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Abstract: Defective droppers pose a significant threat to the performance of the contact between
the train pantograph and railway catenary. In this paper, the impact of damaged droppers on the
performance of pantograph–catenary interaction behaviour is analysed, and the impact of varying
degrees of damage to each dropper is labelled. To improve the classification accuracy when both
the damage degree and position are considered, a model integrating multiple 1D CNNs is proposed.
Approaches including randomly searching the optimal hyper-parameters and K-fold cross-validation
are used to prevent overfitting and to ensure model performance regardless of the training data subset
selected. Compared with a conventional 1D CNN, the classification performance of the integrated
method is demonstrated using the metrics accuracy, F1-score, precision and recall. It is concluded that,
through the use of the integrated 1D CNN, damaged droppers can be detected and localised based
on the pantograph–catenary contact force. Hence, intelligent catenary inspection can be enhanced.

Keywords: catenary condition monitoring; deep learning; fault classification; 1D CNN; pantograph–
catenary interaction

1. Introduction

Railway electrification has been undertaken since the late 19th century [1] and the
scale of the electrified line has been increased worldwide by more than fifty percent
over the last two decades [2] due to its advantage in energy efficiency. As wear and tear
accumulate in daily operations, the malfunction and wearing out of physical components
in the overhead line (i.e., railway catenary) system, one of the current supply forms, is
unavoidable. Defects of the catenary droppers, support and contact wire irregularity have
been identified as posing substantial threats to current collection [3–8]. In order to reduce
the risk from a defective catenary, its health condition is routinely inspected by railway
operators that traditionally rely on skilled engineers [9]. To improve the efficiency of
maintenance, a number of catenary inspection studies have been conducted in recent years
through image processing based on on-vehicle-roof cameras [10–16], which have shown
satisfactory effectiveness.

Besides utilising the image signal to monitor catenary health, the contact behaviour
of the pantograph–catenary interaction is also potentially effective [17–20], as it can offer
a straightforward insight into the impact on energy transmission quality. In analysing
contact behaviour between the pantograph and catenary, the contact force is one of the
essential indicators [9]. The pantograph–catenary contact force signal is usually measured
by placing load cells between the collector and its suspension or by fitting fibre-optic
sensors under the carbon strip [9]. Some prototypes have been tested on main lines [21–25].
Alternatively, suitable numerical models of the pantograph–catenary system can also be
applied to generate the contact force for signal processing when a series of defective cases
are considered [7,17,18].
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In recent years, finite element (FE)-based catenary models have dominated research
focusing on pantograph–catenary dynamics [9,26]. The method approximates the catenary
by discretising the system into smaller physics-based elements, which provides excellent
accuracy and consistency [21,24,26,27]. When contact force is the main interest, the panto-
graph is commonly modelled by a lumped-mass model for simulations [9,26]. However,
to ensure the veracity of the pantograph–catenary models, the simulation framework is
required to be validated by the simulation standard EN50318 [28].

Either from experimental data or simulation results, dropper defects have been identi-
fied as being critical to the pantograph–catenary interaction performance [3,5,16,20]. The
contact force signal is effective for finding fault information through static-based or signal-
processing techniques. For example, in [7], contact force signals with defective droppers
were obtained from an FE catenary model. The results were then subjected to time and
frequency analysis techniques. In the time domain, the variance of different faults was
obviously found when investigating peaks at some specific locations (local peaks). This
study identified the feature of defective droppers, but there are few studies focused on
damage classification. Additionally, the data used in [7] do not contain any noise, so they do
not reflect real-world influences. Hence, further research on the detection and localisation
of defective droppers is worthy of investigation.

A convolutional neural network (CNN) as a standard deep learning technique has
been effectively used in many research domains (fault classification, linear regression,
speech recognition, etc.) [29–32]. Generally, a CNN consists of CNN layers and multilayer
perceptron (MLP) layers [33]. The CNN layer is used to process the data and extract the
feature, and the MLP layers can perform classification according to the identified features.
Considering the application of CNN for the inspection of the catenary system, some studies
focusing on the image (2-dimensional signal) have been carried out [10–16]. Among them,
Ref. [16] tackled the classification problem of defective droppers, where photos of droppers
were captured by roof-mounted cameras on vehicles. According to the CNN method, the
features of healthy and defective droppers have been identified and classified. However, as
mentioned in this paper, it is difficult to classify damage that is not visually obvious.

An alternative to the image-based approach is to make use of contact force. Con-
tact force has the advantage that it can reflect the pantograph–catenary contact quality
straightforwardly, no matter the shape of the dropper. However, because the contact
force is a 1-dimensional signal, the previously mentioned techniques cannot be applied
directly. Hence, the related 1D CNN approaches should be explored. The effectiveness of
1D CNN models has been demonstrated and they have been widely used across a range of
applications [34].

However, considering the problem of using 1D CNN to detect and localise the fault
simultaneously, it has been found that a conventional machine learning technique is not
efficient [35]. Hence, it is suggested to integrate separate 1D CNNs for fault detection and
localisation tasks.

Considering the above discussion, the objective of this paper is to detect and localise
defective droppers in a railway catenary through the pantograph–catenary contact force.
The FE catenary model will be developed and used to generate the required contact force
data, with and without faults. The impact of the damage to each dropper on the contact
behaviour can be analysed and categorised. Noise will be added to the data to imitate real-
world disturbance. Once the data are available, two 1D CNNs are integrated (integrated 1D
CNN) to detect the degree of damage and location of the defective dropper as independent
tasks. The main contributions of this paper are as follows.

(a) The impact of dropper defects on railway pantograph–catenary interaction is analysed,
and the impact of varying degrees of damage to each dropper is categorised.

(b) An integrated 1D CNN is used to improve classification performance compared with
a conventional 1D CNN. Approaches including randomly searching the optimal
hyper-parameters and K-fold cross-validation are considered to prevent overfitting
and ensure model performance regardless of the training data subset selected.
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(c) The ability of the 1D CNN-based method to evaluate the degree of damage to catenary
droppers and locate the position of defective droppers within a catenary system is
demonstrated.

2. Pantograph–Catenary System Modelling

The contact and messenger wires in the catenary system are modelled by a 2D Euler–
Bernoulli beam whose vertical dynamic behaviour follows:

ρA
d2w
dt2 = T

d2w
dx2 − EI

d4w
dx4 − c

dw
dt

+ F(x, t) (1)

where ρ, A, w, t, T, E, I, x, c and F denote the density of the wire, the cross-sectional area of
the wire, the vertical deflection of the wire, the elapsed time, the tensile force of the wire,
the Young’s modulus of the wire, the second moment of area of the wire, the horizontal
location of the measured point, the damping coefficient, and the external force, respectively.

To represent the kinetics by means of FEs, the system is discretised into small FEs, and
the dynamic behaviour of each element node can be approximately a function of the states
of itself and its adjacent ones (i.e., deflection and slope). Hence, the system dynamics can
be assembled and obtained, as in Equation (2).{

M ∗ ..
y(t) + C ∗ .

y(t) + K ∗ y(t) = F(t)
C = α ∗M + β ∗K

}
(2)

where y(t) is the states of nodes; M, K and C are the assembled mass, stiffness, and
damping, respectively (the damping coefficient is assumed to be proportional to mass
and stiffness); and F(t) denotes the external force on the nodes including the pantograph–
catenary contact force and those exerted by other catenary components (i.e., dropper, steady
arm and messenger wire suspension).

The dropper is represented by a spring model with slackening as in Equation (3),
whose elasticity kd changes with the spring state. In this study, as the defective dropper is
of concern, the elasticity k varies, ranging from 100% to 0% of the nominal value to represent
dropper damage conditions. It should be noted that the initial condition of the catenary
system is affected by the defective dropper, which will be incorporated in the model.

kd =

{
k ∆x > 0
0 ∆x ≤ 0

(3)

The material properties and structural information on the catenary model are taken
from [28] and an existing academic benchmark [26]. Besides that, a validated three-
mass lumped-mass pantograph model [26] is used for the simulations. To generate the
pantograph–catenary contact force, a virtual spring of 50,000 N/m is placed between the
pantograph head and the contact wire [26,28]. The above pantograph–catenary model is
depicted in Figure 1 and the parameters are summarised in Table 1. The Newmark-beta
method with the rule of average constant acceleration is applied for time integration in
simulations. The model validation will be given in the next section.

Table 1. Parameters of the pantograph–catenary model.

Model Component Parameter Value

Lumped-mass
pantograph

Lower frame
Mass (kg) 6

Spring coefficient (N/m) 160
Damper coefficient (Ns/m) 100

Upper frame
Mass (kg) 9

Spring coefficient (N/m) 1.55 × 104

Damper coefficient (Ns/m) 0.1

Pantograph head
Mass (kg) 7.5

Spring coefficient (N/m) 7 × 103

Damper coefficient (Ns/m) 45
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Table 1. Cont.

Model Component Parameter Value

FE catenary

Span structure Span length (m) 60
Dropper position (m) [5; 10.5; 17; 23.5; 30; 36.5; 43; 49.5; 55]

Dropper Elasticity in extension (N/m) 1 × 105

Elasticity in compression (N/m) 0

Contact wire

Steady arm stiffness (N/m) 300
Bending stiffness (Nm2) 195

Density (kg/m) 1.35
Tension (N) 2 × 104

Messenger wire
Suspension stiffness (N/m) 5 × 104

Bending stiffness (Nm2) 131.7
Density (kg/m) 1.07

Tension (N) 1.6 × 104

Wire damping coefficients alpha (s−1) (proportional index to mass) 0.0125
beta (s) (proportional index to stiffness) 1 × 10−4
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3. Simulations and Damage Classification
3.1. Static Analysis

Based on the above numerical model, the simulation for a healthy catenary and one
with a defective dropper can be conducted. For the sake of brevity, only the fifth dropper’s
defect is presented to demonstrate the impact of the damage.

Figure 2 shows the dropper impact on the contact wire static state that consists of the
vertical displacement and the static stiffness over a span. It shows that the impact of the
fifth dropper’s defect increases non-linearly with the degree of damage. When the dropper
nearly loses its elasticity or has done so already, the difference from the nominal condition
is considerable.

3.2. Model Validation and Dynamic Simulation

To evaluate the impact on dynamic performance, the catenary is integrated with the
pantograph at a speed of 250 km/h. A 10-span catenary with nominal dropper conditions is
simulated to validate against [28], which is presented in Table 2. The simulation framework
has also been validated in [36] but, for the sake of brevity, the details are not presented here.
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Table 2. Model validation at 250 km/h.

Output Simulation Results EN 50318 Requirements

Mean force (N) 116.65 110–120
Force standard deviation (N) 27.25 26–31

Maximum force (N) 185.94 175–210
Minimum force (N) 54.31 50–75

The impact of the fifth dropper’s damage on the contact force performance is presented
in Figure 3. It can be seen that if the damage is minor, the difference in contact force can be
negligible. On the contrary, if the fifth dropper fully malfunctions, its impact on force can
propagate to the whole span and distort contact behaviour.

3.3. Dropper Damage Categorisation

Dropper damage is expected to be categorised and labelled for further classifica-
tion. It was found in [7] that the impact of defective droppers on the quality of the con-
tact force varies significantly across different positions. Therefore, instead of using the
damage degree, the impact level on the contact force will be used for dropper condi-
tion categorisation, which can intuitively represent the impact of defective droppers on
pantograph–catenary dynamics.
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To quantify the impact, three key indicators of the contact force (i.e., standard deviation
(std) maximum (max) and minimum (min)) are considered. They reflect the degree of
mechanical wear, possibility of contact loss and contact robustness. The impact index,
introduced in Equation (4), quantifies the impact of defective droppers on the contact quality.
It finds the greatest deterioration in the force standard deviation, maximum, and minimum
by comparing the contact force signal of the damaged catenary ( D ∈ {Dstd, Dmin, Dmax})
with the nominal result (N ∈ {Nstd, Nmin, Nmax}).

I = max
(

Dstd − Nstd
Dstd

,
Dmax − Nmax

Dmax
,

Nmin − Dmin
Dmin

)
× 100% (4)

Figure 4 shows the impact index of each dropper’s defect with damage degree ranging
from 100% to 0%. It is clear that each dropper’s damage has a distinctive impact on
the contact performance. Regarding the index, the damage degree of each dropper is
categorised into two risk categories, low risk (I ≥ 1%) and high risk (I ≥ 3%). Once a
damage degree is labelled, a worse degree will not be categorised as healthier than that for
conservatism. The damage categorisation is summarised in Table 3. For example, if the
damage of the fifth dropper is more than 27% of the nominal value, the condition will be
labelled as low risk and if it is more than 62.5%, it will be labelled as high risk.

Table 3. Dropper damage categorisation (D = dropper no.).

Category
Damage Degree (%)

D1 D2 D3 D4 D5 D6 D7 D8 D9

Healthy (I < 1%) <51 <56.5 <57.5 <72 <27 <81.5 <41 <82.5 <45
Low risk (1% ≤ I < 3%) 51~68 56.5~88 57.5~100 ≥72 27~62.5 81.5~89.5 41~93 82.5~99 45~68.5

High risk (I ≥ 3%) ≥68 ≥88 ≥100 None ≥62.5 ≥89.5 ≥93 ≥99 ≥68.5

Moreover, Gaussian white noise filtered up to 20 Hz (the interested frequency range
associated with the contact force) will be added to include the measurement error. Ac-
cording to the requirement for the measurements of the pantograph–catenary dynamic
interaction, the maximum error of the measurement system should be less than 10% of the
measured value [37]. After adding noise into the raw contact force result, the maximum
error of all data is 8.88% at 20 dB noise power whereas it is 16.49% at 25 dB. Therefore, a
noise power of no more than 25 dB is worthwhile to be considered.
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4. Fault Classification through CNNs

This section introduces the process of training and validating the integrated 1D CNN
model. Firstly, the method of integrating the multiple 1D CNNs including Sub-model 1
and Sub-model 2 is given. Secondly, the preparation of training and validating datasets
is discussed. In order to ensure the performance of the integrated CNN model regardless
of the training data subset selected, an application based on K-fold cross-validation is
considered. Thirdly, a tuning technique is introduced to search for the optimal hyper-
parameters of the sub-models. Finally, the evaluating metrics are explored to measure the
performance of the integrated 1D CNN model.

4.1. Structure of the Integrated 1D CNN Method

In 1D CNN, the forward propagation (FP) from the l − 1 convolution layer (output) to
the l layer (input) is expressed as Equation (5), where xl

k is a neuron of the input layer; bl
k is

the scalar bias of the kth neuron of the lth input layer; sl−1
i is the ith neuron from the l − 1

output layer; and ωl−1
ik is the kernel from the ith neuron of the (l − 1 )th output layer to the

kth neuron of the lth input layer.

xl
k =

Nl−1

∑
i=1

conv1D
(

ωl−1
ik , sl−1

i

)
+bl

k (5)

The neuron of intermediate output is defined as yl
k, which can be obtained from input

xl
k. It can be presented as Equation (6), where sl

k is a neuron of the output layer; ↓ ss is the
down-sampling operation with the scalar factor (ss).

yl
k = f (xl

k)
sl

k = yl
k ↓ ss

(6)

In this paper, a method based on integrating multiple 1D CNNs (integrated 1D CNN)
is applied to classify the damage degree and the position of defective droppers as two
independent tasks. The structure of the integrated 1D CNN model is shown in Figure 5.
Specifically, Sub-model 1 considers the damage degree of droppers defined in Table 3. Sub-
model 2 considers the location of defective droppers that comprises nine labels representing
nine positions. It should be noted that when the dropper is identified as being healthy, it is
not necessary to identify its position. Hence, Sub-model 2 is applied to train the part of
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the dataset which only contains the data labelled as ‘low risk’ and ‘high risk’ (i.e., data not
labelled as “healthy”).
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To integrate the two trained sub-models, a method to transmit the output result from
Sub-model 1 to Sub-model 2 is proposed.

The result from Sub-model 1 is given as a set of predicted probabilities corresponding
to the three damage conditions. The probabilities of ‘healthy’, ‘low risk’ and ‘high risk’ are
given as P1, P2 and P3, respectively. The Pmax is the maximum value of P1, P2 and P3. If the
Pmax corresponds to ‘healthy’ condition (P1), the process will stop. The predicted output
of Sub-model 1 will be saved. If the Pmax belongs to ‘low risk’ or ‘high risk’ (P2 or P3), it
will be fed into Sub-model 2 for further prediction. The predicted output of Sub-model 2
represents the location of the defective dropper. The testing performance of the integrated
CNN model is the product of the predicted results of Sub-model 1 and Sub-model 2.

4.2. Result Analysis

(1) Dataset size and split: The data of a span-length contact force obtained from the
simulation were prepared for classification. The details of the dataset are listed in Table 4.

Table 4. Details of the dataset.

Dataset Details Quantity

Size of dataset 2173

Damage degree labels 482
(high risk)

672
(low risk)

1019
(healthy)

Dropper position labels 234
(D1)

225
(D2)

249
(D3)

200
(D4)

200
(D5)

292
(D6)

245
(D7)

281
(D8)

247
(D9)

Data used for K-fold 1996
Data used for testing 177

Features of each sample 1200

In addition, in order to demonstrate how the data are processed by the integrated 1D
CNN, the data flow diagram is shown in Figure 6.
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As can be seen from Figure 6, the dataset was divided into two parts prior to the
classification process. A total of 90% of the data was allocated to create a new dataset
called the K-fold dataset, which was used for training and validating the integrated 1D
CNNs model. For each sub-model, 75% of the corresponding K-fold dataset was utilised
for training, and 25% was reserved for validation.

The remaining 10% of the data, which was not utilised in any training or validation
processes, was subsequently employed to test the performance of the integrated 1D CNNs
model, which consisted of the two fine-tuned sub-models.

The application of Z-score [38] was used to normalise the dataset. It is notable that
the datasets for validation and testing (validation and testing dataset) were normalised
based on the training dataset. Hence, during the whole process of classification, the testing
dataset for the integrated 1D CNN model was not used for training and validation of the
sub-models. This avoids data leakage and proves the authenticity of the validation results.

(2) K-fold cross-validation: Cross-validation measures generalised error through the
existing dataset [39]. K-fold as a common cross-validation method is widely used to estimate
prediction accuracy [40]. Compared with the typically practiced cross-validation method,
the results from the K-fold method are closer to real performance [41].

In K-fold validation, the dataset is divided into k subsets of equal size for training
and validation. In this paper, we chose 10 folds for cross-validation. Compared with other
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cross-validation methods, better performance with 10 folds has been proven in terms of
bias and variance [42].

4.3. Hyper-Parameter Tuning Technique

As it is difficult to manually select suitable hyper-parameters for CNN models, an
adaptive application [43] was used to randomly search the optimal hyper-parameters.
The hyper-parameters considered including the number of filters, the number of CNN
layers, weight decay, learning rate and the number of filters in the dense layers [43]. The
kernel initialiser was selected between the He normal initialiser [44] and the Glorot uniform
initialiser [45]. The activation function was selected between Sigmoid, Tanh and Relu. The
selected ranges of these hyper-parameters are shown in Table 5. Additionally, the number
of epochs for training the model was 200, and 10 trials were used for random searching
of hyper-parameters. Based on the proposed method, the optimal hyper-parameters are
tuned to train these two sub-models, respectively. Furthermore, selecting the optimal
hyper-parameter of weight decay can effectively prevent the model from overfitting.

Table 5. Selection range of CNN hyper-parameters.

CNN Hyper-Parameters Selection Range

Number of filters in the convolutional layers 64–1536
CNN layers 1–5

Weight decay 1 × 10−7–1 × 10−1

Learning rate 1 × 10−6–1 × 10−1

Number of filters in the dense layers 10–512

4.4. Performance Evaluation

Accuracy, F1-score, precision and recall are four important metrics commonly used for
evaluating the performance of machine-learning-based methods [46]. Accuracy is defined
as the closeness of a measured value to the true value [47]. Precision and recall are metrics
that evaluate the ability to retrieve data from the original dataset [48]. The F1-score is a
measurement combining the precision and recall of the model to further reflect the accuracy
of evaluating results [49].

Additionally, in order to demonstrate the performance of the integrated 1D CNN
model, a conventional CNN with the same hyper-parameter tuning technique and K-fold
validation method classifying 19 labels (2 × 9 ‘risk’ labels and 1 ‘healthy’ label) is used
for comparison.

5. Results Analysis and Discussion

The dataset was used to train the integrated 1D CNN model for fault classification. The
optimal hyper-parameters of the two sub-models were obtained by the tuning technique
using the training and validating dataset. The details of the simulated dataset and optimal
hyper-parameters of the two sub-models along with the conventional CNN model are
shown in Table 6.

Table 6. Optimal hyper-parameters of CNN model.

Optimal hyper-parameters of
Sub-model 1

CNN layers 3
Number of filters in the first convolutional layer 64

Number of filters in the second convolutional layer 928
Number of filters in the third convolutional layer 896

Weight initialization 3.9753 × 10−5

Learning rate 1.0379 × 10−3

Number of filters in the dense layers 150
Kernel initialiser He normal initialiser

Activation function Relu
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Table 6. Cont.

Optimal hyper-parameter of
Sub-model 2

CNN layers 2
Number of filters in the first convolutional layer 128

Number of filters in the second convolutional layer 1024
Weight initialization 1.1813 × 10−5

Learning rate 2.5224 × 10−4

Number of filters in the dense layers 120
Kernel initialiser Glorot uniform initialiser

Activation function Relu

Optimal hyper-parameter of
conventional 1D CNN

CNN layers 5
Number of filters in the first convolutional layer 320

Number of filters in the second convolutional layer 288
Number of filters in the third convolutional layer 704
Number of filters in the fourth convolutional layer 864
Number of filters in the fifth convolutional layer 576

Weight initialization 1.3829 × 10−5

Learning rate 4.1412 × 10−3

Number of filters in the dense layers 128
Kernel initialiser Glorot uniform initialiser

Activation function Relu

The results of the two sub-models and integrated 1D CNN model through evaluating
four metrics (accuracy, F1-score, precision and recall) are given in Figures 7–9.

The performance in the four metrics is shown using the average values. Considering
the metric values for all folds, the standard deviation of the results is small (all standard
deviations are lower than 0.01); hence, the authenticity of the training and validating
results is proven by using the K-fold cross-validation process. The average results trained
by Sub-model 1, Sub-model 2 and the integrated 1D CNN model with different signal
noise levels (dB) are presented in Table 7. The integrated 1D CNN model shows excellent
classification performances in the four metrics (over 86%).
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Table 7. Accuracy of the first and second sub-models and the integrated 1D CNN model.

Noise power Accuracy (%)
Sub-model 1 Sub-model 2 Integrated model

5 dB 96.33 100 96.33
10 dB 95.28 100 95.28
15 dB 95.00 100 95.00
20 dB 93.94 100 93.94
25 dB 88.76 97.7 86.72
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Table 7. Cont.

Noise power F1-score (%)
Sub-model 1 Sub-model 2 Integrated model

5 dB 95.88 100 95.88
10 dB 95.08 100 95.08
15 dB 95.83 100 95.83
20 dB 94.84 100 94.84
25 dB 88.87 96.60 86.73

Noise power Precision (%)
Sub-model 1 Sub-model 2 Integrated model

5 dB 96.10 100 96.10
10 dB 95.07 100 95.07
15 dB 95.04 100 95.04
20 dB 93.93 100 93.93
25 dB 89.19 97.94 87.35

Noise power Recall (%)
Sub-model 1 Sub-model 2 Integrated model

5 dB 95.80 100 95.80
10 dB 95.25 100 95.25
15 dB 94.69 100 94.69
20 dB 93.58 100 93.58
25 dB 88.68 97.55 86.49

The results obtained via training of the conventional 1D CNN method, shown in
Table 8, are used for comparison. These results show that both the conventional and
integrated CNN-based methods are able to classify defective droppers.

Table 8. Comparison between the conventional 1D CNN and the integrated 1D CNN model.

Noise power Accuracy (%) F1-Score (%)
Conventional Integrated Conventional Integrated

5 dB 91.24 96.33 93.26 95.88
10 dB 90.57 95.28 92.31 95.08
15 dB 89.70 95.00 90.71 95.83
20 dB 88.46 93.94 87.69 94.84
25 dB 85.28 86.72 83.17 86.73

Noise power Precision (%) Recall (%)
Conventional Integrated Conventional Integrated

5 dB 95.28 96.10 94.62 95.80
10 dB 94.26 95.07 93.74 95.25
15 dB 93.82 95.04 91.77 94.69
20 dB 90.42 93.93 88.49 93.58
25 dB 89.28 87.35 82.89 86.49

To compare the performance of the conventional 1D CNN and the integrated CNN, in
the face of signal noise, the trend of the four metrics of the two methods with increasing
noise power is shown in Figure 10. In Table 8, considering the four evaluating metrics of
the integrated 1D CNN with the same noise power, the value is relatively consistent (the
variance of these four values is lower than one). On the contrary, the variance of these
values in the conventional 1D CNN is over 5% (at 25 dB).

In terms of performance for the four metrics, the results of the integrated 1D CNN
show better performance than the conventional 1D CNN. For example, under a 20 dB
noise level, the accuracy of the integrated 1D CNN model is approximately 5% higher
than that of the conventional 1D CNN model, which means there will be nine fewer
false/missing alarms in terms of the selected testing dataset. Similar (though slightly
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smaller) improvements can be seen across the three other metrics. This demonstrates that
the integrated 1D CNN is more effective in classifying the fault with two categories (i.e.,
damage degree and location).
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When the noise power increases, the values of the four performance metrics reduce.
The maximum noise used in this study was 25 dB, which is more than the maximum
permissible measurement error. When the noise power is 25 dB, the performance of the
four values is still over 85%. This indicates that contact-force-based condition monitoring
is effective in the early detection of railway catenary dropper damage.

Additionally, the computational cost is a factor of concern. In this research, the
computation is based on the Google Collaboratory platform with a P100 GPU. By training
the conventional 1D CNN model and the integrated 1D CNN model with their own
optimal hyper-parameters, the computational costs from the two methods are compared.
The computational time of the integrated 1D CNN model is increased by 4% compared
with the conventional 1D CNN model.

6. Conclusions

A defective dropper in a railway catenary system is a common fault which is not
easily detectable in advance using existing monitoring methods. In this paper, a computa-
tional framework was used to model the health condition of the droppers and simulate
the pantograph–catenary interaction. The impact of dropper damage on the system’s
dynamic behaviour was analysed and categorised in terms of contact force quality. The
filtered Gaussian white noise was added to the raw data to improve the authenticity
for classification.

This paper also contributes a method to classify the damage degree and the location
of the defective droppers. To detect and locate damaged droppers, a method integrating
multiple 1D CNN models was developed and applied. The hyper-parameter tuning
technique and K-fold cross-validation were used to prevent overfitting and to ensure model
performance regardless of the training data subset selected. Metrics including accuracy,
F1-score, precision and recall have been considered, and the classification results show
better performance of the integrated 1D CNN model than a conventional 1D CNN model.
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For example, under a 20 dB noise level, the accuracy of the integrated 1D CNN model was
approximately 5% higher, which means there would be one in twenty fewer false alarms. It
is concluded that the integrated 1D CNN method can forecast the risk of defective droppers.
Regardless of the form of damage, as long as the damage affects the pantograph–catenary
contact force quality, the defective dropper can be identified by the integrated 1D CNN
method, which can improve the competence of intelligent condition monitoring in the
railway system.
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