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Abstract
Media convergence works by processing information from different modalities and
applying them to different domains. It is difficult for the conventional knowledge graph
to utilise multi‐media features because the introduction of a large amount of information
from other modalities reduces the effectiveness of representation learning and makes
knowledge graph inference less effective. To address the issue, an inference method based
on Media Convergence and Rule‐guided Joint Inference model (MCRJI) has been pro-
posed. The authors not only converge multi‐media features of entities but also introduce
logic rules to improve the accuracy and interpretability of link prediction. First, a multi‐
headed self‐attention approach is used to obtain the attention of different media features
of entities during semantic synthesis. Second, logic rules of different lengths are mined
from knowledge graph to learn new entity representations. Finally, knowledge graph
inference is performed based on representing entities that converge multi‐media features.
Numerous experimental results show that MCRJI outperforms other advanced baselines
in using multi‐media features and knowledge graph inference, demonstrating that MCRJI
provides an excellent approach for knowledge graph inference with converged multi‐
media features.

KEYWORD S
logic rule, media convergence, multi‐modal knowledge graph inference, representation learning

1 | INTRODUCTION

Media convergence can take advantage of the multi‐media
nature of things to provide people with richer information.
With the development of multi‐media technologies, research
on media convergence is actively being carried out. Knowledge
is formed in different areas of convergence [1]. Multi‐media
information essentially refers to multi‐modal information
provided through text, images, and video in various media.
There is also a growing propensity to predict the course of
social events or the emotional tendencies of a particular person
using the multi‐modal features of various media. For this task,
multi‐modal knowledge graphs (MKGs) with multi‐modal in-
formation have drawn a lot of attention.

Conventional KG can clearly show the relationships among
entities in the real world in the form of triples, but their mo-
dalities are single and cannot fully cover real‐world knowledge.
The concept of MKG has been proposed as shown in Figure 1,
where the MKG links multi‐modal information of various
media on the corresponding entities and addresses this issue to a
certain extent. However, practically, each entity gives informa-
tion of different media very different attention, so simply
including media features in the knowledge graph does not
guarantee that they will be effectively used. Most KGs
combining multi‐media features do not currently take this into
account. This just adds the multi‐media features to the knowl-
edge graph without fully utilising the multi‐media information.
Besides, as one of the main knowledge graph inference methods
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currently available, inference based on representation learning
can map the entities and relations in KGs to a low‐dimensional
space to obtain the corresponding vectors. Some representation
learning methods, such as TransH [2] and TransR [3], can solve
one‐to‐many and many‐to‐many problems to a large extent.
However, these problems are significantly amplified when
applying these methods to the inference of MKG. Multi‐modal
knowledge graphs introduce a large number of other modal
features (e.g. pictures and text descriptions), leading to a sig-
nificant increase in knowledge graph complexity. As a result, the
efficiency of the current representation model and the accuracy
of inference results are reduced.

Multi‐modal knowledge graphs increase the complexity of
KGs, but they are unable to make up for the information
limitations of conventional KGs. In conventional knowledge
graph representation learning, vectors can only represent the
semantic relationships between different entities. But in fact,
the discovery of new facts often rely on features of things
themselves, such as images, and text descriptions. Therefore,
multi‐media information in the KG can improve the accuracy
and effectiveness of reasoning [4]. The introduction of these
multi‐media features can improve the link prediction task ef-
ficiency by enriching the information of the entities, but it does
not make it interpretable.

Multi‐headed self‐attention is used to address the issue of
not being able to fully utilise multi‐media features and the
impact of multi‐media feature introduction on the represen-
tation model. Additionally, some conventional KG represen-
tation learning methods purely consider a single triple. Paths in
KGs always play an important role in providing additional
relationships between entities [5]. Considering that the accu-
racy and interpretability of the additional semantic information
of the logic rules will greatly improve the effectiveness of our
model if we can take advantage of it. Figure 2 illustrates an
example of logic rules applied to representation learning;
rule R2 (x, BornInCounty, z) ∧ (y, CountryLanguage, z) → (x,

PersonSpokenLanguage, y) and rule R1 (x, Person-
MotherTongue, y) → (x, PersonSpokenLanguage, y) can be
used to iteratively compose the path into a triple (Freddy
Rodriguez, PersonSpokenLanguage, American English).
Therefore, we introduce additional semantic information of
logic rules and use logic rules to combine relations into paths,
which substantially improves both the accuracy of knowledge
graph path representation learning and the explainability of
representation learning.

This paper proposes the Media Convergence and Rule‐
guided Joint Inference (MCRJI) model. Different media in-
formation is combined by learning how much attention entities
pay to different media features through multi‐headed self‐
attention. Besides, logic rules are used to combine paths and
association relations at the semantic level for representation
learning. Finally, entity embeddings converging multi‐media
feature information are used for link prediction, making full
use of the different media features of entities. In this work, our
main contributions can be summarised as follows:

� To the best of our knowledge, this is the first attempt to
combine media convergence with logic rules for MKG
inference, increasing the available information while
improving the explainability of the inference.

� Our proposed MCRJI model fully considers multi‐media
features. It uses multi‐headed self‐attention to converge
different media features of entities and add them to their
vector representation. Finally, the inference is performed
based on the new entity representation guided by logic rules.
In other words, we make full use of the features and logic
rules of different media, thereby the improving link pre-
diction efficiency and interpretability.

� We conduct a large number of experiments on link pre-
diction for MKG, and the MCRJI model achieves good
performance. The impact of various rule confidence levels
shows how the effective use of rules and multi‐media

F I GURE 1 An example of multi‐modal knowledge graph (MKG).
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features is ensured by the confidence level of the rules
considered in the model. Additionally, our model has good
robustness to various confidence levels.

2 | RELATED WORK

2.1 | Multi‐media information convergence

The variety of information that people are exposed to daily is
increasing as a result of technological advancement. Media
convergence is also gaining traction. Multi‐media information
convergence allows machines to make full use of multi‐modal
information, similar to how humans perceive the world using
the same multi‐sensory information that they use for vision,
hearing, smell, and touch. In the field of multi‐modal infor-
mation convergence, numerous models have recently been put
forth to predict information, broaden its scope, and improve
the accuracy of results and robustness of models. For instance,
Moon et al. [6] extract features from images and text using
Convolutional Neural Networks [7] and Long Short‐Term
Memory [8]. Then, simple attention is used to fuse multi‐
modal information to disambiguate named entities using
multi‐modal information. Yan et al. [9] propose a video
captioning framework based on object‐relational graphs and
multi‐modal feature convergence, which uses a multi‐modal
feature convergence network to combine features of diff-
erent modalities.

With the deep application of multi‐modal information,
Aljunid et al. [10] propose amulti‐model deep learning approach
for collaborative filtering recommender systems. Sun et al. [11]
propose the MKG attention network (MKGAT) to improve the
efficiency of recommendations made by recommendation sys-
tems. MKG attention network includes MKG embedding and
recommendation modules, where the MKG embedding module
uses an entity encoder and attention layer to learn a new rep-
resentation for each entity. In MKG's attention, the add and
concatenation aggregation methods are proposed for the
convergence ofmulti‐modal information. As a result, it becomes
possible for the new entity to fuse the information of nearby
entities while retaining its information. This converged modal

entity can be used to express knowledge inference relations.
However, this model further increases KG complexity while
introducing a large amount of other modal information, which
results in reducing the efficiency of representation learning.

To give different attention to the information from
different modalities, Wang et al. [4] propose the Multi‐modal
knowledge graphs representation learning via multi‐headed
self‐attention (MKGRL‐MS) model for fusing multi‐modal
information. The features of image and text modalities are
encoded using ResNet and RoBERTa‐www‐ext. In particular, a
multi‐headed self‐attention is used to obtain the attention of
different modal features, and consequently a new entity rep-
resentation, which is the sum of entity representation and
multi‐modal feature representation of entities.

However, the above‐mentioned models only enrich the
information of entities through multi‐media features. The fact
that only a single triple is still considered in representation
learning does not make the multi‐media information‐based
prediction task interpretable.

2.2 | Rule employment for knowledge
graphs

Logic rules contain rich semantic information and are inter-
pretable. If we want to apply logic rules in KG inference, we
must first pre‐define a rule set for KGs and use it to infer the
facts that are already present in the KGs. However, the set of
rules used in this approach is usually incomplete when dealing
with KGs with more complex structures, and different rules
always infer some utterly contradictory conclusions. Therefore,
several methods have been proposed to discover rules
from KGs, including AMIE [12], AMIE+ [13], RLvLR [14],
and CARL [15]. Richardson and Domingos [16] propose a
Markov Logic Network by combining Markov random field
networks and first‐order logic. It implements uncertainty
inference by assigning learnable weights to rules. Not coinci-
dentally, Bayesian Logic Programing [17] uses Bayesian net-
works to demonstrate logic rules. In addition, they achieve
inference by discovering probabilistic relationships between
these variables.

F I GURE 2 An example of logic rules applied to representation learning.
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The inference results of these methods are usually
explainable. However, these techniques are less efficient when
the KG is large and complex in structure. More importantly,
the sensitivity of the rules results in frequent failure to infer
missing valid triples.

Minervini et al. [18] impose equivalence and inverse con-
straints on relational embedding to improve the efficiency and
accuracy of KG inference, but this approach is not universal
because it only considers two constraints between relations
instead of general rules. Guo et al. in KALE [19] obtain logic
rules from t‐norm and convert the rules into complex equa-
tions formed by triples. However, the interpretability and ac-
curacy of the logic rules are reduced while converting them
into complex equations.

2.3 | Knowledge graph inference

2.3.1 | Conventional knowledge graphs inference

Knowledge inference is the process of inferring unknown facts
or relations from known ones in a graph. There are three main
forms of inference in KG: representation learning‐based,
neural network‐based, and rule‐based inference. Besides, there
is also a hybrid inference approach, as the name implies, which
combines multiple methods for inference with complementary
advantages. Among these methods, representation learning‐
based inference and hybrid inference have received wide
attention because of their effectiveness.

Representation learning‐based inference automatically
captures the features required for inference without instructing
the inference step, so this approach is not interpretable. TransE
[20] is widely used in representation learning and is considered
the benchmark for KG representation learning. It is assumed
that the distance between the tail entity and the head entity
embedding is roughly equal to the distance of the relationship
embedding. However, TransE cannot accurately represent
complex relationships in KG, such as “one‐to‐many” and
“many‐to‐one”. To address this issue, a series of more
advanced models have also been proposed, such as TransH [2],
TransR [3], TransD [21], and TransG [22]. TransH [2] is the
first to project the entity representation onto the hyperplane of
a particular relationship. TransR [3] introduces the space of a
particular relationship through a projection matrix. The dis-
tance is then computed on the space. TransD [21] makes more
improvements. It makes itself more efficient by dynamically
generating the projection matrix through two vectors. TransG
[22] also considers uncertainty by introducing a Gaussian dis-
tribution. These methods are very efficient and scalable but
represent unsatisfactory learning results because of their simple
loss functions [23].

The logic rules in KG contain a wealth of information that
can greatly enhance the effectiveness of representation
learning. Therefore, in recent years, several rule‐enhanced
hybrid approaches have been introduced that can address the
drawbacks of both rule‐based and representation learning‐
based approaches. For instance, Guo et al. [24] propose the

rule‐guided embedding approach, which iteratively models the
observation of triples in a knowledge graph. Similarly, Zhang
et al. [25] propose an iterative embedding approach through
representation learning, equation induction, and injection.
However, these models require the use of methods that
approximate embedding results [22] or t‐norm fuzzy logic [26]
approaches. Therefore, these approaches are not suitable for
use in large‐scale KGs with complex structures. To address
these issues, Niu et al. [5] propose a Rule and Path Joint
Embedding model (RPJE), which makes full use of logic rules
to enhance the effectiveness and explainability of representa-
tion learning. Specifically, the logic rules mined from KG are
first encoded as path rules. Paths are then composed using the
encoded rules and representation learning is performed to
ensure that the logic rules are well interpretable. Tang et al. [27]
propose the RULE model, which enables the embedding of
pretrained logic rule information into the vector space to
improve the reliability of the KG embedding. In addition,
RULE improves the inference process by learning the confi-
dence scores of the rules and controlling their weights.

2.3.2 | Multi‐modal knowledge graphs inference

Currently, the majority of the MKG inference methods use
multi‐modal knowledge while learning the representation of
entities and relations. Multi‐modal knowledge graph inference
models mainly include translation‐based and neural network‐
based models. The translation‐based model introduces multi‐
modal information based on the conventional translation
model for knowledge inference based on representation
learning. Xie et al. [28] propose the Image‐embodied knowl-
edge representation learning model considering the visual in-
formation of entities, which combines images and KG for the
first time for knowledge graph representation learning. Hatem
et al. [29] propose a translation model that defines the scoring
function of a knowledge graph as the sum of three scoring
functions: structural knowledge, visual knowledge, and textual
knowledge. Wang et al. [30] propose the TransAE, which
combines self‐encoder and TransE to learn MKG represen-
tation for knowledge inference. Lu et al. [31] propose the
Multi‐modal knowledge graph representation learning model,
which introduces a multi‐modal knowledge alignment scheme
to correlate and merge multi‐modal knowledge and uses an
adversarial training strategy to enhance its robustness. Ning
et al. [32] propose the PDRL model, which combines relational
paths in the knowledge graph with entity description infor-
mation to improve model performance.

A MKG inference model for basal neural networks is based
on neural networks that are treated as scoring functions for
knowledge graph inference. Zhang et al. [33] propose a multi‐
modal multi‐relational feature aggregation network for medical
knowledge graph representation learning. For the multi‐modal
content of entities, an adversarial feature learning model is used
to learn multi‐modal entity public representations by mapping
text and image information of entities into the same vector
space. Tang et al. [34] propose a multisource knowledge graph
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representation learning model MKRL that exploits both
structural knowledge of KG and multi‐modal knowledge of
hierarchical types, textual relations, and entity descriptions.

3 | METHOD

This section presents in detail our proposed MCRJI model
shown in Figure 3. Media Convergence and Rule‐guided Joint
Inference model consists of four main sub‐modules: feature
matrix coding of multi‐media, media convergence based on
multi‐headed self‐attention, rules employment for representa-
tion learning, and KG inference with the feature of multi‐
media based on representation learning. The upper left part
is the feature matrix coding of multi‐media, the lower left part
is the media convergence based on multi‐headed self‐attention,
the upper right part is the rules employment for representation
learning, and the lower right part is the KG inference with the
feature of multi‐media based on representation learning. These
four sub‐modules will be presented in detail in the sequel.

3.1 | Feature matrix coding of multi‐media

We use different encoders for image and text descriptions to
obtain feature vectors for the different media of the entity, as
follows:

Images: For image encoding, we use the residual network
model ResNet50. First, we unify the size of the images and

adjust the last fully connected layer. Finally, the feature vectors
of the image media are obtained.

Text: The pretrained BERT‐large‐cased language model is
used for text encoding. It is pretrained on a large‐scale unla-
belled corpus using self‐supervised learning methods to cap-
ture the rich semantic information in the text.

Through the above operations, we extract the eigenvectors
of the image and text description. Meanwhile, to reduce the
training overhead and noise, we perform Principal Component
Analysis processing on the obtained feature vectors. Finally, we
splice the processed feature vectors into a feature matrix of
entities.

3.2 | Media convergence based on multi‐
headed self‐attention

In Section 3.1 we completed a simple stitching of various
media information features. However, each entity actually pays
different attention to different media. While some entities may
focus more on visual media features such as image and video
media, others may concentrate more on text media, which is a
specific description of the entity. Entities in positive triples
tend to have different attention to their media features.
Therefore, we use multi‐headed self‐attention [4] to converge
multi‐media information of entities, which allows the features
of different media to interact with each other. As shown in (1),
the dot product is used to calculate the attention score as
follows:

F I GURE 3 Overview of the Media Convergence and Rule‐guided Joint Inference model (MCRJI)
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M∗ ¼ sof tmax

 
Wq ∙ m∗ ∙ ðWk ∙ m∗Þ

T

ffiffiffiffiffiffi
Dk
p

!

∙ Wv ∙ m∗; ð1Þ

where Wq is the query matrix, Wk is the key matrix, Wv is the
value matrix, m∗ is the multi‐media feature matrix obtained
after feature encoding, and M∗ is the multi‐media feature
matrix obtained by multi‐headed self‐attention.

Finally, we further integrate the multi‐media information,
converging the multi‐media feature matrix into a vector that
represents a multi‐media feature. The advantage of doing so is
to give the multi‐media features the same dimensionality as the
distributed representation of entities, which facilitates the
subsequent representation learning. The formal expression is
shown in (2):

M ¼

Pn

n¼1
M∗

n

n
; ð2Þ

where M is the multi‐media feature vector of the entity, n is the
number of unimodal feature vectors, and M∗

n is the division
of M∗.

3.3 | Rules employment for representation
learning

We discover the paths from KG and use AMIE to mine the KG
for the implied rules and their confidence levels. To ensure the
efficiency of discovering rules, we set the length of the rules to be
no greater than 2 and add the inverse version of each relation to
the knowledge graph. Thus, we define a new triple (t, r−1, h) to
represent the inverse relationship r−1 in the original triple (h, r, t).

3.3.1 | Rule of length 1

The rule of length 1 can directly discover the semantic similarity
between relations. There are many relations with semantic sim-
ilarity implied in KG. Besides, the inverse relations we add may
have semantic similarities with the original relations. Therefore,
we should make the embedding of these relations closer during
the training process. The formal expression is shown in (3):

score1ðr; reÞ ¼ jjr − rejj; ð3Þ

where r and re are two relations in the set of relations.
score1ðr; reÞ denotes the scoring function of the similarity
between a relation r and another relation re. If re and r are the
relations covered by the rule, they should be assigned with a
smaller score.

3.3.2 | Rule of length 2

The rule of length 2 can combine two relations at a time by
traversing the paths up until the rule is unable to combine the

relations. We implement the PTransE [35] path extraction
process on KG. Second, since the rules mined by AMIE
cannot be used directly in paths, we convert the original rules
into chain rules to be used directly in paths. Taking the original
rule (c, r1, a) ∧ (c, r2, b) → (a, r3, b) as an example, we first
convert (c, r1, a) to (a, r1‐1, c). Then, we exchange the order of
two relations to get the rule (a, r1−1, c) ∧ (c, r2, b) → (a, r3, b),
and carry out abbreviation to get the rule (r1−1, r2) → r3.
Finally, we can get the path r1−1 → r2 composed as r3.

To make full use of the rules, we should traverse the paths
and iteratively combine those using rules of length 2 until the
rules are unable to combine the relations. This method of
obtaining long paths by iterative combination of rules of path 2
is to avoid the unreliable rules caused by too long paths. In
addition, when multiple rules can be matched in the path, the
rule with the highest confidence level should be selected. The
formal expression is shown in (4):

scorepathðp; rÞ ¼ conðpjh; tÞ
�

∏
ui∈ruleðpÞ

ui
�

jjcomðpÞ − rjj; ð4Þ

where scorepathðp; rÞ denotes the scoring function between the
path p and the relation r, conðpjh; tÞ denotes the confidence
of path p from entity pair (h, t), h, r, and t are the respective
embeddings of head, relation, and tail entities, comðpÞ is
the composition result of path p, and ruleðpÞ denotes
the confidence set of the logic rules in the combined path
process.

3.4 | Knowledge graph inference with
feature of multi‐media based on representation
learning

By converging features of multi‐headed self‐attention, we
propose a distributed representation as a sum of semantic and
multi‐media feature representations of entities, where the
multi‐media features of entities are represented in (2) while
semantic features of entities are conventional forms of kno-
wledge representation.

Particularly, our model uses logic rules to learn the repre-
sentation of entities based on the convergence of multi‐media
features, thereby transforming the scoring function into the
following equations:

score2ðp; rÞ ¼ con
�
pjh − Fh; t − Ft

�
�

∏
ui∈ruleðpÞ

ui
�

� jjcomðpÞ − rjj; ð5Þ

score3ðh; r; tÞ ¼ jjh − Fh þ r − ðt − FtÞjj; ð6Þ

where Fh and Ft are multi‐media feature vectors. score2 in-
corporates multi‐media features based on scorepathðp; rÞ, and
score3 is a representation learning of these entities and relations
using the conventional additive method when there are no
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available rules among entities. When no rules are available, the
representation learning of KG is similar to transE, but this
approach fuses the multi‐media feature vectors of entities.

The loss function used to formalise the training objective
of the MCRJI model is given by:

loss¼
X

ðh;r;tÞ∈T

2

4loss1 ðh; r; tÞ þ α1

X

p∈Pðh;tÞ

loss2ðp; rÞ

þ α2

X

re∈DðrÞ

loss3ðr; reÞ

3

5; ð7Þ

where DðrÞ is the set of relations derived from r on the rule of
length 1, re is a relation in DðrÞ, Pðh; tÞ denotes all paths
connecting entity pairs ðh; tÞ, and P is one of the paths in
Pðh; tÞ, while α1 and α2 are two hyperparameters that weight
the influence of paths and embedded constrained pairs of re-
lations, respectively, loss1ðh; r; tÞ, loss2ðp; rÞ, and loss3ðr; reÞ are
three loss functions, which are defined according to (3), (5), (6)
as follows:

loss1ðh; r; tÞ ¼
X

ðh0;r0;t0Þ∈S−

�
γ1 þ score1ðh; r; tÞ

− score1
�
h0; r0; t0

��
; ð8Þ

loss2ðp; rÞ ¼
X

r0∈S−

�
γ2 þ score2ðp; rÞ − score2ðp; r0Þ

�
; ð9Þ

loss3ðr; reÞ ¼
X

r0∈S−

�
γ3 þ βscore3ðr; reÞ − score3ðr; r0Þ

�
; ð10Þ

where γ1, γ2, and γ3 are hyperparameters that denote the
margins of the loss function in Eqs, β denotes the confidence
of the rule that associates r and re in the rules. S is a set of
positive triples and S− is a set of negative triples. The negative
triple is created by randomly replacing one entity in a positive
triple (i.e., S− = {(ℎ0, r, t)|ℎ0 ∈ E}∪{(ℎ, r, t0)|t0 ∈ E}).

4 | EXPERIMENTS

In this section, four datasets are used to evaluate the MCRJI
model. Our datasets and rules are first introduced in Sec-
tion 4.1, and the experimental setup is then described in detail
in Section 4.2. In Section 4.3, we will discuss the experimental
results.

4.1 | Datasets and rules

We validate MCRJI model on four datasets: FB15K and FB‐
img from large‐scale Freebase, DB15K from DBpedia15K
after alignment, and WN18 extracted from WordNet. The
statistics of the used datasets are shown in Table 1.

Any rule‐mining tool can be used to generate the rules
applied in our model. We chose AMIE+ [13] because it is
convenient and mature enough to mine logic rules with
different confidence levels in different KG. Table 2 lists the
statistics of rules with different confidence levels mined from
FB15K, FB‐img, DB15K, and WN18 in the range [0.5,0.9] in
steps of 0.1, which are encoded for representation learning.

4.2 | Experimental setup

4.2.1 | Evaluation protocol

Link prediction is considered as an evaluation criterion for
model efficiency in the field of KG inference. In this task, we
need to replace the entities (h or t) in the test set with entities
from the dictionary. These triples that are replaced are called
negative triples. Then, the scoring function of the model
is used to score these negative triples and sort them in
descending order. The higher the rank of the triples consisting
of the correct entities, the better the model is at predicting the
entities.

There are two main evaluation metrics for the link pre-
diction task: mean rank and Hits@10. After the scoring was
completed, we determine the positive triples and their rank-
ings. In the test set, the average rank of positive triples is
defined as mean rank. Hits@10 is the probability that a posi-
tive triple is ranked in the top 10.

When constructing negative triples, some of them will
belong to the KG. This will affect the results of model eval-
uation. Therefore, we remove these negative triples from the
training, valid, and test sets to ensure fairness in evaluation.
The evaluation without the above operation is called Raw, and
the evaluation with the filtering operation is called Filt.

TABLE 2 Statistics of rules in various confidence.

Datasets FB15K FB‐img DB15K WN18

#0.5 27,879 21,813 1467 105

#0.6 24,807 19,396 1289 97

#0.7 21,685 16,792 1088 97

#0.8 18,046 14,117 867 41

#0.9 14,723 11,850 742 17

TABLE 1 Statistics of datasets.

Datasets FB15K FB‐img DB15K WN18

Entities 14 951 11,757 12,842 40,943

Relationships 1345 1231 279 18

Train 483 142 285,850 79,223 141,442

Valid 50 000 29,580 9903 5000

Test 59 071 34,863 9902 5000

Text 14,951 9683 11,539 38,783

Image 40,237 28,035 30,786 70,651
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4.2.2 | Baselines for comparison

We establish two baselines to verify the validity of MCRJI.
The first baseline is made up of three other inference

models. We select three advanced models for link prediction
experiments, including three types of baselines: (1) TransE
[20], no consideration of logic rules and multi‐modal features,
and only a single triple. (2) MKGRL‐MS [4], with consideration
multi‐modal features but not logic rules. (3) RPJE [5], with
consideration of logic rules but not multi‐modal features. We
experiment with their source code on several public datasets.

The second baseline is the confidence level of the logic
rules. In the MCRJI model, a higher confidence level of the
rules does not necessarily imply a better model because higher
confidence rules represent a smaller number of available rules,
which can make the MCRJI model less effective when there are
too few available rules. Therefore, a trade‐off should be made
between higher confidence and more rules to achieve the best
model effect.

4.2.3 | Parameter setting

We set parameters that remain constant throughout the
experiment (e.g., dimension = 100, epochs = 1000, norm = 2,
weight decay = 0.001, patience = 10, leaning rate = 0.01,
attention‐heads = 2, confidence = 0.7, and stop = 5). Confi-
dence = 0.7 means that the confidence level of the logic rule
we use is greater than or equal to 0.7, and patience = 10 in-
dicates that the validity of the model did not improve for 10
consecutive times in the validation set. The learning rate and
weight decay will be changed. Stop = 5 indicates that the
model stops training and outputs a result when the learning
rate and weight decay are changed more than 5 times. In
addition, we use the Stochastic Gradient Descent optimiser.

For the hyperparameters, we choose γ1 = γ2 = 1. Besides,
we manually adjust γ3 in the set {1, 1.5, 2, 2.5, 3}, and the
weight coefficients α1, α2 in the set {0.5, 1, 1.5, 2, 3, 5}. The
best model is selected on the validation set. The obtained
optimal γ3, α1, and α2 are assigned as: γ3 = 1, α1 = 1, and
α2 = 3.

4.3 | Experimental results

We interpret the experimental results in terms of both the
validity of MCRJI and the optimal value of the rule confidence
level. They correspond to the first baseline and the second
baseline, respectively.

4.3.1 | Effectiveness of Media Convergence and
Rule‐guided Joint Inference model

We conduct preliminary experiments on four datasets, FB15K,
FB‐img, DB15K, and WN18. The experimental results are
shown in Table 3 and Table 4.

First, we point out that the two datasets in Table 3 are from
the same set, which can be regarded as two different subsets of
large‐scale Freebase. The datasets in Table 4 are from different
sets. Secondly, it can be seen that MCRJI has improved the mean
rank in the experiments of each dataset and outperforms other
existing models. This also tentatively confirms the validity of
MCRJI. In addition, we need to note the following two points:

(1) On these four datasets, MCRJI has an improvement on the
indicator Hits@10 only for FB‐img, while the other
datasets have varying degrees of decline. We need to
conduct more experiments to find out why this is the case.

(2) For the datasets in Table 4, the results from Filt do not
obtain a significant improvement over those from Raw,
which indicates that filtering negative triples has little effect
on them. For the two datasets from large‐scale Freebase in
Table 3, the results of Filt and Raw are significantly different.

To address the first point, we think there are two possi-
bilities. First, if some positive triples improve their rankings but
do not make to the top 10, there will be no significant impact
on Hits@10. However, the indicator mean rank is not too
strict for the experimental results. Once the rank of the triple

TABLE 4 Comparison of TransE, Multi‐modal knowledge graphs
representation learning via multi‐headed self‐attention (MKGRL‐MS), and
Media Convergence and Rule‐guided Joint Inference model (MCRJI) on
DB15K and WN18.

Dataset DB15K WN18

Metric

Mean rank Hits@10 Mean rank Hits@10

Raw Filt Raw Filt Raw Filt Raw Filt

TransE 1263 1017 10.9 12.5 463 451 53.6 61.0

TransH 1291 1050 10.5 11.8 715 702 42.8 49.1

MKGRL‐MS 1155 922 9.8 11.5 449 437 52.8 59.8

RPJE 1198 949 10.1 12.5 315 303 50.9 61.6

MCRJI 1141 899 8.2 9.9 301 289 51.1 61.4

Note: The bold values are the experimental results of our proposed model, which
achieve better results than other baselines.

TABLE 3 Comparison of TransE, Multi‐modal knowledge graphs
representation learning via multi‐headed self‐attention (MKGRL‐MS), and
Media Convergence and Rule‐guided Joint Inference model (MCRJI) on
FB15K and FB‐img.

Dataset FB15K FB‐img

Metric

Mean rank Hits@10 Mean rank Hits@10

Raw Filt Raw Filt Raw Filt Raw Filt

TransE 348 271 9.4 16.6 282 227 13.1 20.1

TransH 370 294 10.1 16.7 297 243 13.4 19.9

MKGRL‐MS 338 261 9.1 16.2 268 214 12.5 19.7

RPJE 298 219 12.3 20.6 199 135 16.9 26.7

MCRJI 295 216 11.8 20.1 182 117 17.8 28.5

Note: The bold values are the experimental results of our proposed model, which
achieve better results than other baselines.
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changes, the mean rank captures the change in the data.
Therefore, the mean rank is more representative of changes in
the positive triple as a whole than Hits@10. Second, this
phenomenon is likely caused by MCRJI's excessive focus on
multi‐media features, which causes some of the top 10 ranked
positive triples to learn too much information about multi‐
media features and subsequently affect their own semantic
information. This situation leads to a drop in the ranking of
positive triples. However, this decline is only beyond the top 10
and is not significant. Therefore, the hit rate @10 decreases
when the degree of overfitting of MCRJI increases. From this
perspective, Hits@10 better reflects the degree of overfitting
of the model compared to the mean rank.

As for the second point, it is caused by the characteristics of
the dataset itself. Filt actually removes the occasional positive
triples from the negative triples. Based on the experimental
results, we think that more positive triples are removed in
FB15K and FB‐img from large‐scale Freebase in Table 3, while
fewer positive triples are removed from the dataset in Table 4.
We find that the number of positive triples deleted by the
filtering operation is related to the degree of one‐to‐many
phenomena in the dataset. The more one‐to‐many phenome-
non in the dataset, the smaller the value of E/T (number of
entities in the dataset/size of the training set) in that dataset, and
the more effective the Filt operation is. The FB15K and FB‐img

datasets belong to the datasets with a lot of one‐to‐many phe-
nomena, so the effect of Filt enhancement is very obvious, and
the E/T values of the four datasets are shown in Table 5.

4.3.2 | Optimal value of rule confidence

In this section, we will explore the impact of rule confidence
levels on our model. This is because we find that rules with
various confidence levels have a direct impact on the experi-
mental results in 4.3.1. Second, we will analyse the experi-
mental results obtained at various levels of rule confidence.

Media Convergence and Rule‐guided Joint Inference
model is a model for representation learning under the joint
guidance of logic rules and paths, and for reasoning based on
representation learning. The confidence choice of the logic
rules will directly affect the effect of representation learning.
The rules' confidence level is not as high as it could be; a
confidence level that is too high will result in fewer logic rules
available, whereas a confidence level that is too low will affect
the accuracy of the inference results, all of which will negatively
impact the efficiency of our model. Based on this, we carry out
additional experiments using various rules to further verify the
validity of the MCRJI model. The results of the experiments on
FB15K in Figure 4 lead to the following two conclusions:

When the confidence level of the rules is greater than 0.4,
the MCRJI model outperforms PTransE for both mean rank
and Hits@10, indicating that the rules utilised in MCRJI will be
effective as long as the confidence level is in the medium range.

For the path length of the rule, it is found that the path
length also has an impact on the effectiveness of the model.
The rule with path length 2 consistently outperforms the rule
with path length 3, with all other configurations such as con-
fidence level being equal. The reason for this situation is that

TABLE 5 E/T value for datasets.

Datasets FB15K FB‐img WN18 DB15K

Entities 14,951 11,757 40,943 12,842

Train 483,142 285,850 141,442 79,223

E/T 0.03 0.04 0.29 0.16

F I GURE 4 Performance comparison for
different confidence levels and rule lengths.
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longer paths result in less accurate path composition, which
indicates poorer learning outcomes.

Therefore, in 4.3.1 we choose a rule confidence level of 0.7
and a path length of the rule no greater than 2 as the optimal
settings for the experiments.

The effectiveness of MCRJI is indisputable, which proves
that multi‐media information can be integrated to offer richer
information and a more accurate reasoning basis for knowl-
edge inference. The use of logic rules enables representation
learning to be no longer limited to a single triple and improves
the interpretability of knowledge reasoning.

5 | CONCLUSIONS

In this paper, we propose a new model that uses media
convergence techniques to combine different modal informa-
tion of entities and learn new entity representations by intro-
ducing logic rules. Through link prediction experiments, we
demonstrate that the introduction of multi‐media features and
logic rules is important for improving the accuracy and inter-
pretability of knowledge graph inference tasks on multiple
datasets.

In the future, MCRJI can be applied to multi‐media
communication prediction. Meanwhile, we will test whether
the rules can be directly applied to other superior media
convergence methods, and introduce some other mechanisms
that could optimise the rules.
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