

probability
1−

√
r((r+1)p−1)

r+1
and a uniform random state from the set {1, 2, … , r} otherwise, and in which

an edge is open if and only if its vertices are in the same state. This is easily seen to be a 1-ipm with

the requisite properties. ▪
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