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Abstract 
 
 Open pit mine planning encompasses a variety of uncertainties. Uncertainty due 
to geomechanics is most critical for a safe operation in an open pit mine. Without 
sufficient knowledge of the geomechanical properties of the subsurface, a reliability 
analysis of the slope stability could be challenging. Slope stability is a crucial step in pit 
optimization since the cash flow analysis of a mine is constrained by a stable slope angle. 
However, obtaining a stable slope angle with certainty is difficult to achieve as 
geomechanical parameters are modeled using a very limited number of samples. This 
thesis proposes a method to integrate geomechanical uncertainty, specifically uncertainty 
regarding slope stability, in pit optimization through reliability-based analysis. This 
research explores gold deposit data received from exploration drilling in Alaska, with 
potential to build an open pit mine. The gold grade was estimated by ordinary kriging 
(OK) using exploration drilling data. Rock Quality Designation (RQD) is the only 
geomechanical data available from this deposit, and it was used to calculate cohesion, 
angle of internal friction, and unit weights of the rock. The uncertainty of the RQD was 
quantified for each rock type of the deposit. The probability density function (PDF) of 
RQD for each rock type was fitted using log-normal distribution. The uncertainty-based 
slope stability analysis was carried out using the limit equilibrium method. The reliability 
and failure probability of the different slope angles were calculated, and the maximum 
slope angle with 100% reliability is 50°.  The cash flow for each slope angle was 
identified and assessed along with the probability of failure for three different factor of 
safety values. The results showed that the steeper the slope angle used, the more profit 
would be generated, but the probability of failure increased. In contrast, using shallower 
slopes did not generate as much profit, but the probability of failure was lower. A 
threshold slope angle of 51.5° was determined to be the highest angle that can be utilized 
without the probability of failure outweighing the profit generated.  
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1. Introduction 
 
 In any structural or slope stability analysis of an open pit mine, geomechanical 
properties of rock masses must be understood thoroughly. Ignoring the importance of 
these properties can lead to significant losses in terms of personnel, equipment, safety, 
time, production, and capital (Zebarjadi Dana et al., 2018). When these properties are 
understood, the likelihood of slope failure decreases and ensures the workers and 
equipment are safe during mining operations. Not only do the knowledge of these 
properties help ensure safe working conditions, but they play critical roles in determining 
the optimum slope angle in the mine. The smallest changes to the overall slope angle for 
an open pit mining operation can influence the economic value of the mine significantly 
(Ning et al., 2011). The challenge that is faced in many open pit mining operations, 
however, is how to maximize profit while maintaining stability of the slopes throughout 
the mine. If a steeper slope angle is used, the lower the stripping ratio will be which will 
result in a more profitable mining operation (Mitma, 2020). However, if a steeper slope 
angle is used, this decreases the slope stability which increases the risk of slope failure in 
the mine. The ideal mining operation will want to maximize profit while preserving the 
slope stability and safety of the mine. 
 
 Slope stability is indexed by a measurement known as the Factor of Safety (FoS). 
Also referred to as the Safety Factor, is a measure used in engineering design to represent 
how much greater the resisting capacity of a structure or component is relative to an 
assumed load. With respect to slope stability, FoS is the ratio of shear resistance to 
driving force along a potential failure plane. There are multiple methods available to 
calculate the factor of safety for slope stability analysis, such as the limit equilibrium 
method (Huang, 2014), finite element method (Liu et al., 2015), finite difference method 
(Soren et al., 2014), and discrete element method (Lu et al., 2018; Zebarjadi Dana et al., 
2018). A factor of safety greater than 1.0 implies the slope is stable; if FoS is equal to 
one, the slope is at the verge of failure; and if the FoS is less than one, the slope is 
unstable (West et al., 2018). FoS of a slope is an estimate based on standard industrial 
methods with inferred material parameters from laboratory or drilling data sources under 
different loading conditions. To calculate FoS of a slope, the equation below is used: 
 

Factor of Safety = Shear Strength / Shear Stress 
 

(1) 

 
 

Hypothetically, for any subsurface description to determine soil or rock mass 
behavior should encompass all properties in the subsurface body including all spatial 
variations of the given properties. This is not possible since one would need to depict the 
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rock and/or soil mass and describe/test every inch of the ground material (Hack et al., 
2006). That is why exploration efforts are critical in the beginning stage of open pit mine 
planning. Exploration methods encompass geological, geochemical, geophysical surveys, 
drill holes, trial pits, and underground openings. Detailed sampling such as drill cores, are 
generally spaced relatively close to one another to ensure the geological subsurface is 
defined properly (Hustrulid et al., 2013). However, drill hole data is usually limited for a 
mining project, which in turn could yield a variety of possible outcomes for an orebody 
(Menabde, 2018). Due to drillhole limitations, geomechanical and mining engineers use 
different geotechnical parameters to create a prospective model of the open pit mine. 
Generally, a deterministic boundary model is created to divide the mine site into multiple 
geomechanical domains based on the available data at the prospective mine site. Each 
geomechanical domain is assigned a geomechanical property value by averaging all the 
data falling within that domain, which is then used to determine slope stability for an 
open pit mine (Hack et al., 2006; Read et al., 2009). Since this model uses an average 
geomechanical property value, this infers the rock masses to be homogeneous, which 
does not differentiate the rock properties as they would be in the field. Some rock masses 
might have structural impurities such as mineral veins that change the strength of the rock 
body in the area, or dikes that are of different lithology unaccounted for (Kring et al., 
2020).  

 
In addition to the lack of data in all locations of a prospective mine, the 

assumption of a homogenous rock mass invites geomechanical uncertainty into the 
design of an open pit model. With geomechanical uncertainty in the design of open pit 
mines, it can be difficult to assess whether a model is safe and how to assess the 
economic benefits that would come from the mine. It is not possible to make a safe 
decision based on a single deterministic analysis by itself unless the ground profile, soil 
behavior, physics, and construction effects are known, can be computed to perfect 
accuracy, and there are no unknown variables (Phoon et al., 2022). Geomechanical 
uncertainty also stems from the historical background of the prospective area. Since the 
subsurface of the Earth was formed under a broad variety of complex physical conditions 
and no one was able to observe it, there is a knowledge gap in regards to the history of an 
area; hence why geomechanics encompasses large uncertainties (Curran et al., 2006). 
Previous studies have quantified geomechanical uncertainties and evaluated their impacts 
on slope stability. For example, Kring and Chatterjees (2020) applied two geostatistical 
simulation algorithms to quantify spatial uncertainty of Rock Quality Designation (RQD) 
values and fault zones. The resulting values were applied in a slope stability analysis 
which yielded reliability of different slope angles of an open pit gold mine. Another study 
on Sungun Copper Mine in Iran used three methods to quantify uncertainty within the 
slope stability analysis: Taylor series, Rosenblueth point estimate, and Monte-Carlo 
simulation method. The results showed that the Monte-Carlo simulations proved best and 
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most effective regarding precision reliability for slope stability analysis (Abbaszadeh et 
al., 2011). When it comes to review of methods for slope stability analysis, its shown that 
the deterministic approach tries to provide a reliable analysis with slope design 
recommendations, but fails to illustrate slope safety performance, which gives critical 
information on the factor of safety and risk of failure (Abdulai et al., 2019). Another 
study quantifying geomechanical uncertainty, conducted by Abdulai et al., (2021), 
demonstrated the use of probabilistic based analyses and compared it with a deterministic 
stability analysis on slope design with an open pit mine in Western Australia. He found 
that verification from deterministic finite element methodology in RS2 (Rocscience RS2, 
Version 11.007) is needed but the overall probabilistic analysis of slope designs yielded 
better results in quantifying uncertainty on slope design. A case study located on an open 
pit mine in the Andean region of Peru, analyzed the validity of existing bench slopes by 
kinematic and kinetic analyses with both deterministic and probabilistic approaches. The 
results showed that the probabilistic approach was favored not only due to quantitatively 
being able to measure critically occurring discontinuities due to variability in orientation, 
but also provides the engineers with more power to assess, review or validate bench slope 
design performance (Obregon et al., 2019). 

 
 The studies mentioned analyze slope stability in a variety of ways, but do not use 

the resulting slope stability analysis in pit optimization. As previously mentioned, the 
ideal mining operation will want to maximize profit while preserving the slope stability 
and safety of the mine. To maximize profit, open pit mine optimization must be 
conducted to see if the mining operation can maximize its economic value (Paithankar et 
al., 2021). Open pit optimization algorithms are used to determine the scope of deposit 
development required to ensure profitability while meeting the requirements for mine 
development. Incorporating uncertainty from technical, geological, and mining sources 
such as variability of the orebody grade, and quality of ore, should be acknowledged due 
to the importance of these variables (Dimitrakopoulos et al., 2004). General approaches 
for mine optimization are typically based on a single estimation model for the orebody 
but does not acknowledge the in-situ variability and uncertainty related with the orebody 
description. Conditional simulations based on drill hole data are able to generate several 
scenarios of a deposit, showing in-situ variability of spatial continuity which addresses 
the shortcomings of estimation methods. However, this can be inimical if the in-situ 
grade variability is ignored and the uncertainty in the orebody is documented, by 
decreasing the net present value from what was forecasted (Benndorf et al., 2012). Mine 
optimization algorithm utilizes Block Economic Value (BEV), which calculates the profit 
from a block that is used as input data for the algorithm. Block Economic Value 
represents the revenue estimated by dividing the 3D orebody model created off 
geological data into blocks, and then considering sales revenue and production cost for 
each block. However, the end results of open pit optimization algorithms that utilize BEV 
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as input data also contain uncertainty. Uncertainty using this method for mine 
optimization are due to the variation in mineral prices. Multiple variables such as 
production costs, exchange rates, and taxes are also not considered in open pit mine 
optimization but could be applicable with the same method used to calculate the mineral 
prices (Baek et al., 2016). Other research that explores open pit optimization such as the 
case study conducted by Paithankar et al. (2021) focuses only on the supply uncertainty 
and uncertainty in regard to the economic value in open pit mining complex optimization 
but does not consider mining width constraints. It should be noted that although these 
past studies look at pit optimization and include uncertainty of different kinds, 
implementation of geomechanical uncertainty is not evaluated in them.  

  
 This paper proposes the utilization of open pit optimization under geomechanical 
uncertainty, more precisely uncertainty of slope stability of an open pit mine. This 
proposed research directly utilizes geomechanical uncertainty, stemming from 
exploration drilling, to obtain a constant FoS used at an open pit mining operation that 
will ensure the safety of the mine while preserving the greatest possible profit generated. 
This integration of geomechanical uncertainty in open pit optimization will not only 
provide a viable interpretation of slope stability, but also will assess the economics each 
slope angle yields for the given open pit mine. With this information, mining operations 
can decide what would be the most beneficial slope angle that can generate the maximum 
amount of cash flow while ensuring the mine is operating safely. 
 
2. Materials & Methods 
 
2.1 Materials 
  
 The data involved in this study includes 145 core drill holes with RQD, lithology, 
and assay grade from a gold exploration project in the interior region of Alaska. The total 
collected depth of the drillholes was 140,854 ft (42,932 m), with a calculated average 
depth of 261 meters per drillhole. The core samples were collected at a spacing of 75 m 
inclined at around -50°. The site is being inspected for a potential open pit mine 
operation. The study area was used for reference regarding the geological and 
geomechanical background for this research. The gold is mainly located in quartz veins 
associated with intrusive dikes. A complex geological package engulfs the deposit with 
interleaved sedimentary and volcanic rocks. The rocks in this area have experienced 
major deformation events such as: folding, thrusting, dike intrusions, and collapse of 
rock. Due to these events, there are heavily fractured, weak to moderate strength rocks in 
the area. There was a total of nine different rock bodies identified within the project area, 
but five of the nine rock bodies were excluded from the study. This was due to the size 
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and recurrence of the five rock bodies in the subsurface, along with providing no benefit 
to gold grade estimations. Along with providing no benefit to gold grade estimations, the 
excluded rock types are located near the surface, so pre-stripping activities would remove 
these rock bodies and ultimately provide zero benefit to the slope stability analysis. 
However, the four main rock types utilized in this study go as follows: Cambrian (CAM), 
Upper Sediments (UPS), Main Volcanics (MVC), and Lower Sediments (LOS).  
Depending on the location of sampling, MVC comes in contact with both the CAM and 
LOS which is a result of the heavily faulted area. Although the assay grades are available 
for almost all drill holes, the geomechanical parameter (only RQD) is available for 27 
drill holes, with no other strength parameters given. 
 
 
 
2.2 Methods 
 
 The proposed research’s methodology is split into four sections (1) geological 
modeling and grade estimation; (2) geomechanical parameters simulation; (3) 
uncertainty-based factor of safety calculations & slope stability analysis; and (4) open pit 
optimization under geomechanical uncertainty. Figure 1 demonstrates the steps of this 
research. 

 

 
 

Figure 1: A flow chart illustrating how this research was conducted, with brief 
explanations of each step. 

 
 
2.2.1 Geological Modeling & Grade Estimation 
  
 The first step was to analyze the exploration drill hole data. This was done by 
looking at each drill hole, and seeing what rock types were present. For solid model 
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preparation, the North-South section lines were drawn with 100 m interval. In each 
section, all four rock-types were digitized. This allowed to see the extent of each rock 
type present, and how they were structurally layered. When complete, valid solid was 
generated for each rock type, they could be appended together to create a complex solid. 
A valid solid indicates there are no discrepancies within the solid, such as over lapping 
polygons or openings within the solid and ensures further analysis can be conducted 
using the solid. With a complex solid, this enabled an illustration of the subsurface to be 
made, which then provided an orebody to use for mineral resource and geomechanical 
parameter estimation. 

 The main goal with resource estimation is to generate a block model that contains 
estimated gold grade. The grade estimation was based off the gold grades found in the 
exploration drilling data. Before resource modeling, the gold assay data was composited 
to make a unique sample length. For this research composite length of 1 m was selected 
to minimize the dilution and generate enough composite samples (Kapageridis et al., 
2013).  However, the geology had to be preserved while compositing to see the gold 
grades in each rock type. This was done by using an “assay” file to create a rock code 
based off the lithology, and projecting over the “Z” plane. Missing data had default 
values assigned to them, which then were filtered out to ensure proper gold grades were 
assessed. Once compositing was done while preserving the geology, resource estimation 
could be conducted. 

Before resource modeling, spatial continuity modeling was performed. 
Experimental variogram was calculated using the composited samples. The directional 
anisotropy was tested by calculating a Rose Diagram (Ecker et al., 1999). The best fitted 
theoretical function was fitted before resource estimation, and a spherical structure had to 
be created and best fitted for the ore deposit. The type of estimation used was block 
model estimation and the estimator used was ordinary kriging (OK). OK was decided on 
since this kriging method is widely used to estimate a value at a point of a region for 
which a variogram is known. It uses data that is in the general area of the estimation 
location, and it can also be used to estimate a block value (Wackernagel, 2003). 
However, discretization was conducted to get block grades. Discretization is the process 
to subdivide space into a series of points or the method used for transforming a coarse 
grid into a set of conforming fine grids (Sunday et al., 2020). The discretization steps 
were as follows: 4 steps along the X direction, 4 steps along the Y direction, and 4 steps 
along the Z direction. By doing discretization, we are creating 64 (4x4x4) points within a 
5x5x5 meter block. These 64 points were used to calculate the block grades as mentioned 
previously. Once OK was conducted, a block model was created with a topographical 
surface applied to cut off any gold grade values that were above the surface, decreasing 
the total number of samples. This resulted in having an estimation of the gold ore deposit 
within each rock type and the overall rock body based off the exploration drilling data.  
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2.2.2 RQD modeling and Slope Stability Analysis 
 
 Rock Quality Designation was used to assess strength parameters since no data 
regarding the rock types’ cohesion or friction angles exists. Previous research shows that 
the geomechanical parameters of rock for slope stability analysis can be derived from the 
RQD (Deere et al., 1988; Kring and Chatterjee, 2020). Ideally for RQD modeling, 
performing spatial interpolation using the drill holes RQD data for each rock type would 
provide the best results. Unfortunately, a limited number of RQD data are available 
within each rock type (Table 1). Therefore, generating a spatial continuity map, i.e., 
variograms are difficult to achieve. In this research, the uncertainty of the RQD was 
modeled for each rock type by filtering the RQD data through each rock type identified, 
so that the RQD data was split by rock type. Filtering enabled a histogram to be created 
for each rock type showing general statistics, including a mean RQD value. With the 
RQD values from each rock type, Table 2 (Deere et al., 1988) is used as it converts the 
RQD value into parameters needed for a slope stability analysis; unit weight, cohesion, 
and friction angle. However, since is a stochastic approach for geomechanical 
uncertainty, each rock types histogram were evaluated further by taking K amount of 
RQD values from each rock type and putting it through Table 2. The K amount of RQD 
values were taken based off their respective rock types histogram distribution. With the 
assigned RQD values for each rock type and the corresponding strength parameters from 
Table 2, general statistics were generated to use for a stochastic analysis for slope 
stability and factor of safety calculations.  

 
Table 1: The number of RQD samples per rock type used in this study. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rock Type # of Samples 
CAM 702 
UPS 3030 
MVC 1739 
LOS 1666 
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Table 2: An illustration correlating RQD percentages with unit weight, cohesion, and 
angle of internal friction (Deere et al., 1988). 

 

RQD Designation  Unit Weight 
(kN/m3) 

Cohesion 
(kPa) 

Angle of 
Internal Friction 

(degree) 
Very Poor (0% ≤ RQD < 

25%) 20 150 15 

Poor (25% ≤ RQD < 
50%) 20 750 20 

Fair (50% ≤ RQD < 75%) 20 2,500 26 

Good (75% ≤ RQD < 
90%) 20 10,000 45 

Excellent (90% ≤ RQD < 
100%) 20 50,000 63 

Fault  20 150 15 
 

Using the converted cohesion and internal friction angles gathered from the RQD 
values, slope stability analysis is conducted using the limit equilibrium method. This 
method defines a proposed slip surface and analyzes the surface to gather the factor of 
safety. Two-dimensional sections are analyzed presuming plane strain conditions. Linear 
(Mohr-Coulomb) or non- linear relationships are assumed between shear strength and 
normal stress on the failure surface constituting the shear strengths of the materials along 
the potential surface plane.  
 

The critical slip surface where the factor of safety is the lowest value is calculated 
from the functional slope design. Contrasting numerical models use different 
optimization strategies to pinpoint the failure surface. A common approach to locate the 
failure surface utilizes heuristic techniques with search optimization. These techniques 
look at the stability of different layered slopes. Heuristic optimization considers circular 
and non-circular surfaces, and external forces to the slope, such as side effects from 
earthquakes or stabilization forces. Softwares for numerical modeling calculations derive 
in accordance with various methods of slices. The research presented uses the Bishop 
limit equilibrium method. Three different assumptions are made in regards to this 
method: (a) the failure occurs by rotation of a mass of the material on a circular slip 
surface; (b) the forces on the sides of the slice are horizontal; and (c) the total normal 
force acts at the center of the base of each slice. The Bishop method does not meet all the 
equilibrium conditions, but FoS that came from this method agree with FoS calculated 
from finite element methods. The limitations of the Bishop's method are understood, but 
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was utilized still due to its computational efficiency. Using the limit equilibrium method, 
with the appropriate variables defined in Figure 2, the factor of safety is calculated as 
follows: 

 

𝐹𝐹 =

∑ �𝑐𝑐′𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 + � 1
𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏 + 𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑′

𝐹𝐹
�𝑊𝑊 − 𝑐𝑐′𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏

𝐹𝐹 − 𝑈𝑈 . 𝑏𝑏 + 𝑊𝑊𝑤𝑤𝛽𝛽 + 𝑄𝑄𝑐𝑐𝑐𝑐𝑏𝑏𝑄𝑄� 𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑′��𝑛𝑛
𝑖𝑖=1

∑ (𝑊𝑊 + 𝑊𝑊𝑤𝑤𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐 + 𝑄𝑄𝑐𝑐𝑐𝑐𝑏𝑏𝑄𝑄)𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏 − ∑ 𝑊𝑊𝑤𝑤𝑏𝑏𝑠𝑠𝑠𝑠𝛽𝛽 + 𝑄𝑄𝑏𝑏𝑠𝑠𝑠𝑠𝑄𝑄𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

 

 

+ ∑ 𝑘𝑘ℎ𝑊𝑊 (𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏 − ℎ𝛼𝛼
𝑅𝑅

 )𝑛𝑛
𝑖𝑖=1  

 

(2) 
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Figure 2: An illustration of how forces act on a typical slice with explanations for each 

variable. 
 

The ordinary method of slices is the simplest method of slices. This method 
obtains the factor of safety, presuming the interslice forces are parallel to the base of each 
slice. Only normal forces are considered, and interslice forces are ignored in the Bishop 
method. To make this method computationally efficient, trial and error is utilized to get a 
factor of safety. The Rocscience Slide2 (Rocscience Slide2, Version 9.025) program is 
used for slope stability analysis. Using the RQD values and their associated parameters, a 
slope stability analysis is conducted and the factor of safety is calculated. Quantifying the 
uncertainty regarding slope stability, a factor of safety is calculated for different slope 
angle.  
 
A N number of random samples from the rock types RQD distribution were used for 
uncertainty quantification, are used for the factor of safety calculation, and Bishop 
method pit slope stability. A total number of N factor of safety values can be generated 
for uncertainty quantification of the pit slope. Each set of geomechanical parameters from 
four different rock types created had its slope factor of safety calculated and the factor of 
safety, F’s, mean value ( 𝑄𝑄𝐹𝐹) calculated by: 
 

𝑄𝑄𝐹𝐹 =
1
𝑁𝑁�𝐹𝐹𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 

 

(3) 

 

 
 

F = Factor of safety                                             Sm = Mobilized shear strength 

Sm = 𝑐𝑐`𝑏𝑏+𝑁𝑁`𝑡𝑡𝑡𝑡𝑛𝑛Φ 
𝐹𝐹

                                          U = Pore water pressure 
W = Weight of slice                                            Ww = Surface water force 
N` = Effective normal force                                 Kh = Horizontal seismic coefficient 
µ = Angle of inclination of external load             ZL = Left inter-slice force 
ZR = Right inter-slice force                                   HL = Height of force ZL 
δR = Right inter-slice force inclination angle        α = Inclination of slice base 
HR = Height of force ZR                                                             b = Width of the slice 
β = Inclination of slice top                                     ha = Height to the center of the slice 
h = Average height of slice                                     
δL = Left inter-slice force inclination angle 
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Where Fi is the factor of safety calculated for the ith randomly simulated geomechanical 
parameters. 
 
Using the central limit theorem, the probability of failure of the proposed slope stability 
model which implements uncertainty is calculated as: 
 

𝑝𝑝𝐹𝐹 =
𝑠𝑠𝐹𝐹
𝑁𝑁  

 

(4) 

 
 

Where 𝑠𝑠𝐹𝐹 = ∑ 𝐼𝐼 (𝐹𝐹𝑖𝑖)𝑁𝑁
𝑖𝑖=1  and 𝐼𝐼 (𝐹𝐹𝑖𝑖) is a function defined as: 

 

𝐼𝐼(𝐹𝐹𝑖𝑖) = �1 𝑠𝑠𝑖𝑖 𝐹𝐹𝑖𝑖  ≤ 𝑇𝑇ℎ  
0 𝑠𝑠𝑖𝑖 𝐹𝐹𝑖𝑖 >  𝑇𝑇ℎ  

 

(5) 

 
Where Th is the threshold value of the factor of safety. 

 
The steps involved for the uncertainty of the slope stability analysis are as follows: 
 
1. Generate histogram of RQD for each rock type. 
 
2. Convert histogram to unit weights, cohesion, and angle of internal friction using Table 
2.  
 
3. Generate N number of unit weights, cohesion, and angle of internal friction for each 
rock type by randomly sampling from the distribution. 
 
4. For i = 1 to N 

a. Assign the unit weights, cohesion, and angle of internal friction to each rock type 
b. Calculate factor of safety of ith map using Bishop method  
c. End for. 

 
5. Calculate the distribution function of factor of safety and the probability of failure 
using Eq. (3) and (4). 
 
 
2.2.3 Open Pit Optimization 
 
 The final pit limits of an open pit mine define what is economically mineable 
from a given deposit. It determines which blocks should be extracted and which ones 
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should be left in the ground (Dagdelen, 2001). Open pit mining operations depend on the 
proper design of the ultimate pit for optimal production planning (Chatterjee et al., 2016). 
The objective of open pit optimization is to determine the economic value of mineable 
reserves, in which profit will be maximized but also satisfy the slope angle. The 
maximum flow minimum cut algorithm is used, which solves the problem of finding a 
maximal closure within a mine graph where a minimum cut determines an optimal pit 
contour (Hochbaum, 2001). The algorithm utilized solves the issue of finding the best 
combinations of desirable and undesirable blocks that results in the maximization of 
profit (Hlajoane, 2020). For a given slope angle, to calculate the ultimate pit 
optimization, the following equations were used: 
 
Objective Function:  
 

Maximize ∑ ∑ 𝜈𝜈𝛾𝛾𝑏𝑏𝑥𝑥𝑏𝑏𝑏𝑏∈𝐵𝐵𝛾𝛾∈𝛤𝛤  
 

(6) 

 
 

𝑥𝑥𝑏𝑏 − 𝑥𝑥𝑏𝑏′ ≤ 0,   𝑏𝑏′ ∈ 𝜉𝜉𝑏𝑏 , 𝑏𝑏 ∈ 𝑐𝑐 
 

(7) 

 
 

𝑥𝑥𝑏𝑏 ∈ {0,1},𝑏𝑏 ∈ 𝑐𝑐 
(8) 

 
 
 
 
Where, 𝑣𝑣𝛾𝛾𝑏𝑏 is the economic value of mining block 𝑏𝑏 from simulation 𝛾𝛾. 𝑥𝑥𝑏𝑏 is the binary 
decision variable, which takes value 1 if mining block 𝑏𝑏 is inside the pit, 0 otherwise, 𝑏𝑏 ′ 
is the block that needs to mine before mining block 𝑏𝑏 to satisfy slope constraints, Γ is 
number simulated orebody models, and 𝑐𝑐 is the number of mining blocks present in the 
orebody model. The equation in Eq (6) attempts to maximize the total profits from the 
deposit where the equation right below represents precedence constraints, which ensures 
respecting the slope of the ultimate pit. Coming from resource estimation, only the 
measured and indicated resources that are meeting economic and slope constraints within 
the ultimate pit are categorized as proven and probable reserves (Hlajoane, 2020). 
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3. Results & Discussion 
 
3.1 - Exploration Drilling & Statistics of Gold Grades 
 

Figure 3 shows drill holes' locations from the deposit along with each rock type 
identified. One thing to note from Figure 3 is that although it shows nine different rock 
types, only four were assessed. This is due to the scarcity of the other rock types and how 
little they were displayed in the drill hole data; it would be difficult to justify including 
such small rock types in the analysis. The smaller rock types also do not show up in the 
majority of the drill holes as compared to the four rock types that are categorized. The 
rock types distribution over all the drill holes stay relatively in the same order from top 
down; CAM, UPS, MVC, then LOS. Some discrepancies arise in the order of rock types 
due to faulting in the area. Once the rock types were assessed, basic compositing was 
conducted to get an understanding of the gold grades (g/mt) present (Figure 4). The gold 
grades are all relatively low with grades between 0 and 0.050 g/mt with occasional thin 
slices of higher gold grades. The higher gold grades seem to show up at random and do 
not have a pattern within the orebody. Table 3 shows the general statistics for the overall 
gold grades while Table 4 shows the general statistics for gold grades associated with the 
four rock types used in this analysis. The average grade within all rock types is 0.012 
g/mt which is consistent with how low the gold grade is distributed throughout the 
subsurface. However, when looking at individual rock types, MVC has a higher average 
grade at 0.020 g/mt, which is expected as the gold deposit is associated with igneous 
composition. The lowest gold grades recorded are in the LOS. The total number of 
samples shown in Table 3 to Table 4 decrease due to samples being cut out from the 
smaller rock types not used in the analysis.  
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Figure 3: A 2D view example of the drill holes analyzed. The different colors associated 

with each drill hole represent a different rock type (Red - CAM, Blue - UPS, Green - 
MVC, and Yellow - LOS). It should be noted that the gray rock types are not utilized in 

this study. 
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Figure 4: An example of gold grade estimations (g/mt) after compositing through all the 

four rock types considered. 
 
Table 3: General statistics of all the gold grades within all rock types identified from the 

drill cores.  
 

# of Samples  37,723 

Mean 0.012 

Std. Deviation 0.031 

Variance 0.001 

CV 2.720 

Max 1.589 

Upper Quartile 0.012 

Median 0.003 

Lower Quartile 0.001 

Minimum 0.00 
 

 
Table 4: General statistics of gold grades associated with the four main rock types used in 

this study. 
 

 
 
3.2 - Geological Modeling  
 
 Using the data gathered from the exploration drilling, a solid of each main rock 
type was created to ensure the best visualization of the subsurface. It should be noted that 
in the creation of the solid, experts’ knowledge was taken for preparing them. As shown 
in Figure 5, the blue rock type (UPS) is the most spread out throughout the subsurface 
while CAM is most concentrated in a single location. Each rock type varies in thickness 
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throughout the study area. Since each solid is based on the drill cores, each rock type’s 
solid could only be made where drill cores were extracted. Not all places within the study 
area could be reached by drilling, hence the gaps present between rock types. Each solid 
created is valid, closed, and does not have any other discrepancies associated with it. The 
appended solid, as shown in Figure 6, demonstrates when the rock types are combined, 
forming one orebody. The orebody still shows the full distribution of the rock types in the 
subsurface and does not exclude any part of a single rock type. Importantly, the appended 
solid is also valid, closed, with no discrepancies associated with its creation.  

 

 
 
Figure 5: An illustration of the four main rock types in a solid form (Red - CAM, Blue - 

UPS, Green - MVC, and Yellow - LOS). This shows the layering of each rock type 
relative to one another, and how each rock type is distributed in the subsurface 
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Figure 6: The appended solid of the four main rock types illustrating the complex 
geology in the study area. This orebody is utilized in grade estimation.  

 
  

Figure 7 shows the best fitted theoretical variogram with a spherical structure 
along with its respective parameters, as illustrated in Table 5, with a lag size of 10 and 
lag tolerance of five. Directional anisotropy was analyzed and found absent in the data. 
Figure 7 shows the general distribution of gold grades from the OK conducted, with its 
associated statistics shown in Table 6. The distribution of gold grades is skewed to the 
left, with little to no data following the right side of the histogram. Figure 8 gives an 
illustration of the OK gold grade results implemented in a block model with the 
topographical surface shown, giving a full 2D example of how the gold grades are spread 
out in the subsurface. There is no pattern with the gold grades or concentration of gold as 
they are distributed at random within the subsurface.  
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Figure 7: Best fitted, omnidirectional variogram for the gold grades in the OK process. 
 

 
 

 
Table 5: Parameters for the omnidirectional variogram. 

 
 
 
 

 
 

 
 
 
 
 
 
 

Variogram 
Type Total Sill Range Nugget 

Spherical 0.00119 46.349 0.00079 
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Table 6: General statistics from the histogram of the OK gold grade results found in the 
orebody. 

 

 Orebody 
 

Total # of 
Samples 43,442  

Mean 0.01  

Std. Dev. 0.014  

Variance 0  

CV 1.357  

Max 0.246  

Upper Quart. 0.014  

Med. 0.006  

Lower Quart. 0.002  

Min. 0  
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Figure 7: Histogram of OK results within the orebody. 
 

  
Figure 8: Gold grade distribution shown in a 2D view, with topographical surface applied 

(blue) to illustrate the gold deposits extent in the subsurface.  
 

3.3 - RQD Percentages of Each Rock Type 
  
 Figure 9 illustrates the range of RQD values recorded for each rock type while 
Table 7 shows the statistical properties for each rock type. The rock types distributions 
are all skewed to the left, with very few values to the right of the distribution. The MVC 
histogram shows more values spread through the histogram but ultimately stays skewed 
to the left. However, it's clear that the RQD for the four rock types are poor, which is due 
to the environment and faulting that occurred here. The strongest rock type present is 
MVC with a mean value of 36.951 while the weakest rock type seems to be the LOS with 
a mean value of 15.628. The difference of strength values could be due to how much 
deformation occurred with each rock type along with the composition of each. Alongside 
that, this difference is to be expected as igneous rocks are generally stronger than 
sedimentary rocks. Variances are high within Table 7 due to the scarcity of the data, but 
the general statistics are still applicable. An anova test was conducted on the RQD data to 
show the statistical significance (Table 8). The F-value and p-value results from anova 
test reject the null hypothesis, meaning the means of RQD from different rock type are 
not the same. Thus, the RQD data from each rock type was modeled separately. 
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Table 7: Statistical properties for each rock type regarding RQD values. 
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Figure 9: Histograms of RQD percentages for each rock type. 
 

 
 
 

Table 8: Anova test results illustrating that the population means are not equal. *** 
signifies the data is less than 0.001. 

 

  Df Sum Sq Mean 
Sq 

F 
Value Pr (>F) 

Geocode 3 423155 141052 
269.9 <2e-16*** 

Residuals 7133 3728004 523 
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3.4 - Slope Stability 
  
  Based on the histograms for each rock type, 1000 random RQD values were 
assessed using Monte Carlo sampling for a stochastic analysis. Using Table 2, 
conversions were made with each RQD sample to obtain a cohesion value, angle of 
internal friction, and unit weight. Table 9 shows the mean values of 1000 random 
samples of these properties for all four rock types. From Table 9, most of the samples are 
in the very poor to poor quality range which yields a low cohesion and internal friction 
angle. The values for cohesion and internal friction for all rock types are relative to one 
another besides the MVC value. As mentioned earlier, due to its volcanic nature and 
igneous composition, it is expected that this rock type should yield a higher strength 
compared to the others.  

 
 

Table 9: Data used for material properties of the slope stability analysis. 
 

 
 

A single slope with a catch bench was inputted to get an idea of how different 
slope angles affected the stability of the overall slope. The slope angles' range was 
selected based off Kring & Chatterjee’s (2020) work, since the same data set is used here. 
The slope angles evaluated were picked at random between the range given. The 
minimum angle considered is 37° and maximum slope angle is 56°. A total number of 
nine slope angles were evaluated using Monte Carlo simulation. The results produce a 
histogram that shows the FoS values generated. However, for simplistic purposes, only 
the 56° histogram is being demonstrated (Figure 12). Each histogram shows the range of 
FoS values that are evaluated through the 1000 simulations. It utilized a log-normal 
distribution with it being heavily skewed to the left. Based on the simulations, mean 
factor of safety, variance of factor of safety, and probability of failure were calculated for 
three different factors of safety, and are presented in Table 10.  
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The results demonstrated that angles 37 through 50 showed no probability of 
failure while angles 51 through 56 indicated probability of failures as the FoS increased. 
This is expected as lower slope angles yield a higher FoS and high reliability due to the 
load being less on the slope. Once a load reaches the maximum stress on a slope, 
probability of failure increases. In this case, its demonstrated that after the slope is 
increased past 50 degrees, the slope begins to experience higher levels of stress which 
increases the probability of failure. From then on, the steeper the slope angle assessed, 
the higher the probability of failure was within all three FoS ranges. Some discrepancies 
arise in the mean and variance FoS calculations due to having to filter out negative values 
that were generated during the slope stability analysis, hence giving lower values than the 
rest of the slope angles analyzed. The three different FoS were used to demonstrate a 
conservative vs. risk-taking approach, depending on the mining operation’s needs and 
based on industry standards. Figure 11 shows an example of the slope design used for the 
slope stability analysis with the four rock types assigned to it. Thicknesses of each rock 
type were estimated based on a 2D cross sectional view of each rock type in the block 
model as shown in Figure 10.  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10: The different rock types illustrated in the block model and used for thickness 
estimation in Slide2. Blue - CAM, Pink - UPS, Red - MVC, and Yellow - LOS. The teal 

at the top encompasses the rocks that were not used in this analysis. 
 
 
 

 



31 
 

 
 

Figure 11: An example of the slope design used. This picture specifically uses a 56° slope 
angle to be analyzed for slope stability. The layers top down go CAM, UPS, MVC, LOS. 

Each rock type is assigned with its respective simulated strength parameters. 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: A histogram illustrating the FoS log-normal distribution from the 56° 
slope stability analysis. 
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Table 10: Probability of failure percentages for each slope angle evaluated, with 

respect to the given FoS utilized. 
 

Slope 
Angle 

Mean 
FoS 

Variance 
of FoS 

Probability of 
Failure (%) 

with FoS 1.0 

Probability of 
Failure (%) 

with FoS 1.25 

Probability of 
Failure (%) 

with FoS 1.5 

37 27.328 672.695 0 0 0 
39 26.169 593.035 0 0 0 
42 24.650 489.066 0 0 0 
48 12.613 48.732 0 0 0 
49 11.433 30.564 0 0 0 
50 11.296 29.430 0 0 0 
51 9.593 772.504 31.3 37.7 43 
54 2.340 12.857 47 53 59 
56 2.612 19.271 48 54 60 

 
 
 
3.5 - Pit Optimization 

 
Pit optimization was conducted with, at the time of writing this, a gold price of 

$1852.0 per ounce (oz av). Multiple pits were generated with each slope angle used and 
Figure 13 shows an example of two of the nine pits generated. Table 11 illustrates the 
different cash flows each angle yields, while incorporating the probability of failure values 
from each FoS evaluated from the slope stability analysis. This demonstrates that the lower 
slope angles yield less cash flow than the steeper slope angles used. The range of the cash 
flow varies greatly as there is a ~701-million-dollar (US dollar) difference between the 
lowest slope angle evaluated (37°) and highest slope angle evaluated (56°). The difference 
of one degree as shown with the jump from 50° to 51° illustrates how critical a slope angle 
is for an open pit mining operation as the profit generated increases roughly by ~40 million 
dollars (US dollar). However, a higher probability of failure resides in the steeper slope 
angles which is to be expected. Due to the constantly changing price of gold, these prices 
may increase or decrease which could influence a mining operations decision on which 
angle yields most profitable. This decision will ultimately be decided within the constraints 
the FoS probability of failure produces, as this ensures a safe mining operation will be in 
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place. Figure 14 shows a graphical illustration of how slope angles influence the profit and 
probability of failure. Based on Figure 14, where the profit generated and probability of 
failure intersect, a threshold slope angle can be determined. This angle, 51.5°, is the 
maximum slope angle that could be used since exceeding slope angles illustrate the 
probability of failure outweighs the profit generated. With this knowledge, 
recommendations could be made. If one were to choose a conservative approach, using a 
FoS of 1.25, and ensure there is theoretically zero chance of failure while still generating 
the most profit, a slope angle of 50° would be the optimal choice. In contrast, if one 
decides to do a risk-taking approach utilizing the same FoS, the maximum slope angle that 
could be used is the threshold value, 51.5°, as the probability of failure outweighs the 
profit generated for steeper slope angles. 

 
 

 
 
 

 
Figure 13: Illustration of the ultimate pit generated. These were generated for pit 

optimization. The top picture is a slope angle of 37°, while the bottom picture uses a 
slope angle of 56°. 
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Table 11: Each slope angle evaluated with its probability of failure based on a given FoS, 
along with its economic value if used for the open pit mine. 

 

 
 

 
 

Figure 14: An illustration of how different slope angles influence the profit and 
probability of failure using a FoS value of 1.25. 
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37 0 0 0 2.234 
39 0 0 0 2.326 
42 0 0 0 2.462 
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49 0 0 0 2.721 
50 0 0 0 2.741 
51 31.3 37.7 43 2.787 
54 47 53 59 2.895 
56 48 54 60 2.935 
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4. Conclusion 
 
 This research encompasses geomechanical uncertainty with ultimate pit 
optimization. The gold grade data from exploration drilling are estimated with OK to 
have an estimation of the total gold deposit in the subsurface. Since there was limited 
RQD data given from the initial exploration drilling, a slope stability analysis was 
conducted using nine slope angles, utilizing the same data set as Kring & Chatterjee 
(2020). Each slope angle yields different probabilities of slope failure, given the different 
rock strength parameters. Once the slope angles were assessed, pit optimization was 
conducted to see the economic value (cash flow) each angle yielded with the gold grades 
(Table 11). The higher slope angles yielded a greater profit while the lower slope angles 
did not generate as much cash flow. A threshold value of 51.5° was determined based on 
Figure 14 and should not be exceeded due to the probability of failure outweighing the 
profit generated from steeper slope angles. The steeper the slope angle used, the higher 
the chance of failure is for the slope.  
 
4.1 Limitations and Further Studies 
 

It is very important to note that stability analysis results are dependent on the 
location of the pit slope. A slope stability analysis would need to be conducted in every 
location of the pit to ensure a stable slope angle is utilized. This analysis uses a simplified 
model for slope stability analysis to showcase the impact of geomechanical uncertainty 
on open pit mine planning. Therefore, several assumptions were made to conduct this 
research. For example, no rock fracture and freeze-thaw mechanism from the frigid 
Alaska weather were not considered. Moreover, only one single mechanism of slope 
failure was considered. Further research should look at these assumptions further to 
provide a more reliable model and results overall. However, the scope of this research 
illustrates that incorporating geomechanical uncertainty is possible in open pit 
optimization, using the methods presented in this paper.  
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