
Fig. 1: Example of a "good" light curve

The top panel is the raw light curve for a typical TESS target star.   Usually, several sectors are
separately normalized and stitched together (note the gap between the two sections of the top panel in
the figure) though in Fig. 1, we have the downlink gap for a single sector.
The second panel shows the amplitude-frequency spectrum of the light curve from the Lomb-Scargle
pipeline. For most stars with signals dominated by rotation, the peak will be all the way on the left
somewhere, since those periods are typically longer than a day.
The third panel is the same data as the second panel, plotted on a logarithmic scale, which makes
period peaks longer than a day more visible.
The fourth panel is the light curve phased using the highest-amplitude peak. The corresponding period
is noted on the x-axis.  Overlaid in red is the same data, binned to the 0.01 phase to make it easier to
pick out any trend(s) from the noise.
There are two images in the bottom panel. On the left is the original “postage stamp” TESS field for
the target star. On the right is shown the aperture masks used to produce its light curve. Here the
yellow pixels are the target star’s aperture, the light blue areas were used to estimate the background,
and the darker blue pixels were unused.
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Fig. 2: Visualization using GradCAM

Machine learning is a subclass of Artificial Intelligence (AI) that can be
trained to classify images. 
Deep learning is another subset of AI that goes beyond ordinary classification
models and is modeled after how our brains function using artificial neurons,
convolution layers, and activation functions (like ReLU and tanh).  Image
classification is often used to determine if an object (or objects) of interest is
included in an image. 
We utilized this aspect of machine learning to determine if the TESS postage
stamps (raw images) were good enough to be used in our tests of
gyrochronology models. 
We adopted a Convolutional Neural Network (CNN) approach, which uses
convolution layers to reduce the dimensions of the input pictures and
effectively classify them. For both the machine learning and neural network, a
class size of two (good or bad), and a dataset of size 2554 was used.
Those with specific problems were marked for "redo," and sent back for more
careful extractions. An image set of 2554 stars were chosen, which was sorted
into 20 and 80 percent, respectively, for training and testing, respectively.
The highest accuracy achieved by the CNN was 82% in epoch 60 out of the
designated 100. This means that the CNN model accurately predicted the
classification made by the human who inspected the image 4 out of every 5
times.  

Machine Learning

The 731 highest-quality period determinations from
the L-S pipeline, were compared to the gyro models of
Spada & Lanzafame (2020). In accordance with
Avallone et al. (2022), few periods longer than ~14
days are detectable in a single TESS cycle. Also in this
plot is an apparent excess of periods around 5-6 days.

The initial visual inspection of 2573 of our project’s light
curves revealed all but 731 (28%) have problems such as
contamination of the target or sky masks that may affect
period determinations. These assessments were used as a
training set for the CNN.

Gyrochronology is the empirical relation between a star's rotation rate and its age. For stars on the
main sequence (MS stars) of spectral type F through M, gyrochronology may be an accurate way to
measure stellar ages for stars roughly 0.6 to 1.0 solar masses. 
Components of wide non-interacting binaries are coeval, meaning that the ages indicated by rotation
rate or other methods are identical within observational and/or model uncertainties.

What is Gyrochronology?

Fig. 3 The output of any extraction pipeline needs to be carefully assessed.
TESS does not probe rotation rates beyond ~14 days.
Prospective stellar gyrochronology targets must be well vetted to eliminate blends and other problem
objects, CNN algorithms can do this vetting using a training set based on visual inspection of a large
enough learning sample.
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