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Abstract

Researcher: Charles T. Montagnoli

Title: Deep Learning of Semantic Image Labels on HDR Imagery in a Maritime
Environment

Institution: Embry-Riddle Aeronautical University

Degree: Master of Science in Mechanical Engineering

Year: 2023

Situational awareness in the maritime environment can be extremely challeng-

ing. The maritime environment is highly dynamic and largely undefined, requiring the

perception of many potential hazards in the shared maritime environment. One particular

challenge is the effect of direct-sunlight exposure and specular reflection causing degrada-

tion of camera reliability. It is for this reason then, in this work, the use of High-Dynamic

Range imagery for deep learning of semantic image labels is studied in a littoral envi-

ronment. This study theorizes that the use HDR imagery may be extremely beneficial for

the purpose of situational awareness in maritime environments due to the inherent advan-

tages of the technology. This study creates labels for a multi-class semantic segmentation

process, and performs well on water and horizon identification in the littoral zone. Addi-

tionally, this work contributes proof that water can be reasonably identified using HDR

imagery with semantic networks, which is useful for determining the navigable regions

for a vessel. This result is a basis on which to build further semantic segmentation work

upon in this environment, and could be further improved upon in future works with the

introduction of additional data for multi-class segmentation problems.
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Chapter I

Introduction

Perception systems used for the situational awareness of a vehicle or vessel have be-

come more prevalent due to advancements in mobile robotics and autonomy. The National

Institute of Science and Technology defines situational awareness as ”Perception of ele-

ments in the system and/or environment and a comprehension of their meaning, which

could include a projection of the future status of perceived elements and the uncertainty

associated with that status.”[Ross, 2022]. By 2030, it is expected that the market for auto-

motive sensors will nearly double from where it was in 2021 [Pre, 2022]. The increase

in sensors and sensing modalities are driven by a desire for safer systems and a slow

march towards autonomy. In the automotive market, these sensors can help with lane-

keeping, adaptive cruise-control, assistive braking, blind-spot detection, and various other

human assistance tasks, depending on the usability of the sensor for that specific purpose.

[Vargas et al., 2021]

The marine environment poses an interesting problem in the sensing space due to a

multitude of factors, including vessel size, use-case, operational speeds, and many other

factors that vary from vessel to vessel. Safety systems must address different challenges

compared to land vehicles, and the challenges of sensing in the marine environment are

unique. Situational awareness for mobile platforms that operate in more standardized envi-

ronments such as roadways or indoor spaces benefit from the simplicity of the environment.

Roadways tend to have defined lane sizes, defined lane markings, and defined traffic signal-

ing. By contrast, while there are channel markers and signage to define waterways in some

locations, the maritime environment as a whole is vast and widely undefined. Inherent to

the maritime environment are unique environmental hazards and difficulties such as water

splash, unexpected vessel motions due to water conditions, and sunlight exposure, includ-

ing specular reflection. While each of these issues are not strictly endemic to the maritime
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environment, their effects are still of importance to any study operating within the maritime

environment.

Additionally, the study of autonomy in the maritime environment could have a large im-

pact on the safety and efficiency of the worldwide freight industry. In land-based freight,

companies looking to push the industry forward have been advancing the technologies for

autonomy of the freight trucking industry [Flämig, 2016]. It is an obvious trend that auton-

omy is seen as a path towards improved safety and efficiency [Grote, 2020]. Worldwide,

the United Nations Conference on Trade and Development reports that approximately 80%

of all global trade by-volume is transported via maritime freight [UNCTAD, 2022]. Addi-

tionally, the volume of freight being transported via freight vessels in the maritime envi-

ronment is constantly increasing year-over-year, meaning that congestion on the seas and

in ports-of-call has become an increasing logistical issue. In 2021, the world saw just how

catastrophic the failure of a single canal can be on the worldwide freight industry. The

infamous Suez Canal blockage held up over 360 freight ships that were waiting to clear the

canal to deliver goods [Russon, 2021]. By many estimates, the economic knock-on effect

of this blockage was extremely high, with reports estimating the blockage to cost over 6.5

million USD for every minute that ships were not able to transit the canal [Russon, 2021].

While this is an extreme case in the maritime freight industry, it showcases just how impor-

tant the accuracy and efficiency of this trade network is to global trade. Studies into the use

of advancing technologies in the maritime environment, like this one, could help to prevent

incidences in the future.

When discussing the freight industry, it’s important to make the distinction about where

this study would be of most importance. Most of freight vessel operation occurs in open-

water environments, where the problem of object detection and avoidance is much simpler.

This study instead aims to focus on situational awareness in the littoral zone. The littoral

zone is a portion of rivers and seas that is close to the shore. While this definition is rela-
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tively vague, it’s generally seen as all portions of water close to the shore, and in oceanic

cases is considered to include the continental shelf. This zone is where some of the densest

surface-based traffic will occur. Fully autonomous freight ships are not likely to take over

the industry anytime soon, but the investigation of situational awareness within the mar-

itime environment could prove important for the future of the industry. In particular, this

study intends to focus on the detection and classification of objects portion of situational

awareness.

Significance of the Study

A significant amount of research has been conducted in the fields of machine learning

and mobile robotics, and with the growth of more intelligent systems entering the consumer

market, this research and development only continues to grow. The interest in mobile

robotics and autonomy is being driven heavily by the automotive industry. In fact, it is

estimated that some 75 billion US dollars have been spent on investments into autonomous

driving alone [Pre, 2022]. This sizable investment comes from the automotive industry’s

desire to push their industry forward into the future, and this funding drives a significant

amount of research into mobile robotics and autonomy. While this investment is large,

it focuses solely on the problem of mobile ground vehicles, particularly cars, and does

little to expand into other spaces or modes of transportation. Of particular interest to this

research is autonomy and situational awareness within the maritime environment. There

has been some research into this topic, as will be discussed in the literature review, yet it

is still in its infancy compared to research for autonomous vehicles. The investment in the

automotive industry is not without its benefit to the general field though, as this new market

of autonomous and intelligent vehicles has driven innovation in the sensor space for use on

mobile robotic platforms [Yeong et al., 2021]. The advancing technology as well as the

infancy of the maritime autonomous environment promotes the interest in performing this

study.
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Additionally, this study looks to further the research that is being done within the lit-

toral zone. This area is of interest due to the high volume of boating traffic that operates

within this zone, both commercial and recreational, and the unique challenges for situa-

tional awareness that it provides.

Semantic Segmentation

This study is aimed at the use of semantic segmentation deep learning methods. Se-

mantic segmentation is a pixel-wise approach to machine learning problems, allowing for

a heightened granularity in the final solution. For each pixel within an image, the learner

will attempt to learn what class it belongs to and the broader context around why it belongs

to a specific class. This allows for the learner to try and better understand what individual

elements within an image relate to the classes of interest.

Figure 1.1: A Visual Representation of the Differences in Popular Image-Based Machine
Learning Methods [Rieder and Verbeet, 2019]

Fig. 1.1 shows the differences in various types of image-based machine learning meth-

ods that are commonly used. Left-most is the type of machine learning method being

applied in this study, semantic segmentation, and it can be seen from the image how each

individual pixel in the image has been given a label that corresponds to a color. In general,

this method of applying a colored pixel representation to each pixel based on it’s class is
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called masking. Looking at the images in Fig. 1.1, it can be seen how the mask representa-

tion in the left-most image correlates to the real-world representation of the cat image that

can be seen directly next to it. By labeling each pixel that correlates to a class of interest

with a colored mask, the learner can use these colored masks to relate each pixel to it’s

class. It is anticipated that the clutter present within the littoral zone will benefit from the

granularity provided by a semantic segmentation approach to deep learning.

Expected Contributions

This study is aimed at examining the use of semantic image labels on HDR imagery for

deep learning in the maritime environment, particularly in the littoral zone. In pursuit of

this study, there are particular outcomes that are expected as contributions to the furthering

of research in this field. These contributions are as follows:

• Generating valuable image ground-truth labels for semantic segmentation within the

operational environment and contribution to a dataset for future publication.

• Identifying and defining potential labeling conventions for littoral environment stud-

ies.

• Preliminary study of semantic deep learning networks on the data produced for this

study.

• This is a preliminary study of semantic networks to identify navigable regions within

the maritime environment.

Driving these desired contributions are short-comings in the field of research in the

maritime environment. Robotic platforms in the maritime environment suffer from a lack

of adequate data with semantic labels for use in machine learning, and the study of HDR

data in the maritime environment for situation awareness is of particular interest.
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Limitations

The data used in this study was collected prior to this beginning of this study. The team

was not able to, in the timeline of this study, collect additional data which could improve

upon these results. Additionally, due to the difficulty and time consumption of the process

of preparing detailed semantic labels for imagery, the team was limited to producing 600

HDR images with highly-detailed semantic labels. Lastly, the hardware available to the

team for training purposes was limited to a single desktop computer equipped with high-

end CPU and GPU components, of particular note for deep learning is a limit of 24GB of

VRAM.
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Definition of Terms

Learning Rate A tuning parameter in the optimization routine for a

neural network to adjust how much weights and param-

eters are changed.

Littoral Zone A portion of the maritime environment most often as-

sociated with the near-shore and a few hundred meters

off-shore.

Maritime Environment The operational zone for surface vessels, whether it be

rivers, lakes, seas, or oceans.

Neural Network A machine learning model designed to learn in a similar

way to human learning, originally modeled after the

human brain.

Perceptron A neural network component that performs computa-

tions to detect features or extract information from an

input.
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List of Acronyms

ANN Artificial Neural Network

ASV Autonomous Surface Vessel

ASPP Atrous Spatial Pyramid Pooling

CNN Convolutional Neural Network

DNN Deep Neural Network

DCNN Deep Convolutional Neural Network

GPU Graphical Compute Unit

GPS Geographic Positioning Service

HDR High Dynamic Range

IMU Inertial Measurement Unit

LiDAR Light Detection and Ranging

R-CNN Regional-Convolutional Neural Network

SDR Standard Dynamic Range
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Chapter II

Literature Review

Machine learning is a topic of high relevance to the field of mobile robotics. Object

detection and object tracking for mobile robots benefits greatly from the use of machine

learning, particularly deep learning. Deep learning is extremely important to the world of

mobile robotics and situational awareness because of its ability to handle complex data.

Deep learning has been found to be extremely effective at learning from 3D point-cloud

data and imagery data, which are most commonly the type of data obtained from the sensors

like cameras, LiDAR, and Radar, used for autonomy and situational awareness purposes.

Machine Learning and Mobile Robotics

Mobile Robotics refers to automated or remotely operated machines which use sensors

in conjunction with various other technologies to interpret and maneuver within their envi-

ronment [Kaiser et al., 1995]. Mobile Robotics is a field with broad applications across a

large diaspora of use-cases. One of the more common uses might be the use of autonomous

mobile robots for maneuvering of inventory within warehouses [Ng et al., 2020],[Bogue, 2016].

Machine learning has been an integral part of mobile robotics for decades, and the ben-

efits from machine learning are often what can make a mobile robotic application viable.

According to [Kaiser et al., 1995]. ”Applying machine learning techniques can help mobile

robots meet the need for increased safety and to adapt to the real-world operation demands”

[Kaiser et al., 1995]. They go on to elaborate about how learned behaviors are capable of

making mobile robots adaptable to their environment. Machines learning to perform a des-

ignated task, while being able to learn the variability that may come with performing this

task, allows for them to learn adaptability.

[Chen et al., 2022] performs experiments to analyze how different machine learning
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methods can be used as a means for perception-based ”threat detection” in the maritime

environment using perception systems. In this context, threat detection meaning anything

that could be perceived as disruptive to the vessel’s movements or tasks. They analyze the

machine learning methods by which behaviors of maritime threat vessels can be identified.

They implement machine learning methods like Markov models and k-means clustering to

identify and classify behaviors deemed to be inherent to a maritime vessel that is a threat.

Their experiments show how machine learning perception methods can be used, as a means

with high potential, for accurate detection of maritime threat vessels.

Deep Learning

In general, Deep Learning refers to a neural network architecture in which there are

more than one hidden layers within the neural network [Long et al., 2014]. The number of

layers and perceptrons per layer are dependent upon the problem at hand and the network

architecture.

Deep Learning Neural Networks (DNNs) are especially successful in the task of im-

age analysis, which leads to the use of deep learning for situational awareness of mobile

robots. Cameras and other sensors allow for mobile robots to gather information about

their surroundings, but deep learning is what allows the elevation of that data to provide

context and awareness. Deep learners can be beneficial in situations with complex data

such as imagery or spatial data from a mobile robot. Deep learning’s capability to abstract

complex data allows for the learner to automatically extract optimal features. By extracting

the optimal features for the learner, less human supervision is required, and the learner can

even extract information that humans may not be able to perceive [Xie et al., 2017].

Deep Learning Computing

The process to train a deep learning network requires a computer with a significant

amount of computational power. The most important factor for computation with these
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deep learning networks is the Graphical Processing Unit (GPU). This is due to the fact

that performing the computation necessary requires a large amount of specialized parallel

computations to be executed, which the GPU is often better at performing than the Central

Processing Unit (CPU), the CPU by contrast is better at generalized repetitive computa-

tions.

Consider the generalized architecture of a convolutional neural network in Fig. 2.1.

This simplified representation of a CNN for classification of imagery serves as an easy ex-

ample for why parallel processing is necessary. From left to right, the image is processed in

the input layer, which then feeds into the hidden Convolutional Layers, with pooling opera-

tions occurring between layers. These convolutional layers are made up of some number of

perceptrons that perform mathematical operations on the input data. In each CNN the num-

ber of perceptrons per layer will vary, however in general it may be hundreds or thousands

per layer producing an ever-growing number of computations. Through the use of parallel

computing, these extremely complex neural networks with potentially millions of compu-

tations can be tackled much more efficiently. The parallel computing capabilities allow

for the specialized calculations taking place in these convolutional layers to be executed in

parallel - meaning that the computations happen at the same time as one another.

Figure 2.1: Generic CNN Example with Pooling and Convolution [Ecognition, 2021]

Convolutional operations have no dependency on one another, they’re self-contained
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operations. This means that there would be no advantage to performing convolutions in a

sequential process. Therefore, it is more efficient to perform convolutions in parallel with

one another. When training a CNN with use of a GPU, the advantages of parallelization

can be fully utilized.

Deep Learning Applications to Mobile Robotics

Deep learning has become a pivotal part of mobile robotics and autonomy in recent

years. When operating a mobile robot that is leveraging sensors such as camera, LiDAR,

or radar, deep learning has been shown to be an extremely integral component in situational

awareness tasks. Deep learning neural networks are able to make use of the highly complex

data derived from these sensors, and extract meaningful features and relationships that

can be used to learn things about their operational environment. Deep learners are also

extremely adept problem solver for non-trivial tasks such as navigation and control.

Deep Learning of Spatial Information Through the use of deep learning, mapping

and localization can be attained without complete knowledge of the environment, as dis-

cussed above. This idea can permeate further into the use of strictly spatial information for

mapping and navigation.

[Tsai et al., 2021] propose a Deep Learning method for the mapless navigation and

control of a mobile robot through the use of LiDAR spatial data. Without a map of the

environment, a target navigational way-point is given to the robot as a destination. Using a

DCNN trained on the LiDAR data, they propose a method by which to perform navigational

control based on LiDAR data and estimated robot position. They use the DCNN to predict

the motion control commands needed to navigate the unknown environment.

As one of the main sensors used in the autonomous driving space, LiDAR based per-

ception has been explored widely in the world of autonomous driving vehicles. Most au-

tonomous driving vehicles will have LiDAR, Radar, and Cameras as their main sensors
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used for the purpose of situational awareness. [Li et al., 2020] performed a review of Deep

Learning of LiDAR Point Clouds in Autonomous Driving, and identified many of the trends

and issue within the field. They identified three general topics of Deep Learning with spa-

tial LiDAR data:

1. 3D Point Cloud Semantic Segmentation

2. 3D Object Detection/Localization

3. 3D Object Classification/Recognition

3D Point Cloud Semantic Segmentation Semantic Segmentation is the pixel-wise ap-

proach to classification, generally used through pixel-wise classification of imagery data.

In 3D Point Cloud Semantic Segmentation, the points of the points clouds are considered

as the pixels of the semantic segmentation problem. Similar to typical semantic segmenta-

tion but in a 3-dimensional space, each point from a point cloud will have a class predicted

from the list of classes the network is trained on. One of the main differentiating factors

in 3D Point Cloud Semantic Segmentation methods tends to be the method or criterion by

which points within a cloud are grouped [Li et al., 2020].

3D object detection/localization The general object detection/localization problem is

simply to identify if an object is within the area of interest and where it may be within the

area. With 3D point cloud data, detection and localization is one of the simpler problems

to be solved. LiDAR are designed to give returns that can identify where within the space

(relative to the sensor) the object is located and what area it occupies.

To achieve true detection and localization, techniques like clustering of points within

the point cloud may be implemented as a means to filter false returns from data that repre-

sents a true object [Tsai et al., 2021]. Additionally, the localization of these objects could
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be achieved through the use of creating a centroid from the spatially clustered object infor-

mation [Li et al., 2020].

3D object classification/recognition Object classification and recognition with 3D

point cloud information is similar to typical object classification and recognition problem.

It is desired to find what, if any, groups of point cloud information can be classified into

the desired classes/tags. The problem can be defined as, given cluster(s) of 3D spatial point

cloud data, determine which classes, if any, they belong to.

Semantic Deep Learning of Visual Information

Thanks to the advantages of deep learning with visual information as highlighted pre-

viously, deep learning with visual information may be one of the most explored topics in

all of deep learning. There are many different neural network models used for image pro-

cessing tasks as well as applications for their use. This section will focus specifically on

the use of semantic segmentation models applied to imagery data.

Semantic segmentation networks have been applied to a multitude of applications and

have been proven to show high accuracy results on imagery data for use in situational

awareness tasks. Many different model architecture types have been generated and applied

to the task of semantic segmentation and instance segmentation. Using an R-CNN approach

for instance segmentation, [Ren et al., 2015a] proposed a Mask R-CNN model for object

instance segmentation. This network uses essentially an ensemble of Faster R-CNN outputs

to generate bounding box coordinates, object class identifications, and finally binary masks

for segmentation. This model is a method in which instance segmentation of objects within

an image can be performed off the back of a network designed to run at a relatively high

speed.

The advancement of attention-based models in recent years have gone to show how

extremely successful these networks can be at learning tasks and generating useful out-
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puts. Attention-based models, talked about in-depth by [Vaswani et al., 2017], which use

an attention metric to influence the network’s hypothetical ”attention” to focus on the most

important aspects for it’s learning task(s). Extremely popular attention-based transformer

models have produced impressive tools like GPT-3 [Brown et al., 2020], the model behind

OpenAI’s ChatGPT. The power of attention-based models is truly impressive, so apply-

ing them to the problem of computer vision machine learning is especially enticing. In a

paper by [Zhang et al., 2019], an attention-based learner is proposed which uses attention

to softly weight multi-scale features at each pixel location within an image. The result is

an attention mechanism which focuses the network on the most ’important’ portions of an

image for the purpose of generating semantic segmentation masked outputs. The model is

able to use the attention metric as a way to weight objects based on their scale within an

image.

Dilated Convolutional Models, and the DeepLab family of models specifically, have

proven to have extremely performance on complex tasks. These dilated convolutional

models use dilated convolutions to expand the field-of-view of the network without further

down-sampling imagery [Yu, 2016]. This provides a benefit by increasing the amount of

context that can be gained by the network without performing convolutions on the image

to the point of lost context. The networks that use dilated convolution for semantic seg-

mentation show high performance on the standard tests, for example the initial DeepLab

[Chen et al., 2016],[Chen et al., 2017] networks were capable of greater than 70% accuracy

on the 2012 PASCAL VOC challenge. Further expanding upon these successful networks,

DeepLabV3+ was created years later and improves upon this result achieving 89% accuracy

on the 2012 PASCAL VOC challenge for segmentation[Chen et al., 2018],[Minaee et al., 2021].

This is the network architecture that will be used in this thesis research.

Deep Learning in the Maritime Environment

As stated, the deep learning space for situational awareness in the maritime environment
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has been less explored than land-based environments. An important distinction between

the maritime environment and many land-based operational environments is the largely un-

bounded and undefined nature of the maritime environment. On-road camera situational

awareness can benefit from the relatively well-defined operational environment, such as

the existence of frequent and standardized road-signage, lane-markings, traffic signals, and

standard rules for traffic patterns. While the maritime environment, particularly when oper-

ating within a channel, may have some signage and loosely defined travel lanes, the general

operational environment is relatively vast and undefined.

In a master’s thesis presented at Embry-Riddle Aeronautical University in 2017, Robert

Goring presents a review entitled ”Feasibility of neural networks for maritime visual detec-

tion on a mobile platform”[Goring, 2017]. This study focuses on the use of two visual data

sets available to the research group, one of camera imagery from an ASV and one from

an ROV. For this study, [Goring, 2017] assessed the feasibility of Faster R-CNN on visual

data. Faster R-CNN is a Regional Convolutional Neural Network architecture built on the

back of the original R-CNN network that is, Faster R-CNN is designed as a more efficient

version of R-CNN. The method which Faster R-CNN uses consists of a base CNN model

which aims to provide region proposals for detection, these detections are then fed into the

classifier[Ren et al., 2015b]. This study successfully uses this data to perform object detec-

tion and classification on their data, achieving a high mAP of greater than 90%. The data

used in this study is relatively low resolution imagery based on older camera architecture.

The data is obtained from standard definition digital cameras at a resolution of 1920x1200,

which equates to a roughly 2.3MP image.

[Lin et al., 2022] propose a method for perception in the maritime environment based

on the use of LiDAR as the primary sensor. In their approach, they supplement the use of

LiDAR detections with the vessel’s Automatic Identification System(AIS). AIS is a broad-

cast system which operates in the very-high-frequency (VHF) maritime band of frequencies
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to communicate with other vessels in the area [USCG, 2023]. By supplementing the Li-

DAR returns with the robust AIS system, this approach leverages the capabilities of a CNN

to perform real-time object detection. This method projects the detections of objects in the

3D space down to a 2D overhead view to give a clearer picture of where objects are in the

plane of the water. This method of deep learning in the maritime environment provides

relatively high success of classification in high-density maritime environments, providing

for 65.4% mAP in on-water testing. This study claims to be the first one published which

uses a CNN for deep learning of LiDAR data in the maritime environment.
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Chapter III

Methodology

With the focus of this study on deep learning in the maritime environment, this requires

a significant amount of work to prepare the data and tune network performance for optimal

results. As a result, the methods section will begin with a discussion of the data used,

followed by the sensor suite used for data collection and the deep learning methods that

will be applied.

Data Collection

The data used in this study was collected by the research group using a custom built

sensor suite. The custom built sensor suite contains multiple modalities of sensing across

visual and spatial perception. These sensors allowed for the collection of multi-modal data

for the maritime environment, as well as localization of where the data was collected. The

data that was of the most importance to this study, however, was the HDR camera imagery.

The reason that exclusively the HDR imagery was chosen for this study is due to fac-

tors including the benefits gained from HDR imagery and the lack of other studies in this

space that involve HDR imagery. The research team feels as through their access to a high

definition 5MP HDR camera provides for the study of the usage of this camera technology

in the maritime environment. For this study, it is expected that the greater image contrast

and pixel-wise color information from the HDR camera is expected to be beneficial, or at

least of no harm, to the task of pixel-wise semantic segmentation.

The Sensor Suite

There are 6 cameras in the sensor suite. Three of the cameras are 4k High-Definition

visible light cameras, two of them are LWIR Thermal Cameras, and lastly there’s one HDR,

High Dynamic-Range, Camera. The HDR camera is a Leopard Imaging LI-IMX490 5MP
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camera that captures video in 2880x1860 pixel resolution. This camera covers the front-

facing field-of-view of the sensor suite.

The HDR imagery is of particular interest to this study due to the significant advantages

expected of HDR imagery in the maritime environment. These potential advantages are

more evident in high-contrast situations. The maritime environment often has high-contrast

scenes to be captured in imagery due to exposure from the sun. The brightness of the

sun as well as the reflection of the sun off the water can wash-out, or over-saturate, the

imagery captured by standard definition cameras. A washed out image is one in which

the contrast between colors is low, meaning that the color information within the image

to differentiate colors and objects from one another is lower [Vigier et al., 2016]. Wash-

out can lead to loss of information within the image, and depending on the severity of the

wash-out can even lead to an image with almost no discernible or useful information. As

demonstrated in Fig. 3.1a / 3.1b and 3.2a / 3.2b, the HDR imagery is capable of capturing

the context within the image without becoming washed-out by the exposure from direct

sunlight. This attribute of HDR cameras makes their use extremely desirable when working

in the maritime environment, particularly for the purpose of image classification and object

detection. Even in indirect sunlight situations, showcased in Fig. 3.3a / 3.3b, the color

information retained within the HDR image is much greater than in the 4k image. However,

it should be studied if and how these perceived benefits can be leveraged for Deep Neural

Network learning tasks.
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(a)

(b)

Figure 3.1: Samples from Dataset:
(a) Direct Sunlight Imagery from Sensor Suite’s Center-Facing 4k Camera, Showing Loss
of Pixel-Wise Contrast In the Presence of Direct Sunlight Conditions
(b) Direct Sunlight Imagery from Sensor Suite’s Center-Facing HDR Camera, Showing
Robust Color Information In the Presence of Direct Sunlight Conditions
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(a)

(b)

Figure 3.2: Samples from Dataset:
(a) Direct Sunlight Imagery from Sensor Suite’s Center-Facing 4k Camera, Showing Loss
of Pixel-Wise Contrast In the Presence of Direct Sunlight Conditions
(b) Direct Sunlight Imagery from Sensor Suite’s Center-Facing HDR Camera, Showing
Robust Color Information In the Presence of Direct Sunlight Conditions
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(a)

(b)

Figure 3.3: Samples from Dataset:
(a) Indirect Sunlight Imagery from Sensor Suite’s Center-Facing 4k Camera
(b) Indirect Sunlight Imagery from Sensor Suite’s Center-Facing HDR Camera
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Additionally, the HDR camera that the team has access to, the ’LI-IMX490-GW5400-

GMSL2’ [LeopardImaging, 2023] from Leopard Imaging provides meets or exceeds the

specifications desired for use by the research team in a maritime environment. The lens

FoV is 65 degrees, providing adequate coverage of the front-facing FoV. The camera and

its peripherals are also rated at IP67 Intrusion Protection, exceeding the team’s design re-

quirement of IP65 Intrusion Protection. The camera can accept 9-18VDC input power,

allowing for use of 12VDC power for all cameras within the sensor suite. Lastly, and of

most importance to this study, the camera produces images at 2880(H) x 1860(V), provid-

ing for images with greater than 5MP image quality. The image size obtained allows for

high granularity in the labelling process, and though the imagery must be resized for use

in the neural network, the use of a dilated convolution method aims to help retain some of

this granular information.

One benefit brought on by the HDR camera that was not yet discussed was its capability

to differentiate between sky and water. As discussed previously, High-Dynamic Range

imagery benefits from creating images with greater contrast within the image. This contrast

means that differently colored objects are more easily separable from one another in the

image based on the color disparity between them. With this, an HDR camera could be used

to provide horizon detections from the camera data alone.

Data Collection

The collection of this data was performed over the course of approximately one year in

Florida, specifically on the Halifax River of Florida’s Intracoastal Waterways. All of the

data collection that was used in this study was performed through mounting of the sensor

suite on a small personal fishing boat. Though the sensor suite is designed for use on ASVs,

the nature of the data collection lends itself better to manned out-board motor vessels which

can be more easily controlled to drive near areas of interest.
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Figure 3.4: Collection Area of Data

The dataset being used consists of 4 days of data collection across September and Oc-

tober of 2021. Fig. 3.4 shows the areas of operation for the sub-set of the data labeled for

this study. The Florida Intracoastal Waterways are a littoral zone, and it can be seen from

Fig. 3.4 just how much density of both in-water and near-water perceivable objects there

could be.
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Labeling of Data

The data collected from the sensor suite needed to be labeled for semantic segmentation.

Semantic labels provide a class for each individual pixel within an image. To perform this

labeling, the team used Supervisely as the service to host their data for labeling. The use of

this service allows for the team to work cooperatively on the data for the different studies

being performed.

The labeling of the data for semantic segmentation requires that each pixel within the

image get a label - whether that is one of the labels of interest for the study or a background

label. The set of labels that are of interest to the partnering facility at NSWC Keyport are

much more expansive than what will be used in this study, but the narrowed down list used

in this study is derived from a collaborative effort between ERAU and NSWC Keyport.

The labels of interest for this study are:

• Water

• Moving Boats

• Stationary Boats

• Signage

• Buoys

• Piers & Docks

• People

• Vegetation

• Buildings

• Bridges

This reason that this set of labels was chosen is due to a multitude of factors, the main

of which was from the outline of work desired by the sponsors of this research at NSWC

Keyport as part of the Naval Engineering Education Consortium Grant that this work is in

pursuit of. Additionally, an examination of the data collected confirmed that there seemed

to be an adequate representation of these classes within the imagery for use in a machine

learning model. Lastly, there is an interest in the use of a high-level tagging system to

apply sets of tags to the data at a later date. These tags would be deterministic features of
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the object being observed.

• Tag 1: Land-based, Surface-based, Air-based, Subsurface-based, Undetermined

• Tag 2: Man-made, Natural, Undetermined

• Tag 3: Moving, Stationary, Undetermined

These sets of tags are a part of future works to be performed by the research group,

however they play a role in the way that the data was labeled for this study. The data

within this study was labeled to identify vessels that were in-motion or stationary, which

can allow for the future work(s) to take advantage of this more highly detailed labelling

scheme. These tags or a tagging system are not intended to be applied in this study.

Any pixels within the imagery that are not labeled will be automatically assigned to

class 0: ’Background’ which is a default background class. This background class is im-

portant because not all items within the image are discernible to either the researcher la-

beling the data or the learner, and additionally there may be some items within each image

that have little to no relevance to the study.

Shown in Fig. 3.5 is an example piece of labeled data from the dataset. This example

shows just how complex operation within the littoral zone can become based on the density

of objects and varying scale of their presence. Many instances of classes at varying scales,

interlaced in and among other classes represent the complexity of the problem and the

granularity needed to differentiate the classes.
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Figure 3.5: Labeled Masked Image, Displaying Object Density in the Littoral Zone and
Varying Scale of Represented Classes
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Figure 3.6: Class Representation within Dataset

The labeling is performed by applying bit-masks to each image of the appropriate la-

bel. The labels for each class consist of a specific color bit-mask that is placed onto the

image. The process of placing colored bit-mask labels on the images is done through either

painting pixels or applying a polygon operation to a group of pixels.

The DeepLabV3+ Network

The deep learning architecture chosen by the research group for this study is DeepLabV3+,

a member of the DeepLab family of deep learning networks. DeepLabV3+ is an evolution

of DeepLabV3[Chen et al., 2018], which in itself was an evolution on the previous iter-

ations of the DeepLab network architecture. This section will give some in-depth back-

ground information on the network architecture being used, and some explanations as to

why it is believed that this would be the best network for this use-case.

The original DeepLabV1 network architecture proposed a novel method for semantic

image segmentation classification by combining two existing methods into one architec-

ture. The first is DCNN, a Deep Convolutional Neural Network. Deep Convolutional
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Neural Networks are CNN architectures which tend to have additional convolutional and

pooling layers making them ’Deep’[Long et al., 2014]. The authors of the DeepLabV1

paper introduce an augmentation to the traditional DCNN through the addition of Atrous

Convolutions[Chen et al., 2016]. In addition to the DCNN with Atrous Convolutions, the

original paper applies something called Fully-Connected Conditional Random Fields it-

eratively on the output of the DCNN, progressively smoothing the output boundaries and

segments on the image. Though this is integral to DeepLabV1, this process was removed

in future iterations of DeepLab, including DeepLabV3+ used in this study.

Atrous Convolutions provide an alternative approach to performing convolutions. These

convolutions use a dilation rate to extend the field of view of the convolutional layers. By

dilating the kernel, the convolution operation is able to consider broader context within the

image. By dilating the kernel, the computational cost is not increased since the kernel is

still the same size. Standard convolution operations could be seen as Atrous Convolution

where the atrous rate is r=1. In essence, atrous convolution is an efficient way to gain

broader context without costing us any additional computations. Through increasing the

atrous rate, the model’s field of view increases and allows objects to be encoded at varying

scales.

Figure 3.7: Atrous Convolution with a 3x3 Kernel Shown at Different Rates
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DeepLabV2 builds on DeepLabV1 and introduces a new idea call Atrous Spatial Pyra-

mid Pooling (ASPP)[Chen et al., 2016]. Atrous Spatial Pyramid Pooling is used to tackle

the problem of objects being presented at different scales. Since Atrous Convolutions

can encode information at different scales, ASPP is used in conjunctions with Atrous

Convolutions to gain improved performance of segmentation results. DeepLabV2 still

uses the Fully-Connected Conditional Random Fields approach which will be removed

in DeepLabV3.

Atrous Spatial Pyramid Pooling is an important improvement made to the DeepLab

architecture. ASPP takes advantage of the multi-scale information collected from Atrous

Convolutions at different scales to apply simultaneous parallel filters for classification.

Figure 3.8: Atrous Spatial Pyramid Pooling [Chen et al., 2017]

As can be seen from Fig. 3.8, the ASPP method classifies pixels with the use of the

multi-scale information from Atrous Convolutions. The orange pixel is being classified

through the use of parallel filters with differently scaled context. These cascading filters

of differing scale can be portrayed to look like a pyramid of atrous convolutional outputs -

hence Atrous Spatial Pyramid Pooling.
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DeepLabV3 builds on the previous iterations of the DeepLab family. The DCNN from

the previous architectures remains, though with an improvement that includes cascading

atrous convolutions[Chen et al., 2017]. By cascading atrous convolutions with varying

rates, the learner can have additional convolutional layers. These cascading atrous con-

volutions allow for progressively more information to be extracted by the learner, and due

to the setup of the cascading convolutions these layers can keep the output size the same.

Meaning that this addition allows for additional context to be extracted without the negative

effects usually associated with including these additional layers.

As mentioned previously, the Fully-Connected Conditional Random Fields portion of

the learner was removed in this iteration. The CRF portion of the learner did not allow for

’end-to-end’ learning, since the CRF function was essentially a filter on the output. The

removal of CRF allows the learner to be that ’end-to-end’ learner. The ASPP portion of the

network was left the same.

DeepLabV3+ builds on the previous learners, but changes the architecture into an

encoder-decoder network. The desire to use an encoder-decoder network is driven by the

previous networks struggles with loss of object boundary clarity [Chen et al., 2018]. The

proposed network fixes this problem and improves the network overall.

The encoder in DeepLabV3+ works much the same as previous iterations of DeepLab,

however now the network makes use of something called ’Separable Atrous Convolution’.

Separable Atrous Convolutions take the normal Atrous Convolution operation and sepa-

rate it into two operations; Depthwise Atrous Convolutions and Pointwise Atrous Con-

volutions. Depthwise Atrous Convolutions involve performing operations on each input

channel, while Pointwise Atrous Convolutions combine the outputs of the Depthwise Con-

volutions to each channel individually.

The decoder in DeepLabV3+ is used as the means to recollect the context about ob-
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ject boundaries which were absent in the previous architectures without an explicit decoder

step. The decoder in DeepLabV3+ employs up-sampling operations to generate greater

spatial resolution of the segmentation. All of this combined allows DeepLabV3+ to boast

some of the As this network has become one of the most widely used deep learning archi-

tectures for semantic segmentation and effective [Chen et al., 2018], it has been chosen for

this research study.

Application of DeepLabV3+

Through the use of a Docker container, TensorFlow release 22.07 was setup to train

and run DeepLabV3+ on images with semantic masks. All of the scripts for setting up

and running DeepLabV3+ were run in this docker container with Python 3. The research

computer being used by the team was running on Linux with Ubunutu 20.04LTS. This

operating system was selected due to the free and open source nature of the operating

system, its native capability to support Docker and Python, as well as the research team’s

experience with the operating system. Additionally, Ubuntu has native support for the

installation and use of CUDA drivers. CUDA is the parallel computing architecture used

by NVIDIA, the manufacturer of the GPU used in this study, to accelerate computing on

GPU demanding tasks such as machine learning [Dehal et al., 2018].

For this reason, the team assembled a custom computer which included the most capa-

ble machine learning GPU available at the time: The NVIDIA RTX 3090. The RTX 3090

GPU that the team has boasts 10,496 CUDA cores, 24 GB of VRAM, and is capable of

training the HDR imagery at 512x512 with a batch size of up to 16. The network is setup

to run on a 512x512 image in order to try and balance accuracy and speed. Even though this

GPU is extremely capable, training speeds slow down exponentially if the image too large.

Additionally, this series of GPUs are capable of using mixed precision floating-points. The

advantage of mixed precision in training deep learning networks is increasing the speed on

the most mathematically intense models [Micikevicius et al., 2017].
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Loss Function

The loss function used to train DeepLabV3+ is Sigmoid Focal Cross Entropy Loss. This

loss function was selected since it was known that class imbalance would be inherent to

our data. When attempting to identify both the water and Sigmoid focal cross entropy loss

is based on focal loss, which is designed for a classification problem in which the classes

are highly imbalanced [Lin et al., 2017], as expected in this study. Focal loss is designed to

down-weight the well-classified examples in order to focus on the harder examples. In other

words, focal loss puts the impetus on learning the classes which have fewer annotations in

the training data. This is an important focus for this study due to the nature of the data.

Within the dataset of 600 images, the most represented classes are water and background,

meaning that all other classes have less representation, and can be seen as harder to identify

examples. Focal loss is capable of accounting for this class imbalance in order to give a

greater chance at classifying these harder examples. In practice, the focal loss is applied

using a balancing factor of α to tune the focal loss.

FocalLoss(p) =−α(1− p)γ log(p) (III.1)

In Eq.III.1, α is a balancing factor, γ is a tunable focusing parameter, and p is the

model’s estimated probability of the class [Lin et al., 2017]. This form of the focal loss is

meant to greatly emphasize the importance of correcting mis-classified examples for the

learner. The reason that it is called sigmoid focal cross entropy is that the loss combines

the sigmoid operation for computing p with the focal loss computation. This loss func-

tion is implemented using TensorFlow and Keras in Python alongside the DeepLabV3+

implementation.

Learning Rate Scheduling One of the ways in which neural networks can be tuned
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to ensure they’re producing an appropriate result is through scheduling the learning rate

[Kim et al., 2021] [Senior et al., 2013]. Neural networks perform gradient descent on the

data to generate weights and predictions, and this gradient descent is, in essence, seeking

out the optimal result of the network’s training. The learning rate is one of the most im-

portant factors in a neural network as it determines if, and at what rate the gradient descent

converges. With too low of a gradient descent there may not be enough exploration, too

high can lead to jumping from one local maxima/minima to another. This is why it can

be important to explore the space with the learning rate. One way that this can be done is

through learning rate scheduling.

Figure 3.9: Example Learning Rate Scheduler Used for Training, Beginning at a Low
Learning Rate and Exploring Before Decelerating the Learning Rate Back Down.

The learning rate scheduling approach that has been employed in this research involved

a warm-up, exploration, and cool-down. This means that the learning rate starts low, is

increased exponentially until plateauing for several epochs, and then is exponentially low-

ered until the training is complete. Through this scheduling scheme, the intention is to

allow the learning rate to have the ability to explore the space without leaving it too large
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or too small for the entirety of the training. This combines two methods which are often

used in the literature; learning rate warm-up and learning rate decay.

Network Optimizer The optimizer is an important part of any deep learning neural

network, they’re algorithms which are used to minimize the error and maximize efficiency

[Postalcıoğlu, 2019]. They update and modify attributes, like the learning rate or some of

the weights, of the network as it trains in an effort to reduce the overall loss and improve

accuracy [Sun et al., 2020]. The optimizer being used in this training is the Adam opti-

mizer. Adam optimization implements a stochastic gradient descent(SGD) method based

on the adaptive estimation of first and second-order moments [Kingma and Ba, 2014]. The

creators of the Adam optimizer, Kingam et al., boast Adam as being ”computationally ef-

ficient, has little memory requirement, invariant to diagonal re-scaling of gradients, and is

well suited for problems that are large in terms of data/parameters”[Kingma and Ba, 2014].

Choosing an optimizer is a difficult task due to the number of available options, each with

their own positives. Adam was chosen because most applications of DeepLabV3+ also use

Adam.
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Chapter IV

Results

This project aims to show that semantic segmentation network architectures with HDR

imagery within the maritime environment are feasible for situational awareness tasks. The

following results will show the successes of the prescribed methods for this research as

well as discussing short-comings and ways to fix them in the future.

Metrics

The metrics by which a neural network can be assessed are extensive. Generally, studies

will focus on a few of these metrics depending on what is most important to the study being

done. For this study, Categorical Accuracy, Precision, and Recall will be the main metrics

tracked from the network training. These metrics give insight into the successes and failures

of the network being trained. Additionally, these metrics are among the standard metrics

used in many similar studies on semantic networks.

Categorical Accuracy When discussing the results of a neural network, it is often im-

portant to discuss the accuracy of that network. After all, the accuracy can be the most

telling of the success that a network is achieving at classifying the desired classes. That

said, for this study categorical accuracy was chosen as the main performance metric. Cate-

gorical accuracy (CA) differs from standard accuracy by using the one-hot encoded labels

of the data. Therefore, when the network calculates categorical accuracy, the accuracy is

calculated by predicting the total frequency at which ypred , the predicted class, matches

ytrue, the one-hot encoded label for that class [TensorFlow, 2023]. More simply, categori-

cal accuracy is the number of True Positive (TP) class predictions divided by the number

of class examples.
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CA =
T P
ytrue

(IV.1)

Precision The precision of a neural network is the precision with which the network

predicts with respect to the labels provided [Google, 2022]. When calculating Precision,

the predictions are separated into True Positives (TP) and False Positives (FP). True posi-

tives are predictions that apply a class to the correct object according to the provided label,

while False Positives are predictions which apply an incorrect class to an object according

to the provided label. In other words, for every time that a prediction is made, how often

is the prediction correct? This can be represented with the equation IV.2. Precision takes

into account False Positive predictions which can allow us to gain further insight about how

precisely the learner is predicting classes. A large number of False Positives, and therefore

a lower precision, would suggest the learner is applying class predictions too often and

imprecisely.

Precision =
T P

T P+FP
(IV.2)

Recall The recall of a neural network is how often the network recalls a prediction

correctly with respect to the labels provided [Google, 2022]. When calculating Recall,

the predictions are separated into True Positives and False Negatives. True Positives are

predictions that apply a class to the correct object according to the provided label, while

False Negatives (FN) are predictions which incorrectly do not classify an object as having

a class when compared to the provided label. In other words, for every time a class is seen,

how often is the prediction correctly giving that class its label? This can be represented

with the equation IV.3. Recall takes into account False Negatives, or simply how many

times the learner missed the presence of a class predictor. This can allow for insight into

what the learner is having a hard time recalling from training when performing predictions.

37



Recall =
T P

T P+FN
(IV.3)

F1 Score The F1 score of a network is often used as a means to describe the overall

performance of the network alongside accuracy. The F1 score is the harmonic mean of

Recall and Precision, resulting in a composite score between the two. F1 score can be seen

as more instructive to the network’s overall performance since it wraps multiple metrics

into one score. It is noted that F1 score, as well as the relationship between recall and

precision incidentally, are effected by the class imbalance of the specific problem at hand

[Khan et al., 2020]. This means that the relationships that exist between these scores will

vary based on class imbalance, but their use is still a great indicator for model performance

overall.

F1Score = 2∗ Recall ∗Precision
Recall +Precision

(IV.4)

Network Results

The network being used, DeepLabV3+, was pre-trained on ImageNet-50 with frozen

weights to take advantage of transfer learning. Transfer learning allows the use of pre-

trained weights from a proven dataset to be frozen, meaning that the learner will have

learned some amount of low-level image-feature information before any training has been

done with the intended data. These frozen weights allow for small-dataset studies, like the

one being performed here, to have a chance at success without the being majorly limited

by an amount of data. Training a network fully from end-to-end requires significantly

more data than training through transfer learning. For training, validation, and testing, the

research team produced a set of 600 HDR images with highly-detailed semantic labels, as

described in the methodology.

38



Network Results - Water Only Results

From this point, a selection of images was organized from their dataset to be labeled for

training, validation, and testing. This subset of imagery consists of a 600 images that were

selected from two of the three data collection days within the dataset. From these images,

the next goal was to produce a result that proved the learner was setup properly to learn

on the data at hand. To do this, time was spent labelling only the water within the images,

resulting in a dataset that consisted of only background and water as the classes. Anything

within an image that was not the water was left as background.
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(a)

(b)

Figure 4.1: Water-Only Training Sample:
(a) Example Training Image
(b) Example Mask with Water Only Labels
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The data shown in Fig. 4.3a / 4.3b was used to train a network for detecting what was

water within the images, with all non-water sections being background. For a water-only

result, the network is capable of reaching an accuracy of approximately 71.5%. At this

accuracy, the network is capable of classifying the water, delineating the line where the

water meets the line of the horizon, which can be seen in Fig. 4.2.

Figure 4.2: Water Only One-Hot Mask Prediction Example on 512x512 Test Image
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(a)

(b)

Figure 4.3: Water-Only Metrics:
(a) Network Accuracy per Epoch, Demonstrating Convergence to Result Near 26 Epochs.
(b) Network Loss per Epoch, Demonstrating Proper Convergence Across Epochs.
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(a)

(b)

Figure 4.4: Water-Only Metrics:
(a) Network Recall per Epoch, in Fig. 4.2 with Some False Positives can be Observed.
(b) Network Precision per Epoch, Demonstrating Acceptable Precision.
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Figure 4.5: F1 Score, Combining the Outcomes from Recall and Precision

The metrics shown describe a learner that has converged onto the solution with relative

success. The Recall and Precision are both greater than 60% across classes, with the F1

score landing above 65%. The overall Accuracy is just over 71% and the loss steadily de-

creased, signifying no significant issues in model convergence. The resultant model proves

a successful semantic result for a water/non-water semantic segmentation deep neural net-

work. This result proves that the approach to labelling this data can provide some useful

benefit for the purposes of situational awareness in a maritime environment. There is some

other research that has been done for the purpose of water surface and horizon detection

with shown benefits for tasks such as obstacle detection [Sheikh and Afanasyev, 2018],

[Hożyń and Zalewski, 2020], [Paccaud and Barry, 2018]. Additionally, this is the first of

these results that was obtained using strictly HDR imagery data in the maritime environ-

ment.
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Network Results - Multi-Class Results

While the results from the water-only network show promise for basic situational aware-

ness tasks, there is a greater potential for this learner to do even more. To that end, it was

attempted to train the network on a multi-class setup encompassing some of the classes

outlined in the earlier section on data collection. Being able to have the learner identify ad-

ditional classes of information is a desirable step knowing how to interact with a potential

obstacle. While this is a desirable result, it should be noted that this increases the difficulty

on the learner significantly. No longer must it only learn whether something is water or

non-water object, it must now attempt to correctly identify what those non-water objects

may be.

With the data that was prepared for this study, shown in Fig. 3.6, there were a total of

10 classes of interest overall which were labeled by the team. It was known from the outset

that not all 10 would have enough data for this initial study, but for the completeness of the

dataset all 10 were labeled regardless of their representation within the 600 image set. Fig.

3.6 shows just how large the class disparity was within this set of data. It is expected that

with future efforts, these under-represented classes can be brought into the fold to meet the

needs of future networks.
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(a)

(b)

Figure 4.6: Multi-Class Sample:
(a) Example Training Image
(b) Example Mask with Multiple Class Labels
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Figure 4.7: Multi-Class Training Result
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(a)

(b)

Figure 4.8: Multi-Class Metrics:
(a) Multi-Class Accuracy, Showing a Low Accuracy, Worse than Acceptable.
(b) Multi-Class Loss, Showing Network Convergence on Data Provided.
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(a)

(b)

Figure 4.9: Multi-Class Metrics:
(a) Multi-Class Recall, Showing a Low Recall, Suggesting Network Struggles to Learn all
Classes.
(b) Multi-Class Precision, Showing very Low Precision, Suggesting Network Struggles to
Identify Trained Classes. 49



Figure 4.10: F1 Score, Combining the Outcome from Recall and Precision. Very Low F1
Score Suggests Learner is Struggling to Learn all Classes.

It is clear from the results of this network, that the learner has had a difficult time actu-

ally learning all of the classes that were asked of it. There is clearly the learned shape of the

water, and even good portions of the water are correctly classified, but the learner is clearly

confused when attempting to learn all of these classes. We can attribute this to multiple fac-

tors, including the class disparity and the lack of data for the network to train on. Looking

at the class representation in Fig. 3.6, over 99% of the pixels represented in the data being

used are either Water or Background. This great disparity means that the learner has less

than 1% of all pixels to work with for learning any of the other classes. As was mentioned

in Eq. III.1, the loss function applied with this learner was aimed at helping to learn harder

to learn examples. Though we believe we’ve applied the correct loss function to help with

the class disparity, there is still an inherent problem in the raw representation of each class.

Looking at the data in Fig. 3.6 shows that classes that may be of major importance to sit-
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uational awareness in the maritime environment, such as Boats, have more almost 4,000x

less pixels than a class like water. Even a more represented class like Buildings, which

we may consider to be less important for maritime situational awareness, has nearly 200x

less pixels than water. All this is to say that irregardless of class disparity, there seems to

be an issue in overall class representation. If the issue of insufficient data for learning the

multi-class problem is addressed through data augmentation methods and introduction of

additional new data, results similar to that of the water-only results are to be expected.

Training Time

The hardware used for training in this study, mentioned in Chapter III, was some of

the best consumer-grade hardware that the team could have access to at the time of this

research’s inception. The training of the networks on this hardware took approximately 1

minute per epoch, and most instances of the network were run with between 25 and 75,

depending on what was being tested. The final iterations of the networks that have been

shown in this paper were run at between 35 and 50 epochs, meaning that these networks

produced a result in approximately 35 to 50 minutes. This processing time is largely thanks

to the power provided by the team’s training PC. Times would be drastically greater with a

weaker computer.
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Chapter V

Discussion, Conclusions and Recommendations

Discussion

The work which was done in this thesis aims to provide a preliminary study for the

feasibility of semantic segmentation on HDR imagery in the maritime environment for sit-

uational awareness purposes. The work which was done aimed to use the research group’s

HDR image data which is advantageous in the presence of environmental conditions like

low-light and direct sun exposure.

Conclusions and Recommendation for Future Works

The work performed in this study created an small dataset of highly-detailed labeled

HDR imagery for use in semantic segmentation in maritime environment, and tested the

efficacy of this small dataset in performing object detection with the DeepLabV3+ net-

work. This study was able to produce results with greater than 60% accuracy in multiple

variations, however with the important caveat that it only performs well on two of the

classes; Water and Background. This means that while the learner is capable of achieving

this accuracy, it is only accurately identifying the water and the information that is non-

water. From this study, we find that the amount of data present for use in learning was not

sufficient for a multi-class problem.

It was found in this study that the network was able to accurately use the HDR imagery

to identify the water in the maritime environment. This capability of the network allows

for the accurate detection of the horizon using only the HDR camera, which can be used

as a basic means of situational awareness. Additionally, this study performed multi-class

semantic segmentation on the same HDR imagery with labels for up to 10 classes. It was

found that for a significant number of the classes within the imagery labeled, there was
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simply not enough data to create a learner that was accurate enough to provide any use for

the task of situational awareness. Though significant efforts were put forth to improve the

results on the multi-class problem, there were no significant improvements made through

hyper-parameter tuning and optimization efforts.

There are improvements that could be made to this study for the purpose of future

studies. The main recommendation for future works would be to label more images for the

network to train on. While the 600 images that the research group had labeled could be

used for the task of water classification, there was no high level of success in classification

for the multi-class problem. This problem stems from the lack of data available for the

learner to use to learn more classes. It is recommended that for future studies with this

data, a greater amount of time and resources are dedicated to building up the dataset for

the learner. In this study, it was found that manually labelling the HDR imagery data with

the detail required took a significant amount of time. For images with multiple instances

of multiple classes, it could take upwards of 25-30 minutes to get the labels applied to that

image. This time dedication to the task of labeling imagery means that the research group

spent hundreds of hours between two researchers just to label the 600 images used in this

study. Any future study which would expand on the work done here would need to dedicate

the time and resources to build-up the labeled dataset so that the learner can have a greater

chance of success in the multi-class problem.

Additionally, there are research studies which suggest some optimizations and changes

which are standard to the industry aren’t as ideal as many claim them to be. According to a

2017 study by Wilson et al., adaptive gradient optimization methods like Adam may actu-

ally prove to generalize worse on some deep learning problems when compared to the more

generic gradient descent (GD) or stochastic gradient descent (SGD) [Wilson et al., 2017].

Though optimization methods like Adam tend to be commonplace in computer vision deep

learning methods, there may be merit in exploring other methods as a means to improve
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the results of this study.

Lastly, there is research to suggest that a change in ideology about the way hyper-

parameters are tuned may be beneficial. In a 2017 study by [Smith et al., 2017], they stud-

ied networks in which increased batch sizes lead to an equal or greater performance in clas-

sification when compared to a study performing learning rate decay methods [Smith et al., 2017].

This was studied on learners using SGD with momentum, Nesterov momentum, and Adam

optimization routines. Their study suggests that with increased batch sizes alone, not

only can learning rate scheduling be avoided entirely, but that comparable results can be

achieved with little other hyper-parameter tuning. This comes with the caveat that greater

batch sizes increase the amount of hardware memory required to train on image data.
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[Postalcıoğlu, 2019] Postalcıoğlu, S. (2019). Performance analysis of different optimizers

for deep learning-based image recognition. International Journal of Pattern Recognition

and Artificial Intelligence, 34(02):2051003.

[Ren et al., 2015a] Ren, S., He, K., Girshick, R., and Sun, J. (2015a). Faster r-cnn: To-

wards real-time object detection with region proposal networks. In Proceedings of the

28th International Conference on Neural Information Processing Systems, pages 91–99.

[Ren et al., 2015b] Ren, S., He, K., Girshick, R., and Sun, J. (2015b). Faster r-cnn: To-

wards real-time object detection with region proposal networks.

[Rieder and Verbeet, 2019] Rieder, M. and Verbeet, R. (2019). Robot-human-learning for

robotic picking processes.

[Ross, 2022] Ross, R. S. (2022). Engineering trustworthy secure systems. Technical re-

port.

[Russon, 2021] Russon, M.-A. (2021). The cost of the suez canal blockage.

[Senior et al., 2013] Senior, A., Heigold, G., Ranzato, M., and Yang, K. (2013). An em-

pirical study of learning rates in deep neural networks for speech recognition. In 2013

IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE.

[Sheikh and Afanasyev, 2018] Sheikh, T. S. and Afanasyev, I. M. (2018). Stereo vision-

based optimal path planning with stochastic maps for mobile robot navigation. In Intel-

ligent Autonomous Systems 15, pages 40–55. Springer International Publishing.

[Smith et al., 2017] Smith, S. L., Kindermans, P.-J., Ying, C., and Le, Q. V. (2017). Don’t

decay the learning rate, increase the batch size.

58



[Sun et al., 2020] Sun, S., Cao, Z., Zhu, H., and Zhao, J. (2020). A survey of optimiza-

tion methods from a machine learning perspective. IEEE Transactions on Cybernetics,

50(8):3668–3681.

[TensorFlow, 2023] TensorFlow (2023). Tf.keras.metrics.categoricalaccuracy nbsp;: nbsp;

tensorflow v2.12.0.

[Tsai et al., 2021] Tsai, C.-Y., Nisar, H., and Hu, Y.-C. (2021). Mapless LiDAR naviga-

tion control of wheeled mobile robots based on deep imitation learning. IEEE Access,

9:117527–117541.

[UNCTAD, 2022] UNCTAD (2022). Review of maritime transport 2022.

[USCG, 2023] USCG (2023). Automatic identification system (ais) overview.

[Vargas et al., 2021] Vargas, J., Alsweiss, S., Toker, O., Razdan, R., and Santos, J. (2021).

An overview of autonomous vehicles sensors and their vulnerability to weather condi-

tions. Sensors, 21(16):5397.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,

Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. In

Advances in Neural Information Processing Systems, pages 5998–6008.

[Vigier et al., 2016] Vigier, T., Krasula, L., Milliat, A., Da Silva, M. P., and Le Callet,

P. (2016). Performance and robustness of hdr objective quality metrics in the context

of recent compression scenarios. In 2016 Digital Media Industry Academic Forum

(DMIAF), pages 59–64.

[Wilson et al., 2017] Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., and Recht, B.

(2017). The marginal value of adaptive gradient methods in machine learning.

59



[Xie et al., 2017] Xie, D., Zhang, L., and Bai, L. (2017). Deep learning in visual com-

puting and signal processing. Applied Computational Intelligence and Soft Computing,

2017:1–13.

[Yeong et al., 2021] Yeong, D. J., Velasco-Hernandez, G., Barry, J., and Walsh, J. (2021).

Sensor and sensor fusion technology in autonomous vehicles: A review. Sensors,

21(6):2140.

[Yu, 2016] Yu, F. (2016). Multi-scale context aggregation by dilated convolutions. In

Proceedings of the 4th International Conference on Learning Representations.

[Zhang et al., 2019] Zhang, L., Guo, X., Zhang, J., Cai, J., and Wei, Y. (2019). Atten-

tion to scale: Scale-aware semantic image segmentation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 3640–3649.

60


	Deep Learning of Semantic Image Labels on HDR Imagery in a Maritime Environment
	Scholarly Commons Citation

	Thesis Review Committee
	Acknowledgements
	Abstract
	List of Figures
	Introduction
	Significance of the Study
	Semantic Segmentation
	Expected Contributions
	Limitations
	Definition of Terms
	List of Acronyms

	Literature Review
	Machine Learning and Mobile Robotics
	Deep Learning
	Deep Learning Computing
	Deep Learning Applications to Mobile Robotics
	Deep Learning of Spatial Information
	3D Point Cloud Semantic Segmentation
	3D object detection/localization
	3D object classification/recognition
	Semantic Deep Learning of Visual Information
	Deep Learning in the Maritime Environment
	Methodology
	Data Collection
	The Sensor Suite
	Data Collection
	Labeling of Data
	The DeepLabV3+ Network
	Application of DeepLabV3+
	Loss Function
	Learning Rate Scheduling
	Network Optimizer
	Results
	Metrics
	Categorical Accuracy
	Precision
	Recall
	F1 Score



	Network Results
	Network Results - Water Only Results
	Network Results - Multi-Class Results
	Training Time
	Discussion, Conclusions and Recommendations
	Discussion
	Conclusions and Recommendation for Future Works
	References






















