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Abstract: Extreme fast charging (XFC) for electric vehicles (EVs) has emerged recently because of
the short charging period. However, the extreme high charging power of EVs at XFC stations may
severely impact distribution networks. This paper addresses the estimation of the charging power
demand of XFC stations and the design of multiple XFC stations with renewable energy resources in
current distribution networks. First, a Monte Carlo (MC) simulation tool was created utilizing the
EV arrival time and state-of-charge (SOC) distributions obtained from the dataset of vehicle travel
surveys. Various impact factors are considered to obtain a realistic estimation of the charging power
demand of XFC stations. Then, a method for determining the optimal energy capacity of the energy
storage system (ESS), ESS rated power, and size of photovoltaic (PV) panels for multiple XFC stations
in a distribution network is presented, with the goal of achieving an optimal configuration. The
optimal power flow technique is applied to this optimization so that the optimal solutions meet not
only the charging demand but also the operational constraints related to XFC, ESS, PV panels, and
distribution networks. Simulation results of a use case indicate that the presented MC simulation
can estimate approximate real-world XFC charging demand, and the optimized ESS and PV units in
multiple XFC stations in the distribution network can reduce the annual total cost of XFC stations
and improve the performance of the distribution network.

Keywords: electric vehicles charging; extreme fast charging (XFC) stations; charging demand estimation
of XFC stations; optimal configuration of XFC stations; XFC station integrated with renewable
energy resources

1. Introduction

Due to technological advances and the availability of government incentives, automak-
ers estimate that annual electric vehicle sales will reach 22 million by 2025 and about
100 million EVs will be on the road worldwide by 2035 [1]. To compete with the short
refueling time of internal combustion engine vehicles, extreme fast charging technology
has been introduced to recharge the battery of an EV in 15 min or less [2]. Different from
AC level 2 chargers, which can only deliver a peak power of up to 19.2 kW, a 350 kW DC
extremely fast charger can charge an EV in less than 10 min and provide 200 miles of driving
range [3]. However, if EV charging stations are not properly configured, they will cause
significant issues, such as feeder overloading, frequency violation, and voltage sags, in dis-
tribution networks [4–6]. Efficient control and management of AC level 2 charging processes
have been widely studied to optimize grid operation and offer economic benefits [7–12].
However, the control problems for the XFC are different from the AC level 2 charging due to
the short charging period. The XFC stations require additional distributed energy resources
(DERs), such as localized photovoltaic panels and energy storage systems, within an XFC
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station to meet fast EV charging energy requirements and mitigate the transient impacts on
distribution networks. The optimal design of the rated power and energy capacity of ESS
and the number of PV panels within XFC stations with the consideration of EV charging
demand, energy arbitrage of ESS, and operational constraints of the current distribution
network is crucial to achieving the best performance.

For the optimal design of XFC stations, the estimation of their daily charging load is
required. One of the most common approaches is using machine learning techniques to
predict EV charging behaviors or charging loads. In [13], several common machine learning
algorithms are explored to predict charging behavior, including charging duration and
energy consumption. However, the prediction errors of these machine learning methods
are relatively large when data is limited at the current time. In [14], a reinforcement learning
method is proposed to forecast the load of EV charging stations. Results show that the
charging load of plug-in hybrid electric vehicles can be predicted accurately by using the
Q-learning algorithm. However, the training data is generated from simple probability
distribution functions rather than real-world data. In [15], a data-driven framework for
charging load profile generation is proposed for residential EVs using kernel density
estimation. A real-world dataset with over 12,000 AC Level 2 charging units and 100 DC
fast chargers is utilized to make charging decisions by using a machine learning algorithm,
but few XFC chargers are involved. In [16], a multiple channels method with kernel density
estimation is developed to find patterns in EV charging profiles. A total of 21,918 charging
events from 255 different charging stations in the UK are investigated, but they are only
for the period of 2012 to 2013 and are quite different from recent XFC events. In [17],
a deep learning generative model is validated on the Pecan Street dataset. It shows good
robustness against noise and errors in home charger data. Similarly, the Pecan Street dataset
only includes EV home charger data. In [18], an EV fast charging demand forecasting model
is proposed with a long-short-term memory neural network. The performance is validated
using real-world EV fast charging station datasets in South Korea and shows better accuracy
than Bidirectional Long-Short Term Memory (Bi-LSTM), Gated Recurrent Unit (GRU), and
Recurrent Neural Network (RNN). These studies have shown the advantages of machine
learning in estimating charging behavior due to the fewer initial assumptions needed, but
the accuracy of the estimated results cannot be guaranteed because historical datasets for
XFC are not widely available. In addition, these studies focused on home charger data,
limited periods of time, or specific geographic locations, which may not reflect recent
XFC events.

Other studies focus on analyzing driving patterns to estimate probability distributions
of EV charging behavior. In [19,20], the authors start with National Household Travel
Survey (NHTS) datasets to analyze the distribution of departure time, arrival time, and
traveling mileage of traditional vehicles. They estimated the EV charging load with constant
charging rates based on the distribution of state-of-charge and arrival time. In [21], the
probability distribution of the charging load is estimated by using the stochastic distance to
charging stations, the mileage range of EVs, and the amount of energy required to travel
to the charging stations. Furthermore, based on analyzing the probability distribution of
vehicle Global Positioning System (GPS) data, the authors in [22] adopt a queuing model to
include the waiting time and waiting space once EVs arrive at a fast-charging station to
improve the estimation of EV charging behaviors. However, the studies in [19–21] assume
constant charging power, and paper [22] simply adopts the charging curve of Tesla to
all EVs. This may result in estimation error since there are different types of EVs/HEVs
in the real world. To address this issue, paper [23] uses a linearized piecewise function
to simulate the constant current constant voltage charging process for different types of
EVs. The charging curve of most EVs is not linearized and is highly dependent on the
battery characteristics of different EV models [24]. Charging curves from various original
equipment manufacturers (OEM) are quite different. For example, a Nissan Leaf can only
accept a 50 kW charging rate, and a Tesla Model 3 can accept 250 kW, but a Porsche Taycan
can accept 350 kW. Using a uniform charging rate may lead to a large margin of error when
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analyzing and configuring an XFC station. Therefore, the estimation of XFC load needs to
be investigated with various EV charging characteristics.

The configuration and operation of DERs within EV charging stations have been
studied by several researchers. In [25], random sizes of battery-based ESSs and converters
for a fast-charging station are generated using Monte Carlo (MC) simulation. Results show
that an ESS can work as an energy buffer to downsize the feeder capacity. A larger size
ESS can achieve better performance to shave EVs’ peak load, but the cost of electricity
purchased from the utility company will be increased as well. In [26], a mixed integer linear
programming (MILP) model is proposed to determine the capacity of an ESS for an electric
bus charging station, with the aim of reducing total investment and charging expenses.
In [27], the MILP model of energy storage sizing is extended to include battery life span
analysis in a microgrid. The benefits of a hybrid ESS, including batteries and ultracapacitors,
for EV charging, have been discussed in [28]. Ultracapacitors can handle high-frequency
power transients and the batteries can deal with average power leveling. In [29], the optimal
sizing of a battery-based ESS is studied based on the whale optimization algorithm. The ESS
can also offer frequency regulation services for an islanded microgrid. Meanwhile, localized
PV panels can generate low-cost energy compared to energy purchased from the utility and
require less installation investment than an ESS [3,30]. Installing both PV panels and an
ESS within an XFC station can further reduce the huge XFC power demand from the power
distribution network. In [19], a probabilistic MILP formulation for optimal configuration
of PVs and ESSs is introduced. The energy costs associated with fast charging stations
are minimized and the charging requirements are also satisfied. In [31], PVs and ESSs are
investigated to maximize PV usage and minimize grid dependence. The MILP formulation
is developed upon the risk analysis of traffic demand and battery data which offer more
accurate results. In [32], the McCormick relaxation and Big-M methods are used to relax the
constraints of ESSs. Then, a robust optimization-based MILP model is developed to handle
the uncertainties of XFC charging demand and solar power generation. It is important
to note that although these studies provide valuable insights into the optimal sizing and
operation of DERs within EV charging stations, they only consider the microgrid level and
do not consider the distribution network. This is a significant limitation as the integration
of many EVs charging at XFC stations can result in a substantial increase in demand and
load on the distribution network. The increased huge load caused by XFC can lead to
voltage fluctuations and overloading of the network, which can result in power outages
and equipment damage. Therefore, it is crucial to consider the impact of XFC stations on
the distribution network and ensure that their integration does not cause adverse effects on
the network’s stability and reliability.

Most existing literature focuses on the optimal configuration of ESSs, PV panels, and
EVs at the microgrid level. The impact of XFC in distribution networks is rarely studied.
This paper investigates the optimal configuration of multiple XFC stations integrated with
an ESS and PV panels at the distribution network level to determine the optimal ESS
energy capacity, ESS rated power, and the number of PV panels, which will minimize the
investment and operation costs. The optimization considers the EV charging demand for
over 200 EVs and the operational constraints of the grid, ESS, PV panels, and XFC. To
accurately estimate the charging load, various EV charging curves as shown in Figure 4,
and five different types of EVs are considered. The contributions of this paper include:

• A Monte Carlo simulation tool has been developed to estimate the charging demand
of XFC stations with the consideration of various aspects, including EV scale, types
of EV models, the percentage of different EV models in the total simulated EVs,
EV charging curves for different EV models, XFC station port availability, and the
maximum waiting time. The utilization of the real-world vehicle travel survey data
and battery charging characteristics provides a more realistic estimation for a large-
scale EV charging demand at XFC stations.

• Unlike most existing literature on the sizing of a single XFC station at the microgrid
level, this paper studies the optimal configuration of multiple XFC stations at the
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distribution network level, which needs to consider distribution network power flow
and grid constraints in the optimization problem to ensure that XFC stations do not
violate grid requirements and the distribution network can operate efficiently and
stably. A novel optimization algorithm is developed to determine the optimal ESS
energy capacity, ESS rated power, and the number of PV panels for the individual XFC
stations within the power distribution network. By fulfilling the charging demand
and addressing the operational constraints of the distribution network, XFC, ESS,
and PV panels, the presented method can effectively decrease both investment and
operational expenses.

The rest of the paper is organized as follows: Section 2 introduces the MC simulation
to estimate the EV charging demand at XFC stations. Section 3 presents the modeling and
optimization formulation for the optimal configuration of XFC stations integrated with ESS
and PV panels. Section 4 shows the simulation results of a use case study and discusses the
benefits of optimal configuration. Section 5 concludes this paper.

2. EV Charging Demand Estimation

EV charging demand at XFC stations is the key impact factor to determine the optimal
ESS energy capacity, ESS rated power, and the PV size integrated with XFC stations. Due
to the lack of real-world XFC station charging demand data, Monte Carlo simulation is
employed to estimate the XFC station charging load. Figure 1 shows the inputs, outputs,
and estimation logic of the Monte Carlo simulation. The MC simulation parameters and
the descriptions of these parameters are summarized in Table 1. The simulation inputs
include EV scale, the number of station ports, battery characteristics, maximum waiting
time, and the EV arrival time and SOC distribution. The probability distributions of the
EV arrival time and SOC are obtained from a travel survey database. The outputs of the
MC simulation are the load profiles and daily usage of each XFC station. A first-come,
first-served queuing method is adopted in the load estimation logic. When an EV arrives at
an XFC station, the driver will wait in the queue if there is no charging port available. When
a port becomes available, the first vehicle in the queue will start to be charged. A vehicle
will leave without charging if the waiting time reaches the maximum waiting time.
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Table 1. Parameters of EV Charging Demand Estimation.

Input Parameters

EV scale Define the number of EVs visiting the XFC station daily.

Number of station ports Define the number of charging ports of the XFC station.

EV battery characteristics Define the battery size, percentage in the total simulated EVs
(Table 2) and charging curves (Figure 4) of different EV models.

Maximum waiting time
Define the maximum allowable waiting time of each EV at the XFC
station. EVs will leave if the waiting time reaches the maximum
waiting time.

Probability Distributions

Arrival SOC at XFC station The probability distribution of SOC when EVs need to be charged.

Arrival time at XFC station The probability distribution of time when EVs visit the XFC station.

Table 2. Battery Size and Percentage of EV Models.

EV Model Battery Size Percentage

Porsche Taycan 79.3 kWh 5%
Tesla Model 3LR 82 kWh 30%

Audi e-tron 95 kWh 25%
VW ID.4 82 kWh 20%

Hyundai Kona 64 kWh 20%

2.1. Probability Distribution of EV Arrival Time at XFC Stations

To obtain a realistic probability distribution of EV arrival time, the probability dis-
tributions of home departure time, the daily mileage, and the hourly probability of daily
trips [32] are derived from an open database, the National Household Travel Survey
(NHTS) [33]. The survey data provide information on driving patterns for 309,164 vehicles.
The first peak of departure time from home to work is around 7:00–9:00 a.m., and most
EVs travel within the range of 5 to 40 miles daily. The authors of [32] analyzed the travel
survey data thoroughly and presented the probability distributions of home departure
time and daily mileage. They also provide the hourly probability distribution of daily trips
for a weekday and a weekend. These probability distributions were used in this study, to
generate the probability distribution of EV arrival time at XFC stations.

A total of 100,000 EVs are simulated to generate the probability distribution of EV
arrival time at XFC stations. Based on the report of EV Consumer Behavior [34], half of EVs
were charged at home and the rest were charged elsewhere. Hence, it is assumed that half
of these vehicles leave home with 90% SOC, and the rest with 40% SOC. It is also assumed
that the arrival SOC at XFC stations follows a normal distribution. Figure 2 shows an
example of arrival SOC distribution with a 25% mean and 3.4% standard deviation. In the
simulation, the random values of home departure time, daily mileage, and the threshold of
SOC to charge the vehicle are generated for each EV from the probability distributions of
home departure time, daily mileage, and arrival SOC. The battery SOC of EVs at each time
step is updated by:

SOCEV(t + 1) = SOCEV(t)−
m(t)d
dmax

× 100 (1)

where m(t) is the hourly probability of a daily trip at time t, d denotes the daily mileage,
and dmax is the maximum mileage range of the EV battery. When an EV’s SOC becomes
below its threshold SOC, the vehicle needs to be charged and the current time is recorded.
The collection of this time for all 100,000 EVs forms the probability distribution of EV
arrival time at XFC stations as shown in Figure 3. Two peaks, which are the morning peak
from 7:00 a.m. to 9:00 a.m. and the evening peak from 5:00 p.m. to 8:00 p.m., are observed
during the commuter periods.
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2.2. EV Charging Load Estimation with the Consideration of Charging Curves for Different
EV Models

As mentioned previously, the EV charging curves depend on both the charging port
power rate and the EV’s battery characteristics. For example, an EV with a maximum
charge rate of 50 kW can be connected to a 300 kW charger, but it will be charged at
50 kW. Therefore, the battery charging acceptance curve is necessary to be considered
while estimating the charging load at XFC stations. The 300 kW charger operated by
Fastned is adopted in this paper. The charging curves of various types of EVs are shown
in Figure 4 [35].
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The charging process of n-th EV is modeled as a discrete-time linear system as:

SOCn,ev(t + ∆t) = SOCn,ev(t) +
ηn,evPn,ev(t)∆t

En,ev
× 100 (2)

where ηn,ev is the charging efficiency, Pn,ev is the instant charging power, and En,ev is the
battery capacity.

The number of charging ports is also considered an impact factor of charging load
estimation at XFC stations. Based on the data from the Alternative Fuels Data Center [36],
many EV charging stations have two to four ports. Common gas stations in the suburbs
have 6 to 12 pumps. Therefore, in this paper, the number of charging ports is chosen within
the range of 2 to 12. Each port has the ability to deliver power up to 300 kW, which can
add 200 miles of range within 15 min. The maximum waiting time is 15 min. Based on the
first-come, first-served queuing method, the MC simulation can be performed with a 1 min
resolution over every 24 h period and generate approximate real-world load profiles and
port usage of XFC. The charging load at every simulation time step is determined by the
quantity of EVs undergoing charging and the associated charging profiles.

3. Optimal Configuration of XFC Stations Integrated with ESS and PV Panels in
Distribution Networks

A schematic illustration of an XFC station with an ESS and PV panels in a medium
voltage distribution network is shown in Figure 5. The XFC station is connected as a distri-
bution node, and it receives power through the distribution feeder and transformer. The
reverse power flow feeding back to the distribution network is not considered in this paper
since the rules and regulations regarding reverse power flow to the grid vary depending
on utility companies. At the current time, it is not allowed by default although some
utility companies may provide special permits or programs to allow reverse power from
distributed energy resources, such as solar panels and electric vehicles. Hence, the ESS is re-
sponsible for storing energy from the PV panels and the distribution network and releasing
power to the XFC charging loads to meet charging requirements. The operation limitations
of the grid also need to be considered while drawing power from the distribution network.
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tion network.

3.1. Distribution Network Power Flow

Considering the branch flow model as shown in Figure 5, the optimal power flow
technique is frequently employed to guarantee the proper operation of the distribution
network. For each node k ∈ K, let j be its parent node and m ∈ Mk be its child nodes. The
power flow equation can be formulated as:

pjk(t)− Ijk(t)rjk − ∑
m∈Mk

pkm(t) = Pk(t) (3)

qjk(t)− Ijk(t)xjk − ∑
m∈Mk

qkm(t) = Qk(t) (4)

Uk(t)−Uj(t)− (r2
jk + x2

jk)Ijk + 2(pjk(t)rjk + qjk(t)xjk) = 0 (5)

Ijk(t) =
pjk(t)

2 + qjk(t)
2

Uj(t)
(6)

where pjk and qjk indicate the active and reactive power that are sent from node j to node k;
rjk and xjk denote the resistance and reactance between two nodes; Ujk and Ijk present the
square magnitude of voltage and current; and Pk and Qk are the active and reactive power
of node k that draws from the distribution network. To avoid the non-convex optimization,
the quadratic equalities in Equation (6) are relaxed to a second-order cone expression as
below [37]: ∥∥∥∥∥∥∥

2pjk(t)

2qjk(t)

Ijk(t)−Uk(t)

∥∥∥∥∥∥∥
2

≤ Ijk(t) + Uk(t) (7)

The constraints of the power flow optimization are listed below:

0 ≤ Ijk(t) ≤ Imax (8)

Umin ≤ Uk(t) ≤ Umax (9)

where Imax is the maximum squared value of the current magnitude, Umin and Umax are
the minimum and maximum squared values of the voltage magnitude, respectively.
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3.2. PV Model

PV panels are considered non-dispatchable emission-free power generators that de-
pend on the conditions of solar irradiance and ambient temperature. For XFC stations,
integrating PV panels is one of the best choices to improve the quality of the charging
service and reduce the cost of electricity bills. The instant solar power Ppv is modeled as
a discrete-time linear system [38].

Ppv(t) = G(t)ApvPpv,ratedηpv[1− βT(TC(t)− TC,STC)] (10)

where G(t) is the solar radiance; Apv is the area of a PV cell; Ppv,rated is the nominal power
of a PV cell, ηpv is the power efficiency; βT is the PV temperature coefficient; Tc(t) is the PV
cell temperature; and Tc,STC is the cell temperature under standard test conditions [39].

The area of the PV panels is determined by the number of PV cells npv and the area of
a single PV cell Apv to be installed. Referenced to the roof area of gas stations in the suburbs,
the maximum areas of PV panels, Amax

pv , are assumed to be 80 m2 for 4-port XFC stations
and 160 m2 for 8-port XFC stations. The constraint of PV panel area can be formulated as:

npv Apv ≤ Amax
pv (11)

3.3. ESS Model

A stational ESS works as an energy buffer to store energy from the grid or PV in
advance and release energy when EV charging demand is high. With the optimal charging
and discharging control of an ESS, the non-dispatchable PV power can be fully utilized,
the power required from the grid can be reduced to further improve the distribution
network operation, and XFC electricity costs can be reduced based on the time-variant
electricity price.

The charging/discharging process of a battery-based ESS can be formulated as:

SOCk,ess(t + ∆t) = SOCk,ess(t) + φ+
k,ess(t)

ηessP+
k,ess(t)∆t

Ek,ess
+ φ−k,ess(t)

P−k,ess(t)∆t

ηessEk,ess
(12)

φ+
k,ess(t) + φ−k,ess(t) = 1 (13)

where SOCk,ess is the battery state of charge at distribution node k; ηess is the charging/
discharging efficiency of the battery-based ESS; Ek,ess is the battery capacity at distribution
node k; P+

k,ess is the battery charging power and P−k,ess is the battery discharging power.
∅+ and ∅− are binary variables to indicate the charging or discharging mode of ESS.
Equation (13) ensures that the battery cannot be charged or discharged at the same time.

The charging and discharging rate are limited by the rated charging/discharging
power Prated

k,ess . These can be expressed as Equations (14) and (15). Meanwhile, the SOC is
limited to avoid overcharging and deep discharging as shown in Equation (16).

0 ≤ P+
k,ess(t) ≤ Prated

k,ess (14)

− Prated
k,ess ≤ P−k,ess(t) ≤ 0 (15)

10% ≤ SOCk,ess(t) ≤ 90% (16)

While operating the battery-based ESS, it must be fully charged at the beginning of
each day to prepare for the daily high XFC charge demand. Let t0 donates the beginning
time slot of a day and t0 + τ denotes the end time slot. The constraints of daily ESS
operation can be further improved with:

SOCk,ess(t0) = SOCk,ess(t0 + τ) = 90% (17)
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Finally, the configuration of the ESSs within XFC stations is aimed to find the size of
the battery-based ESS, including the rated power and energy capacity. The constraints can
be formulated as:

Pmin
ess ≤ Prated

k,ess ≤ Pmax
ess (18)

Emin
ess ≤ Ek,ess ≤ Emax

ess (19)

where Pmin
ess and Pmax

ess are minimal and maximal power to determine the range of rated
power of a battery-based ESS, and Emin

ess and Emax
ess are minimal and maximal energy capaci-

ties that can be invested.

3.4. XFC Station Power Flow

As shown in Figure 5, the XFC station is connected to the distribution network node
k as a microgrid. The XFC station will absorb power from the distribution network to
charge either the battery-based ESS or EVs. The feeding power from the XFC station node
to the distribution network is not considered. The power flow of the XFC station can be
formulated as:

Pk(t) = φ+
k,ess(t)P+

k,ess(t) + φ−k,ess(t)P−k,ess(t) + ∑Nev
nev=1 Pn,ev(t)− npvPpv(t) (20)

Pk(t) ≤ Pmax
k (21)

Equation (21) indicates that the injected power to the node k is limited to the feeder
capacity Pmax

k .

3.5. Optimization Formulation

With a given number of charger ports in an XFC station and the locations of XFC
stations in the distribution network, the goal of the optimal configuration is to quantify
the power, energy capacity of ESS, and the number of PV cells that need to be configured
within XFC stations. The optimization objective is to minimize the investment cost of ESSs
and PV panels, the electricity purchase cost of XFC stations, and the cost of power losses
in the distribution network. Based on the aforementioned constraints, the optimization
problem of XFC stations in the distribution networks is formulated as:

min ∑K
k=1 δess

(
cess,EEk,ess + cess,PPrated

k,ess

)
+∑K

k=1 δpvcpvnk,pv

+∑T
t=1 ∑K

k=1 λ(t)Pk(t)∆t

+∑T
t=1 ∑(j,k)∈L λ(t)rjk Ijk(t)∆t

s.t. :

Distribution network (3)− (5), (7)− (9)

PV (10), (11)

ESS (12)− (19)

XFC station (20), (21)

(22)

where cess,E and cess,P are the costs of energy and power capacity of the ESS; cpv is the
cost of a single PV cell; npv is the number of PV cells at the distribution network node k;
λ(t) presents the time-variant electricity price; and δess and δpv are the annual discount
rate of ESS and PV investment costs, respectively. The annual discount rate δ. is shown in
Equation (23) [40,41].

δ. =
i(1 + i)γ.

(1 + i)γ. − 1
(23)
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where i is the discount rate for the investment cost and γ is the lifespan of the ESS or PV
panels. The lifespan of the ESS is assumed to be 20 years and the lifespan of the PV panels
is 30 years. The first term of the objective function is the equivalent annual investment
cost of the ESS, the second term shows the equivalent annual investment cost of the PV
panels, the third term is the electricity cost of XFC stations, and the fourth term indicates
the electricity cost of power losses in the distribution network.

The optimal configuration of ESSs and PV panels within XFC stations in the distri-
bution network is formulated as mixed-integer programming with quadratic terms. The
variables {npv, Prated

k,ess , Ek,ess, P+
k,ess, P−k,ess, Pk, Qk, pjk, qjk, Uk, Ik, } can be solved by a Gurobi

or Cplex solver efficiently. The required PV panel area and size of the ESS, the charg-
ing/discharging operation of the ESS, and the optimal power flow of the distribution
network can be generated simultaneously.

4. Case Study

A modified 33-bus system [42] is applied to simulate the presented optimal configura-
tion of XFC stations in the distribution networks. As shown in Figure 6, the distribution
nodes are categorized as either residential or commercial nodes and XFC station nodes
with 12.88 kV nominal voltage. The voltage range is ±5% of the nominal voltage. Station
XFC4 is located at node 30 and has four charging ports and station XFC8 is located at node
8 with eight charging ports. The feeder capacity of node 8 is chosen as 600 kW and the
feeder capacity of node 30 is 300 kW. A total of 220 EVs are used in the MC simulation to
estimate the charging load in these two XFC stations.
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Figure 6. 33-bus distribution system with XFC stations.

4.1. Basic Parameters

The battery size of different EV models in the simulation and the corresponding
percentages of these models in the total simulated EVs are listed in Table 2. It is assumed
that 100 EVs are expected to be charged daily at XFC4 and 120 EVs are expected to be
charged daily at XFC8. The probability distribution of arrival SOC, arrival time, and
charging characteristics are discussed in Section 2. The MC simulation is performed
with a 1 min resolution over every 24 h period.

It is assumed that SunPower SPR-E20-327 [43] solar panels are used in the XFC
stations. The detailed parameters of this solar panel are listed in Table 3. The historical
data of ambient temperature and solar irradiance at Aurora, Illinois in 2018 are retrieved
from Solcast [44].
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Table 3. Parameters of PV Panels.

Parameter Symbol Value

Area Apv 1.559× 1.064 m2

Nominal power Ppv,rated 327 W
Power efficiency ηpv 20.7%

Temperature coefficient βT –0.35%/◦C
Cell temperature under standard operation condition Tc,STC 25 ◦C

Initial cost cpv $600

The parameters of the ESS are listed in Table 4. The cost of power capacity is converted
from the cost of energy capacity by multiplying by the hour duration [45]. For example,
a 589 $/kWh, 2 h battery energy storage system would have a power capacity cost of
1178 $/kW.

Table 4. Parameters of the ESS.

Parameter Symbol Value

Cost of energy capacity cess,E 589 $/kWh
Cost of power capacity cess,P 589 × hour $/kW

Maximum energy capacity Emax
ess 2 MWh

Minimum energy capacity Emin
ess 0

Maximum charging/discharging rate Pmax
ess 1 MW

Minimum charging/discharging rate Pmin
ess 0

The variety of building loads, such as supermarkets, offices, restaurants, houses, and
apartments, are selected accordingly to simulate the commercial or residential nodes. The
whole year hourly load profiles of buildings in Aurora, Illinois are retrieved from the U.S.
Department of Energy’s Open Energy Data Initiative database [46]. The electricity prices
are hourly real-time prices for the distribution network. The dataset is retrieved from
the PJM dataset of the North Illinois hub [47]. This represents the full year of real-time
electricity prices in 2018. The price curves of a typical winter day and a typical summer
day are shown in Figure 7.
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Different from the MC simulation of EV charging loads with a 1 min resolution, the
historical data of solar irradiance, ambient temperature, building loads, and electricity
price are hourly-based intervals for a whole year. The estimated EV charging load needs
to be approximated in a 1 h resolution for analyzing the optimal configuration problem.
Therefore, the average charging power of each hour from the MC simulation is approxi-
mated for the optimization. The optimal configuration problem formulated in Section 3 is
performed with a 1 h resolution for 365 days.

4.2. XFC EV Charging Load Estimation

Figure 8 shows a sample of the daylong time series of charging load for XFC4, which
is representative of the growing demand for XFC stations. The plot clearly shows that
XFC events can put a significant strain on the power grid, especially if the distribution
network is not upgraded or equipped with renewable energy resources. As seen in the top
plot, the daily peak load occurs during the morning and evening rush hours, which is not
surprising given that many people commute during these times. The plot also indicates
that the average charging event duration is around 15 min, which is consistent with the
goal of fast charging. However, the power demand during these events is mostly above the
feeder capacity of 300 kW, indicating that the feeder needs to be upgraded or combined
with other solutions to avoid overloading. The bottom plot of Figure 8 illustrates the station
port utilization of XFC4, with each charging port capable of providing 300 kW of power.
The plot shows that the charging ports are in high utilization, which is a positive indication
of the popularity and need for XFC stations. As the demand for XFC stations grows, it is
imperative to consider the impact of these stations on the power grid.
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Figure 8. EV charging load and port utilization of XFC4.

Figure 9 shows a sample of the daylong time series of EV charging load for XFC8. As
mentioned previously, XFC8 has eight charging ports, and each port is a 300 kW charger.
The maximum waiting time is also 15 min. The average charging event duration is around
15 min, and the peak of daily power demand is about 1200 kW. This is dangerous if the
feeder capacity is 600 kW. The bottom plot in Figure 9 shows the station port utilization of
XFC8. Slightly different from XFC4, the eight ports are in medium utilization when 120 EVs
are expected to be charged daily. Moreover, the results from Figures 8 and 9 demonstrate
that proper planning and design are essential to ensure that XFC stations can meet EV
charging demand without overburdening the distribution network.
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Figure 9. EV charging load and port utilization of XFC8.

In summary, the presented MC simulation can generate approximate real-world
XFC EV charging load profiles with proper assumptions. Changing input values, the
corresponding charging loads and the station port utilization can be obtained. These
simulation tools are valuable for understanding the possible effects of XFC on the power
grid since little real-world XFC charging data is currently available.

4.3. The Benefits of Optimal Configuration of XFC Stations Integrated with ESS and PV Panels

The benefits of an optimal configuration can be summarized in three aspects: the
total annual cost of XFC stations, including the ESS and PV investment cost and the cost
to purchase electricity from the utility, is significantly reduced; the power demand of
XFC stations will not exceed the node feeder capacity; and undervoltage violation will
be avoided, addressing the optimal power flow of the distribution network. Since the
optimization is performed with a 1 h resolution for 365 days, the average charging power
of each hour from the MC simulation is approximated.

The optimal configuration results of ESS energy capacity, ESS rated power, the number
of PV cells, and the cost of two XFC stations are summarized in Table 5. If the XFC station is
not fitted with an ESS and PV panels, the total annual cost is the electricity purchase cost
from the utility. Otherwise, the total annual cost is the sum of the annual investment cost
of ESS and PV panels and the expense of acquiring electricity from the utility. The results
indicate that the integration of stational ESS and PV can significantly reduce the total annual
cost for both XFC stations. Although the investment cost of ESSs and PV panels is expensive,
the PV panels can generate clean energy and the ESS can work as an energy buffer to store
electrical energy from the grid during low-price periods and output electrical energy to XFC
stations during high-price periods. As shown in Figures 11 and 13, ESSs prefer to recharge
themselves at midnight because of the lower electricity price, and then output the stored
energy to support EV charging during the peak electricity price period during the daytime.
Compared with XFC stations without ESSs and PVs, the electricity purchase cost is reduced
significantly. Considering both the investment cost of ESSs and PV panels in addition to the
electricity purchase cost, the overall annual cost for XFC4 is reduced by 26.55% and the total
annual cost for XFC8 is decreased by 27.01%. The results demonstrate the potential of the
proposed method to improve the economics and sustainability of XFC stations. Moreover, it
is important to note that the optimal configuration of ESS energy capacity, ESS rated power,
and the number of PV cells may vary depending on the specific characteristics of each XFC
station and the local grid conditions.
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Table 5. Benefit to Two XFC Stations.

Parameter XFC4 XFC8

ESS

Energy Capacity 711.6 kWh 1209.3 kWh
Power Capacity 257.3 kW 469.5 kW

Annual Investment Cost $108,562 $184,487

PV

Number of PV Cells 70 110
Nominal Power 22.89 kW 35.97 kW

Annual Investment Cost $2732 $4293

Electricity Purchase Cost

without ESS and PV $454,810 $701,227
with ESS and PV $225,476 $327,317

Cost Saving 50.4% 53.3%

Total Annual Cost

without ESS and PV $454,810 $701,227
with ESS and PV $334,037 $375,553

Cost saving 26.55% 27.01%

Figure 10 shows the charging/discharging power and the battery-based ESS SOC at
XFC4 on a winter’s day. Since XFC4 is in high usage, the ESS outputs power to support
XFC events and reaches 10% SOC at 2:00 pm. Then, a short charging period of the ESS
occurs in the afternoon to prepare for another peak XFC demand. Once the EV charging
requirements are satisfied and the electricity price drops, the ESS recharges again. The SOC
recovers to 90% by the end of the day. The ESS helps to regulate the power output and
maintain the SOC within a safe range during high usage periods. This operation ensures
that the ESS is ready to meet the next peak demand, providing smooth operation of the XFC
station. The imported power of XFC4 with and without an ESS and PV panels on a winter’s
day is shown in Figure 11. The EV charging demand at XFC4 will exceed the node feeder
capacity during the peak period. By reducing the peak load, the optimal configuration
reduces the stress on the local transformer and feeder. The maximum power demand of
this XFC station is limited below the pre-defined feeder capacity. The optimal configuration
can shave the peak load of EV charging. This will reduce the stress on the local transformer
and feeder and enhance the reliability and sustainability of the XFC station.
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Figure 12 shows the charging/discharging power and the battery-based ESS SOC
at XFC8 on a summer’s day. As XFC8 is in medium utilization, a short charging period
happens at around 11:00 a.m. when the electricity price and EV charging demand are
relatively low. Although the EV charging demand at the evening peak is relatively lower
than the peaks during the day, the ESS continuously outputs power to supply EV charging
because of the higher electricity price. Figure 13 shows the imported power of this XFC
station integrated with and without an ESS and PV panels on a summer’s day. The optimal
configuration ensures that the total power demand remains below the pre-defined feeder
capacity. Furthermore, with an optimal configuration, the ESS can import power from the
grid during the low electricity price periods and output power to EV chargers during the
high price periods. This can help shave the peak load of EV charging, reduce stress on the
local transformer and feeder, and minimize the total annual cost.
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The voltage profile is an important factor in the distribution network and maintaining it
within acceptable limits is crucial. Figure 14 shows the voltage profiles on a typical winter’s
day and a typical summer’s day, demonstrating that the voltage distortions are within 5%.
No large voltage distortions are observed because of the coordination of the ESS and PV
supply within the XFC stations. This suggests that the proposed optimal configuration can
effectively manage the voltage profile, ensuring the stability of the distribution network.
Figure 15 shows the voltage profile of node 18 with and without an ESS and PV panels on
a summer’s day. Node 18 is the terminal node of the longest branch, so voltage violations
are more likely to happen. Since the overall peak loads are much higher than those in
winter, the undervoltage violations are observed at 1:00 p.m. and in the evening from
5:00 p.m. to 8:00 p.m. if the XFC stations are not fitted with ESSs and PV panels. Once the
ESSs and PV panels are integrated with the XFC stations, the optimal configuration takes
the constraints of the optimal power flow into account, ensuring that the overall voltage
distortions remain within 5%. The optimal configuration guarantees the stability of the
distribution network. These results demonstrate that the optimal configuration of XFC
stations with ESSs and PV panels in the distribution network not only reduces the cost but
also improves grid performance by managing the voltage profile within acceptable limits.
The proposed method can ensure the stability and reliability of the distribution network.
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5. Conclusions

This paper presents the development of a novel Monte Carlo simulation tool for
estimating the EV charging demand at XFC stations based on distributions derived from
a dataset of vehicle travel surveys. The estimation algorithm considers various factors,
including EV scale, EV model, charging curves, XFC station port availability, and waiting
time. The tool is valuable due to the current lack of an available XFC charging dataset. It
can help to provide more accurate predictions of future charging demand and can be useful
for planning and designing XFC stations and their associated infrastructure. Additionally,
an optimal configuration method for multiple XFC stations at the distribution network
level is presented to determine the optimal energy storage system (ESS) energy capacity,
ESS rated power, and PV size integrated with XFC stations. By optimizing the size of these
systems, it is possible to reduce investment and operation costs while still meeting the
charging demand and operational constraints of the distribution network. This can help to
reduce the amount of electricity that needs to be purchased from the grid, shave peak load,
avoid voltage violations in the distribution network, and improve the overall efficiency
and stability of both the XFC stations and the distribution network.

A case study is performed using public datasets, including the daily driving patterns of
vehicles from the NHTS, the hourly load profiles of buildings from the U.S. Department of
Energy’s Open Energy Data Initiative database, the hourly real-time electricity prices from
PJM, and the hourly ambient temperature and solar irradiance from Solcast. The numerical
results showed that the presented MC simulation tool can generate an approximate real-
world XFC charging demand, and the optimal configuration method can determine the ESS
energy capacity, ESS rated power, and PV size for multiple XFC stations in the distribution
network. The simulation results also demonstrated the significant benefits of integrating
ESSs and PV panels with XFC stations, including a total annual cost savings of 26.55% at
XFC4 and 27.01% at XFC8 due to reduced electricity purchases from the grid. Additionally,
the ESSs and PV systems helped to shave peak load below the capacity of the feeder for
XFC stations and avoid voltage violations. These results illustrate the potential for ESS
and PV integration to improve the efficiency, stability, and cost-effectiveness of both XFC
charging infrastructure and the distribution network.

Assessing the robustness of the model is an important aspect to consider in future
work. It is highly recommended to extend the proposed model with the consideration
of transportation network dynamics since EV charging loads are dependent on the trans-
portation network and driver’ behavior. Furthermore, the methodology can be extended to
larger distribution networks. This can involve testing the approach on different sizes of
networks with varying degrees of complexity.
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