
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2023

EXPLORING HIGH PERFORMANCE AND ENERGY EFFICIENT EXPLORING HIGH PERFORMANCE AND ENERGY EFFICIENT

GRAPH PROCESSING ON GPU GRAPH PROCESSING ON GPU

Robert P. Watling
Michigan Technological University, rwatling@mtu.edu

Copyright 2023 Robert P. Watling

Recommended Citation Recommended Citation
Watling, Robert P., "EXPLORING HIGH PERFORMANCE AND ENERGY EFFICIENT GRAPH PROCESSING ON
GPU", Open Access Master's Thesis, Michigan Technological University, 2023.
https://doi.org/10.37099/mtu.dc.etdr/1564

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Numerical Analysis and Scientific Computing Commons, Other Computer Sciences Commons, and
the Systems Architecture Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/1564
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1564&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1564&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1564&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1564&utm_medium=PDF&utm_campaign=PDFCoverPages

EXPLORING HIGH PERFORMANCE AND ENERGY EFFICIENT GRAPH

PROCESSING ON GPU

By

Robert P. Watling

A THESIS

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Computer Science

MICHIGAN TECHNOLOGICAL UNIVERSITY

2023

© 2023 Robert P. Watling

This thesis has been approved in partial fulfillment of the requirements for the Degree

of MASTER OF SCIENCE in Computer Science.

Department of Computer Science

Thesis Co-advisor: Dr. Zhenlin Wang

Thesis Co-advisor: Dr. Junqiao Qiu

Committee Member: Dr. Soner Onder

Department Chair: Dr. Andy Duan

Dedication

To Dr. Junqiao Qiu,

for his flexibility despite difficult circumstances.

To my mother,

who exemplifies perseverance and curiosity–which guides me in all of my pursuits.

Contents

List of Figures . xi

List of Tables . xiii

Definitions . xix

List of Abbreviations . xxi

Abstract . xxiii

1 Introduction . 1

2 Background . 5

2.1 Graph Basics . 5

2.2 Graph Processing . 7

2.2.1 Graph Processing Algorithms 7

2.2.2 Graph Processing Algorithm Variants 11

2.2.3 Graph Processing on GPU Architectures 15

2.3 Motivation . 19

vii

3 EEGraph . 23

3.1 Overview . 23

3.2 Variant Processing Design . 24

3.3 Memory Management . 25

3.4 Subgraph Profiling . 27

3.5 Measurement . 29

3.5.1 Energy Measurement . 29

3.5.2 Performance Measurement 33

4 Evaluation . 35

4.1 Software Environment . 35

4.2 Datasets . 36

4.3 In-Memory Graph Processing . 37

4.3.1 Performance and GPU Energy Consumption of In-Memory

Graphs . 38

4.3.2 Performance and GPU Energy Consumption for Subgraphs of

In-Memory Graphs . 48

4.4 Out-of-Memory Graph Processing 56

4.4.1 Performance and GPU Energy Consumption of Out-of-Memory

Graphs . 57

4.4.2 Performance and GPU Energy Consumption for Subgraphs of

Out-of-Memory Graphs . 62

viii

5 Related Work . 69

5.1 GPU-side Graph Processing . 69

5.2 Heterogenous Graph Processing . 71

5.3 Energy Efficiency of GPU Computations 73

6 Conclusion . 75

References . 79

ix

List of Figures

2.1 A Graph Before and After Tigr [24] Transformation (right) 13

2.2 Synchronous TD Variant . 14

2.3 Synchronous DD Variant with Shaded Inactive Nodes 14

2.4 Asynchronous TD . 14

2.5 Asynchronous DD . 15

2.6 GPU Organization [26] . 16

2.7 GPU Multihtreading [26] . 17

3.1 Energy Measurement Calculation 31

4.1 Google Execution Time (ms) and Energy Consumption (mJ) 39

4.2 LiveJournal Execution Time (ms) and Energy Consumption (mJ) . 40

4.3 Pokec Execution Time (ms) and Energy Consumption (mJ) 41

4.4 Road-CA Execution Time (ms) . 43

4.5 Road-CA Execution Time (ms) and Energy Consumption (mJ) with-

out Subway . 43

4.6 Skitter Execution Time (ms) and Energy Consumption (mJ) 44

xi

4.7 Google Subgraph Execution Time (ms) and Energy Consumption

(mJ) . 49

4.8 LiveJournal Subgraph Execution Time (ms) and Energy Consumption

(mJ) . 50

4.9 Pokec Subgraph Execution Time (ms) and Energy Consumption (mJ) 51

4.10 Road-CA Subgraph Execution Time (ms) and Energy Consumption

(mJ) . 53

4.11 Skitter Subgraph Execution Time (ms) and Energy Consumption

(mJ) . 54

4.12 Twitter-MPI Execution Time (ms) and Energy Consumption (mJ) . 58

4.13 Friendster Execution Time (ms) and Energy Consumption (mJ) . . 59

4.14 Twitter-WWW Execution Time (ms) and Energy Consumption (mJ) 60

4.15 Twitter-MPI Subgraph Execution Time (ms) and Energy Consumption

(mJ) . 63

4.16 Friendster Subgraph Execution Time (ms) and Energy Consumption

(mJ) . 64

4.17 Twitter-WWW Subgraph Execution Time (ms) and Energy Consump-

tion (mJ) . 65

xii

List of Tables

2.1 Update and Initialization for Graph Algorithms 10

3.1 Relevant Energy Points . 32

4.1 In-Memory Graph Datasets from SNAP Project[15] 37

4.2 Large Datasets from SNAP [15] and KONECT [14] 37

4.3 Google Normalized Performance and Energy 39

4.4 Google Maximum Percentage of Active Nodes & Kernel Iterations . 39

4.5 LiveJournal Normalized Performance and Energy 40

4.6 LiveJournal Maximum Percentage of Active Nodes & Kernel Itera-

tions . 40

4.7 Pokec Normalized Performance and Energy 42

4.8 Pokec Maximum Percentage of Active Nodes & Kernel Iterations . . 42

4.9 Road-CA Normalized Performance and Energy 43

4.10 Road-CA Maximum Percentage of Active Nodes & Iterations 44

4.11 Skitter Normalized Performance and Energy 45

4.12 Skitter Maximum Percentage of Active Nodes & Kernel Iterations . 45

4.13 Classic Speedup Over UM and Subway 46

xiii

4.14 Classic Energy Consumption Improvement Over UM and Subway . 46

4.15 UM Speedup Over Subway . 47

4.16 UM Energy Consumption Improvement Over Subway 47

4.17 Google Subgraph Normalized Performance and Energy 49

4.18 Google Subgraph Selected Relative Speedup & Energy Difference vs

Full Selection . 49

4.19 LiveJournal Subgraph Normalized Performance and Energy 51

4.20 LiveJournal Subgraph Selected Relative Speedup & Energy Difference

vs Full Selection . 51

4.21 Pokec Subgraph Normalized Performance and Energy 52

4.22 Pokec Subgraph Selected Relative Speedup & Energy Difference vs Full

Selection . 52

4.23 Road-CA Subgraph Normalized Performance and Energy 53

4.24 Road Subgraph Selected Relative Speedup & Energy Difference vs Full

Selection . 53

4.25 Skitter Subgraph Speedup Over Async-DD 54

4.26 Skitter Subgraph Selected Relative Speedup & Energy Difference vs

Full Selection . 54

4.27 Overall Subgraph Speedup Difference for Small Graphs 56

4.28 Overall Subgraph Energy Difference for Small Graphs 56

4.29 Subgraph Size and Generation Time 56

xiv

4.30 Subgraph Memory Size and Average Execution Times 56

4.31 Twitter-MPI Normalized Performance and Energy 58

4.32 Friendster Normalized Performance and Energy 59

4.33 Twitter-WWW Normalized Performance and Energy 60

4.34 Out-Of-Memory UM Speedup Over Subway 62

4.35 Out-Of-Memory UM Energy Improvement Over Subway 62

4.36 Twitter-MPI Subgraph Normalized Performance and Energy 63

4.37 Twitter-MPI Subgraph Selected Difference vs Full Selection 64

4.38 Friendster Subgraph Normalized Performance and Energy 64

4.39 Twitter-WWW Subgraph Normalized Performance and Energy . . . 66

4.40 Twitter-WWW Selected Difference vs Full Selection 66

4.41 Overall Subgraph Speedup Difference for Large Graphs 67

4.42 Overall Subgraph Energy Difference for Large Graphs 67

4.43 Subgraph Size and Generation Time for Out-Of-Memory Graphs . . 67

4.44 Subgraph Memory Size and Average Execution Time for Out-Of-

Memory Graphs . 67

xv

List of Algorithms

1 Algorithm for BFS, CC, SSSP, and SSWP 10

2 Algorithm for PR . 11

xvii

Definitions

graph Structure that contains a set of vertices and a set of edges

vertex A point on a graph representing an endpoint of information

edge A pair of vertices representing a connection

node Synonymous with vertex

thread Smallest possible parallel entity for computations

block Collection of warps on GPU

warp Collection of 32 threads on GPU

frontier Set of nodes available for updates in graph processing

TLB Mechanism that translates addresses

xix

List of Abbreviations

ASYNC Asynchronous Graph Processing

BFS Breadth-first search algorithm

CC Connected components algorithm

CUDA Compute Unified Device Architecture

DD Data driven

EEGRAPH Energy Efficiency Graph

FPGA Field-Programmable Gate Array

GPU Graphical Processing Unit

KONECT The KONECT Project

NVIDIA Nvidia Corporation

NVML Nvidia Management Library

PR PageRank Algorithm

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Thread

SNAP Stanford Network Analysis Project

SSSP Single Source Shortest Path Algorithm

SSWP Single Source Widest Path Algorithm

SYNC Synchronous Graph Processing

xxi

TD Topology Driven

TLB Translation lookaside buffer

UM Unified Memory

xxii

Abstract

Parallel graph processing is central to analytical computer science applications, and

GPUs have proven to be an ideal platform for parallel graph processing. Existing GPU

graph processing frameworks present performance improvements but often neglect two

issues: the unpredictability of a given input graph and the energy consumption of

the graph processing. Our prototype software, EEGraph (Energy Efficiency of Graph

processing), is a flexible system consisting of several graph processing algorithms

with configurable parameters for vertex update synchronization, vertex activation,

and memory management along with a lightweight software-based GPU energy mea-

surement scheme. We observe relationships between different configurations of our

software, performance, and GPU energy for processing in-memory and out-of-memory

graphs. The ideal parameters are discovered for specific input graphs by analyzing

the observed relationships. We also present the utility of subgraph generation to

predict the performance and energy consumption of complete graph configurations.

EEGraph improves upon state-of-the-art GPU-based graph processing software by

2.08 times for performance and 1.60 times for GPU energy for processing in-memory

graph datasets. Additionally, EEGraph improves upon the state-of-the-art by 3.30

times for performance and 1.63 times for GPU energy for processing large out-of-

memory graph datasets.

xxiii

Chapter 1

Introduction

Graphs and graph processing algorithms are fundamental to computer science and

are commonly used in related fields to deliver deep contextual knowledge in analysis

applications. These applications include compiler design, computer security, artificial

intelligence, bioinformatics, navigation systems, and more. Thus parallel graph pro-

cessing softwares have been subsequently developed for CPU and GPU platforms to

provide more performance-sensitive solutions for these applications. Recently, GPU-

based graph processing implementations have proven advantageous due to the GPU’s

massive parallelism, high memory bandwidth, and energy efficiency. Energy efficiency

has been increasingly focused on in computer systems research to reduce computer

systems’ economic and environmental impacts. However, despite their popularity

and effectiveness, there is limited research on the energy efficiency of parallel graph

1

processing algorithms for GPU-based systems. Therefore we present our prototype

software EEGraph (Energy Efficiency of Graph processing), an extension of state-of-

the-art GPU graph processing frameworks with configurable parameters for perfor-

mance and energy efficiency.

EEGraph can perform five graph processing algorithms with combinations of two crit-

ical processing parameters and three memory options. EEGraph has GPU-based par-

allel implementations of Breadth First Search (BFS), Connected Components (CC),

PageRank (PR), Single Source Shortest Path (SSSP), and Single Source Widest Path

(SSWP). The fundamentals of graphs, the graph processing algorithms, and graph

processing algorithms on GPUs are presented in Chapter 2.

The specific implementation of EEGraph is presented in Chapter 3. We present the

software system used to develop EEGraph. In Chapter 3, we also discuss the software

that inspires EEGraph. We also motivate our intuition for out-of-memory graph

processing using unified memory and our choice of vertex-centric graph processing for

full graphs and subgraphs. Lastly, we conceptualize EEGraph’s specific measurement

collections for execution time and GPU energy.

In Chapter 4, we evaluate both in-memory and out-of-memory graph datasets. We

discuss the relationships between the various options for EEGraph and compare them

2

to the state-of-the-art graph processing software Subway [29]. The averages of sev-

eral vertex-induced subgraphs are then evaluated for each dataset, suggesting vertex-

induced subgraphs are a viable option for profiling graph algorithms and other tasks.

We then discuss similar works and outline EEGraph’s contribution in Chapters 5 and

6, respectively. EEGraph is derived from many existing parallel graph processing

approaches in computer systems. Chapter 5 discusses those existing approaches,

including works on graph processing performance, heterogeneous graph processing

performance, and energy efficiency on GPUs. Finally, we conclude that our software,

EEGraph, provides significant performance and GPU Energy efficiency benefits for

graph processing on GPUs.

EEGraph improves on the state-of-the-art graph processing software for both in-

memory graph processing and out-of-memory graph processing. Our software pro-

vides configurations for vertex update synchronization, vertex activation, and mem-

ory resource selection. To our knowledge, EEGraph has one of the first lightweight

software-based GPU energy measurement schemes. Additionally, we observe the via-

bility of vertex-induced subgraphs for profiling graph processing software. Ultimately,

EEGraph significantly improves upon the state-of-the-art graph processing software,

Subway [29]. On average, EEGraph explicit data transfer implementation has a mean

speedup of 2.08 for in-memory graphs and an energy improvement of 1.60 over uni-

fied memory and Subway implementations for in-memory graph datasets. EEGraph

3

improves upon Subway using a unified memory implementation for processing out-

of-memory graph datasets with a speedup of 3.30 and an energy improvement of 1.63

on our system. Therefore, EEGraph is a flexible software for graph processing both

in-memory and out-of-memory graphs on GPUs.

4

Chapter 2

Background

2.1 Graph Basics

A graph G = (V,E) is a set of V vertices and a set E of pairs of vertices called edges

[13]. The vertices represent points of information, and the edges are connections

between those points. We will use the term node and vertex interchangeably. An

edge can be directed (one-way) or undirected (two-way). Then for two vertices x and

y, we say x is adjacent to y if an edge exists between them. This edge is incident

to both x and y. The degree of a vertex is the number of edges incident to it. We

explore both directed and undirected graphs of various sizes and average degrees in

this work.

5

We also discuss more intermediate graph theory concepts: the diameter of graphs

and induced subgraphs of a graph. To define the diameter, we first need to define

a walk. A walk is a sequence of visited nodes along edges in a graph. A path is a

walk of distinct vertices of a graph, and the distance between two distinct vertices is

the shortest path between them. Ultimately, the diameter of a graph is the greatest

distance between any pair of vertices in the graph [13]. The diameter of an input

graph in our scenario helps describe the graph’s connectivity.

A subgraph is a set G′ = (V ′, E ′) ⊆ G = (V,E) for some graph G such that V ′ ⊆ V

and E ′ ⊆ E. An edge-induced subgraph is a selected subset of edges and all nodes

of each of those edges. A vertex-induced subgraph is a selected subset of vertices

and every edge between a pair of selected vertices. Vertex-centric graph processing

is popular in research, so it follows that we explore vertex-induced subgraphs in

this work. Therefore we generate a vertex-induced subgraph of an input graph in

our work. Ideally, a well-generated vertex-induced subgraph will exhibit the same

characteristics as the whole input graph but require less processing. A quality vertex-

induced subgraph would help select the best configuration of critical parameters while

still being performance sensitive in an application setting.

6

2.2 Graph Processing

2.2.1 Graph Processing Algorithms

Several graph algorithms condense, search, or describe information represented by

graphs. We can classify graph processing algorithms into eight general categories:

graph traversal algorithms, graph analysis algorithms, components, communities, cen-

trality, pattern matching, graph anonymization, and other operations [8]. We employ

graph traversal algorithms, graph component calculation, and centrality measures.

The graph traversal algorithms that we discuss are breadth-first search (BFS), single-

source shortest path (SSSP), and single-source widest path (SSWP). The component

calculation algorithm is a traditional connected components algorithm (CC) [9]. The

centrality algorithm we analyze is an iterative algorithm called PageRank [28]. These

algorithms are extensively used in computer science and uniquely operate on graphs.

Graph traversal algorithms are essential for computing information flow in applica-

tions. In a sequential implementation, each algorithm we employ travels from vertex

to vertex and performs a comparison. BFS traverses each graph level to assign the

level to a value array or find a vertex by traversing levels. Parallel BFS compares each

vertices level to its neighbors. The vertex value converges to the minimum neighbors’

7

level plus one in the parallel implementation. BFS applications include recommen-

dation systems, puzzle solving, network broadcasting, and graph element searching.

SSSP is similar to BFS. SSSP calculates the shortest distance to each vertex from a

given source. Instead of minimizing the level of a vertex, the distance from a source

node is minimized at each vertex. The previously mentioned comparison ultimately

converges to the shortest possible distance from the source to a vertex. We adopt

a common parallel implementation from the traditional Bellman-Ford and Dijkstra

algorithms. An example of SSSP includes navigation systems and network routing.

SSWP is the converse of SSSP. The traversal is the same, except the comparison

results in the maximum distance from a source vertex to any other vertex. SSWP

applications include computer network design, wireless connections, and credit max-

imization in financial settings. Each traversal algorithm involves moving through

the graph and comparing the visited vertices. The key differences between these al-

gorithms result from the comparison. This comparison typically raises a flag upon

exhausted updates within a given loop that dictates the execution of the traversal.

The connected components algorithm identifies core subgraphs [8] [9]. Sequentially

this is done by a traversal and a comparison as well. In parallel, this is done by

generating ”super vertices” as described by Hirschberg et al. [9]. Components are

formed by assigning each node its sequential ID and updating clusters similar to

our traversal algorithms. The vertex clusters share characteristics that are useful in

dividing problem spaces. Image processing, compiler optimization, data mining, and

8

circuit analysis often divide a problem space using a components algorithm.

PageRank is an essential algorithm in the age of widespread internet access. Page

et al. developed PageRank as one of the core algorithms for the original Google

search engine. PageRank orders vertices (web pages) by importance by analyzing

edges (hyperlinks) within the graph (the world wide web). A simplified version of the

PageRank algorithm is best described by Page et al. as follows:

Let u be a web page. Then let Fu be the set of pages u points to and

Bu be the set of pages that point to u. Let Nu = |Fu| be the number

of links from u and let c be a factor used for normalization (so that the

total rank of all web pages is constant).

We begin by defining a simple ranking, R which is a slightly simplified

version of PageRank:

R(u) = c
∑

v∈Bu

R(v)
N(v)

[28]

The intuition behind PageRank is to propagate a rank of each vertex evenly to each

of its neighbors. We implement PageRank in parallel by adopting constants for the

initial ranks and subsequently calculating the change in ranking based on each node’s

degree. This is the common implementation of PageRank in parallel. Ultimately the

9

PageRank algorithm reaches a steady state. This state is reached after achieving a

rank value within a given accuracy threshold. PageRank is significant in our analyses

as it is a hugely popular iterative algorithm with high utility.

Graph algorithms are universal, efficient, and versatile structures essential to software

applications. We highlight the key differences between the algorithms in Table 2.1

with a general outline of the sequential algorithms for BFS, CC, SSSP, and SSWP in

Algorithm 1 and PR in Algorithm 2. In subsequent sections, we apply configurable

options that include node activation, synchronization, and memory resource selec-

tion. These algorithms ultimately help generalize the relationships between energy

consumption, performance, and input graph characteristics in a high-performance

computing environment.

Algorithm 1 Algorithm for BFS, CC, SSSP, and SSWP

Require: G = (vertices, edges)
Require: intialV alue, update()
distances← unsigned int[vertices.size()]
for d ∈ distances do

d← initialV alue
end for
for v ∈ vertices do

update(v, distance)
end for

Table 2.1
Update and Initialization for Graph Algorithms

Algorithm Initial Value Source Initial Value Update
BFS ∞ 0 Minimum level
CC node ID node ID Minimum component
PR Constant Constant Constant * (Rank / Out-degree)
SSSP ∞ 0 Minimum distance
SSWP 0 ∞ Maximum distance

10

Algorithm 2 Algorithm for PR

Require: G = (vertices, edges)
Require: intialV alue, update()
value← unsigned int[vertices.size()]
delta← unsigned int[vertices.size()]
for val ∈ value do

val← initialV alue
end for
for d ∈ delta do

d← 0
end for
for v ∈ vertices do

update(v, distance, delta)
end for

2.2.2 Graph Processing Algorithm Variants

We have implemented five parallel algorithms, namely Breadth-First Search (BFS),

Connected Components (CC), PageRank, Single-Source Shortest Path (SSSP), and

Single-Source Weighted Shortest Path (SSWP), for parallel processing. The parallel

graph processing algorithms can be performed on GPU and the CPU. To analyze these

algorithms, we have derived algorithm variants by combining two critical parameters:

synchronization and node activation.

Synchronization refers to the process of updating vertex values. Each algorithm vari-

ant incurs a necessary barrier at the end of each GPU kernel which is considered

synchronous in a traditional sense. However, the synchronization types are still com-

monly referred to as asynchronous and synchronous processing in other works [29]

[31]. This is because synchronization in graph processing refers to possible updates.

11

In asynchronous processing, vertex values are updated in the current iteration, which

can lead to faster convergence. However, this approach can also incur more irreg-

ular data communication, reducing performance. On the other hand, synchronous

processing only allows vertices to synchronize at the end of each iteration of a given

algorithm’s GPU kernel, using values from the most recently executed GPU kernel.

While synchronous processing may not converge as quickly as asynchronous process-

ing, it has the advantage of regular data communication, which aligns with the GPU’s

preference for all threads performing similar tasks. Understanding the tradeoffs be-

tween convergence and regular communication is key to our analysis.

Node activation is the other critical parameter in our algorithm variants. If node

activation is present, the computation is data-driven (DD). Data-driven computation

reduces the number of unnecessary updates by tracking active and inactive vertices.

This allows for more effective kernel execution regarding the total number of compu-

tations. Alternatively, topology-driven computation does not track node activation

and may incur unnecessary computations on inactive vertices. The topology-driven

computation would appear to underperform, but that is not necessarily the case. The

topology-driven computation may offset the overhead of label management for node

activation in data-driven variants [31]. Redundant computation by topology-driven

variants may also be offset by many threads [31]. The effectiveness of DD or TD is

likely related to the unique structure of each particular graph and how many nodes

would potentially be activated. We combine this with the synchronization strategies

12

to implement popular designs in parallel graph processing.

This work also applies Tigr’s transformation technique and these graph configura-

tions to optimize graph processing on GPU platforms [24]. Tigr’s technique involves

splitting nodes with high outdegree into a virtual layer, which reduces graph irreg-

ularity and improves performance. This is illustrated in Figure 2.1. By using this

technique and combining it with our configurations, we are also able to apply the

high-performance strategy of vertex-centric graph processing effectively.

2

1 3

4

5

6 2

1 1’ 3

4 4’

5

6

Figure 2.1: A Graph Before and After Tigr [24] Transformation (right)

Figure 2.2 illustrates the pairing of the synchronous and topology-driven parameters

(Sync-TD). Sync-TD performs graph algorithms on fixed sets of vertices without

restrictions on which nodes can receive updates. We relabel the fixed sets of vertices

similar to SEP-Graph [31]. The updates performed are synchronous, implying that

the update occurs after each kernel iteration. Figure 2.3 is quite similar to Figure

2.2 and illustrates the data-driven configuration counterpart for synchronous graph

algorithms. The primary difference is the labeling of active and inactive nodes in

addition to the synchronous updates.

13

T0

T1

21 1’ 3

4 4’ 5 6

T1

T0

21 1’ 3

4 4’ 5 6

Figure 2.2: Synchronous TD Variant

T0

T1

21 1’ 3

4 4’ 5 6

21 1’ 3

4 4’ 5 6

Figure 2.3: Synchronous DD Variant with Shaded Inactive Nodes

We also illustrate the asynchronous configurations of our parallel graph processing al-

gorithms. In the asynchronous variant, updates can occur within the current process-

ing iteration, resulting in irregularly exhausted computations at the end of each ker-

nel. Figure 2.4 shows the asynchronous topology-driven (Async-TD) variant, which

considers any available vertex until each thread has performed all possible work on

its portion of vertices. On the other hand, the asynchronous data-driven (Async-DD)

variant in Figure 2.5 only considers updates for active vertices. To contrast with the

node activation from Sync-DD, it should be noted that all vertices are initially active

in the Async-DD variant, whereas all vertices are inactive in the synchronous data-

driven variant. This distinction is necessary to ensure correctness when considering

the irregularity of the asynchronous variants’ computations.

T0

T1

21 1’ 3 1 2 1’

4 4’ 5 6 4 4’ 5

Figure 2.4: Asynchronous TD

14

T0

T1

21 1’ 3 1 2

4 4’ 5 6 4 4’

21 1’ 3 1 2

4 4’ 5 6 4 4’

Figure 2.5: Asynchronous DD

2.2.3 Graph Processing on GPU Architectures

Graph processing is well suited for the GPU due to its unique organization. The

organization of the GPU allows for massive parallelism, high memory bandwidth,

and scalability. The GPU is advantageous due to its design focus on the flow of large

amounts of information. The CPU design focus is on the execution of instructions

with the additional consideration of manipulating memory. The CPU is expected to

perform in more diverse settings that necessitate much of its design focus. Figure 2.6

depicts the differences between the CPU and GPU. The GPU is utilized in this work

for several reasons.

Graph processing is a well-defined problem space that is naturally parallelizable on

GPU architectures. The parallelization of some problems makes the GPU’s concep-

tualization of threads, data, and instructions advantageous. The design of the GPU

architecture is called single instruction multiple threads or SIMT [26]. SIMT is also

called Single Instruction Multiple Data or SIMD in traditional Flynn categories of

computer architectures [27]. The threads in SIMT architecture are data-centric and

15

Figure 2.6: GPU Organization [26]

operate with thousands of threads. The threads found on the CPU are instruction-

centric and number in tens of threads. The different perspective on threads enables

the GPU to operate in parallel more broadly than the CPU. Thus the GPU has

been characterized as a massively parallel architecture and is shown in Figure 2.7.

Massively parallel architecture arranges the threads in synchronized groups with ded-

icated memory resources on chunks of data to maximize the throughput [26]. The

arrangement of threads and data generates lanes of information that are optimal for

data-intensive programs such as graph processing.

The memory hierarchy on the GPU enables much of the thread-level abstraction

on the GPU. The memory hierarchy (Figure 2.6) of global memory, local memory,

shared memory, and register memory. The threads can access the global memory in

the same thread block with great abundance and slow access times [26]. Local memory

operates similarly to global memory. There is an abundance of local memory, like

16

Figure 2.7: GPU Multihtreading [26]

global memory. This abundance means that the access times are essentially the same.

Local memory differs from global memory by only allowing a single thread to access

it. Therefore local memory allows for easy development but incurs a performance

cost. Depending on the access pattern, global and local memory may be cached into

L1 or L2 cache. The shared memory operates with block-level access, like global

memory. However, it is significantly faster to access but is more scarce than global

memory as it utilizes the GPU cache. The GPU also has a set of registers. Registers

on the GPU operate similarly to CPU registers. They allow fast access times but are

the most scarce memory type. This work utilizes global memory as the input graphs

are large. Thus the capacity and transfer are more indicative of the performance

than fast access times. Data transfer is the major bottleneck in many accelerated

computing systems.

The data transfer is performed explicitly with software directives or implicitly using

17

unified memory. Unified memory is a single memory address space accessible from

both the host (GPU) and the device (GPU) [26]. The single memory address space

allows for implicit data transfer from the CPU host to the GPU device and easier

programming. The main drawback of utilizing unified memory is the overhead of

page faults. A page fault occurs when memory accessed by the GPU has not yet

been transferred to the GPU memory [29]. The desired data is then paged into the

GPU, which involves a transfer, translation look-aside buffer (TLB) updates, and page

table updates [29]. This overhead can be a performance disadvantage but allows for

easier programming and the ability to access memory beyond the GPU capacity. The

increased accessible memory space is especially important for processing large, out-of-

memory graphs, which are increasingly prevalent in real-world applications. Unified

memory can also be used on smaller graphs and still require paging due to the page

size of 4KB or 64KB depending on the system [6]. We explore the potential benefits

of unified memory graph processing compared to explicit data transfer approaches.

Parallel graph processing on GPUs is advantageous but also incurs many challenges.

These include data-driven computations, graph irregularity, and high data access

to computation ratio [18] [8]. We perform data-driven computations, as previously

mentioned. Our approach to data-driven graph processing is similar to existing works

that utilize an active node list [2] [33] [31] [29]. Our extension of Tigr helps combat

the irregularity problem on graphs [24]. The data access to computation ratio is

reduced by choosing the GPU platform. The massively parallel architecture makes it

18

well suited for the multiple data accesses of graph algorithms. These solutions guide

our implementation for graph processing and our choice of platform.

2.3 Motivation

There are many different implementations of GPU-based graph processing with dif-

ferent objectives. However, each implementation often focuses on a performance com-

ponent in isolation. EEGraph combines several state-of-the-art frameworks, utilizing

their collective high performance with additional analysis of GPU energy consump-

tion. Our software also introduces a subgraph profiler to assist in the analysis of the

graph processing parameters in a reduced way.

EEGraph explores graph processing algorithm variants as high-performance ap-

proaches to graph processing. A recent work, SEP-Graph, establishes this by per-

forming active node tracking during the execution of graph processing algorithms to

switch algorithm variants dynamically [31]. While the active node tracking during

execution is a viable proxy for performance, we observe the performance after the

graph processing. Our approach allows for more explicit performance measurement

but, more importantly, allows for the evaluation of GPU energy. GPU energy is equiv-

alent to instant power over time and can only be measured after execution. Memory

19

and thread usage profiling can often only be observed post-execution as well. There-

fore, a post-execution model is better suited when considering the variety of profiling

information possible for graph processing on GPUs.

EEGraph also includes the unified memory approach due to its popularity and utility

in recent GPU applications. Unified memory has two primary benefits: programma-

bility and out-of-memory computation. The more accessible programmability reduces

the complexity of the software development process and allows developers to focus

more on the problem space than the nuances of GPU programming. More impor-

tantly, unified memory’s shared address space allows for out-of-memory computations.

Subway explores using implicit unified memory graph processing and direct memory

transfer approaches for out-of-memory graph processing[29]. They show that their

direct approach has advantages over unified memory. However, more recent versions

of unified memory have subsequently been released since the publication of Subway.

Therefore we observe unified memory again for graph processing with a more fair per-

formance measurement and the inclusion of GPU energy consumption. GPU energy

consumption is of interest as the on-demand paging mechanisms of unified memory

has the potential to offer energy savings resulting from operating only on relevant

portions of the graph datasets for both small and large datasets.

Lastly, vertex-induced subgraphs are implemented in EEGraph to reduce the problem

space’s demands while replicating the complete graph’s behavior. Subgraphs are

20

utilized primarily to perform the previously motivated post-execution profiling. It

allows EEGraph to capture this valuable post-execution information within the bound

of GPU memory while only slightly misrepresenting the whole graph in most cases.

Ultimately EEGraph builds on established graph processing frameworks from a post-

execution profiling standpoint with the critical addition of GPU energy. We observe

the results of algorithm variants and unified memory, which are popular in GPU graph

processing. Additionally, vertex-induced subgraphs are generated to collect valuable

profiling information with reduced space demands. EEGraph improves upon previous

works and provides insightful analysis for GPU graph processing.

21

Chapter 3

EEGraph

3.1 Overview

At a high level, EEGraph contains four significant components, including algorithm

variants, memory management, subgraph profiling, and measurement from bottom

to top for five GPU-based graph processing algorithms, BFS, CC, PR, SSSP, and

SSWP. The critical parameters of vertex synchronization and vertex activation define

the algorithm variants. EEGraph also includes the ability to process both in-memory

and out-of-memory graphs. Vertex-induced subgraphs are also generated for both

types of memory management to infer the configurations’ performance for algorithm

variants and memory. The extension of unique graph processing software motivates

23

a precise measurement of execution time and GPU energy. These components guide

our analysis of graph processing on GPUs.

3.2 Variant Processing Design

EEGraph compares algorithm variants for small and large graphs on GPU archi-

tectures. The critical parameters of vertex synchronization and vertex activation

dictate the design of the variants. To achieve this, we have implemented each algo-

rithm variant using popular parallel implementations using CUDA. Each algorithm

variant has its own associated control loop, kernel, and activation lists inspired by

other GPU-based implementations [24] Tigr, SEP-Graph [31], and Subway [29] which

can be called as a library function after an input graph is read. We consider the

four variants of Async-DD, Async-TD, Sync-DD, and Sync-TD using implicit (uni-

fied memory) and explicit data transfer (classic and subway) that are selected via

command-line arguments. We assume our variant design, and proof of the variant

designs, particularly Sync and Async, is beyond the scope of this paper. The algo-

rithm variants are compared to Subway, which is an extension of Tigr for in-memory

graphs and an out-of-memory graph processor for large graphs.

The objective of the algorithm variants is to observe the best combination of the

critical parameters for graph processing. Each algorithm variant could offer the best

24

performance or GPU energy for a given graph, necessitating the profiling of all vari-

ants. This possibility is due to the unpredictability of the properties of a given input

graph resulting from the extraordinary expressiveness of the structure.

3.3 Memory Management

Another component of EEGraph is memory management. Memory management

refers to the different applications of unified memory for graph processing on GPUs.

Unified memory’s paging may be optimal for performance or GPU memory for pro-

cessing both in-memory and out-of-memory graphs. We contrast the memory man-

agement of EEGraph to Subway, especially for the out-of-memory graph processing.

Subway shows the benefits of subgraph computation for out-of-memory GPU memory

management schemes for graph problems. Subway claims performance improvements

compared to a CPU-based implementation Galois [22], but in 40% of their perfor-

mance results, the CPU-based implementation has better performance [29]. Subway

also primarily focuses on out-of-memory graph processing from a memory perspective,

and their results indicate better memory utilization [29]. However, unified memory

has had advancements since the publication of Subway. Subway uses CUDA Version

9 [29], and we use CUDA Version 11 on newer hardware. Subway also measures per-

formance as just processing performance (i.e., kernel execution time) while separately

evaluating the memory transfer. This method is practical but neglects that implicit

25

data transfer does not occur precisely at the GPU kernel boundary. Therefore, we

consider the data transfer time in our performance measurement by segmenting the

program at the first common assignment to GPU memory for the software presented

in this work. We aim to enhance the knowledge pioneered by Subway by quantifying

the performance and GPU energy consumption concerning implicit data transfers in

a unified memory approach with Subway as the comparison.

To implement a unified memory graph processing software, we extend Tigr with

unified memory (in addition to our algorithm variants) [24]. We enable uni-

fied memory by replacing cudaMalloc() with cudaMallocManaged() and remov-

ing explicit calls to data transfer functions in CUDA [26]. The usage hints

cudaMemAdviseSetReadMostly for the cudaMemAdvise() function are applied to op-

timize the graph structure that is typically only read by the GPU in this software

[26]. We observe memory management after reading an input graph and at the first

common memory assignment for each memory management implementation.

This unified memory approach is compared to the explicit approach of our algorithm

variants and Subway to understand the effects of modern GPU memory management

for in-memory and out-of-memory graph processing. In our evaluation, we denote

non-unified memory approaches as ’classic,’ unified memory approaches as ’um,’ and

Subway as ’subway .’ The analysis of the memory management for GPU-based graph

processing is significant as graphs will inevitably increase in size, and newer devices

26

will continue to enhance new approaches to memory management. Our evaluation

currently includes the memory implementations’ performance and GPU energy con-

sumption. The post-execution analysis and design of EEGraph also encourage other

ways of quantifying memory management on GPUs for graph processing and other

workloads.

3.4 Subgraph Profiling

The use of vertex-induced subgraphs in graph processing has several potential bene-

fits that we explore in this work. First, we investigate whether generating a vertex-

induced subgraph of an input graph can help infer the appropriate algorithm con-

figuration for a given graph. This approach could be beneficial for graphs that ne-

cessitate an out-of-memory approach. In this situation, a subgraph could sufficiently

select configurations reducing the memory footprint during the tuning stages of a

project as opposed to running the whole graph. Subgraphs are also helpful for en-

ergy calculations. Since energy is power over time, we can only calculate energy after

execution. Therefore we cannot switch runtime parameters like a previous work SEP-

Graph [31]. The post-execution evaluation would also be the case for other profiling

on GPUs, such as memory usage. By generating a subgraph and testing different

configurations, we can identify relationships that suggest optimal configurations for

the complete graph for performance and energy.

27

In our implementation, we generate the vertex-induced subgraph with a random se-

lection of five percent of the vertices and associated edges for in-memory graphs

and with one percent of the vertices for large out-of-memory graphs. We then ran-

domly select 50 percent of the subgraph’s vertices from the first 20 percent of vertices

for the complete graph, as many real-world graphs have highly skewed connectivity

patterns as shown in Table 4.1 and Table 4.2. Our software specifying the percentage

of nodes in the subgraph should not exceed 40 percent, as this could result in an

infinite loop in the current implementation. Additionally, knowledgeable users would

see that many vertices are counter-intuitive to generating a subgraph in this context.

Subgraph generation that retains the nature of the connectivity of the original graph

may be a simple yet effective approach in graph processing on GPUs.

Once we generate the subgraph, we can evaluate it using the same algorithms and

configurations as the complete graph. In our evaluation, we compare the best vari-

ants’ speedup and relative energy consumption in the complete graph to the best

variants’ speedup and relative energy consumption in the subgraph and report the

relative difference as a percentage. The results are similar if the difference is small.

We can infer the appropriate configuration from the subgraph for performance and

energy if the results are similar. Additionally, if the subgraph approach works well

for out-of-memory graphs, this could provide a way to profile these graphs in mem-

ory, potentially reducing profiling time and space. Using vertex-induced subgraphs

presents a promising avenue for improving graph processing efficiency and scalability.

28

3.5 Measurement

3.5.1 Energy Measurement

Another significant component of EEGraph is measuring the energy consumption of

graph processing on GPUs through experimental measurements. Currently, EEGraph

measures only the GPU’s energy. Given the heterogeneous nature of our work, it

would also be helpful to measure the system’s overall energy efficiency (i.e., including

the CPU). Energy consumption is equivalent to power over time or the integral of

power and time. Therefore we can only measure the energy after the execution of a

GPU program subject to the error associated with integration. Additionally, we must

consider the possible noise from the power readings we obtain as a part of our energy

measurements. Despite these known obstacles, our energy measurement software

shows great feasibility in understanding the energy efficiency of graph processing

algorithms.

To measure the energy efficiency, we spawn a CPU thread to start measuring the

GPU’s power consumption during the program. A header-only class retrieves the

power through the NVIDIA Management Library (NVML) [25] [23]. NVML is an

interface that allows the user to query device information, including power and clock

29

frequencies. A spawned CPU thread begins polling the device query for power con-

sumption. The GPU idles for 5 seconds to reduce the noise from previous operations,

consistent with established best practices for measuring energy. The power consump-

tion is measured every 250 microseconds for large graphs and Subway. The power

consumption is polled every 50 microseconds for small graphs and subgraphs as they

have shorter execution times and require more precision. The GPU is polled continu-

ously at these intervals until the GPU computation (graph processing) completes. At

this point, a stopping CPU thread is spawned and raises a flag to signal the end of

the computation. A five-second cooldown period is then enforced, with a poll occur-

ring every ten milliseconds for large graphs and one millisecond for small graphs and

subgraphs. Subway on small graphs would be polled as frequently as EEGraph small

graphs, but the software is incompatible with a higher polling rate without signifi-

cant alteration. Additionally, Subway’s implementation of an asynchronous SSWP

only works well with our energy measurements with significant modification, so we

do not report the energy measurements for the asynchronous Subway implementation

of SSWP. After all the power information is collected, EEGraph can finally calculate

the energy consumption by integrating the power consumption over time using the

trapezoidal rule, similar to the Riemann sums illustrated in Figure 3.1.

The energy measurement is sensitive to the error term associated with trapezoidal

integration, device power management, and sampling rate. The error associated with

trapezoidal integration is never truly zero but mitigated by frequent polling. The

30

time

power(t)

ti

power(ti)

Figure 3.1: Energy Measurement Calculation

more frequent the polling, the more precise the energy measurement becomes, and

the magnitude of the error essentially decreases. However, this quickly inflates the

data space occupied by the power readings. Additionally, a more frequent polling rate

becomes subject to irregularities in individual power readings. Small graphs with a

short execution time are more subject to noise and integration error, but multiple runs

and a shorter polling period mitigate these situations. Large graphs are impacted less

by the possible noise as the longer execution time smoothes out the possible noise

from the power readings. However, large graphs lose precision due to a less frequent

polling rate to reduce the space considerations of the energy measurement. In future

applications, it would be beneficial to dynamically calculate the optimal polling rate

based on graph properties or expected execution times.

We provide an analysis of our software approach for GPU energy as current software-

based approaches for GPU energy efficiency are considerably sparse. In fact, to

31

our knowledge, EEGraph implements one of the first software-based GPU energy

measurement schemes. With our energy measurement, we consider different ’energy

points,’ shown in Table 3.1, to analyze the energy consumption for specific program

sections, such as kernel execution or data transfer. EEGraph starts polling before

initialization (point 0) but considers the total energy between the initialization (point

1) and the point before the device cooldown (point 4 for classic and point 3 for unified

memory). The drawback of this approach is that the transfer back to the host is not

strictly enforced in the unified memory approach. This situation occasionally results

in unified memory implementation consuming less energy. However, these scenarios

are rare in our analysis. Additionally, we compare the energy consumption (similar to

a speedup calculation) relative to the Async-DD variant in the classic implementation

and divide it by the energy consumption of the current variant of interest. Overall,

our energy point and the power polling system give us a high-level experimental

understanding of the contributing factors of GPU energy efficiency in the context of

graph processing on GPUs.

Table 3.1
Relevant Energy Points

No. Classic Energy Pts No. UM Energy Pts
0 Start of program (Warm Up) 0 Start of program (Warm Up)
1 Initial memory assignments 1 Initial memory assignments
2 Beginning of kernel 2 Beginning of kernel
3 End of kernel / Return transfer 3 End of kernel
4 End of transfer 4 Device cooldown
5 Device Cooldown

32

3.5.2 Performance Measurement

Our performance measurement begins by tracking the earliest possible assignment to

a common data structure in all our implementations. This common starting point

for performance measurement allows for more effective measurement of overall exe-

cution time as the data transfer in unified memory implementations does not occur

at a standard specified time. This performance measurement differs from Subway’s

approach, which does not track data transfer timing and needs to be more accurate,

given the nuances of unified memory. We stop measuring time after the processing

has finished in line with the standard practices in computer systems research. The

performance is the execution time between points 1 and 4 in Table 3.1. Our perfor-

mance analysis applies a speedup calculation relative to the Async-DD variant in the

classic implementation (same as GPU energy). Our performance measurement aims

to collect timing information on all relevant GPU activity considering the algorithm

variants and memory paradigms.

33

Chapter 4

Evaluation

4.1 Software Environment

Our software EEGraph is a C++ software inspired by Tigr [24], Subway [29], and

SEP-Graph [31]. We utilize the irregularity reduction and vertex-centric graph pro-

cessing from Tigr [24]. Our software derives the algorithm variants from both Graph-

SEP [31] and Subway [29]. EEGraph was developed with CUDA 11.1, GCC 7.3.1,

and CMAKE 3.20.0-rc4 with the 2014 C++ Standard, including 2011 C++ multi-

threading for energy measurements. Ultimately this allows for a high-performance

implementation of graph processing on GPUs on our NVIDIA GeForce RTX 3090

device.

35

4.2 Datasets

In our analysis of graph processing algorithms, we utilize a variety of datasets that

represent real-world applications of graphs. The small set of datasets ranges from

a few hundred thousand to a few million vertices and includes applications such

as websites, social networks, autonomous systems, and road networks. The small

datasets are edge lists that have been retrieved from The Stanford SNAP Project

[15]. The Google datasets represent hyperlinks and webpages, while LiveJournal

and Pokec are social networking sites [15]. Two more intriguing datasets are Skitter

and Road-CA. Skitter is an internet topology-based autonomous systems graph and

Road-CA is a network of roads in California [15]. We also utilize large datasets to

analyze out-of-memory graph processing on GPUs. They contain millions to billions

of edges and vertices from Friendster and Twitter social networks. The large graphs

have been retrieved from the SNAP Project and the Konect Project [15] [14]. All

these datasets have a variety of sizes, diameters, maximum out-degrees, and average

degrees. It also is worth noting that both the large and small graphs express the

power law of real-world graphs with many high-degree vertices in a small portion of

the graph. Therefore we process a given graph from a source vertex within the first

20 percent of vertices in an input graph and deliberately choose from this percentage

of vertices in our subgraph generation. More detailed information about the datasets

can be observed in Tables 4.1 and Table 4.2.

36

Name Vertices Edges Diam. Max Deg. Avg Deg. Deg. First 20% Deg. Rem 80%
Google 875713 5105039 21 456 5.83 1802.84 5.56468
LiveJournal 4837571 68993773 16 20293 14.26 38.768 8.09881
Road-CA 1965206 2766607 849 12 2.82 4532.07 2.80466
Skitter 1696415 11095298 25 35387 13.08 3333.42 2.63238
Pokec 1632803 39622564 11 8763 24.27 3291.73 13.3984

Table 4.1
In-Memory Graph Datasets from SNAP Project[15]

Name Vertices Edges Diam. Max Degree Avg Deg. Deg. First 20% Deg. Rem 80%
Friendster 131216732 1806067135 32 3615 13.76 28.97 10.84
Twitter-MPI 52579682 1963263821 18 779958 74.677 123.969 15.6812
Twitter WWW 41652230 1468365182 23 770155 70.506 109.157 16.7769

Table 4.2
Large Datasets from SNAP [15] and KONECT [14]

4.3 In-Memory Graph Processing

Graph datasets are available in many different sizes. Therefore, we first evaluate

graphs and their associated vertex-induced subgraphs that fit into GPU memory.

Then we can determine the effects of the algorithm variants and memory resources

utilized. The in-memory graphs used in our evaluation have various properties and

diverse use cases. We evaluate each graph’s execution time and GPU energy. The

retrieved measurements are then normalized to the Async-DD variant in the classic

implementation as speedup calculations for performance and the energy equivalent of

speedup for energy. We then summarize the underlying relationships between graph

processing configurations and real-world in-memory graphs.

37

4.3.1 Performance and GPU Energy Consumption of In-

Memory Graphs

Case Study of In-Memory Graphs

The performance of processing the Google dataset is presented for the classic, unified

memory, Subway implementations, and each algorithm variant. Under the classic

memory configuration, the data-driven variants perform the best in processing this

dataset as shown in Figure 4.1 and Table 4.3. Despite the high number of kernel iter-

ations, the data-driven variants’ performance is attributed to the low maximum node

activation shown in Table 4.4. Additionally, PR has a slightly higher maximum node

activation in Table 4.4 which explains the close competition between the variants for

that algorithm. The Sync-TD variant performs best for most algorithms using the

unified memory implementation (Table 4.3). All the variants exhibit the best perfor-

mance under the classic implementation rather than the unified memory or Subway

implementation (Table 4.3). Since the Google graph dataset is relatively small, the

energy consumption is more sensitive than the large graphs, but the energy results

are still observed in Table 4.3. The data-driven variants are the most energy-efficient

using unified memory, and both the classic and unified memory implementations

consume less energy than the Subway implementation.

38

Figure 4.1: Google Execution Time (ms) and Energy Consumption (mJ)

Google Performance Relative to Async-DD
async-dd async-td sync-dd sync-td um-async-dd um-async-td um-sync-dd um-sync-td subway-async subway-sync

BFS 1.00 0.70 0.94 0.71 0.46 0.47 0.47 0.48 0.35 0.24
CC 1.00 0.80 0.96 0.79 0.50 0.49 0.52 0.55 0.38 0.22
PR 1.00 0.94 1.02 0.91 0.62 0.66 0.62 0.66 0.52 0.15
SSSP 1.00 0.87 1.07 0.97 0.50 0.52 0.55 0.52 0.30 0.21
SSWP 1.00 0.86 0.95 0.71 0.48 0.48 0.51 0.46 0.29 0.33

Google Energy Relative to Async-DD
async-dd async-td sync-dd sync-td um-async-dd um-async-td um-sync-dd um-sync-td subway-async subway-sync

BFS 1.00 1.11 1.10 1.15 0.80 0.78 0.80 0.78 0.52 0.38
CC 1.00 0.91 1.04 0.99 0.74 0.72 0.76 0.74 0.49 0.31
PR 1.00 1.04 1.02 0.88 0.74 0.82 0.70 0.76 0.50 0.09
SSSP 1.00 1.02 1.06 0.99 0.63 0.67 0.68 0.63 0.36 0.27
SSWP 1.00 1.01 0.97 0.94 0.72 0.80 0.74 0.70 X 0.41

Table 4.3
Google Normalized Performance and Energy

Max Active Iterations
async-dd sync-dd async-dd async-td sync-dd sync-td

BFS 22.31 3.61 31 22 31 21
CC 33.92 3.61 21 20 31 21
PR 35.31 35.37 28 29 28 29
SSSP 22.31 3.61 31 22 31 21
SSWP 22.33 3.59 31 21 31 21

Table 4.4
Google Maximum Percentage of Active Nodes & Kernel Iterations

For the LiveJournal graph dataset, the Sync-DD variant performs best for most of the

algorithms besides PR and CC, where the topologically driven variants perform well

as shown in Figure 4.2 and Table 4.5. In Table 4.6 we can observe that PR has high

iterations and node activation for this dataset, explaining the topological variants’

performance. Therefore we can infer that a large frontier of vertices is updated for PR.

This behavior is observed in both unified memory and classic implementations (Table

39

4.5). Energy consumption is minimized for the Sync-DD variant in both the unified

memory and classic implementation for LiveJournal (Table 4.5). Additionally, Async-

TD and Async-DD often perform similarly. Thus the algorithm variants’ relationships

with GPU energy reflect the relationships with performance.

Figure 4.2: LiveJournal Execution Time (ms) and Energy Consumption
(mJ)

LiveJournal Performance Relative to Async-DD
async-dd async-td sync-dd sync-td um-async-dd um-async-td um-sync-dd um-sync-td subway-async subway-sync

BFS 1.00 1.06 1.11 0.83 0.50 0.51 0.56 0.51 0.44 0.41
CC 1.00 0.98 1.04 0.98 0.45 0.45 0.49 0.45 0.39 0.32
PR 1.00 1.06 1.03 1.06 0.73 0.74 0.72 0.73 0.56 0.23
SSSP 1.00 0.77 1.02 0.90 0.54 0.54 0.59 0.55 0.31 0.29
SSWP 1.00 0.99 1.08 1.03 0.58 0.49 0.62 0.57 0.33 0.38

LiveJournal Energy Relative to Async-DD
async-dd async-td sync-dd sync-td um-async-dd um-async-td um-sync-dd um-sync-td subway-async subway-sync

BFS 1.00 1.11 1.06 0.80 0.83 0.82 0.92 0.86 0.77 0.64
CC 1.00 0.79 1.14 0.84 0.59 0.60 0.62 0.61 0.57 0.43
PR 1.00 1.16 1.01 0.73 0.78 0.78 0.76 0.74 0.70 0.24
SSSP 1.00 1.07 1.27 1.37 0.78 0.77 0.83 0.78 0.51 0.44
SSWP 1.00 0.94 0.74 0.83 0.58 0.65 0.65 0.60 X 0.44

Table 4.5
LiveJournal Normalized Performance and Energy

Max Active Iterations
async-dd sync-dd async-dd async-td sync-dd sync-td

BFS 33.56 33.52 11 9 11 9
CC 64.64 33.90 9 9 11 9
PR 64.40 64.70 43 43 43 43
SSSP 33.56 33.52 11 9 11 9
SSWP 33.56 33.52 11 8 11 8

Table 4.6
LiveJournal Maximum Percentage of Active Nodes & Kernel Iterations

The Pokec dataset is a social media graph that is similar to LiveJournal. The Sync-

DD variant performs well for almost every algorithm for classic and unified memory

40

implementations as shown in Figure 4.3 and Table 4.7. Overall, each variant performs

similarly in all algorithms, with the classic implementation outperforming the others

(Table 4.7). The performance trends are similar to the energy consumption trends

for Pokec, with the Sync-DD variant often consuming the least energy (Table 4.7).

Additionally, the topological variants sometimes consume less energy due to all of the

variants resulting in similar execution times and the reduced memory footprint of the

topological variants when processing this dataset (Table 4.7). Another conclusion is

that this is due to the moderate maximum node activation shown in Table 4.8. Overall

the unified memory and Subway implementations have longer execution times and,

therefore, more energy consumption than the classic variants for the Pokec dataset

(Table 4.7).

Figure 4.3: Pokec Execution Time (ms) and Energy Consumption (mJ)

Road-CA is included in our analysis as road networks are popular in graph process-

ing due to their unique properties and direct application to navigation systems. The

Subway implementation performs poorly on this graph, as shown in Figure 4.4. Oth-

erwise, Sync-DD performs best for BFS, CC, and SSWP, and Async-DD performs best

for SSWP and PR as shown in Figure 4.5 and Table 4.9. The classic implementation

41

Pokec Performance Relative to Async-DD
async-dd async-td sync-dd sync-td um-async-dd um-async-td um-sync-dd um-sync-td subway-async subway-sync

BFS 1.00 0.96 1.01 0.99 0.56 0.57 0.66 0.58 0.63 0.70
CC 1.00 0.99 1.04 0.97 0.58 0.59 0.61 0.59 0.61 0.50
PR 1.00 1.05 1.06 0.93 0.53 0.55 0.53 0.54 0.54 0.22
SSSP 1.00 0.98 0.95 0.92 0.38 0.40 0.41 0.40 0.27 0.31
SSWP 1.00 1.06 1.08 0.97 0.40 0.41 0.43 0.41 0.29 0.33

Pokec Energy Relative to Async-DD
async-dd async-td sync-dd sync-td um-async-dd um-async-td um-sync-dd um-sync-td subway-async subway-sync

BFS 1.00 0.77 1.00 0.83 0.72 0.74 0.75 0.75 0.63 0.68
CC 1.00 0.99 1.04 1.01 0.72 0.75 0.79 0.75 0.61 0.53
PR 1.00 1.05 1.00 0.98 0.90 0.94 0.94 0.95 0.37 0.29
SSSP 1.00 0.89 1.02 0.99 0.80 0.80 0.85 0.84 0.45 0.49
SSWP 1.00 1.14 1.15 1.19 0.92 0.95 0.98 0.92 X 0.56

Table 4.7
Pokec Normalized Performance and Energy

Max Active Iterations
async-dd sync-dd async-dd async-td sync-dd sync-td

BFS 32.23 29.57 9 7 10 7
CC 66.19 74.37 9 7 12 7
PR 58.86 74.80 34 33 34 39
SSSP 46.17 30.29 10 8 10 8
SSWP 33.14 31.00 10 6 10 6

Table 4.8
Pokec Maximum Percentage of Active Nodes & Kernel Iterations

outperforms the Subway and unified memory implementations (Table 4.9). However,

for BFS, CC, and SSSP, the unified memory performs similarly or better than some

of the classic variants (Table 4.9). The sparse nature of this graph, inferred from the

high iterations and low maximum node activation in Table 4.10, encourages the use of

a data-driven graph processing framework regardless of the memory implementation.

The performance is similar to the energy consumption, with the Sync-DD variant

consuming a small amount of energy and the least for most of the algorithms under

the unified memory implementation (Table 4.9). Subway consumes a large amount

of energy proportional to the previously mentioned performance on this dataset (Ta-

ble 4.9). The energy consumption for Road-CA highlights the potential performance

42

and energy consumption savings for unified memory on a small sparse graph. Ad-

ditionally, it shows a relationship between performance and GPU energy for unique

graphs.

Figure 4.4: Road-CA Execution Time (ms)

Figure 4.5: Road-CA Execution Time (ms) and Energy Consumption (mJ)
without Subway

Road-CA Performance Relative to Async-DD
async-dd async-td sync-dd sync-td um-async-dd um-async-td um-sync-dd um-sync-td subway-async subway-sync

BFS 1.00 0.83 1.01 0.81 0.74 0.65 0.83 0.66 0.54 0.21
CC 1.00 0.77 2.15 0.72 0.83 0.68 1.70 0.61 0.86 0.08
PR 1.00 0.99 0.95 0.93 0.60 0.63 0.60 0.62 0.54 0.16
SSSP 1.00 0.84 1.09 0.82 0.70 0.60 0.84 0.60 0.43 0.18
SSWP 1.00 0.63 0.88 0.64 0.54 0.40 0.55 0.42 0.38 0.43

Road-CA Energy Relative to Async-DD
async-dd async-td sync-dd sync-td um-async-dd um-async-td um-sync-dd um-sync-td subway-async subway-sync

BFS 1.00 0.86 0.98 0.88 0.75 0.75 0.96 0.76 0.53 0.23
CC 1.00 0.74 1.74 0.72 0.89 0.69 1.56 0.66 0.80 0.09
PR 1.00 1.02 0.98 0.94 0.85 0.91 0.85 0.88 0.73 0.17
SSSP 1.00 0.84 0.91 0.85 0.84 0.73 0.95 0.76 0.47 0.21
SSWP 1.00 0.80 1.02 0.75 0.87 0.78 1.12 0.75 X 0.60

Table 4.9
Road-CA Normalized Performance and Energy

The Skitter dataset results show that many variants process the dataset at similar

43

Max Active Iterations
async-dd sync-dd async-dd async-td sync-dd sync-td

BFS 8.47 0.08 164 163 164 163
CC 29.52 0.08 629 626 164 626
PR 42.30 41.99 85 85 85 85
SSSP 0.39 0.08 164 163 164 163
SSWP 0.39 0.08 164 163 164 163

Table 4.10
Road-CA Maximum Percentage of Active Nodes & Iterations

speeds shown in Figure 4.6 and Table 4.11. The performance is similar due to the

moderate node activation, even with relatively small iterations presented in Table

4.12. Sync-DD is generally the best-performing variant in most algorithms for both

the classic and unified memory implementation (Table 4.11). Furthermore, the clas-

sic implementation outperforms the other implementations in terms of performance.

The Skitter dataset shows similar results to the performance results for GPU energy

(4.11). The Sync-DD variant is often the best-performing variant. However, Async-

DD and Sync-TD are more energy efficient for some of the algorithms, particularly

for unified memory implementation, which is attributed to the previously observed

similar execution times. However, we still conclude that the classic implementation

consumes less energy than the other implementations for the Skitter dataset.

Figure 4.6: Skitter Execution Time (ms) and Energy Consumption (mJ)

44

Skitter Performance Relative to Async-DD
async-dd async-td sync-dd sync-td um-async-dd um-async-td um-sync-dd um-sync-td subway-async subway-sync

BFS 1.00 0.93 0.97 1.00 0.59 0.61 0.64 0.59 0.39 0.34
CC 1.00 1.01 1.02 1.01 0.57 0.58 0.63 0.59 0.32 0.25
PR 1.00 1.04 1.06 1.00 0.62 0.63 0.58 0.61 0.46 0.33
SSSP 1.00 0.99 1.06 1.06 0.59 0.61 0.65 0.58 0.30 0.27
SSWP 1.00 0.98 1.00 0.99 0.59 0.59 0.61 0.61 0.33 0.37

Skitter Energy Relative to Async-DD
async-dd async-td sync-dd sync-td um-async-dd um-async-td um-sync-dd um-sync-td subway-async subway-sync

BFS 1.00 0.98 1.00 0.97 0.77 0.82 0.81 0.79 0.52 0.45
CC 1.00 1.06 1.07 1.00 0.77 0.80 0.80 0.81 0.45 0.36
PR 1.00 1.04 1.05 1.09 0.82 0.93 0.88 0.94 0.65 0.36
SSSP 1.00 0.98 0.98 0.99 0.84 0.90 0.91 0.92 0.39 0.37
SSWP 1.00 1.05 1.03 1.06 0.87 0.92 0.96 0.94 X 0.49

Table 4.11
Skitter Normalized Performance and Energy

Max Active Iterations
async-dd sync-dd async-dd async-td sync-dd sync-td

BFS 52.92 32.52 5 4 5 4
CC 84.56 32.48 4 4 7 4
PR 56.54 52.56 12 10 11 10
SSSP 55.13 32.52 5 4 5 4
SSWP 55.13 32.52 5 4 5 4

Table 4.12
Skitter Maximum Percentage of Active Nodes & Kernel Iterations

.

Summary of In-Memory Graph Processing

Evaluating our classic, unified memory, and Subway implementations leads to several

conclusions about configurations for graph processing on GPUs for in-memory graphs.

For performance, the synchronous data-driven variant performs well on most graphs as

shown in the previous tables. This variant is similar to Tigr, which is considered state-

of-the-art [24]. The Sync-DD variant is commonly the best-performing algorithm

variant for both performance and energy. The Sync-DD variant exhibits the balancing

of the GPU’s preference for threads to perform similar operations and the effectiveness

of node activation in many of the datasets. Our results suggest that asynchronous

45

execution often leads to an imbalance of thread work, and topology driven tends to

be at a disadvantage to data-driven computations for graph problems explaining why

Async-TD often has slower execution times and higher energy consumption. However,

the Sync-DD variant is only sometimes the best variant for each dataset. Additionally,

the trend with the Sync-DD variant is only observed in the traversal and components

algorithms. PageRank tends to have different algorithms narrowly outperforming one

another due to the difference in initial node activation and its iterative evaluation of

the nodes. Therefore our work confirms our hypothesis that the performance often

depends on the graph algorithm’s nature and the input graph’s properties.

Algorithm UM-Google Sub-Google UM-LJ Sub-LJ UM-Pokec Sub-Pokec UM-Road Sub-Road UM-Skitter Sub-Skitter
BFS 2.07 2.86 1.99 2.50 1.52 1.43 1.23 1.88 1.57 2.54
CC 1.83 2.65 2.10 2.62 1.71 1.70 1.19 2.37 1.64 3.22
PR 1.53 1.96 1.43 1.89 1.92 1.96 1.59 1.86 1.69 2.32
SSSP 1.94 3.61 1.73 3.33 2.43 3.18 1.29 2.55 1.63 3.59
SSWP 1.96 3.02 1.74 2.85 2.50 3.28 1.83 2.33 1.64 2.67

Overall Total
GEOMEAN 1.86 2.77 1.78 2.60 1.98 2.18 1.40 2.18 1.63 2.83 2.07
MAX 2.07 3.61 2.10 3.33 2.50 3.28 1.83 2.55 1.69 3.59 3.61

Table 4.13
Classic Speedup Over UM and Subway

Algorithm UM-Google Sub-Google UM-LJ Sub-LJ UM-Pokec Sub-Pokec UM-Road Sub-Road UM-Skitter Sub-Skitter
BFS 1.44 2.20 1.20 1.44 1.34 1.48 1.05 1.88 1.23 1.93
CC 1.38 2.13 1.84 2.02 1.32 1.69 1.11 2.17 1.32 2.40
PR 1.27 2.05 1.48 1.66 1.11 2.85 1.12 1.40 1.15 1.69
SSSP 1.54 2.90 1.65 2.67 1.20 2.10 1.06 2.12 1.08 2.54
SSWP 1.26 2.44 1.53 2.26 1.22 2.13 0.91 1.72 1.11 2.18

Overall Total
GEOMEAN 1.37 2.33 1.53 1.96 1.23 2.00 1.05 1.83 1.18 2.12 1.60
MAX 1.54 2.90 1.84 2.67 1.34 2.85 1.12 2.17 1.32 2.54 2.90

Table 4.14
Classic Energy Consumption Improvement Over UM and Subway

In summary, classic implementation shows a 2.07 mean speedup and a 3.61 maxi-

mum speedup over the best-performing variants for unified memory and Subway for

in-memory graphs shown in Table 4.13. The energy efficiency of small graphs follows

in Table 4.14. The classic implementations have a 1.60 mean energy consumption

46

improvement and a 2.90 max energy consumption improvement. Small graphs are

not necessarily the primary target of Subway, and unified memory serves as a bet-

ter comparison in Table 4.15 and Table 4.16. Our unified memory implementation

shows a 1.39 mean speedup and a 2.20 max speedup over the best-performing variants

over Subway and shows a 1.62 mean energy improvement and 2.57 maximum energy

improvement. Ultimately, our results show improved performance and energy con-

sumption when analyzing a variety of configurations for graph processing algorithms.

In the following section, we will strategically construct subgraphs that confirm the

best variants for each dataset and algorithm.

Algorithm Subway-Google Subway-LJ Subway-Pokec Subway-Road Subway-Skitter
BFS 1.38 1.26 0.95 1.53 1.62
CC 1.45 1.25 0.99 1.99 1.96
PR 1.28 1.32 1.02 1.17 1.38
SSSP 1.86 1.93 1.31 1.97 2.20
SSWP 1.54 1.63 1.31 1.28 1.63

Overall Total
GEOMEAN 1.49 1.46 1.10 1.55 1.39 1.39
MAX 1.86 1.93 1.31 1.99 2.20 2.20

Table 4.15
UM Speedup Over Subway

Algorithm Subway-Google Subway-LJ Subway-Pokec Subway-Road Subway-Skitter
BFS 1.53 1.20 1.11 1.80 1.57
CC 1.54 1.10 1.28 1.95 1.81
PR 1.62 1.12 2.57 1.25 1.46
SSSP 1.88 1.62 1.75 2.01 2.35
SSWP 1.94 1.47 1.75 1.88 1.96

Overall Total
GEOMEAN 1.69 1.29 1.62 1.75 1.58 1.62
MAX 1.94 1.62 2.57 2.01 2.35 2.57

Table 4.16
UM Energy Consumption Improvement Over Subway

47

4.3.2 Performance and GPU Energy Consumption for Sub-

graphs of In-Memory Graphs

Case Study of Individual In-Memory Subgraphs

Google is a small graph where the cost subgraph generation exceeds the utility of the

subgraph. This relationship is evident with the processing of the Google dataset being

relatively inaccurate for the classic subgraph implementation. However, there still

may be a use case for a very small subgraph. The classic implementation has a small

overall error but often does not align with the complete graph as shown in Figure

4.7 and Table 4.17. The unified memory implementation has aligned performance

with the entire Google graph on BFS, CC, and PR (Table 4.17). However, SSSP and

SSWP yielded an error rate of 23 percent for the unified memory implementation

(Table 4.18). The energy consumption for the Google subgraphs is similar to the

execution time for the Google subgraphs (Table 4.17). The classic implementation has

accurate energy consumption for all algorithms besides BFS, while the unified memory

implementation is either perfectly aligned or significantly misaligned compared to the

complete graph (Table 4.18). Overall, the subgraph energy results are slightly better

than the execution time results with a ten percent error rate (Table 4.18).

The LiveJournal subgraphs present promising results for classic and unified memory

48

Figure 4.7: Google Subgraph Execution Time (ms) and Energy Consump-
tion (mJ)

Google Subgraph Performance Relative to Async-DD
async-dd async-td sync-dd sync-td um-async-dd um-async-td um-sync-dd um-sync-td

BFS 1.00 1.08 1.06 1.04 1.00 1.11 1.48 1.10
CC 1.00 0.98 0.99 1.02 0.95 0.95 1.43 0.98
PR 1.00 0.98 0.95 1.02 0.78 0.87 0.99 0.80
SSSP 1.00 0.99 1.00 0.98 1.16 1.17 1.73 1.14
SSWP 1.00 0.97 0.94 0.96 1.10 1.12 1.70 1.14

Google Subgraph Energy Relative to Async-DD
async-dd async-td sync-dd sync-td um-async-dd um-async-td um-sync-dd um-sync-td

BFS 1.00 0.85 0.79 0.86 1.29 1.29 1.43 1.26
CC 1.00 1.03 1.03 0.98 1.38 1.48 1.82 1.52
PR 1.00 0.99 0.96 0.93 1.24 1.13 1.24 1.23
SSSP 1.00 1.01 1.04 1.07 1.55 1.47 1.98 1.74
SSWP 1.00 1.05 1.02 1.01 1.49 1.62 1.86 1.74

Table 4.17
Google Subgraph Normalized Performance and Energy

Speedup Energy
Classic UM Overall Classic UM Overall

BFS 0.08 0.00 0.04 0.14 0.00 0.07
CC 0.02 0.00 0.01 0.00 0.00 0.00
PR 0.02 0.00 0.01 0.01 0.11 0.06
SSSP 0.01 0.57 0.29 0.03 0.51 0.27
SSWP 0.03 0.58 0.31 0.00 0.24 0.12
Average 0.03 0.23 0.13 0.04 0.17 0.10

Table 4.18
Google Subgraph Selected Relative Speedup & Energy Difference vs Full

Selection

implementations. For performance, the execution times do not necessarily align as

presented in Figure 4.8 and Table 4.19. However, the subgraphs are only slightly

misaligned with the complete graph, and many variants perform similarly (Tables

4.19 and 4.20). The unified memory is slightly misaligned for PR but is otherwise

entirely aligned with the results of the complete graph for execution time (Tables

49

4.19 and 4.20). The energy measurements for the subgraph follow the performance

measurements for the LiveJournal subgraphs also shown in Tables 4.19 and 4.20. The

classic implementation only sometimes selects the most energy-efficient variant of the

complete graph (Table 4.19). However, overall the most energy-efficient variant of

the subgraphs is quite similar to the most energy-efficient variant in the complete

graph (Table 4.19). The unified memory implementation of the subgraph aligns

precisely with the unified memory implementation of the whole graph and only has

a misalignment on PageRank (Table 4.19). Remarkably, it selects the two most

energy-efficient variants for SSWP that are also selected by the complete graph of

LiveJournal (Table 4.19). The subgraphs generated for LiveJournal represent the

energy consumption of the complete graph with an average difference of one percent

shown in Table 4.20.

Figure 4.8: LiveJournal Subgraph Execution Time (ms) and Energy Con-
sumption (mJ)

Pokec subgraphs also replicated the associated full graph well. Both classic and unified

memory implementations are often aligned with the full graph or almost aligned with

the full graph for performance and energy as shown in Table 4.21. Interestingly, the

50

LiveJournal Subgraph Energy Relative to Async-DD
async-dd async-td sync-dd sync-td um-async-dd um-async-td um-sync-dd um-sync-td

BFS 1.00 1.04 1.03 1.02 0.94 1.04 1.05 1.02
CC 1.00 0.98 0.99 0.99 0.91 0.93 0.95 0.94
PR 1.00 1.00 1.00 1.01 0.87 0.91 0.88 0.92
SSSP 1.00 0.99 1.00 1.01 1.04 1.09 1.11 1.10
SSWP 1.00 0.95 0.96 0.94 0.98 1.04 1.04 1.04

LiveJournal Subgraph Energy Relative to Async-DD
async-dd async-td sync-dd sync-td um-async-dd um-async-td um-sync-dd um-sync-td

BFS 1.00 1.01 1.01 1.02 1.00 1.11 1.09 1.06
CC 1.00 0.98 0.98 0.98 0.94 1.01 1.02 0.97
PR 1.00 1.02 1.02 1.02 0.98 1.01 0.98 1.03
SSSP 1.00 1.06 1.01 1.04 1.12 1.18 1.21 1.21
SSWP 1.00 0.99 1.01 1.00 1.05 1.14 1.16 1.12

Table 4.19
LiveJournal Subgraph Normalized Performance and Energy

Speedup Energy
Classic UM Overall Classic UM Overall

BFS 0.01 0.00 0.01 0.01 0.00 0.00
CC 0.01 0.00 0.00 0.02 0.00 0.01
PR 0.00 0.01 0.00 0.00 0.03 0.01
SSSP 0.01 0.00 0.01 0.05 0.00 0.02
SSWP 0.04 0.00 0.02 0.01 0.00 0.00
Average 0.01 0.001 0.01 0.01 0.005 0.01

Table 4.20
LiveJournal Subgraph Selected Relative Speedup & Energy Difference vs

Full Selection

unified memory implementation of the subgraphs has significantly shorter execution

times than the classic implementations of the subgraphs (Table 4.21). The error

was only one percent overall for classic and unified implementations of the subgraph

processing for performance and energy for the Pokec dataset (Table 4.22).

Figure 4.9: Pokec Subgraph Execution Time (ms) and Energy Consump-
tion (mJ)

51

Pokec Subgraph Performance Relative to Async-DD
async-dd async-td sync-dd sync-td um-async-dd um-async-td um-sync-dd um-sync-td

BFS 1.00 1.81 1.83 1.80 1.53 1.81 2.58 1.90
CC 1.00 1.00 1.07 1.00 0.80 0.88 1.31 0.84
PR 1.00 0.99 0.98 1.00 0.82 0.83 0.85 0.83
SSSP 1.00 1.00 1.03 1.01 1.08 1.12 1.55 1.11
SSWP 1.00 0.98 0.97 0.96 0.99 1.04 1.21 1.08

Pokec Subgraph Energy Relative to Async-DD
async-dd async-td sync-dd sync-td um-async-dd um-async-td um-sync-dd um-sync-td

BFS 1.00 0.94 0.96 0.96 1.15 1.30 1.69 1.28
CC 1.00 1.08 1.15 1.06 1.08 1.12 1.50 1.08
PR 1.00 0.98 0.94 1.02 0.99 1.07 1.02 1.01
SSSP 1.00 1.03 1.12 1.02 1.22 1.37 1.47 1.33
SSWP 1.00 1.05 0.97 1.09 1.21 1.36 1.50 1.43

Table 4.21
Pokec Subgraph Normalized Performance and Energy

Speedup Energy
Classic UM Overall Classic UM Overall

BFS 0.00 0.00 0.00 0.00 0.00 0.00
CC 0.00 0.00 0.00 0.00 0.00 0.00
PR 0.02 0.01 0.02 0.05 0.06 0.05
SSSP 0.03 0.00 0.02 0.00 0.00 0.00
SSWP 0.03 0.00 0.01 0.00 0.00 0.00
Average 0.02 0.003 0.01 0.01 0.012 0.01

Table 4.22
Pokec Subgraph Selected Relative Speedup & Energy Difference vs Full

Selection

The unique behavior of the full Road-CA graph was captured well by our generated

subgraphs shown in Table 4.23. The Sync-DD variant often had the best performance

for the complete graph (Table 4.23). The subgraph selects this variant or a variant

with similar performance for both the classic and unified memory implementations

(Table 4.23). The subgraph results for PageRank were slightly misaligned with the

complete graphs for both classic and unified memory subgraphs (Table 4.23). The

classic implementations had difficulty replicating the results of the complete graph for

energy, but the unified memory implementation exhibited the same energy differences

as the complete graph (Table 4.23). For energy, the Road-CA subgraphs resulted in

an error of two percent (Table 4.24). We captured the nuances of processing the

Road-CA graphs with our generated subgraphs.

52

Figure 4.10: Road-CA Subgraph Execution Time (ms) and Energy Con-
sumption (mJ)

Road-CA Subgraph Performance Relative to Async-DD
async-dd async-td sync-dd sync-td um-async-dd um-async-td um-sync-dd um-sync-td

BFS 1.00 1.00 1.00 0.99 0.90 0.98 1.41 1.04
CC 1.00 1.00 1.01 1.01 0.88 0.93 1.30 1.06
PR 1.00 0.98 1.03 1.02 0.84 0.82 0.82 0.81
SSSP 1.00 1.04 1.01 1.00 1.08 1.11 1.50 1.10
SSWP 1.00 0.97 0.98 0.95 1.01 1.05 1.45 1.06

Road-CA Subgraph Energy Relative to Async-DD
async-dd async-td sync-dd sync-td um-async-dd um-async-td um-sync-dd um-sync-td

BFS 1.00 1.05 1.05 1.05 1.20 1.34 1.93 1.44
CC 1.00 0.99 0.95 0.72 0.83 0.83 1.12 0.85
PR 1.00 0.98 1.00 1.05 0.98 1.01 0.97 1.01
SSSP 1.00 0.96 0.96 0.94 1.19 1.22 1.69 1.23
SSWP 1.00 0.94 0.98 0.90 1.25 1.23 1.70 1.26

Table 4.23
Road-CA Subgraph Normalized Performance and Energy

Speedup Energy
Classic UM Overall Classic UM Overall

BFS 0.00 0.00 0.00 0.05 0.00 0.03
CC 0.00 0.00 0.00 0.05 0.00 0.02
PR 0.03 0.02 0.027 0.07 0.00 0.04
SSSP 0.03 0.00 0.01 0.00 0.00 0.00
SSWP 0.00 0.00 0.00 0.02 0.00 0.01
Average 0.01 0.00 0.008 0.04 0.00 0.02

Table 4.24
Road Subgraph Selected Relative Speedup & Energy Difference vs Full

Selection

The full skitter graph dataset had similar performance across each algorithm variant,

which was challenging to capture with our subgraph generation as shown in Figure

4.11 and Table 4.25. The classic subgraphs had an error of two percent, with the

worst alignment observed in BFS for the classic subgraphs presented in Table 4.26.

However, the unified memory subgraphs were aligned perfectly with the complete

53

graph of unified memory performance results (Table 4.25). Cumulatively the selection

was only off by one percent for both kinds of implementations for performance (Table

4.26). However, the error was six percent and five percent for the classic and unified

memory variants, respectively, for energy (Table 4.26).

Figure 4.11: Skitter Subgraph Execution Time (ms) and Energy Consump-
tion (mJ)

Skitter Subgraph Performance Relative to Async-DD
async-dd async-td sync-dd sync-td um-async-dd um-async-td um-sync-dd um-sync-td

BFS 1.00 1.22 1.17 1.16 1.03 1.19 1.38 1.22
CC 1.00 1.02 1.02 1.04 0.94 0.98 1.11 1.00
PR 1.00 1.00 1.06 1.02 0.96 0.98 0.95 0.97
SSSP 1.00 0.97 1.00 0.97 1.04 1.10 1.25 1.09
SSWP 1.00 0.95 0.97 0.95 1.00 1.06 1.22 1.06

Skitter Subgraph Energy Relative to Async-DD
async-dd async-td sync-dd sync-td um-async-dd um-async-td um-sync-dd um-sync-td

BFS 1.00 1.05 0.89 0.93 1.15 1.28 1.48 1.28
CC 1.00 0.94 1.01 1.10 1.23 1.27 1.46 1.30
PR 1.00 1.04 1.03 1.05 1.20 1.21 1.22 1.25
SSSP 1.00 1.04 0.98 1.00 1.26 1.36 1.48 1.37
SSWP 1.00 1.05 0.96 0.99 1.22 1.31 1.47 1.42

Table 4.25
Skitter Subgraph Speedup Over Async-DD

Speedup Energy
Classic UM Overall Classic UM Overall

BFS 0.06 0.00 0.03 0.16 0.00 0.08
CC 0.02 0.00 0.01 0.09 0.16 0.13
PR 0.00 0.00 0.00 0.00 0.00 0.00
SSSP 0.00 0.00 0.00 0.00 0.11 0.05
SSWP 0.00 0.00 0.00 0.06 0.00 0.03
Average 0.02 0.00 0.01 0.06 0.05 0.06

Table 4.26
Skitter Subgraph Selected Relative Speedup & Energy Difference vs Full

Selection

54

.

Summary of In-Memory Subgraph Processing

The performance and energy of the generated subgraphs for in-memory graphs showed

similarities to their associated complete graphs. The overall error between the full

graphs and subgraphs was three percent and four percent for the relative execu-

tion times and energy shown in Table 4.27 and Table 4.28, respectively. The worst-

performing algorithm for both execution time and performance was SSSP. Notably,

in Table 4.29, the subgraph generation times are large relative to the overall exe-

cution times in the complete graphs. Also in Table 4.29 and Table 4.30 the space

reduction relative to the complete graph is quite significant. The memory footprint

is significantly reduced whether the sum of vertices and edges is considered or the

memory size is considered. The memory size (Table 4.30) is the calculated size of the

graph structure size in the program and depends on the systems data sizes for C++

programs. The space ratio refers to the comparison of the sum of vertices and edges

for both the complete graph and the subgraph. Thus the cost of generating subgraphs

for small graphs often outweighs the overall utility. This relative cost is especially

true for the subgraphs for relatively small complete graphs for datasets like Google.

However, suppose the subgraph generation is essential in a given workflow (i.e., post-

execution profiling). Then our results show that selectively choosing vertex-induced

subgraphs can replicate their full graph counterparts for graph processing on GPUs

55

for in-memory graphs.

Algorithm Google LiveJournal Pokec Road-CA Skitter Cumulative
BFS 0.04 0.01 0.00 0.00 0.03 0.01
CC 0.01 0.00 0.00 0.00 0.01 0.01
PR 0.01 0.00 0.02 0.02 0.00 0.04
SSSP 0.29 0.01 0.02 0.01 0.00 0.07
SSWP 0.31 0.02 0.01 0.00 0.00 0.05

AVERAGE 0.13 0.01 0.01 0.01 0.01 0.03

Table 4.27
Overall Subgraph Speedup Difference for Small Graphs

Algorithm Google LiveJournal Pokec Road-CA Skitter Cumulative
BFS 0.07 0.00 0.00 0.03 0.08 0.03
CC 0.00 0.01 0.00 0.02 0.13 0.03
PR 0.06 0.01 0.05 0.04 0.00 0.05
SSSP 0.27 0.02 0.00 0.00 0.05 0.05
SSWP 0.12 0.00 0.00 0.01 0.03 0.04

AVERAGE 0.10 0.01 0.01 0.02 0.06 0.04

Table 4.28
Overall Subgraph Energy Difference for Small Graphs

Vertices Edges Sub Vertices Sub Avg Edges Classic Gen. (ms) UM Gen. (ms) Space Ratio
Google 875713 5105039 45821 12,111.00 32.62 91.69 .0097
LiveJournal 4837571 68993773 242378 716,351.60 376.38 1,117.57 .0130
Pokec 1965206 2766607 81640 215,379.00 161.78 477.74 .0628
Road-CA 1696415 11095298 98564 26,871.20 32.05 98.31 .0098
Skitter 1632803 39622564 84820 105,544.25 60.23 182.02 .0046

Table 4.29
Subgraph Size and Generation Time

Sub Mem Size (KB) Mem Size (KB) Mem Ratio Sub Avg Time (ms) Avg Time (ms) Time Ratio
Google 1,021.06 61260.479 0.017 18.677 62.473 0.30
LiveJournal 13,433.80 827925.287 0.0162 93.563 419.249 0.22
Pokec 4,549.77 33199.295 0.137 34.985 198.167 0.18
Road 2,018.88 133143.587 0.015 38.67 160.083 0.24
Skitter 2,899.35 475470.779 0.006 33.946 98.825 0.34

Table 4.30
Subgraph Memory Size and Average Execution Times

4.4 Out-of-Memory Graph Processing

As graph applications continue to grow, larger graph datasets are becoming a neces-

sary area of focus. Thus we evaluate large graphs that do not fit into GPU memory

56

and evaluate the effects of our variant and memory configurations in a unified mem-

ory implementation and a strategic out-of-memory transfer implementation (Subway).

The graphs used in our evaluation are social media graphs with varying sizes. We

evaluate these graphs’ execution times and GPU energy. The collected measure-

ments are then normalized with respect to the unified memory Async-DD variant in

the same manner as the in-memory graphs. Then we can observe the effectiveness of

the out-of-memory solutions for graph processing on GPUs.

4.4.1 Performance and GPU Energy Consumption of Out-

of-Memory Graphs

Case Study of Individual Out-of-Memory Graphs

Twitter-MPI is a large, directed asymmetric graph dataset that contains Twitter

follower data based on a 2009 snapshot with users as vertices and following relation-

ships as edges [14]. The Sync-DD variant performs the best on all algorithms besides

PageRank for Twitter-MPI. In PageRank, Async-DD and Sync-TD perform the best,

with the other variants having short execution times. Our unified memory graph

processing for Twitter-MPI is significantly better than the Subway implementation.

The energy consumption follows the performance for processing Twitter-MPI. Sync-

DD has the best energy consumption for most algorithms, but Sync-TD has the best

57

energy consumption for PR. However, this is also the case for the execution time for

PR. Additionally, Subway performs best for BFS. Low energy consumption may be a

side effect of Subway’s state-of-the-art memory management for out-of-memory graph

processing [29]. Despite this, our unified memory approach is generally more energy

efficient than Subway.

Figure 4.12: Twitter-MPI Execution Time (ms) and Energy Consumption
(mJ)

Twitter-MPI Speedup Relative to Async-DD
um-async-dd um-async-td um-sync-dd um-sync-td subway-async subway-sync

BFS 1.00 0.98 1.08 0.99 0.38 0.45
CC 1.00 0.97 1.08 1.01 0.37 0.32
PR 1.00 0.91 0.96 1.00 0.27 0.28
SSSP 1.00 1.00 1.08 1.01 0.29 0.35
SSWP 1.00 0.95 1.07 0.96 0.29 0.35

Twitter-MPI Energy Relative to Async-DD
um-async-dd um-async-td um-sync-dd um-sync-td subway-async subway-sync

BFS 1.00 0.98 1.09 0.98 1.02 1.18
CC 1.00 0.98 1.11 0.98 0.88 0.68
PR 1.00 0.99 0.98 1.01 0.26 0.29
SSSP 1.00 0.98 1.04 0.97 0.63 0.76
SSWP 1.00 0.94 1.08 0.96 X 0.76

Table 4.31
Twitter-MPI Normalized Performance and Energy

Friendster is a graph of the social network by the same name, representing social

communities of users [15]. The results for the Friendster dataset show that Sync-DD

has the shortest execution time for the unified memory implementation. Likewise,

the unified memory graph processing outperforms Subway. Sync-DD has the least

58

energy consumption, and our unified memory implementation is generally more energy

efficient than Subway. However, some Subway variants perform better than the worst-

performing unified memory variants.

Figure 4.13: Friendster Execution Time (ms) and Energy Consumption
(mJ)

Friendster Speedup Relative to Async-DD
um-async-dd um-async-td um-sync-dd um-sync-td subway-async subway-sync

BFS 1.00 1.01 2.42 1.02 0.39 0.44
CC 1.00 0.84 2.49 0.85 0.42 0.39
PR 1.00 1.11 1.10 1.12 1.08 1.04
SSSP 1.00 1.01 2.39 1.02 0.31 0.35
SSWP 1.00 0.97 2.29 0.99 0.32 0.37

Friendster Energy Relative to Async-DD
um-async-dd um-async-td um-sync-dd um-sync-td subway-async subway-sync

BFS 1.00 1.00 2.44 1.00 0.94 1.06
CC 1.00 0.76 2.59 0.77 0.96 0.94
PR 1.00 1.05 1.26 1.06 1.04 0.99
SSSP 1.00 1.02 1.56 1.01 0.60 0.68
SSWP 1.00 0.96 2.23 0.99 X 0.70

Table 4.32
Friendster Normalized Performance and Energy

Twitter-WWW is another large dataset based on a snapshot of Twitter. The Sync-

DD variant continues to be the best for performance on this dataset. Additionally,

the unified memory generally outperforms Subway for all algorithms. The energy

consumption is also the best for Sync-DD for unified memory. Additionally, Subway

consumes comparable or less energy for BFS, similar to the results of the Twitter-MPI

dataset. As with the Twitter-MPI dataset, this may result from Subway’s quality

59

memory management. Our results show that the unified memory implementation

consumes less energy than Subway.

Figure 4.14: Twitter-WWW Execution Time (ms) and Energy Consump-
tion (mJ)

Twitter-WWW Performance Relative to Async-DD
um-async-dd um-async-td um-sync-dd um-sync-td subway-async subway-sync

BFS 1.00 0.99 1.10 0.96 0.32 0.37
CC 1.00 0.99 1.04 0.97 0.34 0.32
PR 1.00 1.05 1.07 1.01 0.69 0.29
SSSP 1.00 0.99 1.04 0.90 0.25 0.29
SSWP 1.00 1.06 1.10 1.07 0.27 0.32

Twitter-WWW Energy Relative to Async-DD
um-async-dd um-async-td um-sync-dd um-sync-td subway-async subway-sync

BFS 1.00 1.04 1.17 1.00 1.15 1.24
CC 1.00 0.97 1.07 0.98 1.07 0.92
PR 1.00 1.01 1.03 1.03 0.62 0.28
SSSP 1.00 0.98 1.04 0.99 0.62 0.73
SSWP 1.00 0.96 1.11 0.97 0.73 0.73

Table 4.33
Twitter-WWW Normalized Performance and Energy

60

.

Summary of Out-of-Memory Graph Processing

The processing of large out-of-memory graphs with our unified memory implemen-

tation and Subway implementation confirms the conclusions from the small graph

processing. Typically, the synchronous data-driven variant balances the GPU’s pref-

erence for evenly distributed thread-level load balancing and node activation. With

the Sync-DD variant, unified memory tends to outperform Subway on large out-of-

memory graphs despite this being a primary focus of Subway. However, they focus

on out-of-memory processing primarily from a memory perspective. This improved

memory approach occasionally results in Subway having better GPU energy consump-

tion than our unified memory implementation on the Twitter datasets. The inclusion

of the CPU energy would best determine if this relationship is true, as Subway po-

tentially has more CPU-side organization present. However, large graphs express a

clearer relationship between performance and energy as they smooth out the irregu-

larities associated with our energy measurement scheme. Generally, our GPU energy

results align with the performance results. Most importantly, EEGraph’s unified

memory implementation shows improvement over Subway.

Overall the unified memory implementation improves upon Subway. It exhibits a

mean speedup of 3.3 and a maximum speedup of 6.80 compared to Subway for out-

of-memory graph processing on our GPU system shown in Table 4.34. Additionally,

61

our unified memory implementation shows a 1.63 mean GPU energy improvement

and 3.49 maximum GPU energy improvement over Subway, shown in Table 4.35. In

the following section, we observe vertex-induced subgraphs for out-of-memory graphs

as a practical in-memory profiling for large graph datasets.

Algorithm Subway-TMPI Subway-FS Subway-TWWW
BFS 2.42 5.45 2.98
CC 2.94 5.99 3.08
PR 3.58 1.03 1.55
SSSP 3.09 6.80 3.56
SSWP 3.11 6.24 3.44

Overall Total
GEOMEAN 3.00 4.27 2.81 3.30
MAX 3.58 6.80 3.56 6.80

Table 4.34
Out-Of-Memory UM Speedup Over Subway

Algorithm Subway-TMPI Subway-FS Subway-TWWW
BFS 0.92 2.29 0.94
CC 1.26 2.71 1.00
PR 3.49 1.22 1.66
SSSP 1.36 2.28 1.43
SSWP 1.44 3.19 1.53

Overall Total
GEOMEAN 1.51 2.23 1.28 1.63
MAX 3.49 3.19 1.66 3.49

Table 4.35
Out-Of-Memory UM Energy Improvement Over Subway

4.4.2 Performance and GPU Energy Consumption for Sub-

graphs of Out-of-Memory Graphs

Case Study of Individual Out-of-Memory Subgraphs

The Twitter-MPI subgraphs were excellent at exhibiting similar performance behavior

as the full Twitter-MPI graph. As with the complete graph, Sync-DD performed the

best in all but PageRank. For the PageRank algorithm, Async-TD was chosen rather

62

than Async-DD. Despite this, PageRank’s error was only two percent, with the overall

average error being 0.4 percent for execution time. The GPU energy measurements

followed the performance results for the Twitter-MPI subgraphs. Sync-DD was the

best energy consumption for the subgraphs for all algorithms besides PageRank. The

subgraph variant that had the best energy consumption for PageRank was Async-

TD which had the shortest execution time for PageRank. Cumulatively, the energy

consumption error was 0.2 percent.

Figure 4.15: Twitter-MPI Subgraph Execution Time (ms) and Energy
Consumption (mJ)

Twitter-MPI Subgraph Performance Relative to Async-DD
um-async-dd um-async-td um-sync-dd um-sync-td

BFS 1.00 1.04 1.39 1.04
CC 1.00 1.05 1.36 1.05
PR 1.00 1.04 0.98 1.02
SSSP 1.00 1.03 1.38 1.04
SSWP 1.00 1.03 1.39 1.03

Twitter-MPI Subgraph Performance Relative to Async-DD
um-async-dd um-async-td um-sync-dd um-sync-td

BFS 1.00 1.01 1.36 1.01
CC 1.00 1.05 1.35 1.05
PR 1.00 1.05 1.00 1.04
SSSP 1.00 1.02 1.39 1.03
SSWP 1.00 1.04 1.30 1.03

Table 4.36
Twitter-MPI Subgraph Normalized Performance and Energy

Like Twitter-MPI, the full graph of Friendster had the best performance and en-

ergy consumption with the Sync-DD variants of each algorithm except PageRank.

63

Performance Energy
BFS 0.00 0.00
CC 0.00 0.00
PR 0.02 0.01
SSSP 0.00 0.00
SSWP 0.00 0.00
Average 0.004 0.002

Table 4.37
Twitter-MPI Subgraph Selected Difference vs Full Selection

The subgraphs of Friendster were correct on every variant, with no wrong selections

relative to the complete graphs. Since both energy and performance have no misse-

lections, the tables for the subgraph errors are omitted. Overall, our subgraph results

perfectly align with the performance results for the entire graph for the Friendster

dataset.

Figure 4.16: Friendster Subgraph Execution Time (ms) and Energy Con-
sumption (mJ)

Friendster Subgraph Performance Relative to Async-DD
um-async-dd um-async-td um-sync-dd um-sync-td

BFS 1.00 1.04 1.33 1.03
CC 1.00 1.05 1.30 1.05
PR 1.00 1.03 1.01 1.11
SSSP 1.00 1.04 1.32 1.04
SSWP 1.00 1.03 1.32 1.04

Friendster Subgraph Energy Relative to Async-DD
um-async-dd um-async-td um-sync-dd um-sync-td

BFS 1.00 1.04 1.33 1.04
CC 1.00 1.05 1.30 1.05
PR 1.00 1.05 1.06 1.04
SSSP 1.00 1.02 1.18 1.03
SSWP 1.00 1.04 1.33 1.04

Table 4.38
Friendster Subgraph Normalized Performance and Energy

64

Twitter-WWW subgraphs also replicated their full graph counterpart well. In the full

graph, Sync-DD performed best for all algorithms besides PageRank. PageRank was

the only misalignment between the subgraphs and the full graph. Thus, PageRank’s

error is five percent for the subgraphs’ execution time. Cumulatively, this yields an

error rate of one percent for the subgraphs’ performance. The energy measurement

results for the subgraphs of Twitter-WWW follow the subgraph results for perfor-

mance. Sync-DD has the best energy consumption for the full graph and the best

energy consumption for the subgraph in all algorithms besides PageRank. The error

for PageRank for energy is four percent. Overall the subgraphs for Twitter-WWW

yield an error rate of 0.8 percent for energy for the subgraphs of Twitter-WWW.

Figure 4.17: Twitter-WWW Subgraph Execution Time (ms) and Energy
Consumption (mJ)

65

Twitter-WWW Subgraph Performance Relative to Async-DD
um-async-dd um-async-td um-sync-dd um-sync-td

BFS 1.00 1.04 1.38 1.05
CC 1.00 1.05 1.35 1.05
PR 1.00 1.04 1.00 1.05
SSSP 1.00 1.03 1.37 1.04
SSWP 1.00 1.04 1.37 1.03

Twitter-WWW Subgraph Energy Relative to Async-DD
um-async-dd um-async-td um-sync-dd um-sync-td

BFS 1.00 1.03 1.35 1.03
CC 1.00 1.05 1.35 1.06
PR 1.00 1.04 1.00 1.04
SSSP 1.00 1.01 1.35 1.03
SSWP 1.00 1.03 1.37 1.03

Table 4.39
Twitter-WWW Subgraph Normalized Performance and Energy

Performance Energy
BFS 0.00 0.00
CC 0.00 0.00
PR 0.05 0.04
SSSP 0.00 0.00
SSWP 0.00 0.00
Average 0.010 0.008

Table 4.40
Twitter-WWW Selected Difference vs Full Selection

.

Summary of Out-of-Memory Subgraph Processing

Large out-of-memory graphs can be difficult to process in their entirety, but our results

show that using subgraphs can accurately represent their behavior for performance

and energy. The observed subgraphs can represent the full graph and can be generated

in a reasonable amount of time and a significant reduction in space as shown in Table

4.43 and Table 4.44. As with the in-memory subgraphs, the memory size (Table 4.44)

is a calculation of the graph structure size in the program and may vary depending on

the system and does not include the program control data. The space ratio refers to

the comparison of the sum of vertices and edges for both the complete graph and the

66

subgraph. While there may be some slight errors in the subgraph, the overall error

rate is low, with only a .4% error for performance and .3% error for GPU energy shown

in Table 4.42 and Table 4.41. Therefore, a selective vertex-induced subgraph can be

a viable option for representing large out-of-memory graphs, making out-of-memory

graph processing more manageable than processing the entire graph.

Algorithm Twitter-MPI Friendster Twitter-WWW Cumulative
BFS 0.00 0.00 0.00 0.00
CC 0.00 0.00 0.00 0.00
PR 0.02 0.00 0.04 0.02
SSSP 0.00 0.00 0.00 0.00
SSWP 0.00 0.00 0.00 0.00

AVERAGE 0.00 0.00 0.01 0.004

Table 4.41
Overall Subgraph Speedup Difference for Large Graphs

Algorithm Twitter-MPI Friendster Twitter-WWW Cumulative
BFS 0.00 0.00 0.00 0.00
CC 0.00 0.00 0.00 0.00
PR 0.01 0.00 0.04 0.017
SSSP 0.00 0.00 0.00 0.00
SSWP 0.00 0.00 0.00 0.00

AVERAGE 0.00 0.00 0.01 0.003

Table 4.42
Overall Subgraph Energy Difference for Large Graphs

Vertices Edges Sub Vertices Sub Avg Edges UM Gen Time (ms) Space Ratio
Friendster 131216732 1806067135 1248361 391394.5 24877.33 .00085
Twitter-MPI 52579682 1963263821 525796 1160106.25 27543.55 .00084
Twitter-WWW 41652230 1468365182 416522 656032 32757.3 .00071

Table 4.43
Subgraph Size and Generation Time for Out-Of-Memory Graphs

Sub Mem Size (KB) Mem Size (KB) Mem Ratio Sub Avg Time Avg Time Time Ratio
Friendster 135913.5 21672805.631 0.006 918.392 17795.73 0.05
Twitter-MPI 66501.0 23559165.863 0.003 2063.001 47608 0.04
Twitter-WWW 49524.6 17620382.195 0.003 716.931 13872.551 0.05

Table 4.44
Subgraph Memory Size and Average Execution Time for Out-Of-Memory

Graphs

67

Chapter 5

Related Work

5.1 GPU-side Graph Processing

In computer systems research, performance often precedes more subtle characteri-

zations like energy efficiency. Hence much of the research for graph processing for

GPU systems focuses on performance. There are several approaches to improving the

performance of graph problems.

The non-traditional approaches for graph processing performance on GPUs focus on

hardware and compilation. GraphPEG takes a low-cost hardware-based approach by

enhancing resource utilization, memory bandwidth, and load balancing [19]. There

are also compiler-oriented approaches such as G2, which extends the graph processing

69

compiler GraphIt by adding GPU implementations of graph algorithms [3].

Most of the GPU performance-oriented work for graph processing takes a software

perspective. Xu et al. observe execution characteristics of graph applications of GPU

architectures by simulating GPU behavior and running on real hardware to suggest

optimizations for this problem space [35]. Several softwares (SwarmGraph [11], SAGE

[30], XBFS [5]) tackle the issue of memory efficiency. These implementations are

successful as they effectively take advantage of the unique organization of GPUs for

graph processing. An even more comprehensive approach is SIMD-X which leverages

several optimizations to manage irregularities associated with graph processing. The

optimizations employed by SIMD-X include an Active-Compute-Combine strategy

that better identifies node activity, a just-in-time task list for better load balancing

and kernel fusion to address deadlock issues and greatly improve upon previous works

[17]. Implementing SIMD-X is not as lightweight as some softwares, but it addresses

relevant bottlenecks in graph processing.

A few GPU-based graph processing works are especially relevant to our implemen-

tation. The first is Tigr which implements a lightweight virtual graph transforma-

tion to reduce the effects of degree irregularity and improves the efficiency of in-

memory graphs [24]. We adopt the virtual transformation from Tigr to apply a

vertex-centric graph processing design effectively. Another influence on EEGraph is

70

Gunrock. Gunrock implements a synchronous, data-driven, and vertex-centric paral-

lel graph processing abstraction that achieves better performance and expressiveness

[33]. Alternatively, Groute is an asynchronous multi-GPU graph processing software

[2]. Recently, research has found that both Gunrock and Groute offer viable use

cases. SEP-Graph built on these works by creating software that processes graphs

by dynamically switching difference configurations of the pairs of critical parameters:

synchronization, message passing, and node activation [31]. We apply the thrust of

SEP-Graph by analyzing pairs of critical parameters. However, our work also focuses

on energy efficiency and out-of-memory graph processing.

5.2 Heterogenous Graph Processing

Heterogenous solutions to graph processing has been a growing focus in recent years.

This focus is due to the necessary linkage between the CPU and GPU. The connection

between the CPU and GPU is critical as the pairing represents the complete system

used by a given software. Understanding this system can provide the broadest per-

spective on performance and energy efficiency. Heterogenous implementations have

also become more of a focus due to the space constraints of the GPU. Despite some

advantages, the GPU has more limited memory resources than the CPU. This limi-

tation generates the ”out-of-memory” problem for processing graphs larger than the

GPU memory. To address this, NVIDIA has developed the unified memory feature

71

[26] that we will discuss further in subsequent chapters as it has been applied in EE-

Graph. Due to the increasing size of input graphs, EEGraph includes heterogeneous

computing features.

Heterogenous graph processing has been applied to a variety of subtopics. CHAI is

a set of benchmark programs created to help developers understand the trade-offs of

heterogenous computing features [7]. Some works have focused on specific graph pro-

cessing problems. GRUS targets the effects of graph complexities on graph processing

with unified memory enhancements and execution optimizations [32]. TC-Stream ex-

plores out-of-memory triangle counting algorithms with performance improvements

[10]. Xia et al. explore out-of-memory all pairs shortest path problems on GPU and

develops a configuration selector [34]. Li et al. implement a transmission-focused

heterogeneous parallel graph processing method. Their improvements are from mul-

tiple subgraph processing that more effectively exhausts the vertex values during

execution as opposed to the single subgraph approach in other implementations [16].

Subway also uses subgraph generation and Tigr for out-of-memory parallel graph

processing implementations [29] [24]. Subway’s subgraph generation processes the

most active vertices[29]. These explicit subgraph generation schemes are common in

out-of-memory parallel graph processing. Therefore we compare the unified mem-

ory configuration of EEGraph to Subway for large graphs for both performance and

energy.

72

5.3 Energy Efficiency of GPU Computations

Exploring the energy efficiency of different configurations for graph processing on

GPUs is a primary objective of EEGraph. However, the current literature on specific

problems and their energy efficiency is limited. Mittal et al. establish methods and

improvements for GPU energy efficiency [21]. They primarily observe the relationship

between CPU, GPU, and FPGA energy consumption and their power management

settings [21]. Their work broadly establishes the energy efficiency and feasibility of

GPUs but does not comment on specific types of problems applied to GPU platforms.

GreenGPU achieves energy savings with a CPU-GPU distributed workload for several

specific sample problems [20]. However, they use a hardware approach that physically

monitors the power consumption of components. While this is perhaps the most ef-

fective way of measuring the energy consumption of the entire system, it is unrealistic

in scenarios where users cannot access physical devices. Jiao et al. apply a similar

hardware-based approach to analyze various computing and memory intensity levels

on GPUs [12]. Both of the previously mentioned hardware-based approaches offer

insight into the energy efficiency of GPUs. However, we implement a software-based

measurement of energy consumption similar to Navarro et al. [4]. Their work focused

on the energy efficiency and performance of triangle-dropping algorithms found in

visual applications concerning mobile GPUs. They monitor energy using an external

software Teapot [4] [1].

73

Research on the energy efficiency of GPUs has increased in recent years, but to our

knowledge, there is limited energy efficiency research for graph processing on GPUs.

Therefore we perform a software-based approach for measuring the energy consump-

tion for graph processing on GPUs. Then we can experimentally characterize energy

efficiency for different configurations of these algorithms in addition to performance.

74

Chapter 6

Conclusion

This work presents a successful graph processing software for both in-memory and

out-of-memory graphs. Despite the success of our findings, there are several av-

enues for improvement for EEGraph. The energy measurement portion of EEGraph,

to our knowledge, is the first lightweight software-based GPU energy measurement.

However, in future work, it is also best to measure the CPU energy as much of the

application of EEGraph includes heterogeneous graph processing. Optimizing the

polling rate would be a beneficial addition to EEGraph as well. Another optimiza-

tion would be the subgraph sizes to determine the smallest viable subgraphs for our

profiling. Additionally, the evaluations of more algorithms to either confirm or contest

the variant selections of both the small and large graphs. Finally, there is the poten-

tial for more configurable parameters, such as pull-based updates. Pull-based updates

75

have shown viability for performance, but most existing approaches, including EE-

Graph, use a push-based update scheme. Depending on the algorithm, a push-based

scheme’s effectiveness may not be optimal. Our software could also evaluate other

graph algorithms. As mentioned in Chapter 2, we only cover a few prevalent graph

processing algorithms. It would also be helpful to evaluate different algorithms, such

as triangle counting or finite-state machine transitions. Despite these potential im-

provements, our graph processing software improves upon recent works and provides

critical insight.

Our evaluation details the effectiveness of EEGraph for graph processing for both

performance and energy efficiency. EEGraph includes several graph processing al-

gorithms with different configurations for update synchronization, node activation,

and memory paradigms. Additionally, our software has shorter processing times and

consumes less GPU energy than a state-of-the-art graph processing software Subway

for large and small graphs. For in-memory graphs, the best configuration of EEGraph

outperforms the best configuration of Subway, with an average speedup of 2.08 and

a maximum speedup of 3.61. EEGraph is also 1.60 more energy efficient and maxi-

mally 2.90 more energy efficient on the GPU device than Subway. For out-of-memory

graphs using a unified memory, EEGraph has a 3.30 average speedup and a max-

imum speedup of 6.80 over Subway. EEGraph is 1.63 more times energy efficient

than Subway on average and has a maximum energy improvement of 3.49. There-

fore, EEGraph offers a significant improvement over existing frameworks for graph

76

processing.

EEGraph also explores vertex-induced subgraphs for in-memory and out-of-memory

graphs for both execution time and GPU energy. On average, the small datasets’

subgraphs deviate from the complete graph by 3.3% for performance and 4% for

GPU energy. The large datasets’ subgraphs have an error of .4% and .3% for perfor-

mance and energy, respectively. The subgraphs generated in this work greatly reduce

the space constraints of graph processing for post-execution analysis. The subgraph

performance encourages using our subgraphs to represent the complete graph for pro-

filing the performance and energy of graph processing algorithms and variants on the

GPU.

77

References

[1] Arnau, J.-M., Parcerisa, J.-M., and Xekalakis, P. Teapot: A toolset for

evaluating performance, power and image quality on mobile graphics systems.

In Proceedings of the 27th International ACM Conference on International Con-

ference on Supercomputing (New York, NY, USA, 2013), ICS ’13, Association

for Computing Machinery, p. 37–46.

[2] Ben-Nun, T., Sutton, M., Pai, S., and Pingali, K. Groute: An asyn-

chronous multi-gpu programming model for irregular computations. In Pro-

ceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming (2017), PPoPP ’17, Association for Computing Machinery.

[3] Brahmakshatriya, A., Zhang, Y., Hong, C., Kamil, S., Shun, J., and

Amarasinghe, S. Compiling graph applications for gpus with graphit. 2021

IEEE/ACM International Symposium on Code Generation and Optimization

(CGO) (2021).

79

[4] Corbalán-Navarro, D., Aragón, J. L., Anglada, M., Parcerisa, J.-

M., and González, A. Triangle dropping: An occluded-geometry predictor

for energy-efficient mobile gpus. ACM Transactions on Architecture and Code

Optimization 19, 3 (2022), 1–20.

[5] Gaihre, A., Wu, Z., Yao, F., and Liu, H. Xbfs: exploring runtime opti-

mizations for breadth-first search on gpus. Proceedings of the 28th International

Symposium on High-Performance Parallel and Distributed Computing (2019).

[6] Garg, C., and Sakharnykh, N. Improving gpu memory oversubscription

performance, Aug 2022.

[7] Gomez-Luna, J., Hajj, I. E., Chang, L.-W., Garcia-Flores, V.,

de Gonzalo, S. G., Jablin, T. B., Pena, A. J., and Hwu, W.-

m. Chai: Collaborative heterogeneous applications for integrated-architectures.

2017 IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS) (2017).

[8] Heidari, S., Simmhan, Y., Calheiros, R. N., and Buyya, R. Scalable

graph processing frameworks: A taxonomy and open challenges. ACM Comput.

Surv. 51, 3 (jun 2018).

[9] Hirschberg, D. S., Chandra, A. K., and Sarwate, D. V. Computing

connected components on parallel computers. Communications of the ACM 22,

8 (1979), 461–464.

80

[10] Huang, J., Wang, H., Fei, X., Wang, X., and Chen, W. Tcstream: Large-

scale graph triangle-counting on a single machine using gpus. IEEE Transactions

on Parallel and Distributed Systems (2021).

[11] Ji, Y., Liu, H., and Huang, H. H. Swarmgraph: Analyzing large-scale

in-memory graphs on gpus. 2020 IEEE 22nd International Conference on High-

Performance Computing and Communications; IEEE 18th International Con-

ference on Smart City; IEEE 6th International Conference on Data Science and

Systems (HPCC/SmartCity/DSS) (2020).

[12] Jiao, Y., Lin, H., Balaji, P., and Feng, W. Power and performance char-

acterization of computational kernels on the gpu. 2010 IEEE/ACM Int’l Con-

ference on Green Computing and Communications; Int’l Conference on Cyber,

Physical and Social Computing (2010).

[13] Keith, W. J., and Kreher, D. Lecture notes from combinatorics and graph

theory, October 2013.

[14] Kunegis, J. KONECT – The Koblenz Network Collection. In Proc. Int. Conf.

on World Wide Web Companion (2013), pp. 1343–1350.

[15] Leskovec, J., and Krevl, A. SNAP Datasets: Stanford large network

dataset collection. http://snap.stanford.edu/data, June 2014.

[16] Li, X. Scaling up large-scale graph processing for gpu-accelerated heterogeneous

systems. CoRR abs/1806.00762 (2018).

81

http://snap.stanford.edu/data

[17] Liu, H., and Huang, H. H. SIMD-X: Programming and processing of graph

algorithms on GPUs. In 2019 USENIX Annual Technical Conference (USENIX

ATC 19) (July 2019), USENIX Association.

[18] Lumsdaine, A., Gregor, D., Hendrickson, B., and Berry, J. Challenges

in parallel graph processing. Parallel Processing Letters 17, 01 (2007), 5–20.

[19] Lü, Y., Guo, H., Huang, L., Yu, Q., Shen, L., Xiao, N., and Wang,

Z. Graphpeg: Accelerating graph processing on gpus. ACM Transactions on

Architecture and Code Optimization (2021).

[20] Ma, K., Li, X., Chen, W., Zhang, C., and Wang, X. Greengpu: A holistic

approach to energy efficiency in gpu-cpu heterogeneous architectures. 2012 41st

International Conference on Parallel Processing (2012).

[21] Mittal, S., and Vetter, J. S. A survey of methods for analyzing and

improving gpu energy efficiency. ACM Computing Surveys 47, 2 (2014), 1–23.

[22] Nguyen, D., Lenharth, A., and Pingali, K. A lightweight infrastructure

for graph analytics. In Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles (New York, NY, USA, 2013), SOSP ’13, Associa-

tion for Computing Machinery, p. 456–471.

[23] Nicely, M. Nvml examples. https://github.com/mnicely/nvml_examples,

2022.

82

https://github.com/mnicely/nvml_examples

[24] Nodehi Sabet, A. H., Qiu, J., and Zhao, Z. Tigr: Transforming irregu-

lar graphs for gpu-friendly graph processing. Proceedings of the Twenty-Third

International Conference on Architectural Support for Programming Languages

and Operating Systems (2018).

[25] NVIDIA Developer. Nvidia Management Library (NVML). NVIDIA, Jan

2021.

[26] NVIDIA Documentation Hub. Cuda C++ Programming Guide. NVIDIA,

2020.

[27] Onder, S. Computer architecture lecture 12, 2021.

[28] Page, L., Brin, S., Motwani, R., and Winograd, T. The pagerank

citation ranking: Bringing order to the web. Tech. rep., Stanford InfoLab, 1999.

[29] Sabet, A. H., Zhao, Z., and Gupta, R. Subway. Proceedings of the Fifteenth

European Conference on Computer Systems (2020).

[30] Sha, M., Li, Y., and Tan, K.-L. Self-adaptive graph traversal on gpus. Pro-

ceedings of the 2021 International Conference on Management of Data (2021).

[31] Wang, H., Geng, L., Lee, R., Hou, K., Zhang, Y., and Zhang, X.

Sep-graph: Finding shortest execution paths for graph processing under a hybrid

framework on gpu. Proceedings of the 24th Symposium on Principles and Practice

of Parallel Programming (2019).

83

[32] Wang, P., Wang, J., Li, C., Wang, J., Zhu, H., and Guo, M. Grus: To-

ward unified-memory-efficient high-performance graph processing on gpu. ACM

Transactions on Architecture and Code Optimization 18, 2 (2021), 1–25.

[33] Wang, Y., Pan, Y., Davidson, A., Wu, Y., Yang, C., Wang, L., Osama,

M., Yuan, C., Liu, W., Riffel, A. T., and et al. Gunrock. ACM

Transactions on Parallel Computing (2017).

[34] Xia, Y., Jiang, P., Agrawal, G., and Ramnath, R. Scaling and select-

ing gpu methods for all pairs shortest paths (apsp) computations. 2022 IEEE

International Parallel and Distributed Processing Symposium (IPDPS) (2022).

[35] Xu, Q., Jeon, H., and Annavaram, M. Graph processing on gpus: Where

are the bottlenecks? 2014 IEEE International Symposium on Workload Char-

acterization (IISWC) (2014).

84

	EXPLORING HIGH PERFORMANCE AND ENERGY EFFICIENT GRAPH PROCESSING ON GPU
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	Definitions
	List of Abbreviations
	Abstract
	Introduction
	Background
	Graph Basics
	Graph Processing
	Graph Processing Algorithms
	Graph Processing Algorithm Variants
	Graph Processing on GPU Architectures

	Motivation

	EEGraph
	Overview
	Variant Processing Design
	Memory Management
	Subgraph Profiling
	Measurement
	Energy Measurement
	Performance Measurement

	Evaluation
	Software Environment
	Datasets
	In-Memory Graph Processing
	Performance and GPU Energy Consumption of In-Memory Graphs
	Performance and GPU Energy Consumption for Subgraphs of In-Memory Graphs

	Out-of-Memory Graph Processing
	Performance and GPU Energy Consumption of Out-of-Memory Graphs
	Performance and GPU Energy Consumption for Subgraphs of Out-of-Memory Graphs

	Related Work
	GPU-side Graph Processing
	Heterogenous Graph Processing
	Energy Efficiency of GPU Computations

	Conclusion
	References

