
Doctoral Dissertations and Master's Theses

Spring 2023

Extracting a Body of Knowledge as a First Step Towards Defining Extracting a Body of Knowledge as a First Step Towards Defining

a United Software Engineering Curriculum Guideline a United Software Engineering Curriculum Guideline

Anton Kiselev
kiseleva@my.erau.edu

Follow this and additional works at: https://commons.erau.edu/edt

 Part of the Computational Engineering Commons, Educational Assessment, Evaluation, and Research

Commons, Educational Technology Commons, and the Engineering Education Commons

Scholarly Commons Citation Scholarly Commons Citation
Kiselev, Anton, "Extracting a Body of Knowledge as a First Step Towards Defining a United Software
Engineering Curriculum Guideline" (2023). Doctoral Dissertations and Master's Theses. 743.
https://commons.erau.edu/edt/743

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted
for inclusion in Doctoral Dissertations and Master's Theses by an authorized administrator of Scholarly Commons.
For more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F743&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/311?utm_source=commons.erau.edu%2Fedt%2F743&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/796?utm_source=commons.erau.edu%2Fedt%2F743&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/796?utm_source=commons.erau.edu%2Fedt%2F743&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1415?utm_source=commons.erau.edu%2Fedt%2F743&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1191?utm_source=commons.erau.edu%2Fedt%2F743&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/743?utm_source=commons.erau.edu%2Fedt%2F743&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

1

Extracting a Body of Knowledge as a First Step Towards Defining a

United Software Engineering Curriculum Guideline

By

Anton Kiselev

A Thesis Submitted to the Faculty of Embry-Riddle Aeronautical University

In Partial Fulfillment of the Requirements for the Degree of Master of

Science in Software Engineering

March 2023

Embry-Riddle Aeronautical University

Daytona Beach, Florida

2

Extracting a Body of Knowledge as a First Step Towards Defining a

United Software Engineering Curriculum Guideline

By

Anton Kiselev

This Thesis was prepared under the direction of the candidate’s Thesis Committee Chair,

Dr. Omar Ochoa, Department of Electrical Engineering and Computer Science, and has

been approved by the members of the Thesis Committee. It was submitted to the Office of

the Senior Vice President for Academic Affairs and Provost, and was accepted in the

partial fulfillment of the requirements for the Degree of Master of Science in Software

Engineering.

THESIS COMMITTEE

Chairman, Dr. Omar Ochoa Member, Dr. Keith Garfield

Graduate Program Coordinator,

Dr. Massood Towhidnejad

 Dean of the College of Engineering,

Dr. Jim Gregory

Associate Provost of Academic

Support,

Dr. Chris Grant

3

ACKNOWLEDGEMENTS

I want to express my most profound gratefulness to my parents, who have been my constant source

of love, encouragement, and support throughout my academic journey. Their undying faith in me

and unending sacrifices have greatly aided my educational aspirations.

I also want to express my gratitude to my close friend Tyler Procko, whose suggestions and

guidance have been crucial in designing this study. I sincerely appreciated his unwavering

encouragement and support.

I'd also want to thank my professor, Dr. Omar Ochoa, for his advice, encouragement, and

thoughtful criticism. I am really grateful for his assistance in creating this research since his

knowledge and insight were of immeasurable use.

Last but not least, I would like to convey my sincere gratitude to Dr. Massood Towhidnejad,

who served as my master's advisor at the university, for his important advice, assistance, and

encouragement throughout my graduate studies. I also want to express my gratitude to Dr. Keith

Garfield for joining the thesis committee and contributing insightful comments on my thesis.

Thank you, Mom and Dad, Tyler, Dr. Ochoa, Dr. Towhidnejad, and Dr. Garfield, for your

unwavering support, guidance, and encouragement throughout my academic journey.

4

ABSTRACT

In general, the computing field is a rapidly changing environment, and as such, software

engineering education must be able to adjust quickly to new needs. Industry adapts to technologies

as fast as it can, but the critical issue is a need for recent graduates with the necessary expertise

and knowledge of new trends, technologies, and practical experience. The industries that employ

graduates of computing degree programs aim to hire those who are familiar with the latest technical

traits, tools, and methodologies to meet these needs, and the software engineering curriculum

needs to respond quickly to these needs. Still, unfortunately, software engineering curriculums

cannot change and adopt new technologies fast. Modifying the curriculum to serve industry needs

better is a long and tedious process in an academic setting. It is essential to give software engineers

top-notch education and training to make sure they have the information and abilities needed to

succeed in their careers. In addition, there are multiple computing curriculum recommendations

endorsed by computing professional organizations that provide guidelines for curriculum design.

The work proposed for this research plans to develop a method of extracting a body of knowledge

and generating an ontology using Natural Language Processing algorithms. This will automate the

process of extracting information from curriculum guidelines and models and storing that

information in one unified ontology. It is then envisioned that the resulting ontology will be used

in future research to assist in creating or validating a Software Engineering curriculum to ensure

that all knowledge areas are covered and that the outcomes match the established guidelines and

models. This automated extracting a body of knowledge process is the first and fundamental step

in defining the United Software engineering Curriculum Guideline.

.

5

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. 3

ABSTRACT ... 4

TABLE OF CONTENTS ... 5

LIST OF FIGURES .. 7

LIST OF TABLES .. 8

1. Introduction .. 9

1.1. Motivation .. 9

1.2. Main Objective ... 9

2. Background .. 11

2.1. SWEBOK ... 11

2.2. SWECOM ... 13

2.3. SE2014.. 13

2.4. ABET .. 13

2.5. Machine Learning and Natural Language Processing .. 14

2.6. Ontology ... 16

2.7. Graph Database ... 16

3. Review of the Relevant Literature.. 18

3.1. Software engineering curricula development and evaluation process 18

3.2. Industry-Academia Collaboration .. 20

3.3. SWEBOK Ontology ... 21

3.4. An Analysis of the Software Engineering Curriculum ... 22

4. Approach .. 25

4.1. Preprocessing SWEBOK .. 26

4.2. First spaCy Implementation.. 28

4.3. REBEL Implementation ... 30

4.4. Combining spaCy and Neo4j .. 33

4.5. Converting Neo4j to OWL format.. 34

4.6. Processing Entire SWEBOK .. 34

4.7. Processing SWECOM .. 34

5. Results .. 35

5.1. Relations from REBEL Component ... 35

6

5.2. Results Of REBEL Component and Neo4j .. 38

5.3. Results of SWECOM.. 41

6. Discussion, Conclusion, and Future Work ... 43

6.1. Discussion ... 43

6.2. Conclusion .. 44

6.3. Future Work .. 45

REFERENCES ... 46

7

LIST OF FIGURES

Figure 2.1 Taxonomy of the Software Quality KA defined in SWEBOK V3 [5] 12

Figure 3.1 Steps of SECDEP. ... 19

Figure 3.2 Gray-box analysis for Software Requirements .. 23

Figure 4.1 The proposed method of knowledge graph from SWEBOK Using Rebel 25

Figure 4.2 Plain spaCy implementation .. 29

Figure 4.3 Initializing coreference pipeline .. 31

Figure 4.4 Wikidata API call .. 32

Figure 4.5 Entity linking using Wikidata API .. 32

Figure 4.6 Initializing RE pipeline .. 33

Figure 4.7 DFD model of spaCy pipeline ... 33

Figure 5.1 Example of extracted data from Requirements KA ... 39

Figure 5.2 Full graph for Requirements KA ... 40

Figure 5.3 SWECOM neo4j graph .. 42

8

LIST OF TABLES

Table 2.1 The 15 KAs defined in the SWEBOK .. 11

Table 4.1 Computing Specifications ... 26

Table 4.2 Examples of “good” and “bad” triples from plain spaCy RE. 30

Table 4.3 The relations extracted from the Software Requirements KA with plain spaCy. 30

Table 5.1 Wikidata relations and their definitions [32] .. 35

Table 5.2 Execution time and word count for each SWEBOK chapter. 38

Table 5.3 SWECOM execution results ... 41

9

1. Introduction

Nowadays technologies evolve dynamically and require special knowledge and expertise. Industry

adapts to technologies as fast as it can, but the main issue is a lack of recent graduates with the

necessary expertise and knowledge of the new trends, technologies and practical experience. The

industries that employ graduates of computing degree programs aim to hire those who are familiar

with the latest technical traits, tools, and methodologies [1]. To meet these needs, the software

engineering curriculum needs to respond quickly to these needs, but unfortunately, software

engineering curriculums cannot change and adopt new technologies fast [2].

1.1. Motivation

Modifications to the curriculum, to better serve the needs of industry; in an academic setting is a

long and tedious process [3]. By the time a curriculum modification is proposed, submitted through

the approval process, and accepted, the industry needs may have changed [4]. To further

complicate this process, multiple computing curriculum recommendations have been endorsed by

computing professional organizations that provide guidelines for curriculum design. To solve this

problem, the main need is to create a United Software Engineering Curriculum Guideline

(USECG), which will allow curriculum developers to identify the curriculum needs in order to

graduate students with enough knowledge and experience to solve real-world problems. A USECG

model will combine the multiple recommendations that other models capture into one model that

can be used to generate a curriculum.

1.2. Main Objective

The primary research objective of this project is to define a process to automatically extract

information from guidelines and models, which is a crucial step in defining USECG. For that,

10

Natural Language Processing (NLP) will be applied to analyze guidelines and models to find

correlations between various knowledge areas. Results will be verified by manual analysis.

Using the extracted information, we will create and populate a unified model based on ontology.

It is then envisioned that the resulting ontology will be used to assist in creating a Software

Engineering curriculum to ensure that all knowledge areas are covered and that the outcomes

match the established guidelines and models.

11

2. Background

Some historical background that is pertinent to the subject at hand is provided in this section. To

create a foundation of shared understanding, the reader must have at least a basic comprehension

of the concepts of SWEBOK and other guidelines, ontology, and natural language processing. In

the context of this thesis, this section provides compelling descriptions of those subjects.

2.1. SWEBOK

SWEBOK is a major milestone in establishing software engineering as a recognized engineering

discipline. SWEBOK is currently in its third revision, titled SWEBOK V3. This version is

available as a concise guide of approximately 335 pages, as the authors state that it is not feasible

to “present the entire body of knowledge for software engineering… that has been developed over

more than four decades” [5]. This guide is organized into 15 distinct Knowledge Areas (KAs).

Please see Table 2.1. Each KA section begins with a graphic of the expanded KA taxonomy. See

Figure 2.1 [5]. Each KA section contains a body of text, composed of sub-sections describing

each child node of the KA taxonomy.

Table 2.1 The 15 KAs defined in the SWEBOK

01 – Software

Requirements

06 – Software Configuration

Management

11 – Software Engineering

Professional Practice

02 – Software Design 07 – Software Engineering

Management

12 – Software Engineering

Economics

03 – Software

Construction

08 – Software Engineering

Process

13 – Computing Foundations

04 – Software Testing 09 – Software Engineering

Models and Methods

14 – Mathematical Foundations

05 – Software

Maintenance

10 – Software Quality 15 – Engineering Foundations

12

Roughly speaking, the SWEBOK document is a tree-like structure, with specific nested

sections being subsumed by more general ones. The SWEBOK guide distinguishes the levels of

the KA taxonomies, with the second level of each taxonomy being labelled as Subareas and the

third (and sometimes fourth) levels Topics and Subtopics, respectively. For example, Software

Quality is a KA, Software Quality Fundamentals is a Subarea and Value and Costs of Quality is a

Topic.

Figure 2.1 Taxonomy of the Software Quality KA defined in SWEBOK V3 [5]

13

2.2. SWECOM

SWECOM is a competency model that represents a set of competencies that a software engineering

professional should possess and could potentially be used by educators to develop a software

engineering curriculum that meets the needs of the industry [6]. SWECOM is given as a framework

that may be customized to meet the needs of companies, programs, and projects. SWECOM is

based on the SWEBOK guide. This competency model's skill areas comprise competencies that

are broken down into activities rather than job roles because job roles are typically reliant on the

organizational context in which work activities take place [6].

2.3. SE2014

SE2014 provides guidance to academic institutions and accreditation agencies about what should

constitute an undergraduate software engineering education. The Software Engineering Education

Knowledge (SEEK) is a set of knowledge domains that is defined by SE2014 which are based on

SWEBOK KA’s [7]. The smallest degree of knowledge that may be acquired is represented by the

division of each knowledge area into a number of units. Then each unit is further subdivided into

a collection of subjects. To ensure consistency with other curriculum reports, the SEEK uses

lecture hours, abbreviated to hours, to quantify instructional time; this measure is generally

understandable in (and transferable to) cross-cultural contexts. Thus, an hour corresponds to the

time required to present the material in a traditional lecture-oriented format; it does not include

any additional work that is associated with a lecture [7].

2.4. ABET

ABET is the gold standard for accreditation [8]. ABET does not describe knowledge areas as

SWEBOK, or provide a curriculum guideline as SE 2014, but consists of different accreditation

14

criteria both for Baccalaureate and Masters level programs. Specifically, we are looking at criteria

for Software programs and similarly named engineering programs. Those criteria are:

• Curriculum – The curriculum must cover a wide range of engineering and computer science

courses, as suggested by the program's title and aims. Computing fundamentals, software

design and development, requirements analysis, security, verification, and validation, as

well as software engineering processes and tools suitable for the creation of complex

software systems, must all be covered in the curriculum. Discrete mathematics, probability,

and statistics, with applications suitable for software engineering, must also be covered [8].

• Faculty - The course must show that the professors instructing the fundamentals of software

engineering are knowledgeable in the field's professional practice and keep up with

developments in their fields of professional or scholarly expertise [8].

2.5. Machine Learning and Natural Language Processing

Machine Learning (ML) originates as early as 1950, and its primary definition is a “field of study

that gives computers the ability to learn without being explicitly programmed” [9]. It is

advantageous for the human operator to actually let the computer "do the work" when trained ML

can produce results from unseen input. NLP, a branch of ML, is a field of computer science that

focuses on methods for modeling, comprehending, and interpreting human language [10]. Several

modern applications that deal with human vocabulary depend on NLP. A large number of software

programs that people use on a daily basis include email clients, voice-activated assistants like

Apple's Siri and Amazon's Alexa, search engines like Google and Bing, tools for correcting

spelling and grammar like Grammarly, and many others [11]. NLP is commonly employed in tasks

involving:

15

• Language modeling - Predicting the following word in a sentence by looking at the history

of the previous words

• Information extraction - obtaining pertinent data from text, such as dates or locations.

• Information retrieval - Using a user query to search across a large collection of documents.

• Text summarization - Retaining the meaning while succinctly summarizing a long text.

• Machine translation - a text's translation from one language to another.

• Topic modeling - identifying a text collection's thematic organization.

Information Extraction (IE) is a further function of NLP. Relationship extraction (RE), a part

of IE, aims to find and extract relationships between things in the text. For example, from the

sentence "John Smith works for Google", RE will extract the relationship type, such as "works

for". A variety of NLP techniques, such as named entity recognition (NER), dependency parsing,

or semantic role labeling, can be used to extract relationships between things from text [12].

REBEL, which stands for Relationship Extraction By End-to-End Language generation, is an

extremely capable IE model for 2021 [13]. The encoder-decoder transformer from Facebook AI,

as well as the bidirectional and auto-regressive transformers, constitute the foundation of REBEL

(BART) [14]. In the past, NER and Relation Classification (RC) algorithms were used to extract

relations from text bodies. However, both methods had drawbacks [13]. The technique is known

as End-to-End Relation Extraction, or simply Relation Extraction (RE), in more recent approaches

(like REBEL), which do both jobs concurrently. REBEL is a cutting-edge RE model that may

generate effective KGs by pre-training BART-large with a specifically curated dataset made up of

Wikipedia abstracts and Wikidata entities and relations [13].

A popular Python library for NLP is called spaCy. Tokenization, part-of-speech tagging,

named entity recognition, dependency parsing, and other essential NLP operations are all provided

16

by spaCy. NLP is viewed by spaCy as a pipeline process where each step can be finished using a

component. REBEL is a spaCy component for the relationship extraction pipeline phase [15].

2.6. Ontology

Ontology is a formal, explicit explanation of the relevant objects and relationships that are believed

to exist within a given area of knowledge, along with the names we use to refer to them and our

shared understandings of their meanings and attributes. Concepts, qualities and attributes,

restrictions on properties and attributes, and, frequently but not always, individuals are included

in this description. There are ontologies that represent different facets of reality, such as those

related to business, finance, healthcare, history, engineering, mathematics, natural language, and

so forth [16].

An ontology is a serialized entity or object that encapsulates information specifically in the

field of computer science [17]. An ontology, according to Gruber (1992), is a "explicit statement

of conceptualization," and according to Borst (1997), it is a "formal specification of a shared

conceptualization" [18, 19]. An ontology, according to Arp, Smith, and Spear (2015), is a

particular artifact that represents a certain feature of reality, including its entities and the

relationships that exist between them [20]. An ontology is built on a hierarchy of concepts, or

taxonomy, and uses a hierarchy of relations to link these concepts together such that a directed

graph of related concepts can be created. Ontologies can be relatively concise, with only a few

concepts defined, or they can be quite verbose, with strict logic and formality [17, 21, 22].

2.7. Graph Database

A graph database is a particular kind of database that stores and represents data using graph

topologies containing nodes, edges, and characteristics [23]. Nodes, edges, and attributes make up

17

an Labelled Property Graph (LPG). Edges represent the relationships between nodes, whereas

properties are the traits or qualities of both nodes and edges. Graph databases are particularly

helpful for maintaining data with intricate dependencies and linkages, which makes them suitable

for use in social networks, recommendation systems, fraud detection, and other areas.

RE necessarily results in a graph of related (or “linked”) entities. As an example, WordNet is

a large lexical database grouping English nouns, verbs, adjectives and adverbs into 117,000 sets

of synonyms linked by semantic relations [24]. WordNet is a project with its roots in the mid-

1980s, and is curated manually.

Automatic NLP entity linkage will be done in this project. Hence, a suitable graph storage

platform is required. A graph database management system is called Neo4j. Large and complicated

datasets represented as Labelled Property Graphs can be stored, managed, and queried using this

open-source, NoSQL database (LPGs). Nodes, edges, and attributes make up an LPG. Edges

represent the relationships between nodes, whereas properties are the traits or qualities of both

nodes and edges. Nodes represent entities or items, such as people or things. Because it was simple

to convert REBEL triplets into a queryable graph, Neo4j was initially used in this work. However,

as will be discussed in later sections, the Neo4j graphs were converted into an RDF-compliant

format and used with SPARQL in Ontotext's GraphDB platform to maintain semantic

interoperability with external RDF namespaces.

18

3. Review of the Relevant Literature

Many studies have revealed a major discrepancy between the output of SE education and the

demands of the software industry in terms of potential software engineers and several attempts

were made to resolve that issue.

3.1. Software engineering curricula development and evaluation process

One of the attempts to solve the issue with the gap between industry needs and SE was SECDEP

[25]. The authors of the article suggest a framework for creating and assessing software

engineering curricula based on the IEEE Standard for Software Engineering Body of Knowledge

(SWEBOK). The framework, known as SECDEP, offers a complete and systematic method for

creating software engineering courses that adhere to industry standards. The article emphasizes the

significance of using industry standards as a reference for creating software engineering

curriculum, such as SWEBOK. In order for curriculum to remain relevant and useful in training

students for the fast changing area of software engineering, it also highlights the necessity for

ongoing evaluation and development. The SECDEP framework consists of ten steps shown in

Figure 3.1.

19

Figure 3.1 Steps of SECDEP.

According to authors, by following these steps, SE educators can ensure that their curricula

cover the foundation knowledge of software engineering and fulfill the market requirements but

there are several disadvantages and challenges in this method [25].

Such challenges and disadvantages are:

• Complexity: To execute the SECDEP framework successfully, a great amount of

preparation, money, and knowledge are needed. The structure can be too time-

consuming and difficult for some educators.

• Implementation barriers: Certain educational institutions may find it difficult to adopt

the SECDEP framework because of financial restrictions, internal regulations, and

faculty reluctance to change.

20

• Limitations of adaptability: The SWEBOK industry standard, on which the SECDEP

framework is based, might not be relevant or acceptable for all educational situations or

curricula. The framework might not be as adaptable to other approaches of curriculum

creation and delivery.

• Limited stakeholder involvement: The analysis, design, development, implementation,

and assessment of the curriculum are the main areas of concentration for the SECDEP

framework. It might not offer enough chances for stakeholders, such students, industry

partners, and academics from different fields, to participate and contribute.

• Evaluation challenges: The SECDEP architecture includes an evaluation step, although

determining the efficacy of a curriculum in software engineering can be difficult due to

things like the speed at which technology is changing and the variety of employment

options available in the industry.

3.2. Industry-Academia Collaboration

In order to bridge the gap between theory and practice in the field of computer science, this work

emphasizes the significance of industrial and academic collaboration [4]. Collaboration, according

to the authors, is essential to closing the skills gap and ensuring that students are properly equipped

for careers in the computer sector.

The work examines various forms of industry-academia collaboration, such as joint programs,

research partnerships, and internships. The authors stress the advantages of these partnerships,

including giving students practical experience, exposing them to cutting-edge techniques, and

promoting the transfer of knowledge between business and academia.

Some of the key disadvantages of IAC method [26]:

21

• Limited scope: The IAC technique might not fully account for the demands of the industry

due to its scope limitations. Usually, just a few industrial partners participate in the

cooperation, and they might not fully represent all interests and viewpoints. As a result,

there may be a disconnect between the skills being taught in the classroom and what the

workforce actually needs.

• Resource-intensive: The IAC technique may be expensive and time-consuming to use in

order to create and sustain productive partnerships between business and academics.

• Difficult to sustain: Since that industry demands and priorities are subject to change over

time, it may be challenging to maintain the IAC technique over the long run. Keeping up

with the most recent industry trends and standards could be difficult.

• Limited involvement: The IAC approach may only receive a limited amount of

engagement from industry partners, which might hinder the collaboration's success and its

capacity to identify a variety of business requirements.

The writers also talk about the difficulties and impediments to collaboration, like the cultural,

financial, and priority contrasts between business and academics. They suggest methods to get

beyond these obstacles, including setting up transparent expectations and objectives for

collaboration, encouraging partnership and trust, and coordinating incentives and rewards for both

business and academia [4].

3.3. SWEBOK Ontology

The development of a SWEBOK ontology began in 2004, with the last publication in 2006 [27,

13, 28]. There are key challenges discussed in [13] of SWEBOK ontology development. Such

challenges are:

22

• Ambiguity and inconsistency in the SWEBOK guide: There is a lot of information in

the SWEBOK guide, and some ideas may be explained in several ways, which might

cause confusion and inconsistencies. The content of the guide needed to be carefully

analyzed and interpreted in order to be resolved.

• Complexity of representing relationships between concepts: It takes a thorough

knowledge of the domain to express the intricate relationships that software engineering

concepts can have with one another in an ontology. The author ensured the authenticity

of these linkages by visualizing them using a variety of methodologies, such as UML

diagrams.

• Balancing completeness and conciseness: The SWEBOK guide is filled with a ton of

information, and trying to capture it all in an ontology could result in a messy system.

In order to make the ontology manageable and user-friendly, the author had to strike a

balance between comprehensiveness and conciseness.

It should be mentioned that Alain Abran, one of the authors on all three articles, served as the

SWEBOK V3 guide's original editor. It was discovered after emailing the authors of these

papers—which purport to give the only serialized SWEBOK ontology—that the ontology artifact

was not developed and does not exist.

3.4. An Analysis of the Software Engineering Curriculum

The first analysis of SWEBOK, SE2014, SWECOM and university curriculum was conducted by

the author in 2020 [29]. In the paper, authors conducted a manual analysis of SWEBOK KAs,

SWECOM competencies, SE2014 curriculum guideline and Embry Riddle Aeronautical

University (ERAU) curriculum for Software Engineering. The main objective of the research was

to find out how well ERAU curriculum or SE2014 curriculum covers SWEBOK KAs.

23

The first step in this research was to compare SE2014 and SWECOM to identify any

similarities or discrepancies. Then it was decided to apply the same approach to the Embry-Riddle

Aeronautical University (ERAU) software engineering curriculum and SWECOM.

The course syllabi for classes listed in the ERAU curriculum and SE2014 guidelines were

examined in order to identify the topics and activities that are covered in these courses. Thus, the

syllabi were used to identify what topics were covered in the course and how many hours were

spent on each topic by dividing the topics over the hours the course had.

The second step was to align SWEBOK knowledge areas with classes from curriculums and

assign an experience level based on how many hours were spent on each topic.

Because SWECOM does not prescribe the knowledge level or years of experience with these

competency levels, the assumption was made that undergraduate students who graduate from a

software engineering program should be at the Entry Level Practitioner level.

Figure 3.2 Gray-box analysis for Software Requirements

24

The resulting data were plotted into a radar graph to facilitate the understanding of the data

Figure 3.2. The foundation for radar graphs was KAs from SWEBOK, such as requirements,

design, etc. Subareas from KA were used as axes for each chart.

This research indicated a gap between the SWECOM level and the resulting outcome of the

SE2014 and ERAU curricula for various SWEBOK KAs. That research became a foundation for

this thesis and proposing USECG as the ultimate goal.

25

4. Approach

It was first proposed to manually create the SWEBOK knowledge using the Protégé 5 ontology-

editing tool [14]. This approach was abandoned, nevertheless, as determining the relationships

required deep philosophical reflection or the reuse of existing constructions (e.g., WordNet terms,

Wikidata relations). For the automatic digestion and reformation of bodies of unstructured text

that undergo consistent research and publication, relationship extraction and knowledge graph

building are other themes of NLP. Moreover, for further development and maintaining, the

USECG automatic approach is much more favorable than a manual one. See Figure 4.1.

The process described in this section was applied to each KA in SWEBOK individually, after

that for all SWEBOK KA’s combined and later for a few chapters from SWECOM to demonstrate

that the concept works.

Figure 4.1 The proposed method of knowledge graph from SWEBOK Using Rebel

The Google Colab online operating system was used to run all information and relation

extraction, knowledge graph construction, and related programming Later was purchased Google

Colab Pro due to the fact more computational resources need to process entire SWEBOK. Table

4.1 provides information on the features of the Google Colab and Google Colab Pro environment

26

and the machine that was used. Although the employed spaCy and REBEL code might be run

locally on a device, Google Colab and Google Colab Pro enables incredibly efficient and easy

package imports into an execution environment, whereas maintaining the intricate import needs

on a local Python installation would be challenging. In order to preserve a consistent and

reproducible basis, Google Colab and Google Colab Pro was used in this study. Google Colab Pro

was purchased because running all SWEBOK chapters combined required more computation

resources when running all chapters individually. Important to mention that Google Colab Pro is

paid service $9.99 per month but provided more resources.

Table 4.1 Computing Specifications

Google Colab (Free

Edition) Environment

Google Colab Pro

Environment

Personal Computer

Specifications

• Python 3 Google

Compute Engine

backend

• 12.7 GB RAM

• 107.7 GB disk

• Python 3 Google Compute

Engine backend

• 88.5 GB RAM

• 166.8 GB disk

• 100 computing units

• OS: 64-bit Windows 10

• CPU: Intel Core i-12900KS

• GPU: Nvidia GeForce RTX

3090Ti

• Memory: 32 GB DDR5 5200

MHz RAM

• Storage: NVMe SSD (reads

2400 MB/s, writes 1750

MB/s)

4.1. Preprocessing SWEBOK

The PDF version of each KA chapter was converted into Microsoft Word documents that were

manually pre-processed. The following are the rules for manual formatting for each chapter:

1. All text was made lowercase, because, for example, “Software requirements” and

“software requirements” were identified as separate entities by the model.

2. The chapter number and chapter name were removed, as these seemed to confuse the

model.

27

3. The page numbers were removed, as they have no significance to the meaning of the text.

4. Example sentences were removed.

i. For instance, the sentence “… the throughput requirement for a call center would,

for example, depend on how the telephone system, information system, and the

operators all interacted under actual operating conditions…” would be removed,

because this sentence would add extra entities which may cause incorrect

relationship linking.

ii. However, an example sentence such as this would remain untouched: “… some are

quality concerns that all software must address—for example, performance,

security, reliability, usability, etc.…”.

5. Bulleted or numbered lists were divested of their list elements and consolidated into blocks

of text. The spaCy library does not work well with lists.

6. All occurrences of plural key nouns in each chapter were converted into single format with

(s) at the end. For example, “software requirement” and “software requirements” were

converted into “software requirement(s)”.

7. As was found out later “C++” and “C#” occurrences were confusing model and thus

throwing an error in entity recognition and relation extraction.

8. Had to manually resolve doubled pronouns issue in several sentences.

i. For example, “…in addition to faults resulting from requirements and design, faults

introduced during construction can result in serious quality problems—for

example, security vulnerabilities. this includes not only faults in security

functionality but also faults elsewhere that allow bypassing of this functionality and

other security weaknesses or violations…” was throwing the error due to “this”

28

highlighted pronouns occurring in the same sentence. The pipeline was able to

distinguish to what each “this” pronoun was referring to.

ii. It was manually fixed to the following sentence: “…in addition to faults resulting

from requirements and design, faults introduced during construction can result in

serious quality problems—for example, security vulnerabilities. quality problems

include not only faults in security functionality but also faults elsewhere that allow

bypassing of this functionality and other security weaknesses or violations…”

Please note that much of this can be automated with appropriate use of code constructs, e.g.,

regular expressions or automated pdf readers.

4.2. First spaCy Implementation

The first relation extraction strategy used ordinary spaCy, which has several helpful utilities for

fundamental text processing, to quickly establish a baseline without relying on sophisticated ML

algorithms. This baseline was constructed using the Kolonin and Ismail code [30, 15] . Software

Requirements, the first KA of the SWEBOK, underwent preprocessing (as described in Section

4.1), and programmatic spaCy relation extraction code was then applied to it. There was no

machine learning used. A set of triplets with the following structure were created by this spaCy

implementation: "subject" "relation" "object". With pre-written Pandas and Matplotlib code, this

triplet collection was shown graphically. The graph was packed with terms in a star pattern due to

the large number of entities and unary links, unreadable, making it impossible to interact with and

unappealing to look. See Figure 4.2. The characteristics of the first entity-relation graph are given

below:

• 341 relations (197 unique) between 477 unique entities

• Generated in approximately 40 minutes and 43 seconds

29

Figure 4.2 Plain spaCy implementation

Triplets listed in see Table 4.2 show how inadequately informed this programmed approach of

relation extraction is. Some topics and objects are too vague to be deemed useful, and the

connections between them are carelessly taken from the text without any consideration for their

semantic context (see Table 4.3). This output is not supported by a taxonomy (such as a hierarchy

of subclasses). This is why it is preferable to employ well-formed, reusable relations rather than

those that are taken directly from the individual texts, such as those from Wikidata. The outcomes

of the subsequent REBEL implementation serve as proof of this.

30

Table 4.2 Examples of “good” and “bad” triples from plain spaCy RE.

Good triplet Bad triplet

<organizations> <use> <verification software plans> <that> <is> <real world>

<software> <comply with> <regulatory authorities> <these> <include> <international support

software>

<scenarios> <provide> <valuable elicitation> <who> <comprises> <software>

<project management quality> <constrained by>

<available resources>

<they> <mediate between> <technical

software engineer>

<dynamic behavior> <understood through> <textual user

description>

<it> <provide> <realistic product costs>

Table 4.3 The relations extracted from the Software Requirements KA with plain spaCy.

Relation Occurrences

is 60

are 16

include 10

has 6

provide 5

is important 5

concerned with 4

refers to 4

have 4

be 4

4.3. REBEL Implementation

In this approach with REBEL, there are three component steps that each preprocessed KA

document was subjected to, in order to derive an entity-relation graph:

1) Coreference resolution

2) Entity linking

3) Relation extraction

According to spaCy documentation, the module 'en_core_web_trf' is pre-trained for large text

for higher accuracy. Below in Table 5.2, provided results of executing each chapter separately. All

chapters followed the rules listed in Section 4.1. As mentioned in Section 4.1 some chapters were

31

throwing errors due to using “C++”, or “C#” or duplicated pronouns in the same sentences. To

determine the problem strings in problematic chapters, and because the errors thrown by REBEL

were insufficient, the method employed involved splitting the chapter into halves and executing

REBEL against each half, repeating this process until only two sentences were left, where the one

causing an error was determined to have a string REBEL could not parse.

4.3.1. Coreference Resolution

In spaCy, the act of finding and replacing textual references to the same entity with a single,

consistent representation is known as coreference resolution. Text summarization, question

answering, and text production are a few examples of activities that can benefit from this in natural

language processing. For example, in the sentence "Sundar Pichai is the CEO of Google. He lives

in USA," the mention "Sundar Pichai" and "He" refer to the same person. Coreference resolution

would replace the second mention with "Sundar Pichai" to make the text more concise. spaCy

provides a coreference resolution functionality as a separate module which can be added to the

pipeline. Once added to the pipeline, it will resolve any coreference in the text and replace the

mentions with their corresponding entities.

For coreference resolution step was setup a spaCy pipeline with following parameters:

Figure 4.3 Initializing coreference pipeline

4.3.2. Named Entity Linking

In spaCy, the act of tying identified entities in the text to the relevant articles in a knowledge base,

such Wikipedia or DBpedia, is known as entity linking. This enables you to distinguish between

32

entities and offer more context and details about them. For example, if the text contains the entity

"Steve Jobs," entity linking can link this mention to the Wikipedia page for the co-founder of

Apple Inc. A alternative technique to entity linking was used because the model doesn't allow it.

To seek up entities on Wikidata, the system solely used the search entities Wikidata API, see

Figure 4.4.

All self-loops are first ignored by the system. Connections that start and terminate at the same

thing are called self-loops. The head and tail elements of the relation will then be found in the text

using a regex search. There have also been instances that the Rebel model sometimes has

hallucinations of things that are not really in the original text [31]. Consequently, a step that

ensures that both entities are present in the text was implemented before adding them to the results.

The system then uses the Wikidata API to map extracted entities to Wikidata ids, see Figure 4.5.

This is a compressed version of entity disambiguation and linking, as previously mentioned; other

methods, such the ExtEnd model, are also accessible.

Figure 4.4 Wikidata API call

Figure 4.5 Entity linking using Wikidata API

33

4.3.3. Relationship Extraction

In spaCy, the process of locating and extracting relationships between things in text is referred to

as relationship extraction. Natural language processing activities like information extraction, text

summarization, and question answering can all benefit from this. To identify relationships between

entities, spaCy has built-in named entity recognition (NER) and dependency parsing tools. The

dependency parser of the library may be used to determine the relationships between those entities

based on the grammatical dependencies between the words in the text and the NER model of the

library can be used to identify entities in text.

For relations extraction step was setup a separate spaCy pipeline with following parameters:

Figure 4.6 Initializing RE pipeline

Figure 4.7 DFD model of spaCy pipeline

4.4. Combining spaCy and Neo4j

After completing spaCy pipeline, the process runs a special cypher to upload all triplets into neo4j

sandbox. The online Neo4j graph database sandbox allows the storage of Labelled Property Graphs

34

(LPGs) for three days, with an extension of seven days per request. To prevent the loss of work,

the Neo4j sandbox data was migrated to the Neo4j desktop application for further exploration and

usage.

4.5. Converting Neo4j to OWL format

To work with and analyze the LPGs in a standardized format, the neosemantics (n10s) RDF toolkit

was installed. This was used to output Terse RDF Triple Language (TTL, or “turtle”) files for each

KA graph, entire SWEBOK and SWECOM. With these turtle files, the free graph database

platform, GraphDB, was used to perform all analyses and visualizations of the KA graphs. The

primary barrier to using Neo4j is learning its query language, Cypher, which was not seen as a

valid time investment.

4.6. Processing Entire SWEBOK

For processing entire SWEBOK, all preprocessed individual chapters were combined into one

single word document and parsed through spaCy pipeline using Google Colab Pro. The result of

execution is recorded in Table 5.2

4.7. Processing SWECOM

For SWECOM were chosen several chapters to test the procedure. Chapters 3-5 were chosen due

to a higher amount of text rather than tables or figures as in another chapters. Selected chapters

were preprocessed with the same rules described in Section 4.1. The result of this procedure is

shown in Section 5.3. The fact that not all SWECOM was processed is due to a huge amount of

tables, and the data in the tables needs to be represented as a text for further processing. That

Would take a greater amount of time when processing SWEBOK chapters.

35

5. Results

In this section presented a detailed analysis of the experimental results, including the statistical

measures used to evaluate the performance of the system. Overall, the findings indicate that by

addressing some of the major issues and shortcomings in the existing methods, the suggested

technique has the potential to define USECG that can significantly reduce gap between software

engineering curriculum and industry.

5.1. Relations from REBEL Component

Table 5.1 shows all encountered relations after processing chapters from SWEBOK with their

definition from a Wikidata [32]. Wikidata relations offer a standardized approach to express

relationships between things, making it simpler to integrate data from many sources and systems.

This is one of the main advantages of utilizing Wikidata relations.

Table 5.1 Wikidata relations and their definitions [32]

Encountered REBEL relation Wikidata definition

author main creator(s) of a written work (use on works, not humans)

applies_to_jurisdiction the item (institution, law, public office, public register...) or

statement belongs to or has power over or applies to the value (a

territorial jurisdiction: a country, state, municipality, ...)

based_on the work(s) used as the basis for subject item

country sovereign state that this item is in (not to be used for human beings)

depicts depicted person, place, object or event

designed_by person(s) or organization which designed the object

developer organization or person that developed the item

36

discoverer_or_inventor subject who discovered, first described, invented, or developed this

discovery or invention

different_from item that is different from another item, with which it may be

confused

diplomatic_relation diplomatic relations of the country

facet_of the main aspect of this topic

field_of_this_occupation field corresponding to this occupation or profession

field_of_work specialization of a person or organization

followed_by the immediately following item in some series of which the subject

is part

follows the immediately prior item in some series of which the subject is

part

has_cause underlying cause, thing that ultimately resulted in this effect

has_effect effect of this item

has_part object is a part of this subject

has_parts_of_the_class the subject instance (the subject is not a class) has one or more parts

of the object class

has_subsidiary subsidiary of a company or organization

inception time when an entity begins to exist

instance_of this item is a concrete object (instance) of this class, category or

object group

item_operated equipment, installation or service operated by the subject

main_subject primary topic of a work

manufacturer manufacturer or producer of this product

opposite_of item that is the opposite of this item

37

organizer person or institution organizing an event

owned_by owner of the subject

owner_of entities owned by the subject

parent_organization parent organization of an organization, opposite of subsidiaries

part_of subject is a part of that object

participant person, group of people or organization that actively takes/took

part in the event

platform platform for which a work was developed or released, or the

specific platform version of a software product

practiced_by type of agents that study this subject or work in this profession

product_or_material_produced material or product produced by a government agency, business,

industry, facility, or process

said_to_be_the_same_as this item is said to be the same as that item, but it's uncertain or

disputed

studied_by subject is studied by this science or domain

studies the object that an academic field studies; distinct from field of

work

subclass_of all of these items are instances of those items; this item is a class of

that item

use main use of the subject (includes current and former usage)

used_by item or concept that makes use of the subject (use sub-properties

when appropriate)

uses item or concept used by the subject or in the operation

38

5.2. Results Of REBEL Component and Neo4j

The results of each KA in neo4j shown in Table 5.2. The average time for processing individual

chapters with free Google Colab was 40 mins. Average time with Google Colab Pro is 7 mins 7

seconds. The visual representation of a partial graph for Requirements KA is shown in Figure 5.1.

The graph in neo4j is more appealing, showing relations and interactable. In addition, neo4j cypher

language allows to display desired data, such as show all entities which has relation “instance_of”

or “used_by”.

Table 5.2 Execution time and word count for each SWEBOK chapter.

SWEBOK Chapter Preprocessed Word

Count

REBEL

execution time

(minutes,

seconds) with

Google Colab

REBEL

execution time

(minutes,

seconds) with

Google Colab

Pro

Number of

Entities

Number of

Relations

01 – Requirements 6614 40m13s 6m43s 308 317

02 – Design 4525 37m42s 5m10s 306 279

03 – Construction 5133 29m21s 5m32s 314 324

04 – Software Testing 6617 33m51s 6m44s 375 390

05 – Software

Maintenance

4271 28m09s 4m39s 228 264

06 – Software

Configuration

Management

5514 29m44s 5m14s 261 280

07 – Software Engineering

Management

5157 31m40s 5m33s 319 334

08 – Software Engineering

Process

5593 33m22s 5m9s 261 284

09 – Software Engineering

Models and Methods

4159 26m12s 4m32c 235 252

10 – Software Quality 6134 32m45s 6m42s 335 375

11 – Software Engineering

Professional Practice

5261 34m26s 5m46s 293 299

12 – Software Engineering

Economics

6153 44m56s 7m44s 424 460

39

13 – Computing

Foundations

12846 93m53s 17m41s 715 891

14 – Mathematical

Foundations

7277 61m26s 11m10s 414 516

15 – Engineering

Foundations

7057 49m39s 8m28s 449 493

All Chapters 92359 127m28s 3958 5761

Figure 5.1 Example of extracted data from Requirements KA

Figure 5.1 shows only 11 entities from 308 from Requirements KA. This graph with a few

entities allows us to see what a various relation between entities.

40

Figure 5.2 Full graph for Requirements KA

Figure 5.2 shows entire graph for Requirements KA form SWEBOK. As can be seen some of

the nodes are not attached to the main cluster. This will be discussed in Section 6.

41

5.3. Results of SWECOM

As was mentioned above for SWECOM were used a few chapters. Table 5.3 shows the final results

of executing preprocessed chapters from SWECOM.

Table 5.3 SWECOM execution results

Word

Count

REBEL execution time (minutes,

seconds) with Google Colab Pro

Number of

Entities

Number of

Relations

1670 1m55s 97 88

Figure 5.3 shows a few entities with their relations. As can be seen some of the entities are not

attached to the main cluster of nodes. As shown in Figure 5.1, Figure 5.2 and Figure 5.3 some

nodes were not connected with a main cluster. That happened because of predefined entailment

prediction value in REBEL component for triples assignment set to 0.75 [31].

42

Figure 5.3 SWECOM neo4j graph

43

6. Discussion, Conclusion, and Future Work

In this part, we examine the meaning of these findings and make judgments regarding the

possibility of the suggested strategy to advance software engineering methods. We specifically go

through the approach's advantages and disadvantages, as well as the ramifications and practical

concerns of adopting it.

6.1. Discussion

The study's findings indicate that defining USECG can provide a unified model to assess software

engineering curriculums, which has a lot of promise. To fully benefit from the advantages of the

suggested strategy, further research and development are still needed in a few key areas.

 The proposed method can be further improved. Such as using PDF extracting library from

spaCy. This library allows to convert any PDF document into spaCy objects without converting it

first into text and then parsing. This library was not used because it was unclear what particular

sections of the SWEBOK would resolve as once processed, e.g., tables, figure captions, page

numbers, etc. With the manual preprocessing step, such components of the SWEBOK were

controlled.

The knowledge of the software engineering field is concretized at a mid-level OWL level in

the knowledge graph that was created. However, this knowledge graph is not an ontology, at least

not in the sense that it has an ontological structure. There are only concepts related to software that

are connected by extremely generic qualities, not an explicit rule system (like SWRL rules or OWL

limitations). Future studies should look at integrating higher-level ontological structure into

SWEBOK knowledge graphs generated by NLP in order to facilitate interoperability with other

discipline BOKs (like SEBoK [33]) and take advantage of OWL's reasoning capabilities.

44

Overall, even if the suggested technique still necessitates some manual work, its potential

benefits for enhancing software engineering education are considerable, and it marks a substantial

advancement toward the creation of a more integrated and thorough software engineering

curriculum.

6.2. Conclusion

The suggested approach is a crucial first step towards establishing the USECG. The advantages it

offers for the growth of the USECG in the future are highly promising, even if it now requires

some human effort, such as text preparation. Software engineering educators and curriculum

developers will be able to process different guidelines and models using this technique to create a

single, comprehensive ontology that can be used to check the accuracy of current software

engineering curricula or provide recommendations for brand-new ones. In order to guarantee that

students obtain a well-rounded and thorough education in software engineering, the USCEG will

also assist in identifying areas where extra information or attention may be required. The USCEG

may also be used to improve interaction and cooperation between academics and industry

professionals, ensuring that software engineering education is kept up to date and pertinent to

market demands.

The created knowledge graph clearly shows the Wikidata relations, therefore this may be

utilized as the foundation for creating a comprehensive taxonomy. The graph is also not positioned

in relation to any higher-level ontology (e.g., BFO). As the act of classifying objects according to

a "is-a" hierarchy is the foundation of the whole area of ontology, an ontology cannot be said to

exist without a taxonomy, or hierarchy, as its foundation.

45

It is important to research more NLP methods as well. Here, a minimally sophisticated system

using commercial NLP techniques and graph data platforms is described. Science is now interested

in the automatic creation and populating of knowledge graphs using NLP.

6.3. Future Work

Future work should concentrate on improving and streamlining the whole process, such as

minimizing or eliminating text preprocessing, improving relationship extraction, processing the

rest of the guidelines and creating a hierarchy of entities. It might be worth training a new model

to eliminate loose nodes as shown in graphs above.

In addition, more work should be put into encouraging the approach's acceptance within the

software engineering community by bringing to light its potential advantages and offering tools

and assistance to make it easier to put into practice. Overall, the study's findings indicate that,

while there is still work to be done, the suggested strategy has a bright future for defining USECG,

enhancing the creation and maintenance of the software engineering curriculum, and perhaps

making a substantial contribution to the discipline.

46

REFERENCES

[1] N. E. A. M. Almi, N. A. Rahman and D. Purusothaman, "Software Engineering

Education: The Gap Between Industry’s Requirements and Graduates’ Readiness,"

IEEE, 2011.

[2] S. Hanna, H. Jaber, A. Almasalhem and F. A. Jaber, "Reducing the Gap between

Software Engineering Curricula and Software Industry in Jordan," Journal of

Software Engineering and Applications, 2014.

[3] L.-Q. Kuang and X. Han, "The Research of Software Engineering Curriculum

Reform," in International Conference on Medical Physics and Biomedical

Engineering, 2012.

[4] K. Beckman and S. Khajenoori, "Collaborations: Closing the Industry–Academia

Gap," IEEE, 1997.

[5] P. Bourque and R. E. Fairley, SWEBOK: Guide to the software engineering body of

knowledge, IEEE Computer Society, 2014.

[6] "Software engineering competency model: IEEE Computer Society," IEEE, 2014.

[7] M. Ardis, D. Budgen, G. W. Hislop, J. Offutt, M. Sebern and W. Visser, "SE 2014:

Curriculum Guidelines for Undergraduate Degree Programs in Software

Engineering," 2015.

[8] "ABET," [Online]. Available: https://www.abet.org/accreditation/accreditation-

criteria/criteria-for-accrediting-engineering-programs-2021-2022/. [Accessed 10

August 2022].

[9] A. Samuel, "Some studies in machine learning using the game of checkers," IBM

Journal of research and development, vol. 44, no. 1,2, pp. 206-226, 2000.

[10] "“What Is Natural Language Processing?”," IBM, [Online]. Available:

https://www.ibm.com/topics/natural-language-processing. [Accessed 2023].

[11] S. Vajjala, B. Majumder, A. Gupta and H. Surana, Practical Natural Language

Processing, O'Reilly, 2020.

47

[12] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, "BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding," ArXiv, vol.

abs/1810.04805, 2019.

[13] O. Mendes and A. Abran, "Issues in the development of an ontology for a emerging

engineering discipline," in Proceedings of the 17th International Conference on

Software Engineering and Knowledge Engineering, 2005.

[14] M. A. Musen, "The Protégé Project: A Look Back and a Look Forward," Association

of Computing Machinery Specific Interest Group in Artificial Intelligence, vol. 1, no.

4, pp. 4-12, 2015.

[15] H. Ismail, "Relationship Extraction from Any Web Article," December 2021.

[Online]. Available: https://hami-asmai.medium.com/relationship-extraction-from-

any-web-articles-using-spacy-and-jupyter-notebook-in-6-steps-4444ee68763f.

[Accessed 2023].

[16] B. Florian and M. Kaltenböck, Linked Open Data: The Essentials., Viena, 2011.

[17] N. Guarino, D. Oberle and S. Staab, "What is an Ontology?," in Handboof on

Ontologies, 2009, pp. 1-17.

[18] T. R. Gruber, "A translation approach to portable ontology specifications,"

Knowledge Acquisition, vol. 5, no. 2, pp. 199-220, 1993.

[19] W. Borst, "Construction of Engineering Ontologies," Institute for Telematica and

Information Technology, 1997.

[20] R. Arp, B. Smith and A. D. Spear, Building Ontologies with Basicv Formal

Ontology, The MIT Press, 2015.

[21] O. Lassila and D. McGuiness, "The role of frame-based representation on the

semantic web," 2001.

[22] M. Uschold and M. Gruininger, "Ontologies and Semantics for Seamless

Connectivity," SIGMOD Record, vol. 33, no. 4, pp. 59-64, 2004.

[23] I. Robinson, J. Webber and E. Eifrem, Graph Databases, 2nd Edition, O`Reilly

Media, Inc., 2015.

[24] Princeton University, "About WordNet," 2010. [Online]. Available:

https://wordnet.princeton.edu/. [Accessed 2023].

48

[25] A. Alarifi, M. Zarour, N. Alomar, Z. Alshaikh and M. Alsaleh, "SECDEP: Software

engineering curricula development and evaluation," Elsevier, 2016.

[26] W. C. Johnson, "Challenges in university-industry collaborations.," in Universities

and Business: PArtnering for the Knowledge Society, 2006, pp. 211-222.

[27] A. Abran and O. Mendes, "Software engineering ontology: a development

methodology," 2004.

[28] A. Abran, J. J. Cuadrado, E. García-Barriocanal, O. Mendes, S. Sánchez-Alonso and

M. A. Sicilia, "Engineering the Ontology for the SWEBOK: Issues and Techniques,"

in Ontologies for Software Engineering and Software Technology, Berlin, Springer,

2006.

[29] M. Towhidnejad, O. Ochoa and A. Kiselev, "An Analysis of the Software

Engineering Curriculum Using the," in ASEE Southeastern Section Conference,

2020.

[30] A. Kolonin, "Application aspects of social data processing (Social intelligence

technologies or Social computing)," Novosibirsk: Novosibirsk State University,

2021.

[31] P.-L. H. Cabot and R. Navigli, "REBEL: Relation Extraction By End-to-end

Language generation," in Findings of the Association for Computational Linguistics:

EMNLP 2021, Association for Computational Linguistics, 2021, p. 2370–2381.

[32] Wikidata, "Wikidata:Database reports/List of properties/all," [Online]. Available:

https://www.wikidata.org/wiki/Wikidata:Database_reports/List_of_properties/all..

[Accessed 2023].

[33] "Guide to the Systems Engineering Body of Knowledge (SEBoK)," SEBoK, 19 May

2021. [Online]. Available:

https://sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_Body_of_Knowled

ge_(SEBoK). [Accessed 2023].

[34] W. C. Johnson, "Challenges in university-industry collaborations.," in Universities

and Business: Partnering for the Knowledge Society, 2006, pp. 211-222.

[35] J. W. E. E. Ian Robinson, Graph Databases, 2nd Edition, O'Reilly Media, Inc., 2015.

	Extracting a Body of Knowledge as a First Step Towards Defining a United Software Engineering Curriculum Guideline
	Scholarly Commons Citation

	tmp.1682523036.pdf.FlqEE

