

Publications

2-7-2023

Utilization of Simulation Software to Enhance the Learning Experience for Students at the Worldwide Campus

Kimberly Luthi Embry-Riddle Aeronautical University, kimberly.luthi@erau.edu

Christian Janke Embry-Riddle Aeronautical University, jankec@erau.edu

Yuetong Lin Embry-Riddle Aeronautical University, liny4@erau.edu

Follow this and additional works at: https://commons.erau.edu/publication

Part of the Educational Technology Commons, Online and Distance Education Commons, and the Science and Mathematics Education Commons

Scholarly Commons Citation

Luthi, K., Janke, C., & Lin, Y. (2023). Utilization of Simulation Software to Enhance the Learning Experience for Students at the Worldwide Campus. , (). Retrieved from https://commons.erau.edu/publication/2010

This Presentation without Video is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Publications by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.

2023 Academic Innovation Virtual Conference

Roundtable Discussion: Utilization of simulation software to enhance the learning experience for students at the Worldwide Campus

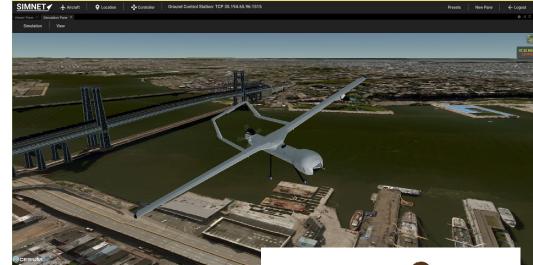
Presenters:

Christian Janke, Assistant Professor of the Practice, College of Aviation Dr. Kimberly Luthi, Assistant Professor, College of Aviation Dr. Yuetong Lin, Associate Professor, College of Aviation

Introduction and Disclaimer

The purpose of this presentation is to introduce benefits, best practices and examples of simulation software in online cours environments.

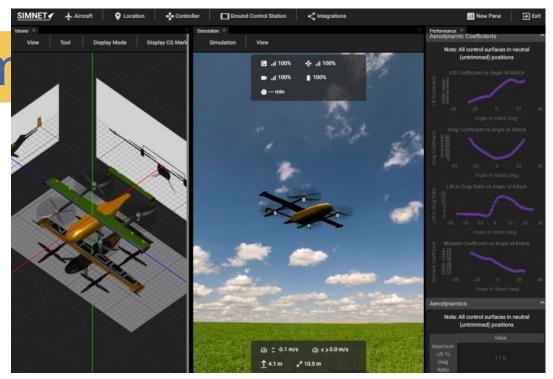
The research team does not have any affiliation with the introduced software platforms.


Overview

- 1.Background and conditions
- 2. Purpose and integration
- 3. Examples and best practices
- 4. Lessons learned and outlook

Benefits of Simulation Platforms

Inquiry based learning
 Constructivist learning
 Creativity




Benefits of Simulation Platform

Visualization
 Problem solving; and
 Challengebased projects

Conditions and VettingParameters

- Availability (region, OS)
- Applicability
- Download package or browsbased
- Onboarding and tutorials
- Affordability- Open Source or free trials available?
- Affordability- create accounts and purchasing models (e.g. 3 month license)
- Integrate in Master Textbook List as course material

Coordinate with Academic Technology Dept. for evaluation

Structured process for "request for a tool review" with AT

Utilization as course materiaexternal to Canvas

Conditions and Vetting

Activity/assignment creation

lome	- 1	1.4 SIMNET Introductory Lab						
yllabus								
nnouncement	s	Z Assignment						
Modules		In this activity, you will become familiar with the SIMNET workspace and complete a short lab assignment followed by a compare/contrast report on the three types of SUAS covered in the						
Discussions		compare/contrast report on the three types of sUAS covered in the						
Grades		lab.						
People		Before participating in this lab, you should have completed the required reading in the Reading and Resources section.						
agleVision Zoo	m	Account						
ew Analytics		Account						
Course Evaluation Administrator		You should have a SIMNET account set up as part of the required materials for this course. If you have not already set up your account and reviewed the introductory video, please do so per the instructions below:						
Collaborations	ø	1. Access SIMNET, and complete your user profile.						
oliaborations	ye	Note: If you have not already created your SIMNET account, the directions are provided for you here:						
(uizzes	ø	i. SIMNET requires the use of the Chrome browser. Install <u>Chrome</u> B from Google, if needed.						
utcomes	ø	ii. Create a new SIMNET account through <u>SIMNET Sign Up</u> . □						
ages	ø	2. Review the <u>SIMNET Tutorial: Quickstart Guide (6:57/YouTube</u>) ⇒ to become familiar with SIMNET and its features.						
iles	ø	Lab						
ssignments	ø	Now that you are familiar with SIMNET, enter the workspace. Perform the following tasks to develop a better						
ummary	ø	understanding of the capabilities and differences between Multicopter, Fixed-Wing, and VTOL type sUAS:						
em Banks		Load the following aircraft into the SIMNET workspace, and use the values provided by the Performance Pane to fill the table below.						

The Environment Setting the Scene

Using screenshots and recordings as proof and evidence

Using individual and group activities

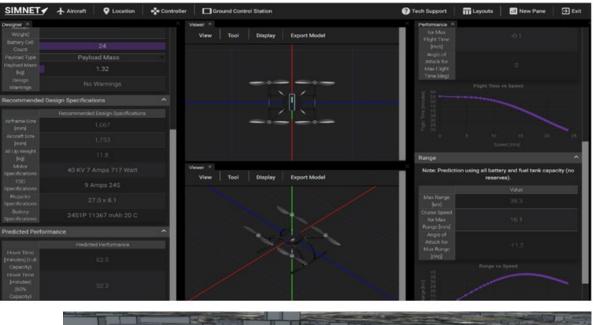
Sharing of results and peer review

Creativity fosters the achievement of CLO's

The Environment Setting the Scene

Using screenshots and recordings as proof and evidence

Lab


Now that you are familiar with SIMNET, enter the workspace. Perform the following tasks to develop a better understanding of the capabilities and differences between Multicopter, Fixed-Wing, and VTOL type sUAS:

Load the following aircraft into the SIMNET workspace, and use the values provided by the Performance Pane to fill the table below.

Aircraft	UAS Type	Endurance [minutes]	Maximum Range [km]	Maximum Speed [km/h]
H140 Hexacopter	Multicopter			
Q400 Fixed Wing UAV	Fixed-Wing			
Q400 VTOL UAV	VTOL			

Prepare a one to two-page report that includes the results from the table above and compares the strengths and weaknesses of each UAS type in terms of performance. Tie this information in with the information presented in your readings about each UAS type in terms of its unique capabilities and/or shortcomings.

Your lab report may include screenshots if desired and does not need to be in APA format with the exception of references provided at the end. Be sure to review the SIMNET Lab Rubric to understand expectations for your

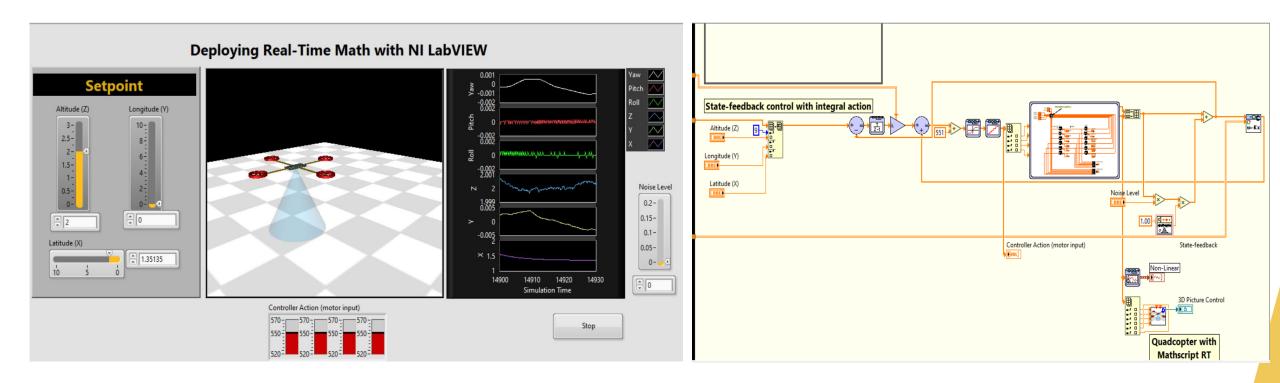
Introduction of Simulation Software

LabVIEW

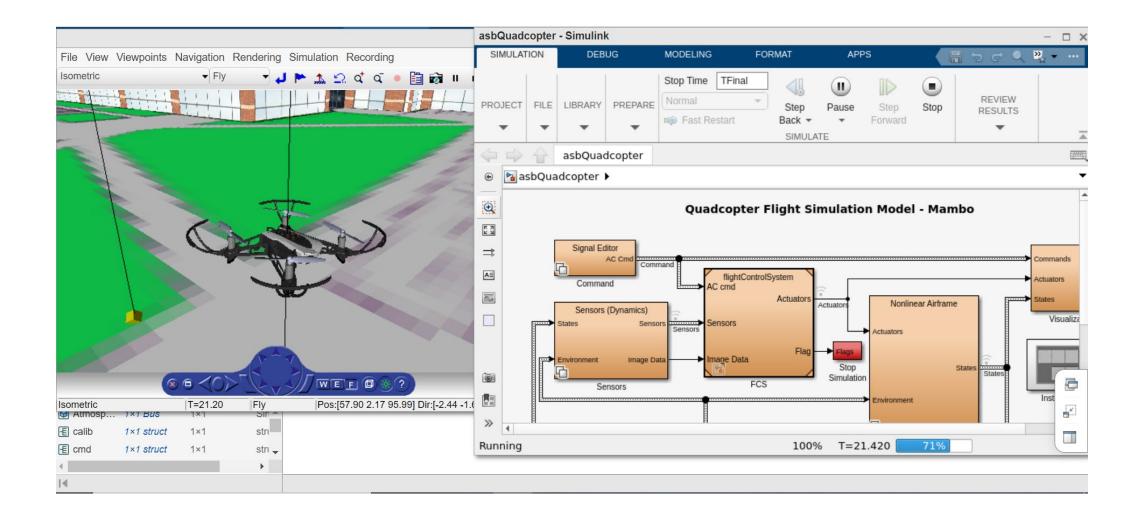
- MATLAB and SIMULINK
- SIMUAID/LOGICAID/VIVADO

Multisim

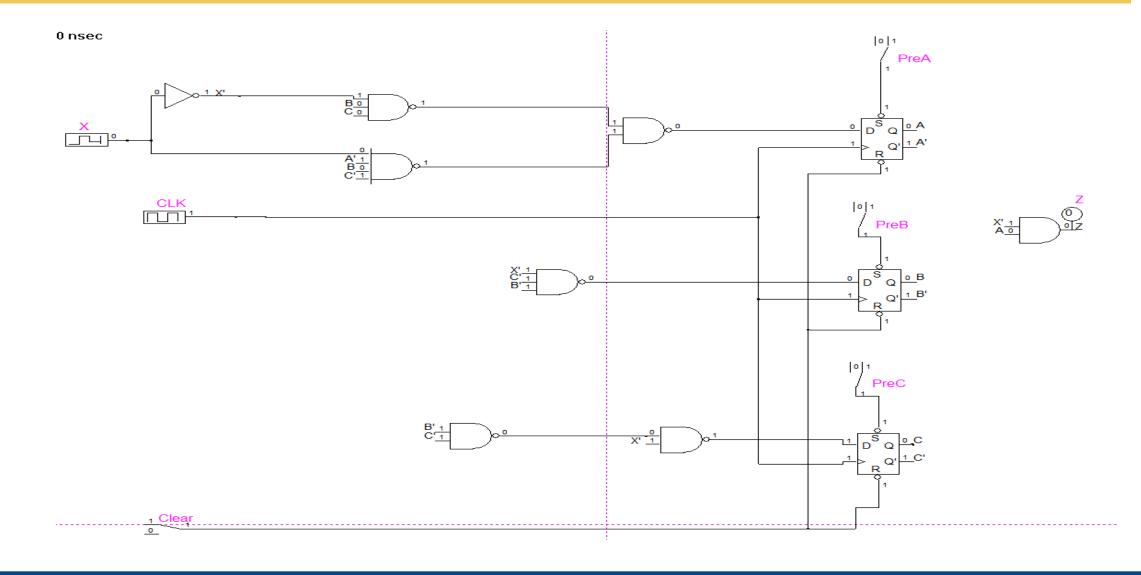
- SIMNET AEROWeBots
- AutoCAD Fusion



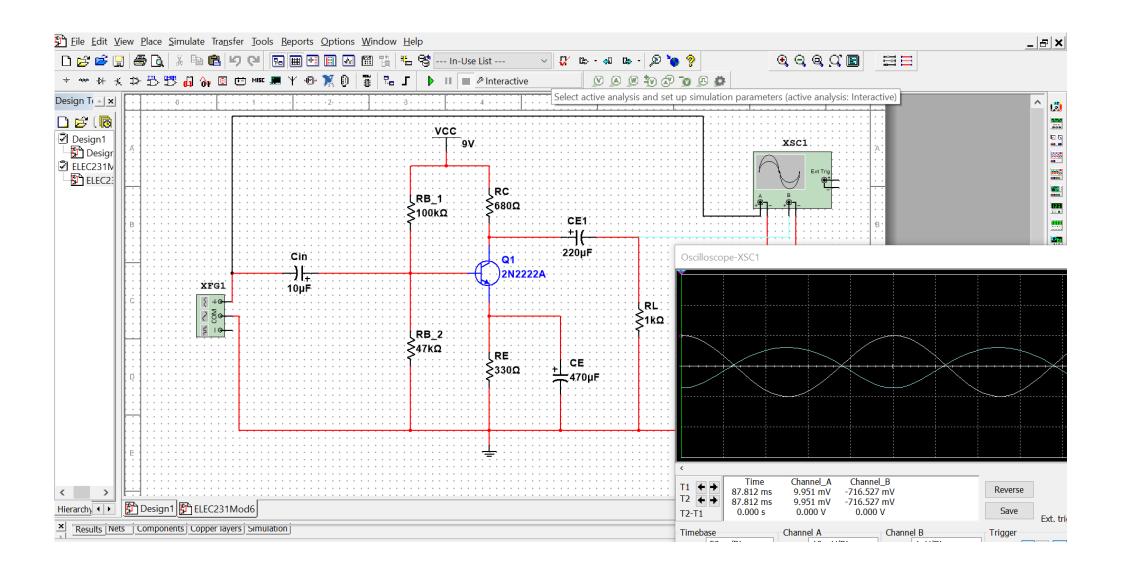
Simulation Software for Engineering



Quadcopter Dynamics and Control



MATLAB/SIMULINK


Digital Circuit Simulation Software IMUAID

Digital Circuit Simulation Software/ivado

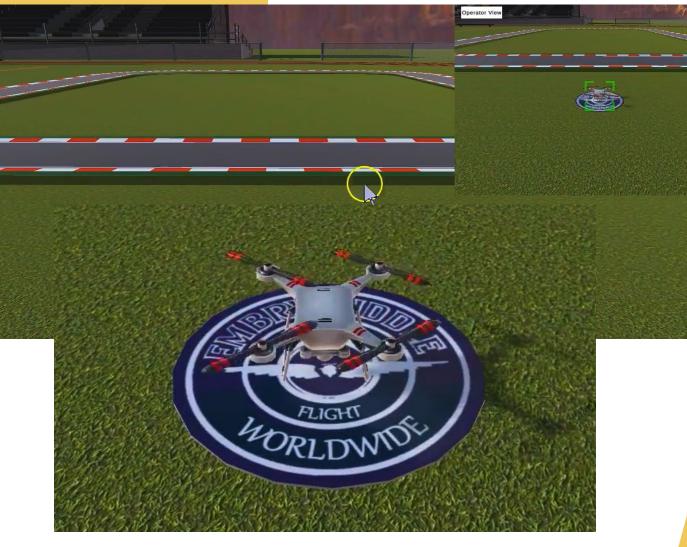
<u>F</u> ile <u>E</u> dit F <u>l</u> ow <u>T</u> ools Rep <u>o</u>	<u>o</u> rts <u>W</u> i	ndow Layout	<u>V</u> iew <u>R</u> un <u>H</u> elp	Q- Qu	ick Access					Synth	nesis and Impleme	ntation Out-of-	date details	
		🗘 🗵 🗴 🖉		m 200	000 ns	✓ 重	II C					📰 Default I	∟ayout	~
Flow Navigator	SIMUL	ATION - Behavioral S	Simulation - Functional -	sim_1 - tk	_ShiftRegister1	16Bit								? ×
Y PROJECT MANAGER	ì — u	ntitled 1											? & C	. ~
Settings	do	ລຸ່ <u>⊔</u> ອຸ່ຊ	20 ≫ + Γ I•				r I –r I						:	ð
Add Sources						782.000								
Language Templates	Sources	Name	Value											
₽ IP Catalog			1		500.000 ns	<u></u>	1,000.	000 ns	1,5	00.000 ns	2,0	00.000 ns	2	, 5
		18 Clear	1											
✓ IP INTEGRATOR	5	🔓 Sin	1											
Create Block Design	Objects	🕬 Sout[15:0]	e000)	c000	e0 <mark>00</mark>	0000	8000	c000	6000 3	000 9800	4c00	2600 .	
Open Block Design		18 [15]	1										<u>م ام ا</u>	
Generate Block Design	ances	6 [14]	1											
	Inst	16 [13]	1											
	Protocol Instances	[12]	0											
Run Simulation	Pro	10 [11]	0											
		10 [10]	0											
✓ RTL ANALYSIS		18 [9] 18 [8]	0 0											
> Open Elaborated Design		18 [7]	0										لصي	
		ر، ا الا [6]	0											
✓ SYNTHESIS														
Run Synthesis														\sim
> Open Synthesized Design			<	> <										>
~	✓ Tc	l Console Message	s Log										Sim Time: 2	1 us

Circuit Simulation Software Multisim

UAS Simulation Preparation

- Allows for effective operation and application of sUAS.
- Introduced via our Dept. Of Flight in the sUAS Ops Minor
- Supports learning of sUAS systems and operating requirements as well a navigationatompetencies.
- Offers practice on scenarioased modelingo improvestudents'airmanship skills and understanding of courseterial.

*See AIR RT Session "Integrating VR into the Asynchronous Learning Environment" Dr. Sanders, **M**archam Dr. Thirtyacre, Mr. Delcastillo



Simulation Preparation

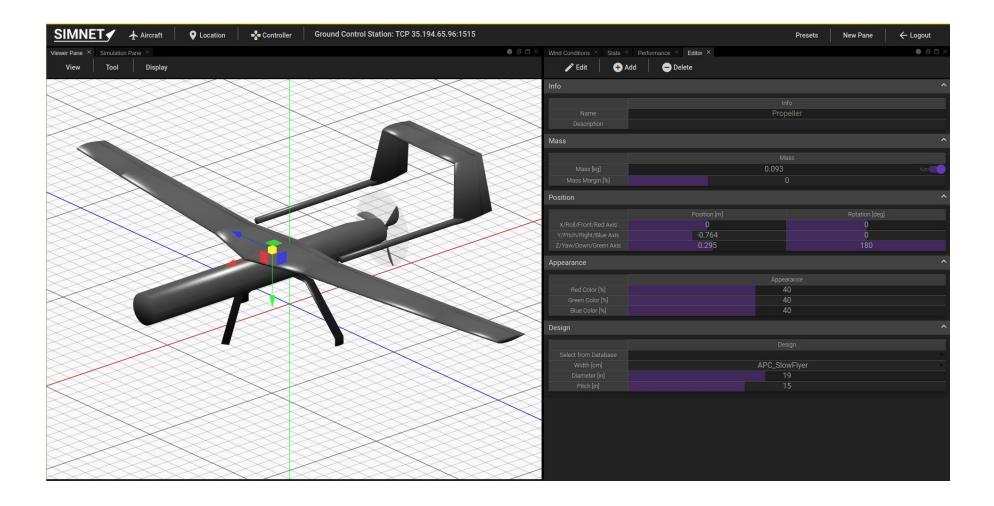
Basic flight training. Additional visual aids are provided in the form of a operator pipper and views from above t provide close observation of drone attitude changes to control input.

ERUPTSim was ERAU WW developed. The flight simulator (Unityengine) offers training remote pilots of drones/sUAS.

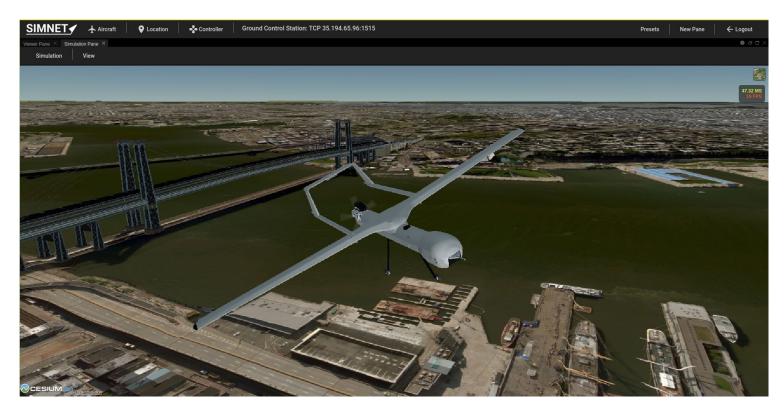
Simulation Preparation

Max Yaw Velocity (deg/sec) Max Vehicle Pitch/Roll Angle Dead Zone Left Stick Dead Zone Right Stick Smoothing

ERUPTSim: Works on computer, laptop and in VR environment (Oculus Quest) and is compatible with Windows and Mac.



- Design, analysis, and simulation of multicopter, fixed wing, and VTOL drones.
- Configurator- create, design and engineer an sUAS.
- Simulator-sUAS flight simulation with QGroundControl.
- Mission Planning.



- Works as course material in BSUSA
- 3-month software license
- purchased through the bookstore

AutoDesk Fusion 360

AutoDesk Fusion 360

- CAD Computer Aided Design
- Portfolio of AutoDesk
- Tool for object generation, engineering, and industrial design
- Students and educators can get free one year educational access to Autodesk products and services, renewable as long as you remain eligible.

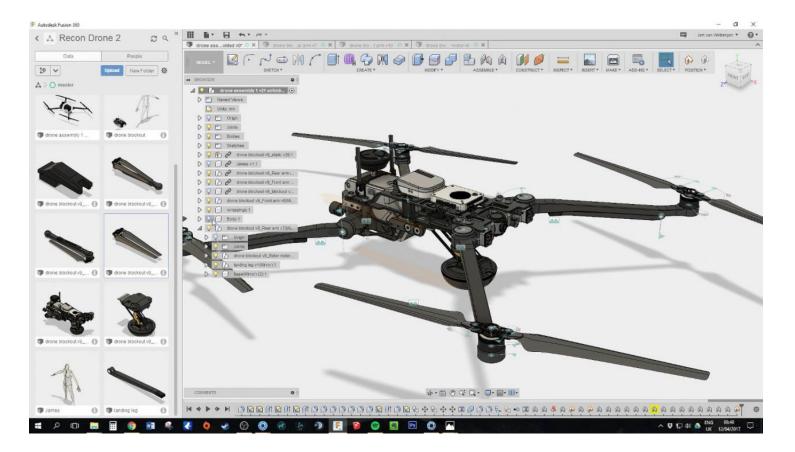
AutoCAD Fusion 360


Forms

► Sizes

Joints

Actuators


Sensors

AutoCAD Fusion 360

- Uncrewed and robotic systems
- All Domains
- ► Shapes
- ► Elements
- ► Sizes

🗵 🔲 Uneven Terrain

> Over WorldInfo > Over WorldInfo

- >
 TexturedBackground
- >
 TexturedBackgroundLight
- > O DEF ELEVATION_GRID Solid
- Sassafras "sassafras tree(3)"
- Sassafras "sassafras tree(4)"
- > 😑 DEF PLANE Solid
- > \varTheta Moose "moose"
- > CardboardBox "cardboard box(1)"
- OardboardBox "cardboard box(3)"
- CardboardBox "cardboard box(4)"
- > 😑 Sassafras "sassafras tree"
- Sassafras "sassafras tree(2)"
 Sassafras "sassafras tree(1)"
- Oak "oak tree"
- Oak "oak tree
 Oak "oak tree
- Oak "oak tree(3)"
- Oak "oak tree(5)"
- Oak "oak tree(6)"
- Oak "oak tree(8)"
- Oak "oak tree(7)"
 Oak "oak tree(4)"

\boxtimes \square ...wing/moose_path_following.c

🗅 🖶 🖻 😫 🗘 🔍 🍳 🗶 🚿

× moose_path_following.c

- * Copyright 1996-2021 Cyberk *
- * Licensed under the Apache * you may not use this file * You may obtain a copy of t
- *

http://www.apache.org/

- * Unless required by applica * distributed under the Lice * WITHOUT WARRANTIES OR CONE * See the License for the sp
- * limitations under the Lice

17 #include <math.h>

18 #include <stdio.b>
19 #include <webots/compass.b>
20 #include <webots/gps.h>
21 #include <webots/keyboard.b>
22 #include <webots/motor.h>
23 #include <webots/robot.h>

25 #define TIME_STEP 16 26 #define TARGET POINTS SIZE 13 27 #define DISTANCE TOLERANCE 1. 28 #define MAX SPEED 7.0 29 #define TURN COEFFICIENT 4.0

31 enum XYZAComponents { X = 0, 32 enum Sides { LEFT, RIGHT };

34 typedef struct _Vector { 35 double u; 36 double v; 37 } Vector;

39 static WbDeviceTag motors[8]; 40 static WbDeviceTag gps; 41 static WbDeviceTag compass;

 43
 static
 Vector
 targets[TARGET

 44
 {-4.209318, 9.147717}, {0
 {0

 45
 {-4.394915, -24.550777}, {-46
 {0.175989, -1.784311}, {0

49 static int current_target_ind 50 static bool autopilot = true; 51 static bool old_autopilot = t 52 static int old_bov = -1:

Recording at 25 FPS, 1054687 bit/s. Video encoding stage 1... (please wait) 13th target reached Video encoding stage 2... (please wait) INFO: Video creation finished. 1st target reached 2nd target reached

- WeBots is an opersource threedimensional mobile robot simulator.
- It was originally developed as a research tool to investigate various control algorithms in mobile robotics.
- minimal knowledge is needed in mobile robotics, in C, C++, Java, Python or MATLAB programming, and in VRML97 (Virtual Reality Modeling Language).
- Freefor download.
- ExcellentUser Guide for RoboticsIntroduction.

Future Outlook

- Drone technologies will increasingly be used as a tool to enhance teaching and learning effectiveness.
- New software will increase student engagement in project-based learning in STEM education to address programming aspects and application of UAS for the collection of remote sensing data.
- Additional considerations for faculty training and professional development will be needed to address training on new systems as well as ongoing changes in policy and regulations.

LessonsLearned

- Very good feedback from students
- Engaging and creative learning environment
- Students can explore, trial, and improve
- Compare results in the classroom or discussion board

Constructivist learning is an excellent plagiarism prevention.

Thank you

