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Abstract
Rough set theory places great importance on approximation accuracy, which is used to
gauge how well a rough set model describes a target concept. However, traditional
approximation accuracy has limitations since it varies with changes in the target concept
and cannot evaluate the overall descriptive ability of a rough set model. To overcome this,
two types of average approximation accuracy that objectively assess a rough set model’s
ability to approximate all information granules is proposed. The first is the relative
average approximation accuracy, which is based on all sets in the universe and has several
basic properties. The second is the absolute average approximation accuracy, which is
based on undefinable sets and has yielded significant conclusions. We also explore the
relationship between these two types of average approximation accuracy. Finally, the
average approximation accuracy has practical applications in addressing missing attribute
values in incomplete information tables.

KEYWORD S
rough sets, rough set theory

1 | INTRODUCTION

Due to the rapid development of technology and information
interaction network, the data that people need to process every
day expands like a surging tide. The importance of data has
become increasingly prominent. Data has become a very
important and indispensable factor of production. It is an ur-
gent problem for people to find the theory and method of
mining data quickly and effectively to obtain valuable knowl-
edge. For example, people use statistical methods to analyse
and describe the data, find and speculate the knowledge and
rules hidden in the data, and then make reasonable decisions
[1, 2]. Unlike classical data, sometimes we need to deal with
some random and fuzzy data. Therefore, Zadeh created a
method to describe fuzzy data by introducing appropriate
membership functions, namely fuzzy set theory [3]. At present,
fuzzy set theory plays an increasingly important and irre-
placeable role in processing and analysing various fuzzy data
problems [4–6].

At the same time, in view of the increasing scale of data,
people urgently need to find effective methods to deal with
massive data. Therefore, according to the characteristics of

data labels, scholars granulate the data to obtain many
knowledge granules or blocks that cannot be subdivided.
Then people describe or express the data based on these
blocks and finally obtain useful knowledge or rules. This
method of processing data is called granular computing
theory. Based on this theory, many effective granular
computing models have been established and widely used in
many data problems [7–13]. Undoubtedly, rough set is one of
the most successful and widely used granular computing
models for analysing data [14, 15].

Generally speaking, people always want to get accurate
information or rules to make reasonable decisions. For any
rough set model, the lower and upper approximation sets
need to be constructed to describe or express the knowledge.
However, we usually cannot make an accurate classification
for the samples in the difference set of these two approxi-
mation sets. In other words, because of the existence of
boundary region, a set can only be described approximately.
The larger the boundary region is, the worse the complete-
ness of the description is. In consideration of measuring the
accuracy of the approximate description of a given concept,
the concept of approximation accuracy is introduced. In this
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way, we can get the approximation accuracy of any set in the
universe. We all know such a basic fact: in order to better
understand the academic performance of all students in a
class, it is not enough to only know the test score of each
student. More often, we also need to know the average
performance of all students. Obviously, it is more reasonable
to use the average score to judge the learning level of all
students in the class.

From the above analysis, it is obvious that we cannot just
be satisfied with knowing the approximate accuracy of each set
in the universe. In order to get a more comprehensive un-
derstanding of the approximation accuracies of all sets in the
universe, we also need to investigate the average value of the
approximation accuracies of all sets. Therefore, the main
contribution of this paper is to propose the concept of average
approximation accuracy. With the help of this concept, we can
understand the ability of any rough set model to approximate
all sets in the universe.

The contents of the rest of this study are briefly
described as follows. In Section 2, some important concepts
related to rough set are listed. In Section 3, based on all sets
in the universe, the relative average approximation accuracy is
introduced, and many meaningful conclusions are obtained.
In Section 4, the absolute average approximation accuracy is
proposed according to all undefinable sets in an information
table. Then, many important properties of absolute average
approximation accuracy are discussed in detail. In Section 5,
the relationship between these two kinds of average
approximation accuracy is deeply studied. In Section 6, tak-
ing the absolute average approximation accuracy as an
example, we investigate the application of the average
approximation accuracy in filling the missing data in the
incomplete information tables. Section 7 briefly summarises
the main contents of this paper and makes prospects for
future research work.

2 | PRELIMINARIES

Usually, an information table can be denoted by [16]:

I ¼ OB;AT ; Vaja ∈ ATf g; faja ∈ ATf gð Þ ð1Þ

where OB, AT, Va and fa are a non‐empty finite set, a non‐
empty attribute set, the domain of attribute a and an infor-
mation function respectively.

For ∀A ⊆ AT and ∀x ∈ OB, then

xEAy⇔ ∀a ∈ A faðxÞ ¼ faðyÞð Þ

½x�A ¼ y ∈OBjxEAyf g

OB=EA ¼ ½x�Ajx ∈OB
� �

are the equivalence relation EA, the equivalence class con-
taining x and the partition of OB respectively [15].

The rough set theory created by Pawlak has powerful data
processing capabilities [17–20]. The Pawlak model is intro-
duced as follows [14].

Definition 2.1 In an information table shown in Equation (1),
A ⊆ AT is a subset of attributes, for X ⊆ OB, the lower and
upper approximation sets of X are denoted by:

aprAðXÞ ¼ x ∈OB j ½x�A ⊆ X
� �

;

aprAðXÞ ¼ x ∈OB j ½x�A ∩ X ≠ ∅
� �

:

For ∀X ⊆ OB, the inclusion relation aprAðXÞ ⊆ X ⊆ aprAðXÞ
holds. And, X is approximately described by two sets aprAðXÞ
and aprAðXÞ. Usually, aprAðXÞ; aprAðXÞ

� �
is called the

rough set of X.
In order to characterise the accuracy of knowledge

description using a rough set model, Pawlak proposes the
approximate accuracy and the approximate roughness [14, 15].

Definition 2.2 In an information table shown in Equation (1),
A ⊆ AT is a subset of attributes, for each X ⊆ OB,

αAðXÞ ¼
japrAðXÞj
japrAðXÞj

;

βAðXÞ ¼ 1 − αAðXÞ

are called the approximation accuracy and approximation
roughness of X respectively.

Definition 2.3 In an information table shown in Equation (1),
A ⊆ AT is a subset of attributes, for each ℘ = {P1, P2, …,
Pt} ⊆ OB/EA, we call ∪℘¼ ∪ti¼1Pi a definable set. We use
DSA to denote all the definable sets, that is, DSA ¼ ∪℘j℘⊆f

OB=EAg. In addition, for each Q ∈ 2OB −DSA
� �

, we call Q
an undefinable set, and all the undefinable sets are denoted by
UDSA, that is, UDSA ¼ 2OB −DSA.

According to Definition 2.3, each set in 2OB is either a
definable set or an undefined set. And the definable sets and
undefinable sets can be further illustrated as follows:

(1) The definable sets are closed under set complement,
intersection and union [21]. And the undefinable sets are
only closed under set complement.

(2) If |OB| = n, |OB/EA| = s, it is not difficult to verify that
there are 2s definable sets and 2n − 2s undefinable sets in
2OB [22].

(3) For each X ∈DSA, the equation αA(X ) = 1 holds and X is
also called a descriptive set. For each Y ∈ UDSA, we have
0 ≤ αA(Y) < 1.

2 - KONG ET AL.
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3 | THE RELATIVE AVERAGE
APPROXIMATION ACCURACY

For any X ⊆ OB, we know that the traditional approximation
accuracy reflects the ability of the definable sets related to X
to approximate X. However, we note the fact that only part
of the definable sets are involved in the calculation of
approximation accuracy αA (X ). The traditional approxima-
tion accuracy does not reflect the ability of all definable sets
to express knowledge. αA (X ) changes as X changes. Thus, it
can be seen that αA (X ) is only a local concept. Hence, a
new measure needs to be proposed to truly describe the
accuracy of knowledge representation by all definable sets
from the global perspective. Here, the relative average
approximation accuracy and roughness are first developed as
follows.

Definition 3.1 In an information table shown in Equation (1),
A ⊆ AT is a subset of attributes, then

αA 2OB
� �

¼

P
X∈2OBαAðXÞ
j2OBj

;

βA 2OB
� �

¼ 1 − αA 2OB
� �

are the relative average approximation accuracy and the relative
average approximation roughness respectively.

Obviously, αA (2OB) is the average value of approximation
accuracies of all sets in a universe, that is, αA (2OB) charac-
terises the ability of all definable sets to describe information
granules in the information table. It will only change with the
change of the rough set model or the information table.

Example 3.1 In an information table shown in Equation (1),
where OB = {x1, x2, x3} and OB/EA = {{x1}, {x2, x3}},
X1 = {x2}, X2 = {x3}, X3 = {x1, x2} and X4 = {x1, x3} are all
the undefinable sets. And X5 = ∅, X6 = {x1}, X7 = {x2, x3}
and X8 = OB are all the definable sets.

Based on Definition 2.2,

αA X1ð Þ ¼ αA X2ð Þ ¼ 0; αA X3ð Þ ¼ αA X4ð Þ ¼
1
3
;

αA X5ð Þ ¼ αA X6ð Þ ¼ αA X7ð Þ ¼ αA X8ð Þ ¼ 1:

So, by Definition 3.1,

αA 2OB
� �

¼ αA X1ð Þ þ αA X2ð Þ þ⋯þ αA X8ð Þð Þ=8¼
7
12
;

βA 2OB
� �

¼ 1 − αA 2OB
� �

¼ 1 −
7
12
¼

5
12
:

From Definition 3.1, we can define the arithmetic mean of the
approximation accuracies of all sets in the universe as the
relative average approximation accuracy.

Proposition 3.1 In an information table shown in Equa-
tion (1), A ⊆ AT is a subset of attributes. Then we have the
following equation

βA 2OB
� �

¼

P
X∈2OBβAðXÞ
j2OBj

:

Proof. By Definition 3.1, we have

βA 2OB
� �

¼ 1 − αA 2OB
� �

¼ 1 −
P

X∈2OBαAðXÞ
j2OBj

¼
2jOBj −

P
X∈2OBαAðXÞ
j2OBj

¼

P
X∈2OB 1 − αAðXÞð Þ

j2OBj

¼

P
X∈2OBβAðXÞ
j2OBj

:□

Proposition 3.1 indicates that the relative average approxima-
tion roughness in Definition 3.1 can be expressed as the
arithmetic mean of the approximation roughnesses of all sets
in the universe.

Since equation βA (2OB) = 1 − αA (2OB) holds, so we only
study the properties of the relative average approximation ac-
curacy, and the conclusions of the relative average approxi-
mation roughness will not be mentioned here.

In Definition 3.1, we propose the relative average approx-
imation accuracy. Next, we give a formula to calculate the
relative average approximation accuracy. Through the formula
and its proof process, we can have a deeper understanding of
the relative average approximation accuracy.

Proposition 3.2 In an information table shown in Equa-
tion (1), let OB/EA = {P1, P2, …, Ps} (s ≥ 2) be the partition
of OB induced by the subset of attributes A ⊆ AT. Then

αA 2OB
� �

¼ 2s þ
Xs−1

i¼1

Xs−i

j¼1
CisC

j
s−i ∏

j

k¼1
2jPvkj − 2
� �

 !

=j2OBj

0

@

jPu1j þ jPu2j þ⋯þ jPuij
jPu1j þ jPu2j þ⋯þ jPuijð Þ þ jPv1j þ jPv2j þ⋯þ jPvjj

� �

!

where Pu ¼ Pu1; Pu2;…; Puif g;Pv ¼ Pv1; Pv2;…; Pvj
� �

are
any two subsets of OB/EA and Pu ∩ Pv ¼∅.

Proof. Suppose that Pu ¼ Pu1; Pu2;…; Puif g;Pv ¼ Pv1;f

Pv2;…; Pvjg are two subsets of OB/EA and Pu ∩ Pv ¼∅. Let
X ⊆ OB be an undefinable set, which meets the following
conditions:

KONG ET AL. - 3
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(1) For each P ∈ Pu, the set‐inclusion relation P ⊆ X holds;
(2) For each P ∈ Pv, one can find that P ⊈ X and P ∩ X ≠ ∅.

At this time, we have

japr ðXÞj ¼ jPu1j þ jPu2j þ⋯þ jPuij;

japrðXÞj ¼ jPu1j þ jPu2j þ⋯þ jPuijð Þþ

jPv1j þ jPv2j þ⋯þ jPvjj
� �

:

Then the approximate accuracy of X is

αAðXÞ ¼
jPu1j þ jPu2j þ⋯þ jPuij

jPu1j þ jPu2j þ⋯þ jPuijð Þ þ jPv1j þ jPv2j þ⋯þ jPvjj
� �:

It is easy to see that the number of the undefinable sets
meeting conditions (1) and (2) is

2jPv1j − 2
� �

⋅ 2jPv2j − 2
� �

⋅ ⋅ ⋅ ⋅ ⋅ 2jPvj j − 2
� �

:

Meanwhile, there are also many choices of Pu, and Pv satis-
fying the above two conditions, and the number of them is

Xs−1

i¼1

Xs−i

j¼1

CisC
j
s−i:

So, the sum of the approximation accuracies of all undefinable
sets is equal to

Xs−1

i¼1

Xs−i

j¼1
CisC

j
s−i ∏

j

k¼1
2jPvkj − 2
� �

 !

jPu1j þ jPu2j þ⋯þ jPuij
jPu1j þ jPu2j þ⋯þ jPuijð Þ þ jPv1j þ jPv2j þ⋯þ jPvjj

� �:

In addition, for each X ∈DSA, we have that αA(X ) = 1, then
the sum of the approximation accuracies of all definable sets is

jDSAj ¼ 2s:

Finally, according to Definition 3.1, one can find that

αA 2OB
� �

¼ 2s þ
Xs−1

i¼1

Xs−i

j¼1

CisC
j
s−i ∏

j

k¼1
2jPvkj − 2
� �

 !

=j2OBj

0

@

jPu1j þ jPu2j þ⋯þ jPuij
jPu1j þ jPu2j þ⋯þ jPuijð Þ þ jPv1j þ jPv2j þ⋯þ jPvjj

� �

!

:□

In what follows, we explore other important properties of
the relative average approximation accuracy.

Proposition 3.3 In an information table shown in Equa-
tion (1), A ⊆ AT is a subset of attributes, then

1
2jOBj−1 ≤ αA 2OB

� �
≤ 1:

Proof. Let us first prove that the minimum value of αA (2OB) is
1

2jOBj−1.
When OB/EA = {OB}, it is obvious that the value of αA

(2OB) is minimum. Meanwhile, αA (∅) = αA (OB) = 1 and for
each ∅ ≠ X ⊂ OB, αA(X ) = 0. Then, from the Definition 3.1,
αA 2OB
� �

¼ 1
2jOBj−1.

Next, we prove that the maximum value of αA (2OB) is
equal to 1.

It is not difficult to see that when OB/EA consists of
singleton subsets ofOB, αA (2OB) takes the maximum. And for
∀X ⊆ OB, we have αA(X ) = 1. Therefore, αA (2OB) = 1.□

From Proposition 3.3, the value of αA (2OB) is bound within
the limits of 1

2jOBj−1 and 1, which represent the finest (singleton
blocks) and coarsest (one block) partitions respectively.

Definition 3.2. A partition OB/E is a refinement of another
partition OB/E0, denoted by OB/E ⊑ OB/E0, if every equiv-
alence class of OB/E is contained in some equivalence class of
OB/E0. If OB/E ⊑ OB/E0 and OB/E ≠ OB/E0, then OB/E is
a proper refinement of OB/E0 and written by OB/E ⊏ OB/E0.

Let OB/E0 = {{x}jx ∈ OB}, and OB/E00 = {OB}, for any
partition OB/E, we have OB/E0 ⊑ OB/E ⊑ OB/E00. Then, we
have the following conclusion about the relative average
approximation accuracy.

Proposition 3.4 In an information table shown in Equa-
tion (1), A, B ⊆ AT are two subsets of attributes, if OB/
EA ⊑ OB/EB, then

αB 2OB
� �

≤ αA 2OB
� �

:

Proof. If OB/EA = OB/EB, the equation αB (2OB) = αA (2OB)
clearly holds. If OB/EA ⊏ OB/EB, there exists X ∈ OB/EB
such that

X ¼ ∪vi¼1Xi;

where Xi ∈ OB/EA, i = 1, 2, …, v. By Definition 2.2, for each
Xi, i ∈ {1, 2, …, v}, the inequality

αB Xið Þ < αA Xið Þ

obviously holds.
In summary, we have

αB 2OB
� �

≤ αA 2OB
� �

:□

Definition 3.3 For two partitions OB/E and OB/E0, if there
exists a bijection f: OB/E → OB/E0such that ∀X ∈ OB/E,
jf(X )j = jXj, then the two partitions are size‐isomorphic.

4 - KONG ET AL.
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Based on Definition 3.3, an equivalence relation on all
partitions of the universe is introduced and studied [23, 24]. If
partitions OB/E and OB/E0 are size‐isomorphic, then the
following result holds.

Proposition 3.5 In an information table shown in Equa-
tion (1), A, B ⊆ AT are two subsets of attributes, if OB/EA and
OB/EB are size-isomorphic, then we have

αA 2OB
� �

¼ αB 2OB
� �

:

Proof. It is immediate by Definitions 3.1 and 3.3.□

Example 3.2 In an information table shown in Equation (1),
A, B ⊆ AT are two subsets of attributes, suppose

OB¼ x1; x2; x3; x4f g;

OB=EA ¼ x1; x2f g; x3f g; x4f gf g;

OB=EB ¼ x1; x3f g; x2f g; x4f gf g:

By Definition 3.3, OB/EA is size‐isomorphic to OB/EB.
Hence, according to Proposition 3.5, we have αA (2OB) = αB
(2OB) = 0.625.

4 | THE ABSOLUTE AVERAGE
APPROXIMATION ACCURACY

In the above section, the relative average approximation ac-
curacy is defined based on all sets in the universe. According to
the classical rough set model, any definable set is accurately
described, that is, the approximation accuracy of each definable
set is 1. One of the main tasks of rough set is to use definable
sets to approximate the undefinable sets. Thus, it is more
meaningful to discuss the accuracy of the approximate
description of the undefined sets. Next, the absolute average
approximate accuracy and roughness are proposed as follows.

Definition 4.1 In an information table shown in Equation (1),
A ⊆ AT is a subset of attributes and jUDSAj > 0, then

αA UDSAð Þ ¼

P
X∈UDSAαAðXÞ
jUDSAj

;

βA UDSAð Þ ¼ 1 − αA UDSAð Þ

are the absolute average approximation accuracy and the ab-
solute average approximation roughness respectively.

Example 4.1 (Continued from Example 3.1) From OB = {x1,
x2, x3} and OB/EA = {{x1}, {x2, x3}}, it can be obtained that
UDSA ¼ X1;X2;X3;X4f g.

According to

αA X1ð Þ ¼ αA X2ð Þ ¼ 0; αA X3ð Þ ¼ αA X4ð Þ ¼
1
3
;

we have

αA UDSAð Þ ¼ αA X1ð Þ þ αA X2ð Þ þ αA X3ð Þð

þ αA X4ð ÞÞ=4¼
1
6
:

βA UDSAð Þ ¼ 1 − αA UDSAð Þ ¼ 1 −
1
6
¼

5
6
:

Similar to Proposition 3.1, there is a result about the ab-
solute average approximate roughness as follows.

Proposition 4.1 In an information table shown in Equa-
tion (1), A ⊆ AT is a subset of attributes, then

βA UDSAð Þ ¼

P
X∈UDSAβAðXÞ
jUDSAj

:

Proof. By Definition 4.1, we have

βA UDSAð Þ ¼ 1 − αA UDSAð Þ

¼ 1 −
P

X∈UDSAαAðXÞ
jUDSAj

¼
jUDSAj −

P
X∈UDSAαAðXÞ

jUDSAj

¼

P
X∈UDSA 1 − αAðXÞð Þ

jUDSAj

¼

P
X∈UDSAβAðXÞ
jUDSAj

:□

Proposition 4.1 shows that the absolute average approximation
roughness in Definition 4.1 can be rearranged as the arithmetic
mean of the approximation roughnesses of all undefinable sets
in the universe. Next, we mainly focus on the properties of
absolute average approximation accuracy.

We know that for each X ⊆ OB, the relation 0 ≤ αA(X ) ≤ 1
holds. At the same time, for the absolute average approxima-
tion accuracy αA UDSAð Þ, we have the same conclusion.

Proposition 4.2 In an information table shown in Equa-
tion (1), A ⊆ AT is a subset of attributes, then we have

0 ≤ αA UDSAð Þ ≤ 1:

Proof. Firstly, if |OB/EA| = |OB|, then αA UDSAð Þ ¼ 1.
Secondly, when |OB/EA| = 1, αA UDSAð Þ will take the
minimum value 0.□

Similar to Proposition 3.4, we guess that if OB/EA ⊑ OB/
EB, then the inequality αB UDSBð Þ ≤ αA UDSAð Þ should hold.
In order to verify it, we first prove the following lemma.

KONG ET AL. - 5
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Lemma 4.1 In an information table shown in Equation (1), A
⊆ AT is a subset of attributes. Suppose jOBj = n ≥ 4, and OB/
EA = {P1, P2, …, Ps}, where s ≥ 2 and n > s, then we have

αA 2OB
� �

>
2s þ 1
2n

:

Proof. From Definition 3.1, we have

αA 2OB
� �

¼

P
X∈2OBαAðXÞ
j2OBj

¼

P
X∈UDSAαAðXÞ þ

P
X∈DSAαAðXÞ

j2OBj

¼

P
X∈UDSAαAðXÞ þ 2s

2n

Next, we will prove that
P

X∈UDSAαAðXÞ > 1. So we will
discuss it in two cases:

Case a: Suppose that there are two sets P = {x1, x2, …,
xu}, P0 ¼ x01; x

0
2;…; x0v

� �
in OB/EA such that u ≥ 2 and

v ≥ 2. Let

X1 ¼ x1f g ∪ P0;X2 ¼ x2f g ∪ P0;X3 ¼ x01
� �

∪ P;

then

P
X∈UDSA αAðXÞ >

P3
i¼1αA Xið Þ ¼ uþ2v

uþv > 1.

Case b: Suppose there is only one set in OB/EA whose
cardinality is greater than or equal to 2. Without losing gen-
erality, let

OB=EA ¼ P1; P2;…; Psf g;

where

P1 ¼ x1f g; P2 ¼ x2f g;…; Ps−1 ¼ xs−1f g;

Ps ¼ xs; xsþ1;…; xnf g; andjPsj ¼ n − sþ 1 ≥ 2:

Here, we prove it based on two cases:
Case b1: If s − 1 ≥ n

2, let

X1 ¼ x1; x2;…; xs−1; xsf g;X2 ¼ x1; x2;…; xs−1; xsþ1f g;

X3 ¼ x1; xsf g

then

P
X∈UDSA αAðXÞ >

P3
i¼1αA Xið Þ > sþ1

n þ
sþ1
n þ

1
n > 1.

Case b2: If s − 1 < n
2, that is, n − s þ 1 > n

2. Next, the proof
will be based on two cases:

Case b21: Suppose s − 1 = 1, then OB/EA = {P1, P2}, that
is,

P1 ¼ x1f g; P2 ¼ x2; x3;…; xnf g:

Let

X1 ¼ x1; x2f g;X2 ¼ x1; x3f g;…;Xn−1 ¼ x1; xnf g;

Xn ¼ x1; x2; x3f g;Xnþ1 ¼ x1; x2; x4f g;

we have

P
X∈UDSA αAðXÞ ≥

Pnþ1
i¼1 αA Xið Þ ¼ nþ1

n > 1.

Case b22: Suppose s − 1 ≥ 2, one can find that

P1 ¼ x1f g; P2 ¼ x2f g;…;Ps−1 ¼ xs−1f g;

Ps ¼ xs; xsþ1;…; xnf g:

Let
X1 ¼ x1; x2; xsf g;X2 ¼ x1; x2; xsþ1f g;…;

Xn−sþ1 ¼ x1; x2; xnf g:

Because for each Xi, we have

αA Xið Þ ¼
2

n − sþ 3
≥

2
n
; i¼ 1; 2;…; n − sþ 1:

Then

P
X∈UDSAαAðXÞ >

Pn−sþ1
i¼1 αA Xið Þ ≥ 2ðn−sþ1Þ

n > 1.

To sum up, the inequality
P

X∈UDSAαAðXÞ > 1 is always
true. This means αA 2OB

� �
> 2sþ1

2n holds.□

Proposition 4.3 In an information table shown in Equa-
tion (1), A, B ⊆ AT are two subsets of attributes, if OB/
EA ⊑ OB/EB, and jOB/EAj = s < jOBj = n (where n ≥ 4,
s ≥ 2), then

αB UDSBð Þ ≤ αA UDSAð Þ:

Proof. When OB/EA = OB/EB, the equation αB UDSBð Þ¼

αA UDSAð Þ clearly holds.
When OB/EA ⊏ OB/EB, according to Proposition 5.1, let

f ðsÞ ¼
2n

2n − 2s
K −

2s

2n

� �

¼
K ⋅ 2n − 2s

2n − 2s
ð K is a constant Þ:

If function f(s) is monotonically increasing, then the relation
αB UDSBð Þ < αA UDSAð Þ must hold.

Based on Lemma 4.1, we have K > 2sþ1
2n . Next, let us

calculate the derivative of f(s).

f 0ðsÞ ¼
K ⋅ 2n − 2s

2n − 2s

� �
0

¼
ln2 ⋅ 2s ⋅ K ⋅ 2n − 2s − 1ð Þ

2n − 2sð Þ
2

>
ln2 ⋅ 2s ⋅ 2sþ1

2n ⋅ 2n − 2s − 1
� �

2n − 2sð Þ
2 ¼ 0:

6 - KONG ET AL.
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From the knowledge of calculus, because the derivative of f (s)
is greater than zero, then f (s) is a monotonically increasing
function. Hence, if OB/EA ⊏ OB/EB, we have
αB UDSBð Þ < αA UDSAð Þ. □

Example 4.2 In an information table shown in Equation (1),
where OB = {x1, x2, x3, x4, x5}, A, B ⊆ AT are two subsets of
attributes, and OB/EA ⊏ OB/EB. Let

OB=EA ¼ x1; x2f g; x3; x4f g; x5f gf g;

OB=EB ¼ x1; x2; x3; x4f g; x5f gf g:

Thus, by Definition 4.1, we have αA UDSAð Þ ¼ 0:27; αB
UDSBð Þ ¼ 0:10, that is, αB UDSBð Þ < αA UDSAð Þ.

Proposition 4.4 In an information table shown in Equa-
tion (1), A, B ⊆ AT are two subsets of attributes, if OB/EA and
OB/EB are size-isomorphic, then we have

αA UDSAð Þ ¼ αB UDSBð Þ:

Proof. It is immediate by Propositions 3.3 and 4.1.□
To facilitate understanding, comparative analysis of tradi-

tional approximation accuracy and average approximation ac-
curacy is listed as follows.

(1) The traditional approximation accuracy is a local concept.
Obviously, when calculating the approximate precision of a
target concept, only the equivalent classes associated with
X are involved. However, the average approximation ac-
curacy is a global concept. For any target concept, all
equivalent classes participate in the calculation of its
average approximation accuracy.

(2) For a rough set model induced from the information table,
the traditional approximation accuracy will change with the
change of target concept. While, the average approxima-
tion accuracy is a constant.

(3) The traditional approximation accuracy cannot measure
the ability of a rough set model to describe all the
knowledge in the information table. However, the average
approximation accuracy can well reflect the level of a
rough set model to approximate all target concepts.

5 | THE RELATIONSHIP BETWEEN
TWO KINDS OF AVERAGE
APPROXIMATION ACCURACY

In order to understand these two average approximation ac-
curacies more comprehensively and apply them more conve-
niently, here, we explore the relationship between relative and
absolute average approximation accuracies. According to Def-
initions 3.1 and 4.1, the relative average approximation accuracy
is the average value of the approximation accuracies of all sets
in the universe, while the absolute average approximate accu-
racy is the arithmetic mean of the approximation accuracies of

all undefinable sets in an information table. Although the
relative and absolute average approximate accuracies are
different, there is still a close relationship between them.

Proposition 5.1 In an information table shown in Equa-
tion (1), A ⊆ AT is a subset of attributes. Suppose
jOBj = n > jOB/EAj = s, then we have

αA UDSAð Þ ¼
2n

2n − 2s
αA 2OB
� �

−
2s

2n

� �

:

Proof.

αA 2OB
� �

¼

P
X∈2OBαAðXÞ
j2OBj

¼

P
X∈UDSA αAðXÞ þ

P
X∈DSA αAðXÞ

2n

¼

P
X∈UDSA αAðXÞ þ 2s

2n

¼

P
X∈UDSA αAðXÞ

2n − 2s
⋅
2n − 2s

2n
þ

2s

2n

¼ αA UDSAð Þ ⋅
2n − 2s

2n
þ

2s

2n
:

Hence, it can be obtained that

αA UDSAð Þ ¼
2n

2n − 2s
αA 2OB
� �

−
2s

2n

� �

:□

For the relative and absolute average approximation ac-
curacies, if one is known, then the other can be obtained ac-
cording to Proposition 5.1.

Example 5.1 From Example 3.1, we have n = 3, s = 2, and
αA 2OB
� �

¼ 5
8 . According to Proposition 5.1, it can be seen that

αA UDSAð Þ ¼
23

23 − 22
7
12

−
22

23

� �

¼
1
6
:

Proposition 5.2 In an information table shown in Equa-
tion (1), A ⊆ AT is a subset of attributes, then we have

αA UDSAð Þ ≤ αA 2OB
� �

:

Proof. Suppose |OB| = n, |OB/EA| = s. If n > s, from
Proposition 5.1, we have

αA 2OB
� �

− αA UDSAð Þ ¼ αA 2OB
� �

−
2n

2n − 2s
αA 2OB
� �

−
2s

2n

� �

¼
2s 1 − αA 2OB

� �� �

2n − 2s
> 0:

If n = s, we know that αA (2OB) = 1 and αA UDSAð Þ ¼ 1.
To sum up, the inequality αA UDSAð Þ ≤ αA 2OB

� �
holds.□

KONG ET AL. - 7
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To facilitate understanding, comparative analysis of relative
average approximation accuracy and absolute average
approximation accuracy is shown as follows.

(1) The relative average approximation accuracy is the
average of the approximation accuracies of all subsets of
the universe in the information table. The absolute average
approximate accuracy is the average of the approximation
accuracies of all undefined sets in the information table.
(2) These two approximation accuracies are closely linked
by the formula shown in Proposition 5.1.
(3) The absolute average approximation accuracy is less
than or equal to the relative average approximation
accuracy.

6 | THE APPLICATION OF THE
AVERAGE APPROXIMATION ACCURACY
IN INCOMPLETE INFORMATION
TABLES

In many cases, due to the constraints of technology, cognition,
cost and other factors, some attribute values are missing or
unknown, so we only get an incomplete information table.
How to properly deal with these missing attribute values for
data mining is a very important research topic.

At present, there are three main methods to deal with
these unknown attribute values. The first one is to delete the
missing data directly to get a complete data set. However,
this method is not applicable when there are many missing
data. In the second way, authors usually induce the binary
relations, and study the incomplete information table by
means of rough set theory [25–31]. Sometimes, in order to
avoid the waste of human and material resources, it is
necessary to take measures to reasonably estimate the missing
data. Hence, the third method is to estimate the missing data
according to specific principles, and replace the missing data
with the estimated values, so as to get a complete informa-
tion table [32–35].

Suppose the information table shown in Equation (1) is
incomplete. For any x ∈ OB and any a ∈ AT, fa(x) = * means
that the attribute value of object x under attribute a is un-
known. For any a ∈ AT, let Va = {fa(x)|fa(x) ≠ *, x ∈ OB}.
Here, Va is allowed to contain the same elements, |Va| is the
number of elements in Va, and the number of the same ele-
ments needs to be calculated repeatedly. The probability pa (x,
y) of objects x and y taking the same attribute value under
attribute a is usually defined as follows [36]:

paðx; yÞ ¼

jfaðyÞj=jVaj faðxÞ ¼ ∗ð Þ ∧ faðyÞ ≠ ∗ð Þ;

jfaðxÞj=jVaj faðyÞ ¼ ∗ð Þ ∧ faðxÞ ≠ ∗ð Þ;

1 faðxÞ ¼ ∗ð Þ ∧ faðyÞ ¼ ∗ð Þ;

1 faðxÞ ≠ ∗ð Þ ∧ faðyÞ ≠ ∗ð Þ

∧ faðxÞ ¼ faðyÞð Þ;

0 faðxÞ ≠ ∗ð Þ ∧ faðyÞ ≠ ∗ð Þ

∧ faðxÞ ≠ faðyÞð Þ:

8
>>>>>>>><

>>>>>>>>:

Based on pa (x, y), two rules to fill the missing attribute
values are introduced as follows [36]:

Lemma 6.1 Suppose the information table shown in Equa-
tion (1) is incomplete. For any a ∈ A ⊆ AT and any x ∈OB, if
fa(x) = *, let Y0 = {y0 ∈OBjpa(x, y0) =maxy∈OBpa(x, y)}, then
* can take any value in the set {fa(y0)jy0 ∈ Y0}.

Lemma 6.2 Suppose the information table shown in Equa-
tion (1) is incomplete. For any a ∈ A ⊆ AT and any x ∈OB, if
fa(x) = *, let Y0 = {y0 ∈ OBjpa(x, y0) = maxy∈OBpa(x, y)},
jY0j = r(r ≥ 2), and yi ∈ Y0, i = 1, 2, …, r. At the same
time, let Y ∗ ¼ y∗ ∈OBj∏a∈Apa x; y∗ð Þ ¼max1≤i≤r ∏a∈Apaff

x; yið Þgg, then * can take any value in the set {fa(y*)|
y* ∈ Y*}.

Next, a simplified incomplete information table is
employed. The application of average approximation accuracy
in filling missing attribute values is preliminarily explored.

Example 6.1 Here is a toy incomplete information table, as
shown in Table 1. According to Lemmas 6.1 and 6.2, we have
*1 = 0 or 1, *2 = 0 or 1, and *3 = 0. Although both *1 and *2
are given different values, these values are all reasonable.

At the same time, we naturally hope that the data informa-
tion contained in an information table should be as detailed as
possible, that is, the definable sets in the information table can
describe the undefined sets as accurately as possible. Therefore,
in the sense of absolute average approximate accuracy, we try to
further investigate the values of *1 and *2 so that the informa-
tion table has stronger ability to express knowledge.

Let attribute set A = {a1, a2, a3}, we discuss this problem in
four cases.
Case 1: If *1 = 0, *2 = 0, *3 = 0, we have

OB=EA ¼ x1f g; x2; x3f g; x4; x5f g; x6f gf g:

Then, αA UDSAð Þ ¼ 0:3625.
Case 2: If *1 = 0, *2 = 1, *3 = 0, we have

OB=EA ¼ x1; x4f g; x2; x3f g; x5f g; x6f gf g:

Then, αA UDSAð Þ ¼ 0:3625.
Case 3: If *1 = 1, *2 = 0, *3 = 0, we have

OB=EA ¼ x1f g; x2f g; x3f g; x4; x5f g; x6f gf g:

TABLE 1 An incomplete information table.

OB a1 a2 a3

x1 1 0 0

x2 0 1 1

x3 *1 1 1

x4 *2 0 0

x5 0 0 0

x6 1 *3 1

8 - KONG ET AL.
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Then, αA UDSAð Þ ¼ 0:4625.
Case 4: If *1 = 1, *2 = 1, *3 = 0, we have

OB=EA ¼ x1; x4f g; x2f g; x3f g; x5f g; x6f gf g:

Then, αA UDSAð Þ ¼ 0:4625.
Based on Lemmas 6.1, 6.2 and the above analysis, we know

that *1 = 1, *2 = 0,*3 = 0 and *1 = 1, *2 = 1,*3 = 0 are not only
reasonable, but the corresponding complete information Ta-
bles 2 and 3 also have stronger knowledge representation
ability. Therefore, *1 = 1, *2 = 0,*3 = 0 or *1 = 1, *2 = 1,*3 = 0
is the better choice.

7 | CONCLUSION

In order to measure the ability of a rough set model to describe
knowledge more objectively and comprehensively, the relative
and the absolute average approximation accuracies are intro-
duced. We study many important mathematical properties of
these two average approximation accuracies. In addition, we
establish the relationship between the two kinds of approxi-
mation accuracies. Finally, with the help of the idea of average
approximation accuracy, we can better fill the missing data in
the incomplete information table.

It should be admitted that we only propose and study the
average approximation accuracy from the perspective of theo-
retical expansion in this paper. However, it is necessary to further
explore the average approximation accuracy from the aspects of
calculation and application. Therefore, there is still much work
to be done on the average approximation accuracy in the future.
For example, more effective algorithms for calculating the

average approximation accuracy need to be studied and
designed. According to the average approximation accuracy, the
faster ways to fill in the missing attribute values in the complex
incomplete information tables need to be explored. Attribute
reduction based on average approximation accuracy should also
be studied. Finally, it is also necessary to carry out simulation
experiments related to the average approximation accuracy.
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