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Wavelet-Based Harmonic Magnitude Measurement
in the Presence of Interharmonics

Flavio B. Costa, Stefan Häselbarth, Sergey Yanchenko, Kai Strunz, Aurenice M. Oliveira,

Abstract—The increasing proliferation of power electronic con-
verters, nonlinear loads, and distributed generation are leading
to increased levels of harmonic and interharmonics in power
networks. As a consequence, power quality (PQ) has become a
critical performance indicator for power utilities and end-users.
This study proposes a novel harmonic estimation method based
on the real-time stationary discrete wavelet packet transform
(RT-SDWPT). The proposed technique decomposes an input
signal into frequency bands with harmonic information at cutoff
frequencies and uses a compensation strategy to estimate root
mean square (RMS) values of harmonics at every sampling
period. The performance and effectiveness of the proposed
method are assessed using real measurement data from field
cases and experimental setup. The real measurements include
challenging scenarios with harmonics, subharmonics, interhar-
monics, frequency deviation, and non-stationary PQ events. The
proposed method outperforms the harmonic estimation provided
by the discrete Fourier transform (DFT)-based approach and
existing wavelet packet-based methods in terms of accuracy and
speed.

Index Terms—Harmonic measurements, power quality indices,
stationary discrete wavelet packet.

I. INTRODUCTION

In recent years, the substantial increase of harmonic and
interharmonic distortion in power systems caused by the
proliferation of power electronics converters, nonlinear loads,
and distributed generation has generated power quality (PQ)
concerns to power utilities and end-users alike. It is critical
for power network operators to have an accurate knowledge
of harmonics present in the system to assess power quality
performance. Furthermore, the development of accurate har-
monic phasor estimation algorithms is essential for the control,
monitoring, and protection of smart grids [1]–[5]. Harmonic
phasor measurement includes magnitude, phase, frequency,
and rate of change of frequency (ROCOF). This paper focuses
on the harmonic magnitude estimation.

The root mean square (RMS) value of fundamental and
harmonic components of voltages and currents characterizes
most PQ events, including non-stationary PQ and stationary
PQ disturbances, such as voltage sags and harmonic dis-
tortions, respectively. Therefore, international standards have
established ways for estimating and measuring harmonics and
power based on RMS values of fundamental and harmonic
components of voltages and currents. These standards include
the International Electrotechnical Commission (IEC) Stan-
dard 61000-4-7 [6] and IEEE Standard 1459-2010 [7]. Most
standards recommend the use of discrete Fourier Transforms
(DFTs) for analyzing fundamental and harmonic components,
which requires a periodic and stationary signal inside the RMS

window. However, the RMS values of harmonics extracted
by DFTs can present non-existing oscillations due to spectral
leakage and picket fence effects when the signal contains non-
synchronous frequency components, such as sub- and inter-
harmonics, and non-stationary PQ disturbances. According to
the IEC Standard 61000-4-7 [6], an RMS window with a time
interval of 0.2 seconds can solve part of these drawbacks.
However, long RMS windows yield significant time delays,
limiting the DFT application for the real-time estimation of
harmonic distortions.

Modified versions of the DFT have been used to minimize
the main drawbacks of the DFT [8]–[11]. Methods based on
cosine and mimic filters [12], [13] have demonstrated better
performance than the DFT, especially for estimating the funda-
mental component in signals with decaying direct current (DC)
offset [14]. Methods based on artificial intelligence [15]–[17],
recursive last squares or least mean-square (LMS) [18], [19],
Kalman filter [20]–[22], and other techniques [2], [23] have
been used for harmonic estimation. However, none is affirmed
to be effective in signals with interharmonics. Some methods
have been proposed to estimate harmonics and interharmonics
[24]–[26]. However, most of them do not consider challenging
cases, such as near interharmonics on both sides of harmonics
and with relevant magnitude.

The discrete wavelet transformation (DWT) overcomes
some of the DFT limitations. Hence, it has been proposed
for monitoring, detecting, and extracting PQ disturbances in
power systems for quickly and effectively analyzing stationary
and non-stationary signals [27]–[47]. DWT has been success-
fully applied for non-stationary signals such as the automatic
diagnosis of faults, voltage sags, and switching operations
[27]. Furthermore, the analysis of stationary PQ events has
also been performed with the DWT [28]–[41]. Studies of
power measurement using wavelet-based power and harmonic
estimation methods have been previously investigated [42]–
[47]. [42], [43] proposed DWT-based methods to estimate
RMS values as well as active and reactive power. [44], [45]
reformulated PQ indices defined in the IEEE Standard 1459-
2010 using DWT. However, the DWT has a few limitations,
including: 1) it presents non-uniform frequency bandwidth,
resulting in problems for measuring harmonic components
[37]; 2) it is a time-variant transformation. Thus, the coef-
ficients are not computed in every sampling time due to the
down-sampling process, resulting in inaccuracies under non-
stationary PQ disturbances [29]. Moreover, DWT only de-
composes the scaling coefficients from the first level, whereas
the discrete wavelet packet transform (DWPT), a time-variant
transformation, decomposes both scaling and wavelet coef-
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ficients [38]. Therefore, the DWPT decomposition provides
uniform output frequency bands, overcoming one of the DWT
limitations. This is essential for identifying harmonics by
selecting a suitable sampling frequency and wavelet-packet
decomposition tree [37]–[39], [48]–[53]. Because DWPT is
time variant, PQ estimation methods based on either the DWT
or DWPT are usually not designed and embedded in hardware
to provide the real-time progress of harmonic distortions [40],
[41].

The stationary DWPT (SDWPT), on the other hand, presents
both uniform frequency bandwidths and the time-invariant
property, overcoming the limitations of both the DWT and
DWPT. SDWPT is ideal for estimating PQ indices and detect-
ing PQ disturbances as well as it is suitable to be embedded
in hardware for the real-time PQ analysis by its real-time
version (RT-SDWPT). [41] used the RT-SDWPT for the real-
time estimation of odd harmonics.

Some DWPT- and SDWPT-based methods decompose input
signals keeping the fundamental and odd harmonics centered
on frequency bands and even harmonics located on cutoff
frequencies [37], [41], [50]. The frequency bandwidths are
twice the fundamental frequency (2f ), referred in this paper
as 2f -band methods. Therefore, 2f -band methods can be
appropriately used for harmonic estimation when the original
signal presents only odd harmonics. As an example, the study
presented in [41] only provides accurate harmonic estimation
when the power system presents neither even harmonics nor
a DC component.

Other wavelet packet-based methods decompose input sig-
nals into output bandwidths of f /2 Hz, designated as f /2-band
methods. After the decomposition, these bands are grouped in
pairs to keep odd and even harmonics with unitary gain and
centered on new frequency bands [48], [51], [52]. As an ad-
vantage, these methods estimate RMS values of both odd and
even harmonics. However, these f /2-band methods evaluate
output signals with a bandwidth of f Hz, which is two times
higher than the original output signals due to the grouping of
bands. The existing f /2-band methods are adversely affected
by interharmonics. Then, most of the f /2-band methods use a
long RMS window, as indicated in the IEC Standard 61000-
4-7 [6], to reduce the effects of interharmonics. Nevertheless,
this strategy does not work for all interharmonic frequencies
and results in a significant time delay. Even using a one-cycle
RMS window, these f /2-band methods introduce considerable
time delay in the estimated RMS value during non-stationary
PQ disturbances due to the number of decomposition levels
and high-order mother wavelets.

This paper proposes a novel f/2-band method for the
real-time magnitude estimation of harmonics, even in the
presence of interharmonics. In contrast to the aforementioned
existing f/2-band methods, the proposed method does not
group the output frequency bands and uses the RT-SDWPT
to benefit from uniform frequency bandwidths and time-
invariant properties. The main advantages of the proposed
methods are as follows: 1) the output signals have a narrow
bandwidth of f/2 Hz and two output signals estimate har-
monics redundantly. Consequently, harmonic measurements
are less distorted by subharmonics and interharmonics; 2)

the proposed method can effectively detect transient events,
changing the mother wavelet and the RMS window size during
signal transitions to substantially reduce the time delay during
non-stationary PQ disturbances. Consequently, the proposed
method can adequately identify the time-variation of harmonic
distortions; 3) the proposed method works well with a one-
cycle RMS window and does not need a long window size
as recommended by the IEC Standard 61000-4-7, avoiding
long time delays and providing good results even in the
presence of interharmonics with a frequency non-multiple of
5 Hz. Nevertheless, long window sizes are also possible for
outstanding results if the time delay is not a problem.

The performance of the proposed method was compared to
existing DFT, wavelet, and Kalman filter-based methods by
considering actual data with stationary and non-stationary PQ
disturbances. Some actual data were obtained in a laboratory
with known harmonic, subharmonic, and interharmonic com-
ponents. The performance evaluation considered the following
events: subharmonics, multiple interharmonics, harmonic fluc-
tuations, frequency deviation, non-stationary PQ disturbances,
and time-varying harmonics, as well as the following facts:
mother wavelet, sampling frequency, and RMS window size.
The proposed method provided the best performance for
estimating RMS values of harmonics.

II. REVIEW OF RMS VALUE REAL-TIME COMPUTATION

The RMS value of the hth harmonic component of a
discrete-time domain signal x is a function of the related
spectral energy Eh as follows:

Xh
RMS(k) =

√∑k
n=k−N+1[xh(n)]2

N
=

√
Eh(k)

N
, (1)

where h={1,2,3,...,hmax} is the harmonic order. For the sake
of notational simplicity, the fundamental component at the
frequency f=50 or 60 Hz is referred to as the first harmonic
with h=1; hmax = bfs/(2f)c is the highest possible harmonic
component of x, where fs is the sampling frequency; the spec-
tral energy of the hth harmonic component Eh is designated
as the hth harmonic energy, which is obtained by the proposed
wavelet-based method and presented in Section IV. N is the
window size used to compute the RMS value, referred to as
RMS window size; and k is the current time index associated
with the current discrete time k/fs. Since the proposed method
is designed to run in real-time, samples associated with k+n,
with n={1,2,3,...}, are not used.

III. REVIEW OF THE REAL-TIME SDWPT
Based on [54], the RT-SDWPT decomposition packet co-

efficients with a frequency bandwidth of ∆f are obtained, in
real-time, by convolving the input signal with a pair of low-
and high-pass finite impulse response (FIR) quadrature mirror
filters (hϕ and hψ), as follows [55]:

s2z
∆f (k) =

1√
2

L−1∑
l=0

hϕ(l)sz2∆f (k + l − L+ 1), (2)

s2z+1
∆f (k) =

1√
2

L−1∑
l=0

hψ(l)sz2∆f (k + l − L+ 1), (3)
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where 0 ≤ z < Zj is the packet node, Zj = 2j−1 − 1 the
highest node at the scale j; ∆f is the frequency bandwidth
of the packet coefficients at the scale j; s0

fs/2
is the original

signal (s0
fs/2

= x); L is the length of the filters hϕ and hψ .
The packet spectral energy related to the zth packet coeffi-

cient at the ∆f -bandwidth decomposition level, named as the
zth packet energy, is computed as follows:

Ez∆f (k) =

k∑
n=k−N+1

[
sz∆f (n)

]2
, (4)

where k ≥ N . Recursively, the zth packet energy can be
obtained with a low computational burden as follows [31]:

Ez∆f (k) = Ez∆f (k − 1) +
[
sz∆f (k)

]2 − [sz∆f (k −N)
]2
, (5)

which takes just two additions and one multiplication.

IV. THE PROPOSED HARMONIC MEASUREMENT METHOD

The novel harmonic measurement method, referred to as
method W1, computes four harmonic energies related to the
hth harmonic through packet energies at the f/2-bandwidth
decomposition level. Two harmonic energies (Eh+ and Eh−)
consider a long mother wavelet and a one-cycle sliding
window. They are designed to estimate RMS harmonics in
high precision during steady-state periods. These RMS values
present a high time delay during transitions, while the remain-
ing two harmonic energies (Ėh+ and Ėh−) consider a small
mother wavelet and a half-cycle sliding window for estimating
RMS harmonics with a reduced time delay during transient
periods. Only one of these four harmonic energies is selected
by employing two decision-making systems based on spectral
energy variables. The first decision-making system selects
harmonic energies to reduce the effect of interharmonics,
whereas the second one selects harmonic energies to reduce
the time delay.

A. Harmonic Estimation under Stationary PQ Disturbances

In real-time, the harmonic energy components Eh+ and
Eh− estimate the hth harmonic energy Eh under steady-state
situations as follows:

Eh+(k) = E2h−1
f/2 (k)/E2h−1

f/2 (hf) (6)

Eh−(k) = E2h
f/2(k)/E2h

f/2(hf), (7)

where h={1,2,3,...,hmax}; the f/2-packet energies E2h−1
f/2 and

E2h
f/2 are computed in (5) with N = fs/f (one-cycle RMS

sliding window); E2h−1
f/2 and E2h

f/2 must be computed with long
mother wavelets. This work uses the db(30) mother wavelet as
further addressed in Section VII, where db(L) is the mother
wavelet of the Daubechies family with L coefficients; the
frequency-domain packet energies E2h−1

f/2 and E2h
f/2 are used

as energy attenuation factors at the hth harmonic frequency hf
and are obtained in a prior off-line analysis of the frequency
response gain of the related packed energy.

B. Harmonic Estimation under Non-stationary Disturbances

In real time, the harmonic energy components Ėh+ and Ėh−
estimate the hth harmonic energy Eh under non-stationary PQ-
disturbances as follows:

Ėh+(k) = Ė2h−1
f/2 (k)/E2h−1

f/2 (hf) (8)

or
Ėh−(k) = Ė2h

f/2(k)/E2h
f/2(hf), (9)

where h={1,2,3,...,hmax}; the f/2-packet energies Ė2h−1
f/2 and

Ė2h
f/2 are computed using (5) with half-cycle RMS sliding

window (N = fs/(2f)) and the Haar filters, which are the
lowest wavelet filters.

C. Detection of Transient Events

The proposed method detects transient events to support the
decision-making systems when [29], [31], [56], [57]:

E1
fs/4

(k) > 22E1
fs/4

, (10)

E0
fs/4

(k) > 1.22E0
fs/4

, (11)

or

E0
fs/4

(k) < 0.82E0
fs/4

, (12)

is true, where E1
fs/4

and E0
fs/4

are average values of E1
fs/4

and E0
fs/4

, respectively, during one cycle of the fundamental
frequency.

The energy E1
fs/4

is computed in the first decomposition
level and is equal to the first-level wavelet coefficient energy
of the SWT, which has been used for transient disturbance
detection successfully [31], [56]. This energy is mainly af-
fected by the highest frequency components of the signal,
being scarcely influenced by subharmonics, low-frequency
interharmonics, low-frequency harmonic distortions, and the
fundamental component. This means E1

fs/4
is sensitive to

transients induced by non-stationary events such as faults and
voltage sags, providing a fast detection [31], [56]. Based on
statistical analysis in [31], [56], the number 2 in (10) is used
to detect high-frequency transients in voltages or currents.

The energy E0
fs/4

is also computed in the first decomposition
level and is equal to the first-level scaling coefficient energy
of the SWT. Contrary to E1

fs/4
, E0

fs/4
is highly influenced

by the fundamental component and low-order harmonics.
Consequently, E0

fs/4
has been used for detecting magnitude

variations in the fundamental component in both voltages [29]
and currents [57]. According to [29], voltage sags and swells
are detected based on voltage thresholds of 0.9 and 1.1 p.u.,
with the energy thresholds of 0.92 and 1.12, respectively.
However, this work uses the thresholds 0.82 and 1.22 to
avoid the detection of slight voltage variations. Based on [57],
current variations such as overcurrents are detected through
thresholds in currents or squared thresholds in the energy
analysis. Typical thresholds used in overcurrent protection
could be used to detect current variations. However, for the
sake of simplicity, 0.8 in (12) is used to detect undervoltages
or undercurrents, whereas 1.2 in (11) is used to detect over-
voltages or overcurrents.
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Based on previous methods for detecting power system
disturbances [29], [31], [56], [57], the detection of transient
events using (10)-(12) will be able to detect non-stationary
disturbances with voltage variations, current variations, and
transients such as faults and voltage sags. These equations
are independent and sensible to different signal frequency
components, increasing the probability of correct detection.
For instance, a voltage sag can be detected due to its transients
using (10) or its voltage drop using (12).

D. Decision-making System to Reduce Interharmonic Effects
According to (6) and (7), Eh+ and Eh− present a narrow

frequency response of f/2, which reduce the affects of inter-
harmonics. Furthermore, Eh+ and Eh− redundantly estimate
the hth harmonic energy Eh in different frequency spectra.
Thus, the RMS calculation in (1) may use Eh=Eh+ or Eh=Eh−
in a way to be less affected by interharmonics as possible. Eh+

and Eh− with f/4 is also possible if the signal presents strong
interharmonic close to f .

∆Eh+
f/2 is defined as the maximum value of Eh+

f/2 minus the
minimum value of Eh+

f/2, considering only the last energies
in one cycle of the fundamental frequency. In an analogue
manner, ∆Eh−f/2 is computed considering Eh−f/2. To reduce the
interference of interharmonics, the decision-making system
selects the hth harmonic energy with fewer oscillations ac-
cording to the following simple algorithm:

• If ∆Eh+
f/2 ≥ ∆Eh−f/2, then

Eh(k) = Eh−(k). (13)

• Otherwise
Eh(k) = Eh+(k). (14)

The values of ∆Eh+
f/2 and ∆Eh−f/2 are updated once every cycle

of the fundamental frequency.

E. Decision-Making System to Reduce the Time Delay During
Transient Events

Another decision-making system handles the time delay in
harmonic estimation under non-stationary PQ disturbances. If
(10), (11), or (12) is true, the harmonics are estimated with a
small mother wavelet and sliding window in order to reduce
the time delay during transitions as follows:

• if (13) was previously selected:

Eh(k) = Ėh−(k); (15)

• if (14) was previously selected:

Eh(k) = Ėh+(k). (16)

Considering the db(30) mother wavelet and the decompo-
sition process, the energy components defined in (6) and (7)
converge to a new steady-state period in about 15 cycles from
the transient event detection by using fs=1600 Hz and f=50
Hz (or fs=1920 Hz and f=60 Hz). Therefore, 15 cycles after
transients, the proposed method considers back the previous
selected energy defined in (13) or (14).

According to (13), (14), (15), and (16), only one of the
energy variables Eh+, Eh−, Ėh+, or Ėh− is selected to estimate
the magnitude of the hth harmonic based on the existence of
interharmonics and transient events.

V. EXISTING HARMONIC ESTIMATION METHODS

The performance of the proposed method is compared with
two existing wavelet packet-based techniques, termed here as
methods W2 and W3, the conventional DFT-based method
with a one-cycle sliding window (DFT method), the modified
cosine filter, the Mimic method, and the extended Kalman
filter.

The method W2, proposed in [48], estimates RMS values of
harmonics at an f/2-bandwidth decomposition level, and the
packet energies are grouped to present a uniform f -bandwidth.
The original method in [48] considered the DWPT based
on the Vaidyanathan mother wavelet with 24 coefficients. Its
window width with 10 cycles of the fundamental frequency is
defined in the IEC Standard 61000-4-7. However, this paper
uses the RT-SDWPT with a db(30) mother wavelet and a one-
cycle sliding window to fairly compare with the proposed
method W1.

The method W3, proposed in [41], estimates RMS values at
a 2f -bandwidth decomposition level by using the RT-SDWPT
with Daubechies mother wavelets with 40 coefficients and
a one-cycle sliding window of the fundamental frequency.
Therefore, in this method only the Daubechies mother wavelet
order was readjusted to 30 coefficients in order to fairly
compare with the proposed method.

VI. ACTUAL DATA

The performance of the harmonic estimation methods was
assessed with actual harmonic measurement data from: 1)
commercially available household devices, acquired from
PANDA Equipment Harmonic Database [58]; 2) an actual
power transmission system with non-stationary PQ distur-
bances; and 3) a laboratory setup.

Fig. 1 shows two actual currents: iX of a 50 Hz cathode-ray
tube television (CRT TV) and iY of a 50 Hz liquid-crystal-
display television (LCD TV), with iX and iY sampled at
fs=1600 Hz. By using an offline frequency response analysis,
Tables I and II summarise the magnitude and phase infor-
mation of the main frequency components of these signals
considering a normalization process which resulted in a signal
with the fundamental RMS value of 1 p.u. Fig. 1 also shows
realistic analytical signals

−

iX and
−

iY with frequency com-
ponents obtained from the actual signals iX and iY (Tables
I and II), respectively.

−

iX and
−

iY present Gaussian white
noise with SNR of 25 and 34 dB to suppress the disregarded
interharmonics in iX and iY , respectively. According to Fig.
1, the realistic analytical signals

−

iX and
−

iY match quite well
with the actual signals iX and iY , respectively.

The currents iX and
−

iX present several relevant odd har-
monics, a second harmonic with low-magnitude, a DC com-
ponent, and noise, whereas iY and

−

iY present odd harmonics,
even harmonics, a subharmonic, a few interharmonics, a DC
component, and noise. The advantage of

−

iX and
−

iY is that
a specific frequency component, such as an interharmonic,
can be adjusted to challenge harmonic estimation methods.
In addition,

−

iX and
−

iY can be reproduced in hardware to be
evaluated in real time applications. Therefore, these realistic
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Fig. 1. Actual and analytical currents: a) iX ; b) iY .

analytical signals
−

iX and
−

iY , based on actual currents, can
be used as benchmarks for evaluating harmonic estimation
methods.

TABLE I
PARAMETERS OF THE ACTUAL CURRENT iX .

RMS current (p.u.) Phase angle (o)
I0 0.034595 - -
I1 1.000000 θ1 0.504637
I2 0.095613 θ2 87.922766
I3 0.936677 θ3 169.963346
I4 0.088738 θ4 264.119948
I5 0.860490 θ5 -16.720857
I6 0.081972 θ6 80.620555
I7 0.768640 θ7 157.413175
I8 0.072600 θ8 259.654278
I9 0.657754 θ9 26.727809
I10 0.062178 θ10 78.464076
I11 0.535460 θ11 152.132314
I12 0.053220 θ12 260.317928
I13 0.420331 θ13 -23.449225
I14 0.046890 θ14 84.140133
I15 0.346047 θ15 170.051896

A commercial CINERGIA power converter, integrated into
a smart grid laboratory [59], generated actual voltage signals
with known harmonic distortions to assess the performance
of RT-SDWPT-based methods with challenging situations. The
voltage signals are a superposition of a fundamental frequency
component (h=1) with a set of harmonics (h 6= 1) whose mag-
nitudes were adjusted individually. The measurements were
accomplished using a compact facility unit (manufactured by
IMC) connecting the loads and energy sources to the smart
grid laboratory. The facility unit contains security, communi-
cation, and measurement technology. The integrated voltage
module sensors (HV-4U) obtained data with a measurement
uncertainty less or equal to 0.05%.

The following actual voltages were generated and measured

TABLE II
PARAMETERS OF THE ACTUAL CURRENT iY .

RMS current (p.u.) Phase angle (o)
I0 0.045600 - -
Isub,30 0.014040 θsub,30 142.80
I1 1.000000 θ1 18.96
Iint,70 0.027280 θint,70 179.40
I2 0.003305 θ2 201.70
Iint,130 0.001867 θint,130 188.90
I3 0.127000 θ3 205.70
Iint,170 0.01813 θint,170 -33.65
I4 0.001104 θ4 229.50
Iint,230 0.001304 θint,230 231.20
I5 0.153000 θ5 205.80
Iint,270 0.001819 θint,270 23.79
Iint,330 0.001126 θint,330 -83.11
I7 0.032460 θ7 134.70
Iint,370 0.002140 θint,370 11.40
Iint,430 0.001414 θint,430 -30.01
I9 0.016000 θ9 242.50
Iint,470 0.001964 θint,470 132.10
Iint,530 0.001463 θint,530 6.07
I11 0.007095 θ11 10.40
Iint,570 0.001954 θint,570 149.10
I13 0.011620 θ13 71.83
I15 0.013840 θ15 51.91

in the laboratory:

v1(k) = 80
√

2 [1.00sin(1ωk/fs) + 0.90sin(3ωk/fs)

+ 0.80sin(5ωk/fs + 120◦) + 0.70sin(7ωk/fs)

+ 0.60sin(9ωk/fs) + 0.50sin(11ωk/fs)] , (17)

v2(k) = 80
√

2 [1.00sin(1ωk/fs) + 0.95sin(2ωk/fs)

+ 0.90sin(3ωk/fs) + 0.85sin(4ωk/fs)

+ 0.80sin(5ωk/fs) + 0.75sin(6ωk/fs + 150◦)

+ 0.70sin(7ωk/fs)] , (18)

where k={0,1,2,3,...}; the base voltage is 80 V RMS;
fs=10 kHz; ω=2πf , with f= {50, 51} Hz; v1 presents only
the fundamental frequency and odd harmonic components
(h={1,3,5,7,9,11}), whereas v2 presents both odd and even
harmonic components (h={1,2,3,4,5,6,7}). Noise is inherently
included in these actual signals mainly due to the signal gen-
eration and acquisition processes. The phase of each harmonic
component was selected arbitrarily because in this study only
RMS values are estimated.

Actual voltages with a subharmonic (v3) and interharmonic
(v4) were also generated and measured as follows:

v3(k) = v2(k) + 0.2(80
√

2)sin(2π30k/fs), (19)

v4(k) = v2(k) + 0.2(80
√

2)sin(2π70k/fs). (20)

VII. PERFORMANCE ASSESSMENT

Actual signals with known RMS harmonic magnitudes
are essential for validating harmonic estimation methods in
challenge situations and for highlighting their advantages and
disadvantages. In summary, the effects of sampling frequencies
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(ideal and non-ideal values), frequency deviation, stationary
and non-stationary PQ events, and the combination of differ-
ent frequency components (odd harmonics, even harmonics,
subharmonics, and interharmonics) were evaluated considering
three wavelet-based methods and the method DFT. The perfor-
mance results are summarized in Table III, with the proposed
method presenting the best results. Detailed performance eval-
uation is addressed in the remainder of this section.

TABLE III
SUMMARY OF THE PERFORMANCE EVALUATION.

Signal features Performance of the methods
Signal fs f odd even sub int W1 W2 W3 DFT
v1 X 50 X X X X X
v2 X 50 X X X X X
v1 X 50 X X X X
v2 X 50 X X X X
v1 X 51 X X X X
v2 X 51 X X X X
v3 X 50 X X X X
v4 X 50 X X X X

Signal features Performance of the methods
Signal non-stationary PQ disturbances W1 W2 W3 DFT

X X X X

fs with X and X: ideal and non-ideal sampling frequency, respectively;
f=51 Hz: signal with frequency deviation; odd: odd harmonics;
even: even harmonics; sub: subharmonic; int: interharmonic;
signal with X: another signal beyond v1, v2, v3, and v4;
methods W1, W2, W3, and DFT with X: good results.

A. The Effects of Even Harmonics

The magnitude of the fundamental, second, third, and
fifteenth harmonic components of the actual current iX are
I1=1.000, I2=0.096, I3=0.937, and I15=0.346 (Table I), re-
spectively, where iX does not present a relevant second har-
monic magnitude. Nevertheless, the related analytical signal
−

iX presents the same harmonic content, with exception of
the second harmonic, which was adjusted to a higher value
of I2=0.300 to highlight the effects of even harmonics. The
SDWPT-based methods with db(30) mother wavelet and the
DFT method instantaneously estimated RMS values of the
fundamental, second, third, and fifteenth harmonic components
of the actual current iX , in ten cycles, as shown in Fig. 2. Table
IV summarizes the average RMS values over 10 cycles in the
currents iX (Fig. 2) and

−

iX .

TABLE IV
ESTIMATED RMS VALUES (AVERAGE OVER 10 CYCLES).

Method True
Signal Order W1 W2 W3 DFT value

1st 1.00 1.00 1.00 1.00 1.00
iX 2nd 0.10 0.10 - 0.10 0.10

3rd 0.94 0.94 0.94 0.94 0.94
15th 0.35 0.35 0.35 0.35 0.35
1st 1.00 1.00 1.04 1.00 1.00

−
iX 2nd 0.40 0.40 - 0.40 0.40

3rd 0.94 0.94 0.98 0.94 0.94
15th 0.35 0.35 0.35 0.35 0.35

Fig. 3 shows the frequency response of the methods W1,
W2, and W3 with the mother wavelets db(30) and Haar
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Fig. 2. Harmonic estimation of iX : a) the fundamental component; b) the
second harmonic component; c) the third harmonic component; d) the fifteenth
harmonic component.

for signals sampled at fs=1600 Hz and with fundamental
frequency of f=50 Hz. The same analysis is true for fs=1920
Hz and f=60 Hz. Eh∆f is the frequency-domain packet energy
gain of the related time-domain packet energy Eh∆f obtained
in an offline analysis with the Fourier transform. Ecutoff=1/2
is the ideal packet energy gain at the cutoff frequency.

The method W3 places odd harmonics at central frequen-
cies with a minimum attenuation, whereas it places even
harmonics at cutoff frequencies (Fig. 3(a)). Therefore, this
method can only estimate odd harmonics accurately in sit-
uations where even harmonics and the DC component are
disregarded. In Fig. 3(a), for instance, the second harmonic
and the DC components highly affect the estimation of the
fundamental component through E0

2f , whereas the second and
fourth harmonics highly affect the estimation of the third
harmonic component through E1

2f . According to Table IV,
the method W3 only presented suitable and accurate RMS
estimation of fundamental and third harmonic components
in the signal iX because the second harmonic presented a
disregarded magnitude. Conversely, it presented deviations for
the fundamental and third harmonic component estimation in
the current

−

iX because the second harmonic was increased to
0.3 p.u. artificially. Thus, the method W3 could not estimate
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with Haar; (f) W1 with Haar.

even harmonics.
Only one harmonic mainly affects each energy variable in

the methods W1 and W2. The method W2 places a specific
harmonic in the central frequency of the energy variables
(Fig. 3 (b)), whereas the method W1 places a specific harmonic
in the cut-off frequency of the energy variables (Fig. 3 (c)).
Therefore, the methods W1 and W2 overcome some limita-
tions of the method W3 because they can estimate both odd
and even components, such as the 1st (fundamental), 2nd, 3rd,
4th, and 5th, with scarce interference of other harmonics when
they use a proper mother wavelet. Indeed, even harmonics
did not affect the methods W1 and W2, and these methods
presented an accurate performance for estimating both odd
and even harmonics as presented in Table IV. The one-cycle
DFT-based method presented similar results as the ones of
methods W1 and W2.

B. Effects of the Mother Wavelet

The accuracy of the estimated RMS value depends on the
frequency response of the wavelet filters. In general, the higher
the wavelet filter order, the more accurate the estimate of
the RMS value. Indeed, due to the best frequency response
and lowest spectral leakage, the high-order wavelet filters in
Figs. 3(a), (b), and (c) provide better harmonic estimation
than the related low-order wavelet filters in Figs. 3(d), (e),
and (f). The desired fundamental component and time-domain
packet energy E0

2f with db(30) in Fig. 3a) are also affected by

the DC and second harmonic components. With the Haar in
Fig. 3(d), E0

2f presents attenuation in the desired fundamental
component, and is affected by the DC component and 2nd,
3rd, 5th, and 6th harmonic components.

According to Eqs. (17) and (18), v1 presents no even
harmonics, whereas v2 presents strong even harmonics. Tables
V and VI summarize the average RMS values over 10-cycles
of the fundamental, second, and third harmonic components
of v1 and v2, in per unit, obtained with the SDWPT-based
methods with different mother wavelets. By using the mother
wavelet db(30), the methods presented the desired precise
results as in Table V. Only the method W3 was affected
by the even harmonics in accordance with Section VII-A.
Conversely, by using the Haar mother wavelet, all the wavelet-
based methods presented errors as shown in Table VI. This is
the main reason why the proposed and existing wavelet-based
methods use high-order wavelet filters for RMS estimation of
harmonics. The proposed method also uses the Haar wavelet
during transient events as addressed in Section VII-H.

TABLE V
ESTIMATED RMS VALUES WITH DB(30) (AVERAGE OVER 10 CYCLES).

Method True
Signal Order W1 W2 W3 DFT value

1st 1.00 1.00 1.00 1.00 1.00
v1 2nd 0.00 0.00 - 0.00 0.00

3rd 0.90 0.90 0.90 0.90 0.90
1st 1.00 1.00 1.20 1.00 1.00

v2 2nd 0.94 0.94 - 0.95 0.95
3rd 0.90 0.90 1.26 0.90 0.90

TABLE VI
ESTIMATED RMS VALUES WITH HAAR (AVERAGE OVER 10 CYCLES).

Method True
Signal Order W1 W2 W3 DFT value

1st 1.07 0.96 0.96 1.00 1.00
v1 2nd 0.00 0.00 - 0.00 0.00

3rd 1.16 0.85 0.85 0.90 0.90
1st 1.06 0.96 1.14 1.00 1.00

v2 2nd 0.98 0.89 - 0.95 0.95
3rd 1.14 0.84 1.17 0.90 0.90

C. Non-ideal Sampling Frequency

The sampling frequency fs must be a multiple integer
of 8f to place harmonic components in ideal frequency
positions in the wavelet frequency response. Therefore, the
signals with fundamental frequency of f=50 Hz were sampled
at fs=1600 Hz, which is an ideal sampling frequency for
estimating RMS values of harmonics with order lower or equal
to hmax=16, i.e., h={1,2,3,4,5,...,15,16}. Similarly, the signals
with fundamental frequency of f=60 Hz were sampled at
fs=1920 Hz. As a consequence, the methods did not present
errors associated to the selected sampling frequency in the
previous results.

Depending on the application, the sampling frequency can-
not be equal to the desired value, causing inaccuracy in
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some methods. Therefore, instead of fs=1600 Hz, v1 and v2

were now downsampled to fs=1666.67 Hz to place harmonics
in non-ideal positions in the frequency spectrum and verify
the performance of the wavelet- and Fourier-based methods.
Fig. 4 shows the instantaneous estimated RMS fundamental
values of v2 considering the db(30) mother wavelet. The
SDWPT-based methods were not affected by a slight change
in the ideal sampling frequency. Conversely, the instantaneous
RMS estimation of the one-cycle DFT-based method presented
considerable errors because the number of samples per cycle
is no longer an integer value, which increases the spectral
leakage.
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Fig. 4. Effects of non-ideal sampling frequency selection.

D. Frequency Deviation

Electrical power systems and power generators require
operation at a constant frequency, and they do not tolerate
operation with considerable frequency deviation. For instance,
the IEEE Standard 1547 [60] presents requirements for the
connection of distributed generation with the electric power
system considering the frequency deviation limit from 58.5 to
61.2 Hz in a 60 Hz system. Furthermore, relays of frequency
variation (ROCOF relays) typically operate for frequency
deviations lower than 1.0 Hz.

The frequency deviation is also an issue for harmonic
estimation methods. Therefore, the voltages v1 and v2 and
related harmonics were also synthesized with the fundamental
frequency of 51 Hz instead of 50 Hz, presenting a considerable
frequency deviation. Fig. 5 shows the instantaneous estimated
RMS values of the fundamental component of v2, consid-
ering the db(30) mother wavelet. All the evaluated methods
need a fundamental frequency estimation in the presence
of frequency deviation to properly adjust the RMS window
size and avoid spectral leakage errors. Since the frequency
deviation in this analysis is known, and the development of
a frequency estimation method is out of the scope of this
paper, the one-cycle window in all methods was automatically
adjusted for f=51 Hz and fs=1600 Hz. Nevertheless, the
harmonic estimation methods evaluated in this work can use
any frequency estimation method.

The SDWPT-based methods were not affected by a funda-
mental frequency deviation of 1 Hz (Fig. 5). Conversely, even
considering a window size adjustment, the DFT-based method
provided instantaneous RMS estimation with considerable
error because the number of samples per cycle is no longer
an integer value, which increases the spectral leakage in this
method.
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E. Effects of Subharmonic and Interharmonic

Although the estimation of subharmonics and interhar-
monics is out of the scope of this study, these frequency
components are major issues to wavelet- and Fourier-based
harmonic estimation methods. Hence, the impact of their dis-
tortions in wavelet-based harmonic estimation methods must
be evaluated.

The proposed method W1 is theoretically the least affected
by subharmonics and interharmonics due to the narrow band-
width of its packet energies and the redundancy in estimating
a specific harmonic component. To prove this claim as far
as the fundamental component estimation, Fig. 3 highlights
the effects of an interharmonic i©, located between the 1st
and 2nd harmonic components ( 1© and 2©), in the wavelet-
based methods. Fig. 6 depicts the effects of interharmonics in
DFT-based methods. The main conclusions of this qualitative
evaluation are as follows:

• Fig. 3(b): the method W2 centralizes each harmonic in
a spectral bandwidth of grouped packet energies with
a bandwidth of f Hz. Also, there is no redundancy to
estimate harmonics, i.e., each harmonic is estimated with
just one wavelet energy. Then, i© strongly affects E1,2

f/2.
• Fig. 3(a): the method W3 presents the highest spectral

bandwidth, being the most affected by interharmonics.
i© strongly affects E0

2f ;
• Fig. 3(c): since the proposed method W1 places the

wavelet cutoff frequency of two packet energies to each
harmonic component, the fundamental component 1© is
placed at f in both E1

f/2 and E2
f/2 redundantly. In this

case, i© affects only E2
f/2. Then, E1

f/2 can estimate the
fundamental component with scarce interference of i©;

• Fig. 6(b): the one-cycle DFT-based method, usually taken
as reference in most works, presents a high spectral
bandwidth heavily affected by interharmonics.

Considering fs=1600 Hz, Figs. 7 and 8 depict the instanta-
neous RMS values of the 1st and 2nd harmonic components
of v3 and v4, which are actual voltages with subharmonic and
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interharmonic, respectively, obtained with the SDWPT-based
methods with the db(30) mother wavelet and the one-cycle
DFT-based method. Only the proposed method W1 presented
an accurate RMS estimation, whereas the methods W2, W3,
and DFT were strongly affected by subharmonic and inter-
harmonic components, presenting a considerable oscillation
around the related average value. The RMS window of these
methods were set to the size of the fundamental component.
However, based on Fig. 6(b) and Figs. 3(a) and (b), the
filtered signals contain attenuated interharmonics at 30 or 70
Hz in addition to the fundamental frequency component. Thus,
presenting oscillations around the expected values.

In addition to the actual voltages v3 and v4, the actual
current iY presents several interharmonics, with the most
relevant non-harmonic components at frequencies of 30, 70,
and 170 Hz according to Table II (Isub,30=0.01, Iint,70=0.03,
and Iint,170=0.02 p.u.). Therefore, the fundamental and second
harmonic estimation is a major challenge for this signal
due to the relevant subharmonic at 30 Hz and the relevant
interharmonic at 70 Hz. The third harmonic estimation is also
a challenge due to the relevant interharmonic at 170 Hz.

The actual signal iY (Fig. 1(b)) and its analytical signal
version

−

iY summarized in Table II are accurate versions of
each other. An advantage of the analytical signal

−

iY is that the
interharmonic magnitude can be adjusted to a more challeng-
ing case. To additionally demonstrate the harmonic estimation
challenges, the relevant non-harmonic components of iY were
changed to Isub,30=0.3, Iint,70=0.3, and Iint,170=0.3 p.u. in
the analytical signal

−

iY . Fig. 9 depicts the 1st harmonic
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estimations of the actual current iY , whereas Figs. 10, 11,
and 12 depict the 1st, 2nd, and 3rd harmonic estimations of
the actual-based analytical current

−

iY shown in Fig. 1(b). The
expected RMS values of the 1st, 2nd, and 3rd harmonics are
1.000, 0.003, and 0.127 p.u (Table II), respectively. Figs. 9 and
10 also present the performance of the DFT-based method with
the modified cosine filter (ModCos) and Mimic method for
estimating the RMS fundamental component. Figs. 9, 10, 11,
and 12 also present the performance of the extended Kalman
filter-based method described in [20].

According to Figs. 9 and 10, the proposed method W1,
with an additional decomposition to narrow the frequency
response of the energies, presented the most accurate RMS
estimation of the 1st harmonic. The other methods provided
considerable oscillations in the RMS estimation due to the
interharmonics. For instance, the results of the full-cycle DFT
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(FCDFT) method oscillated from about 0.97 to 1.03 p.u. in
Fig. 9 and from 0.7 to 1.4 p.u. in Fig. 10. The W2 and W3
methods performed slightly better than the FCDFT, whereas
CosMod, Mimic, and extended Kalman filter were the most
affected by interharmonics. Therefore, with the exception of
the proposed method, all the evaluated methods presented
impracticable results when the signal contains interharmonics.

The 2nd harmonic in iY and
−

iY has a magnitude of
0.003305 p.u., which is difficult to be estimated in a signal
with noise. In addition, iY presents an interharmonic with
a magnitude of 0.027280 p.u. at the frequency of 70 Hz,
which is a near interharmonic eight times greater than the 2nd
harmonic. Thus, the estimation of the second harmonic of iY is
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a challenge. To additionally challenge the harmonic estimators,
−

iY has an interharmonic with a magnitude of 0.3 p.u. at
the frequency of 70 Hz. According to Fig. 11, the proposed
method W1 still presented an accurate RMS estimation in this
tough case, whereas the other methods provided substantial
errors with strong oscillations.

The estimation of the 3rd harmonic is also a challenge
due to the near relevant interharmonic at the frequency of
170 Hz. According to Fig. 11, only the proposed method W1
presented accurate results, whereas the other methods provided
substantial errors with strong oscillations.
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F. Effects of Long RMS Window Size

Based on the IEC Standard 61000-4-7 [6], the DFT would
present better RMS estimation results of harmonics in signals
with interharmonics by replacing the one-cycle sliding window
to a ten-cycle sliding window when f=50 Hz. The IEEE
Standard 1459-2010 [7] defines the measurement of power
quantities under sinusoidal and nonsinusoidal conditions based
on RMS values of voltages and currents. Similarly, it rec-
ommends the DFT with a long window for estimating RMS
values of harmonics in signals with interharmonics. According
to the IEEE Standard 1459-2010, depending on the frequency
of interharmonics, the DFT window size should be infinitely
large to measure the RMS value or power correctly, which is
impractical.
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Fig. 13. The fundamental component estimation considering an: a) analytical
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Considering again the case shown in Fig. 10, where the
actual-based synthetic signal presents strong interharmonics
at frequencies of 30, 70, and 170 Hz (Isub,30=0.3, Iint,70=0.3,
and Iint,170=0.3 p.u.), the DFT with a one-cycle sliding
window estimated the fundamental RMS component with a
strong oscillation, whereas the proposed method with a one-
cycle sliding window presented a good result with a minimum
oscillation (Fig. 10(b)), as aforementioned. Using a ten-cycle
window, the DFT presented an outstanding performance for
this signal, as shown in Fig. 13(a). Indeed, except for the
fundamental component at 50 Hz, all frequency components
integer multiple of 5 Hz will be completely attenuated using a
ten-cycle DFT (Fig. 6(c)). The proposed method is not limited
to a basis of a one-cycle time window, and its window can
be readjusted to attend to a specific standard or procedure.
For instance, the proposed method with a ten-cycle window
presented the same outstanding performance of the ten-cycle
DFT in this signal.

Fig. 13(b) shows the performance of the DFT and W1
methods with a signal similar to that considered in Fig.
13(a). However, the strong interharmonic components are at

frequencies of 28, 72, and 172 Hz (Isub,28=0.3, Iint,72=0.3,
and Iint,172=0.3 p.u.). In this case, the DFT presented a strong
oscillation in the fundamental RMS component estimation
even using a ten-cycle window. The DFT-based method would
need the frequency information of all interharmonics to define
an ideal window size to be used, which can be an impracticable
window size depending on the interharmonic frequencies.
Furthermore, the frequency estimation of interharmonics is a
challenge in real-time applications. Conversely, the proposed
method with a ten-cycle window still presented an exceptional
performance for this case.

Based on the results shown in Fig. 13, a Fourier-based
protective relay with typically one-cycle window size or any
Fourier-based PMU or Fourier-based power quality monitoring
devices with a window size of one or ten cycles would not
perform well in some signals with interharmonics. Neverthe-
less, the proposed method presented good results with a one-
cycle window and even better results with a ten-cycle window,
demonstrating its potential as a possibility for protective
relays, PMUs, or power quality monitoring devices.

G. Effects of Small RMS Window Size

Fig. 14 shows instantaneous estimated RMS values of the
fundamental component for the signal with subharmonic v3

considering one- and half-cycle algorithms (DFT and the
proposed method W1). The half-cycle DFT presented the
worst results, with oscillations reaching around 2.4 pu. These
oscillations are because the half-cycle DFT, turned to es-
timate the fundamental component, is strongly affected by
non-synchronous frequency components and even harmonics
according to the DFT frequency response in Fig. 6(a).

For the SDWPT-based analysis, the RMS window is inde-
pendent of the window to compute the packet coefficients,
where the latter depends only on the mother wavelet. There-
fore, the window size to compute the RMS values does
not change the packet coefficients. As a consequence, the
RMS values must be scarcely affected by the RMS window
size. Indeed, according to Fig. 14, the proposed method W1
presented an accurate estimation of the RMS values with
both half- and one-cycle RMS window lengths for v3 with
subharmonic.
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H. Effects of Non-stationary Power Quality Disturbances

The selection of low- and high-order wavelet filters is a
trade-off. As addressed in Section VII-B, accurate harmonic
component measurement requires mother wavelets with high-
order filters due to their good frequency response, low spectral
leakage, and low aliasing effects. Therefore, the proposed
and existing methods use a mother wavelet with high-order
filters. This is especially suitable for harmonic measurement
in steady-state periods. However, a long wavelet filter can be
an issue when transitions take place in the power system due
to the great time delay. Unlike existing methods, the proposed
method considers also the lowest wavelet filter (Haar filter) to
overcome time delay issues during transient events.

The higher the wavelet filter length and the higher the
wavelet decomposition level, the higher the time delay to
estimate harmonics during transient events. The methods W1
and W2 need more decomposition levels than the method W3.
For instance, the methods W1, W2, and W3 need five, five, and
three decomposition levels to extract harmonic information by
using fs=1600 Hz and f=50 Hz (or fs=1920 Hz and f=60
Hz), respectively. Therefore, considering long mother wavelets
and various decomposition levels, these methods result in:

• High computational burden, which is no longer a problem
to modern digital signal processors (DSPs);

• Considerable time delay for extracting information of
non-stationary power quality disturbances, such as volt-
age sags, which can be an issue depending on the
application. The proposed method W1, however, detects
transient events (Section IV-C) to use a low-order wavelet
filter during transient changes (Section IV-B), overcoming
these problems.

Figs. 15 and 16 show the respective estimation of fundamen-
tal RMS values (RMS of the 1st harmonic) of an actual voltage
with voltage sag and an actual current with an overcurrent.
Both signals were measured in a 60 Hz power transmission
system and normalized to present 1 p.u. in the steady-state
period. The sampling frequency is fs=1920 Hz. In Fig. 15,
the 1st harmonic presents a hard decrease in magnitude for
about three cycles, with a fast return to its original value.
In Fig. 16, the magnitude of the 1st harmonic component
increases slowly. Therefore, these scenarios consider non-
stationary events with low- and high-rate of change of the
fundamental component magnitude, a concern for harmonic
estimation methods.

The RMS values in Figs. 15 and 16 were multiplied by√
2 for the sake of illustrative simplicity. allowing for the

RMS estimation can be compared to the waveform peaks. As
expected, the method W2 presented a strong delay of about
five cycles to estimate the fundamental component during the
voltage sag (Fig. 15(a)) and the overcurrent (Fig. 16) because
the filtering process considered both a long mother wavelet
db(30) and five decomposition levels. Even using a reduced
wavelet decomposition level, the method W3 presented a delay
of about two cycles (Figs. 15(a) and 16), which is still long.
The DFT-based method presented a delay of about one cycle
(Figs. 15(a) and 16). If the size of the sliding window is
changed from one to ten cycles to follow the IEC Standard
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61000-4-7, it would present a delay of about ten cycles. The
proposed method detected the beginning and end of the voltage
sag and the beginning of the overcurrent with disregarded time
delay (e.g., Fig. 15(b)). Thereafter, the mother wavelet was
changed to the Haar wavelet, and the RMS window size was
changed to half-cycle as proposed in Section IV-E. Therefore,
the proposed method W1 presented the fastest RMS estimation
of the fundamental component during the voltage sag (Fig.
15(a)) and overcurrent (Fig. 16) events. As a consequence, the
proposed method presented accurate results during stationary
and non-stationary PQ disturbances.

I. Effects of Time-varying Harmonics
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In addition to non-stationary events, the results obtained
with actual voltage and current signals shown Figs. 15 and
16 respectively demonstrate that the proposed method also
estimates RMS values of the time-varying fundamental com-
ponent. However, the RMS estimation of harmonics with an
order higher than one has the same principle as the RMS
fundamental estimation. For instance, Fig. 17 depicts the RMS
estimation of the 2nd harmonic of the actual-based analytical
current

−

iY shown in Fig. 1(b), where the RMS value increased
in a ramping format from 0.003305 to 0.110000 A during
four cycles of the fundamental. The RMS estimation of both
the proposed and FCDFT-based methods converged to the
expected value after the magnitude ramp variation with a
similar time delay due to the filtering process. However, the
proposed method was less affected by the interharmonics,
presenting less RMS estimation variation.

J. Computational Burden

Considering a sampling frequency of fs=1600 Hz, i.e., 32
samples per cycle of 50 Hz, the computation burden of the
methods in a hardware implementation must be less than a
sampling time of 625 µs to run in real-time.

The term 1/
√

2 in (2) or (3) is a constant, which disap-
pears when included in the filter coefficients for hardware
implementation. Therefore, based on (2) or (3), each packet
coefficient of the methods W1, W2, and W3 requires only
addition and multiplication operations. These operations refer
to Float point operations (FLOPs) in modern digital signal
processors (DSPs). Therefore, each packet coefficient requires
only 2L-1 FLOPs per decomposition level. In every sampling
time, W1 and W2 require five decomposition levels and two
packet coefficients per harmonic, whereas W3 requires four
decomposition levels and one packet coefficient per harmonic.
Therefore, for each RMS harmonic estimation, disregarding
the memory management to store signals, W1 and W2 re-
quire 2*5(2L-1)=590 FLOPs per sampling time, whereas W3
requires 4(2L-1)=236 FLOPs per sampling time, to compute
the packet coefficients. These methods also need to compute
spectral energies, requiring just a few extra FLOPs in a
recursive implementation according to [56].

Modern DSPs can perform millions of FLOPs per second
(MFLOPS), such as the DSP TMS320C6748, which performs
up to 2746 MFLOPS [61], i.e., 1,716,250 FLOPs per sampling
time of 625 µs. Therefore, all the evaluated wavelet-based
methods can run in real time using modern DSPs.

VIII. CONCLUSION

This paper proposed a comprehensive measurement method
based on the stationary wavelet packet transform for the real-
time RMS estimation of harmonic components. The perfor-
mance evaluation considered representative and challenging
actual signals from laboratory and field measurements to verify
the effects of the mother wavelet, window length, sampling
frequency, frequency deviation, subharmonic/interharmonic,
harmonic fluctuation, and non-stationary disturbances. The
proposed method outperformed the one-cycle discrete Fourier
transform-based method and two existing wavelet packet

transform-based methods in terms of accuracy in all the
evaluated cases.

As demonstrated by several studies, subharmonics and
interharmonics present challenges for harmonic estimation
methods. On the other hand, the proposed method accurately
estimated the RMS values of odd and even harmonic com-
ponents, even in situations with various interharmonics and
subharmonics. The proposed method also presented promis-
ing harmonic estimation results in signals with an extreme
frequency deviation of 1 Hz.

The performance assessment of harmonic estimation meth-
ods usually considers RMS values averaged in a given interval.
However, the most suitable way to assess the performance of
these methods is with instantaneous results, obtained sample-
by-sample, as demonstrated in this study. Considering results
in average values in an interval of ten cycles, the proposed
method and most existing methods provided similar results
near the expected RMS values. On the other hand, the
proposed approach presented better results with flat RMS
harmonic estimations, even in challenging cases. Existing
evaluated methods presented considerable oscillations around
the expected results, which may limit the usage of harmonic
estimation methods in real-time practical applications, such as
in harmonic measurement and mitigation devices.

Harmonic estimation during non-stationary power quality
events, such as voltage sags, is also a challenge in applications
that need instantaneous harmonic estimation. The existing
methods provided impracticable long-time delay for harmonic
estimation in an actual voltage sag, whereas the proposed
method was the fastest because it efficiently detects transient
events and temporarily uses a low-order filter.

With the sample-by-sample harmonic magnitude estimation,
flexibility to change the time window size to attend specific
standards, and good results even in signals with strong multiple
interharmonics, the proposed method presents a potential to be
used in power quality monitoring devices after the inclusion
of other parameter estimation, such as phase angle estimation.

IX. FURTHER WORK

Fig. 18 depicts the actual-based synthetic current with inter-
harmonics

−

iY and its real fundamental component ih1.
−

iY is
based on the actual signal iY (Table II), and the only changing
is the presence of strong inter-harmonics at frequencies of
30, 70, and 170 Hz (Isub,30=0.3, Iint,70=0.3, and Iint,170=0.3
p.u.). The proposed method has demonstrated outstanding
performance in harmonic magnitude estimation considering
actual signals with challenging situations. For instance, even
with strong interharmonics in the signal

−

iY , the proposed
method presented a flat RMS estimation of the 1st, 2nd, and
3rd harmonics in Figs. 10, 11(b), and 12(b), respectively.

According to Section IV, the proposed method uses the
spectral energy of a specific wavelet signal to estimate the
magnitude of each harmonic. ih1−W1 in Fig. 18(a) is the
selected wavelet signal to compute the spectral energy and
estimate the magnitude of the 1st harmonic of

−

iY shown in
Fig. 10. Even with strong interharmonics surrounding this
harmonic component, ih1−W1 represents a sinusoidal signal
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with the fundamental frequency and with strong attenuation
of the other frequency components. Therefore, the magnitude
estimation of the 1st harmonic with the proposed method
presented an accurate performance in Fig. 10.

Comparing the wavelet signal ih1−W1 obtained with the
proposed method and the actual fundamental component ih1

of the signal
−

iY in Fig. 18(a), ih1−W1 presents a time delay.
However, the time delay is a known parameter obtained from
the frequency response of the wavelet filters. Therefore, the
phase angle of the 1st harmonic can be easily obtained with
any method by using ih1−W1 instead of the original signal
with interharmonics

−

iY because ih1−W1 must only present
the desired frequency component. For instance, considering a
signal with only the fundamental component, such as ih1−W1,
one of the simplest way to estimate the phase angle is to
apply the inverse tangent function to ih1−W1 and ih1−W1 with
a phase displacement of 90 degrees. The result is the phase
angle estimation θh1−W1 as shown in Fig. 18(b), which fits
the reference value θh1. This idea can be extended to the other
harmonics.

Discrete versions of the wavelet transform, which usually
use real mother wavelet, present mathematical limitations for
estimating phase angle [62], [63]. Therefore, the discrete
versions of the wavelet transform have been claimed to be
unsuitable for harmonic phasor measurements. Nevertheless,
based on this preliminary result, discrete wavelet transforms
with real mother wavelet can estimate harmonic phase angle.

Fig. 18(b) also depicts the phase angle estimation of the 1st
harmonic using the FCDFT (θh1−DFT ). In addition to strong
errors in the magnitude estimation in Fig. 10(b), θh1−DFT
also presented errors in Fig. 18(b) because the DFT is highly
affected by interharmonics, whereas the proposed method
performed better in Fig. 18(b) with an elementary phase angle

estimation.
The proposed wavelet-based method estimates harmonic

phasor instantaneous magnitude. However, a rigorous har-
monic phasor estimation is essential in power quality mon-
itoring, protection, and control of power systems. Therefore,
further work should consider the extension of the proposed
method to include an estimate of harmonic phasor phase,
frequency, and rate of change of frequency to be effective
in signals with interharmonics.
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