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Thoracic endovascular aortic repair (TEVAR) is a commonly used, minimally invasive

approach for treatment of thoracic aortic aneurysms (TAA). As there have been no random-

ized clinical trials, we often extract information for this treatment from observational data,

such as the Vascular Quality Initiative registry of TEVAR patients. However, evaluating

the effectiveness of the treatment using observational data can be challenging when there is

no data on the untreated group (e.g TEVAR registry), and no reliable information on the

cause of death. To address these issues, we propose using the relative survival approach,

in which one estimates the excess mortality hazard attributable to a disease by comparing

disease registry survival data to general-population control data.

Popular modeling methods of estimating the relative survival have two shortcomings

that render them unsuitable in some cases. First, they assume the excess hazard is positive,

which is undoubtedly true for cancer, but may not hold for diseases treated with potentially

curative therapy. Second, they consider survival to be continuous, whereas population control

data is often available only in discrete form, rounded to the nearest year. To address these

concerns, in Chapter 1, we propose describing discrete mortality hazards with a flexible

logistic regression model that permits the registry hazard to be either larger or smaller

v



than the population hazard. We apply our approach to analyze relative survival of patients

who underwent thoracic endovascular aortic repair (TEVAR) for thoracic aortic aneurysm

(TAA). Our results show that relative survival is favorable for the youngest and oldest

TEVAR recipients and unfavorable for those in between.

We hypothesized that the superior survival at older ages occurred because surgeons were

recommending only the hardiest older TAA patients for TEVAR. Thus, some older patients

may have been excluded from a treatment that could have increased their survival time. It

is not possible to evaluate this bias directly because the registry includes only those TAA

patients who underwent TEVAR. In Chapter 2, we address this bias by proposing the use

of sensitivity analysis to investigate the extent at which results are sensitive to potential

biases in sampling. Our model has two components: First, a one-parameter selection model

posits a pool of “potential patients” who could have received the treatment but did not,

with selection probability depending on age. Second, a mortality hazard model for the on-

surgery potential outcomes of the excluded patients extends the hazard model that we used

to describe mortality in the registry. We identify combinations of parameters of the models

that eliminate the relative survival advantage in the older patients. The analysis confirms,

and places a magnitude on, a “healthy screening effect”, which posits that older TEVAR

patients are screened for hardiness more critically than younger patients.

The size of the thoracic aneurysms is an important criterion for deciding whether and

when to conduct the TEVAR. Although previous analyses have sought to identify the ideal

TAA size at which to apply TEVAR, none have properly accounted for potential confounding

of the size of the aneurysm with treatment outcome. In Chapter 3, we aim to study the

marginal effect of aneurysm size on post-procedure survival in causal inference framework.

We estimate a marginal structural model (MSM) using inverse propensity score weighting,

and model nonlinearity in the effect of aneurysm size with a flexible fractional polynomial

form for the MSM. We find that patients who are asymptomatic at presentation and undergo

vi



elective surgery have better survival outcomes if the operation takes place when the TAA

size is near 60mm.
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Chapter 1

Modeling relative survival: An application to thoracic endovascular aortic repair

1.1. Introduction

In population-based studies of chronic diseases, it is challenging to estimate cause-specific

survival because of the unavailability of reliable information on causes of death. The rela-

tive survival approach [1] addresses this problem by comparing death rates in the affected

population to those in the general population, assuming that the disease is rare in the latter

group. The relative survival is the ratio of observed survival of the patients to the expected

survival of the general population, often matched on demographic factors.

One can estimate relative survival nonparametrically with life tables [1–3], but such

estimates may be unreliable or inefficient in strata where data are sparse. For this reason,

authors commonly use modeling approaches that define the all-cause mortality as a sum

of two components: The expected hazard in the general population and the differential

hazard from the disease. The first such models described the excess hazard in the disease

population as a proportion of the population hazard [4–7]. Others later extended these

models to incorporate non-linear, non-proportional hazards by including interaction between

time and covariates. Smoothing tools such as restricted cubic splines [8–10], B-splines [11],

and fractional polynomials [12] are also in use. A further extension includes random effects

to address clustering [13–15]. Models permit the examination of effects of prognostic factors

on excess mortality, but also provide estimates that are smooth and efficient when data are

sparse.
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Models used in relative survival analysis typically specify that the hazard in the disease

population exceeds that in the general population. This assumption is undoubtedly valid for

cancer, which has been the principal domain of application for these methods. In diseases

where curative treatments are available, however, one might entertain the possibility that

patients can be restored to “good as new” or “better than new” condition, in which case

one would require models that admit the possibility of a reduction of the death hazard. A

prominent example is hip replacement, which confers a relative survival above 1.0 in some

diagnosis groups [16]. Among the principal models for relative survival, only that of Lambert

et al [12] covers this situation by incorporating additive effects on the hazard scale.

A common method for modeling relative survival is to divide follow-up time into intervals

with a parameter for each, as in a piecewise exponential survival model [4, 17]. In this

approach, each subject contributes one row of data for each interval during the time at risk.

Taking the number of events per interval as the outcome gives rise to a Poisson likelihood

that one optimizes via generalized linear model calculations [9]. The choice of intervals

is vulnerable to criticism for being arbitrary and subjective. In models using non-split

time [8, 11], authors treat the time to event as continuous.

Because population life tables typically present hazard by year, it is reasonable to evaluate

relative survival using year as the time element. In this paper, we take the outcome variable

to be annual survival, which enables us to describe annual death hazards as probabilities and

model them on the logistic scale. This practice eliminates the arbitrary choice of intervals

and yields a straightforward interpretation of relative survival by age. The logistic hazard

model allows us to flexibly quantify the departure of survival from the population standard.

We illustrate our method in an analysis of post-treatment survival data from a registry

of patients who have undergone endovascular repair of a thoracic aortic aneurysm (TAA).

We use splines to describe the dependence of the hazard on the age at surgery and the

time since surgery. In subsequent sections, we describe the data, notation, and model; we
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present results of simulation studies and an application to the registry data; and we discuss

advantages and limitations of our approach.

1.2. The TEVAR Data

We used Vascular Quality Initiative (VQI) registry data on patients who underwent

thoracic endovascular aortic aneurysm repair (TEVAR) at 182 participating US institutions

between 2010 and 2020. Variables include age at TEVAR, sex, race, medical history, clinical

characterisitics, length of stay for the procedure, and vital status at a series of follow-ups.

Dates of death from the Social Security Death Index are available for subjects who have

valid 9-digit Social Security numbers.

Our analysis included only patients who underwent elective endovascular repair for an

asymptomatic TAA of size 30–190 mm. We excluded patients with nominal age 90 years,

as all patients with true age 90 or above were coded as 90. Finally, we excluded a modest

number of subjects who listed race as neither white nor black, or who had missing data on

sex or race. The final sample included 1357 subjects from 146 centers; Figure 1.1 displays

the data extraction scheme.

1.3. Methods

1.3.1. Notation

Suppose subject i, i = 1, 2, ..., n, with baseline covariate vector Xi underwent TEVAR

at discrete age Zi, was followed to discrete censoring age Ci, and died at discrete age Ti. The

observed survival is T̃i = min(Ti, Ci) with event indicator Di = I(Ti ≤ Ci).

We denote the probability mass function of T , conditionally on Z = z and X = x, as

f(t|z, x) = Pr(T = t|z, x). Similarly, the conditional survival function is S(t|t > z, x) =

3



 

n=16,804 patients underwent thoracic and complex 

EVAR procedures from 182 centers, extracted from VQI 

registry data from 2010 and 2020 

n=13449 patients, from 179 

centers, with both valid age 

and aneurysm size 

Include: 

- Age at surgery < 90 (n=16,579)  

- 30mm ≤ Pre-op aneurysm size ≤ 190 mm (n=14,742) 

Include: 

- TEVAR with proximal zones (1, 2, 3, 4, 5) (n=7981),  

distal zones (2, 3, 4, 5) (n=4749) 

- Asymptomatic presentation (n=7419) 

- Elective surgery (n=10,089) 

 

n=1473 patients, from 146 

centers, with TEVAR 

procedure of interest 

A final sample size of n=1357 subjects, 

underwent TEVAR procedures of interest, with 

complete race and gender data, extracted from 

146 centers  

Include only white and black patients 

Figure 1.1: TEVAR data extraction.

Pr(T > t|z, x). The conditional mortality hazard at age t is then

h(t|z, x) = Pr(T = t|T ≥ t, z, x) =
f(t|z, x)

S(t− 1|z, x)
,

t ∈ {z, z + 1, z + 2, ...}, (1.1)
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the discrete conditional survival function is

S(t|t > z,X = x) =
t∏

u=z

[1− h(u|x, z)] , (1.2)

and the conditional probability of death at age t after undergoing TEVAR at age z is

f(t|z, x) = h(t|z, x)
t−1∏
u=z

[1− h(u|z, x)] .

1.3.2. Logistic discrete hazard model

We model the post-TEVAR mortality hazard as a function of age at surgery (z) and

covariates (x), including a potential stratification of the population based on a subset of

demographic covariates. We denote k(x) ∈ {1, . . . , K} to be the the stratum implied by the

relevant elements of x. Because the discrete hazard in (1.1) is a probability, we describe it

with the logistic model [18]

ln

[
h(t|z, x)

1− h(t|z, x)

]
= η0k(x)(t) + g(t, z, x; θ),

t ∈ {z, z + 1, z + 2, ...}. (1.3)

We henceforth denote the baseline logit hazard at age t for individuals in stratum k to

be η0k(t). Interpreting η0k(t) as a known function derived from a reference population,

g(t, z, x; θ) represents the hazard odds ratio of a TEVAR patient who underwent the proce-

dure at age z(≤ t) and has covariate vector x, relative to a patient in the same stratum of

the general population. The parameter θ governs the model.

We model survival by assuming the mortality hazard depends on the age at surgery z

and time since surgery t−z as linear splines, potentially with interaction. The general model
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is of the form

g(t, z, x; θ) = θ0

+ θ10z +
P∑
j=1

θ1j(z − pj)+

+ θ20(t− z) +

Q∑
l=1

θ2l(t− z − ql)+ (1.4)

+ r(t, z; θ3)

+ θ4x,

where θ0 denotes an intercept, θ1 = (θ10, θ11, . . . , θ1P ) denotes the coefficients for a spline in

z, θ2 = (θ20, θ21, . . . , θ2Q) denotes the coefficients for a spline in t − z, θ3 is the coefficient

vector for interactions between spline terms, and θ4 is the coefficient vector for the covariates

in x. The z and t − z splines have P and Q pre-selected knots p1, . . . , pP and q1, . . . , qQ,

respectively, and (u)+ = max(0, u). Thus, θ = (θ0, θ1, θ2, θ3, θ4).

1.3.3. Modeling the hazard relative to the general population

Let h0k(t) be the population hazard at age t of individuals in population stratum k,

obtained here from 2017 US life tables [19]. Assuming the proportion of subjects who

undergo TEVAR in the general population is negligible, we define the logit of the population

hazard as an offset in the hazard model for the TEVAR patients. We express the population

hazard at age t as

ln

(
h0k(t)

1− h0k(t)

)
= η0k(t). (1.5)
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Substituting (1.4) and (1.5) into (1.3), and adding a subscript θ to represent the parameter,

the hazard becomes

hθ(t|z, x) = expit [η0k(t) + g(t, z, x; θ)] ,

t ∈ {z, z + 1, z + 2, ...}, (1.6)

where expit(u) = eu/(1 + eu).

1.3.4. Estimating the hazard model

Suppose n patients who underwent TEVAR have observed data (t̃, z, d, x), where t̃ is the

vector of survival times, z is the vector of ages at surgery, d is the vector of death indicators,

and x is the matrix of covariates. The log-likelihood is then

l(θ|t̃, d, z, x) =
n∑
i=1

(
di ln[hθ(t̃i|zi, xi)]

+

t̃i−1∑
u=zi

di ln [1− hθ(u|zi, xi)]

+

t̃i∑
v=zi

(1− di) ln [1− hθ(v|zi, xi)]
)
. (1.7)

We use generic optimization methods to compute maximum likelihood estimates, and we

select a best model by the Akaike Information Criterion (AIC). We then estimate all-cause

mortality hazard by (1.6) and observed survival for TEVAR patients by (1.2). R code is

available from the first author.
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1.3.5. Relative survival

1.3.5.1. Definitions

We define here two versions of relative survival [1] that convey complementary informa-

tion about survival experience.

Let S(t|z, x) be the survival probability at age t for a patient with baseline covariate

vector x who underwent TEVAR at age z. Similarly, let SP (t|z, k(x)) be the survival in the

reference population, estimated by Ederer II [2] using the population survival of subjects

beginning at time z and matching on stratum identity k(x). We define the overall relative

survival at age t of a set of subjects with age at surgery vector z and covariate matrix x to

be the ratio of the sum of patient survival and the sum of survival of corresponding subjects

in the population:

Sage
R (t|z, x) =

∑n
i=1 I(zi ≤ t ≤ t̃)S(t|zi, xi)∑n

i=1 I(zi ≤ t ≤ t̃)SP (t|zi, k(xi))
. (1.8)

That is, the numerator is the sum of the estimated survival probabilities at age t for all

subjects who underwent the procedure prior to age t, and were followed up until age t̃. The

denominator is the analogous quantity for a corresponding set of subjects in the general

population.

Alternatively, we can define relative survival by ages at procedure and death for a given

covariate vector x and scalar surgery time z. The relative survival of a TEVAR patient at

age t given the operation occurred at age z (< t) is

Syears
R (t|z, x) = S(t|z, x)

SP (t|z, k(x))
. (1.9)
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For example, Sage
R (45|z, x) represents the relative survival at age 45 for a set of TEVAR

patients with covariates x and surgery times z, whereas Syears
R (45|40, x) represents the relative

survival at age 45 for a single patient with covariate vector x who underwent TEVAR at age

40.

1.3.5.2. Estimation

We can estimate S(t|z, x) using either our logistic discrete survival model (1.6) or a

Kaplan-Meier curve stratified by z and k(x) [20]. The former approach avoids problems of

sparsity but may introduce bias if model assumptions are incorrect. The latter is robust but

may be unstable when data are sparse.

Let Ŝ(t|z, x) be the model-estimated survival probability at age t for a patient who had

TEVAR at age z with baseline covariate vector x. Assuming that SP is known without

error, and designating estimates with a circumflex, we define the model-based estimators of

relative survival as

Ŝage
R (t|z, x) =

∑n
i=1 I(zi ≤ t ≤ t̃)Ŝ(t|zi, xi)∑n

i=1 I(zi ≤ t ≤ t̃)SP (t|zi, k(xi))
(1.10)

and

Ŝyears
R (t|z, x) = Ŝ(t|z, x)

SP (t|z, k(x))
. (1.11)

To define the nonparametric estimate, let ŜKM(t|z, k) be the product-limit estimate of

survival at age t for nk individuals in stratum k, indexed i = 1, . . . , nk, who underwent

surgery at ages z1, . . . , znk
. The nonparametric estimate of relative survival at age t for

stratum k is

ŜNP,age
R (t|z, k) =

∑nk

i=1 I(zi ≤ t ≤ t̃)ŜKM (t|zi, k)∑nk

i=1 I(zi ≤ t ≤ t̃)SP (t|zi, k)
, (1.12)
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and the nonparametric estimate of relative survival at age t for a subject in stratum k who

had the procedure at age z (< t) is

ŜNP,years
R (t|z, k) = ŜKM(t|z, k)

SP (t|z, k)
. (1.13)

One can also estimate the nonparametric relative survival for all patients, denoted as ŜNP,age
R (t|z)

and ŜNP,years
R (t|z), similarly to Equations (1.12) and (1.13) by collapsing all strata, thus ob-

viating the k notation in survival estimators in the numerators. The expected survivals in

the denominators are still estimated by best matching the general population to the patients

under study through the covariates implied by k(x).

1.3.5.3. Standard errors

Because the model-based relative survival is a complicated function of the parameters

and the values of x and z, we compute 95% confidence intervals for it by the parametric

bootstrap. Denote θ̂ to be the maximum likelihood estimate of the parameter vector θ in the

hazard function (1.6). Let W follow a multivariate normal distribution, W ∼ N(θ̂,Σ), with

mean θ̂ and covariance matrix Σ defined as the estimated covariance matrix of θ̂. First we

draw 500 random samples of θ from the distribution of W . For each sampled θ, we calculate

the relative survival (either (1.10) or (1.11)) for TEVAR patients with a designated x. We

then compute the standard errors of the relative survival by taking the standard deviation of

the 500 simulated relative survivals. We obtain a confidence interval by taking the estimated

relative survival plus/minus the standard error times the relevant normal quantile.

We can compute standard errors for ŜNP,age
R (t|z, k) by the nonparametric bootstrap, and

for ŜNP,years
R (t|z, k) by the delta method.
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1.4. Simulation

1.4.1. Simulation design

We evaluated the performance of our method in a Monte Carlo experiment. We simulated

data of patients from the TEVAR white male subgroup (the largest stratum) by assuming

the true hazard function depends only on age at surgery with two spline knots at 60 and 74:

ln

[
h(t|z)

1− h(t|z)

]
= ln

[
h0(t)

1− h0(t)

]
+ 2.1 + 0.06z (1.14)

− 0.1(z − 60)+ − 0.05(z − 74)+,

t ∈ {z, z + 1, z + 2, ...},

where h0(t) is the population hazard at age t for white males. We simulated 1,000 replications

at sample size n as follows:

1. Sample n data values for age at surgery (z) with replacement from the TEVAR white

males.

2. Simulate survival time and vital status under hazard (1.14), assuming censoring time

c = z + 5.

3. Obtain the MLE and 95% confidence interval for each model parameter.

4. Estimate 1-year and 3-year relative survival given patients have TEVAR at age z ∈

{40, 45, . . . , 85}. Compute standard errors for relative survival as described above.

For parameters of interest, we estimated the bias, root mean squared error (rMSE), and

coverage probability of nominal 95% confidence intervals.
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1.4.2. Simulation results

Table 1.1 summarizes the simulated MLEs of the model coefficients: The intercept plus

a spline in age at surgery (z) with knots at 60 and 74, as in Equation (1.14). The MLEs

have coverage probability close to the nominal level even with small n. Bias is appreciable

for the intercept at n = 500, but not enough to impair coverage probability.

Table 1.1: Simulation results for parameter estimates in the discrete survival model (1.14).

Model True n = 500 n = 1000

Parameter value CP (%) Bias rMSE CP (%) Bias rMSE

Intercept (θ0) 2.1 95.3 0.1620 2.15 94.7 0.0111 1.41

Surgery age z (θ1) 0.06 95.0 −0.0023 0.04 94.7 −0.0001 0.03

Knot z = 60 (θ11) −0.1 94.1 0.0013 0.06 94.5 0.0002 0.04

Knot z = 74 (θ12) −0.05 94.9 0.0039 0.05 95.5 0.0017 0.04

CP: coverage probability; rMSE: root mean squared error

Table 1.2 shows results for simulated 1-year and 3-year relative survival. For the smaller

sample size, the coverage probability is close to its nominal level for 1-year relative survival,

but fluctuates slightly for 3-year relative survival. Increasing the sample size to n = 1,000

stabilizes the coverage probability and further reduces bias and rMSE at most values of z.

1.5. Analysis of the TEVAR data

1.5.1. The data

The data set we extracted from the TEVAR registry on December 2, 2020 contains

1,357 patients (Figure 1.1). Table 1.3 shows patient baseline characteristics, stratified by

race and sex. A plurality of the sample was white male. The mean age of surgery (SD) for

all subjects was 72.1 (9.6), with the black groups slightly younger (67.3 for black male and

71.2 for black female). Black patients had TEVAR at a larger mean aortic diameter than

whites. The highest proportions of diabetes and current smoking were observed in black

men, while COPD was most common in white females, and CAD in males.
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Table 1.2: Simulation results for estimates of Syears
R (t|z, x), t− z ∈ {1, 3},

z ∈ {40, 45, . . . , 85}.

Years after Surgery True n = 500 n = 1000

TEVAR (t− z) age (z) survival CP (%) Bias rMSE CP (%) Bias rMSE

40 0.82 93.0 −0.0270 0.1078 93.0 −0.0091 0.0643

45 0.72 92.2 −0.0193 0.0962 93.3 −0.0054 0.0609

50 0.56 93.7 −0.0118 0.0732 94.4 −0.0023 0.0482

55 0.37 93.2 −0.0064 0.0472 93.9 −0.0010 0.0323

60 0.23 93.2 −0.0006 0.0450 95.0 0.0004 0.0320

1 year 65 0.21 94.0 −0.0014 0.0266 94.7 −0.0006 0.0186

70 0.18 94.3 −0.0005 0.0223 95.5 −0.0007 0.0149

75 0.16 93.4 0.0005 0.0251 95.4 −0.0006 0.0167

80 0.15 94.8 −0.0017 0.0210 94.2 −0.0018 0.0152

85 0.14 95.1 −0.0010 0.0331 93.4 −0.0015 0.0249

40 0.53 88.5 −0.0252 0.1645 91.2 −0.0067 0.1153

45 0.33 90.1 −0.0089 0.1159 92.5 0.0004 0.0819

50 0.14 92.2 −0.0019 0.0504 93.7 0.0014 0.0355

55 0.04 92.8 0.0001 0.0153 93.6 0.0007 0.0110

60 0.01 93.6 0.0010 0.0066 93.9 0.0006 0.0047

3 years 65 0.009 92.6 0.0002 0.0031 93.8 0.0001 0.0022

70 0.006 93.3 0.0003 0.0023 96.1 0.00007 0.0015

75 0.004 92.4 0.0002 0.0017 94.6 0.00004 0.0011

80 0.003 93.6 0.0001 0.0016 92.6 −0.000001 0.0011

85 0.003 96.0 0.0005 0.0025 93.3 0.0002 0.0018

CP: coverage probability; rMSE: root mean squared error

1.5.2. Model selection

We estimated models with different combinations of knots in the two spline functions in

z (at z = 60, 74, 83, corresponding to the 10, 50, and 90 age centiles, respectively) and t− z

(at t − z = 1, 2), and their interactions. We also ran models that adjusted for pre-op TAA

size, diabetes, smoking status, COPD, and CAD (Table 1.4). Likelihood ratio tests found

no significant spline-spline interactions. Model comparisons based on AIC identified a best

model that had knots in age of surgery at z = 60, 74, a slope but no spline terms in t − z,

and no additional baseline covariates. The model included main effects of race and sex and

their interaction, but we did not stratify the modeling by race and sex; that is, we assume
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Table 1.3: Baseline characteristics of the TEVAR patients, stratified by race and sex.

White Black

Total Male Female Male Female

n (% of total) 1,357 (100%) 636 (46.9%) 495 (36.5% ) 112 (8.2%) 114 (8.4%)

Age at surgery 72.1 (9.6) 72.5 (9.1) 72.8 (9.7) 67.3 (10.2) 71.2 (10.6)

Pre-op TAA size (mm) 58.3 (11.0) 58.6 (11.2) 57.4 (10.2) 59.3 (12.5) 59.1 (11.6)

Diabetes (Yes) 228 (16.8) 113 (17.8) 64 (12.9) 28 (25.0) 23 (20.2)

Current smoking (Yes) 357 (26.3) 156 (24.5) 129 (26.1) 42 (37.5) 30 (26.3)

COPD (Yes) 523 (38.5) 246 (38.7) 201 (40.6) 39 (34.8) 37 (32.5)

CAD (Yes) 267 (19.7) 150 (23.6) 72 (14.5) 26 (23.2) 19 (16.7)

Mean (SD) for continuous variables; n (%) for categorical variables. TAA: thoracic aortic aneurysm;
COPD: chronic obstructive pulmonary disease; CAD: coronary artery disease.

that the other parameters are the same across race-sex strata. We henceforth refer to this

as model M1.

1.5.3. Relative survival

We used model M1 to estimate the relative survival for TEVAR patients by age, stratified

by race and sex, defined above as Sage
R (t|z, x). We observed that TEVAR patients under age

60 have a slightly higher survival than the general population (Figure 1.2A), whereas patients

aged 60–80 experience slightly lower survival than the general population. Subjects aged 80

or above show markedly superior survival, with relative survival rising to almost 1.1 at age

90. The results change only slightly after adjustment for other baseline covariates (Figure

1.1). We observed similar trends within race and sex subgroups (Figure 1.2B), with relative

survival climbing rapidly for patients over age 80. Relative survivals are similar across all

groups for age under 70, and deviate at older ages. In particular, white males show higher

relative survival than white females. Erratic changes in black males and females could be

due to small samples in these subgroups. Nonparametric results echo model-based results

(Figure 1.3), although the curves are less smooth.

We also estimated 1- to 5-year relative survival by age at surgery, defined as Syears
R (t|z, x),

stratified by race and sex (Figure 1.4). Similar to Figure 1.2, the graphs show that TEVAR
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Figure 1.2: Relative survival Ŝage
R (t|z, x) (Equation (1.10)), for (A) all subjects with 95%

CI (black dashed curves) and (B) white male (WM), white female (WF), black male (BM),
and black female (BF). The grey dashed line corresponds to a relative survival of 1.0.
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Figure 1.3: Non-parametric relative survival ŜNP,age
R (t|z, k) (Equation (1.12)) for TEVAR

patients at age t, for each race-sex stratum k.
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patients typically have survival comparable to the general population between surgery ages

40 and 50, before experiencing a slight drop and lower survival from 50 to 75 and a sharp

increase thereafter. The difference in survival increases for larger t−z, with the 5-year relative

survival curves revealing the most pronounced concavity. The effect is slightly stronger in

males and blacks.

1.6. Sensitivity analysis

1.6.1. Effect of excluding older subjects

In Equation (1.10), we defined the set of patients for computing relative survival at age

t to include all patients who had surgery prior to age t and were followed until age t̃ ≥ t. To

study the influence of the older subjects on relative survival, we re-ran the analysis excluding

patients with age at surgery greater than 80, 75, and 70, resulting in sample sizes n = 1061,

740, and 469, respectively. In each subgroup, we estimated the mortality hazard using a

model similar to that used in the main analysis, with the logistic discrete hazard depending

on age at surgery (z) at two knots (10th and 50th centiles) and time since surgery (t−z), and

adjusting for race and sex. The range for age at surgery varies due to different sample sizes

of subgroups, thus giving different knot locations in z. For each group, we estimated the

relative survival Sage
R (t|z, x) (Equation (1.10)). Because the analyses exclude older subjects,

the relative survival curves do not all extend to age 90.

Results appear in Figure (1.5). We observe that by removing patients who had TEVAR

at older ages, the remaining part of the relative survival curve falls below 1.0. Evidently,

unexpectedly good outcomes among the oldest TEVAR recipients drive the elevated relative

survival at the oldest ages.
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Figure 1.4: Relative survival Ŝyears
R (t|z, x) (Equation (1.11)) with 95% CI, stratified by race

and sex.

18



40 50 60 70 80 90

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

Age (years)

R
el

at
iv

e 
su

rv
iv

al

z < 90, n = 1357 (all)
z < 80, n = 1061
z < 75, n = 740
z < 70, n = 469

Figure 1.5: Relative survival Ŝage
R (t|z, x) (Equation (1.10)) for patients with age at surgery

(z) limited to being less than 70, 75, 80, and 90.
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1.6.2. Effect of spline knots

We examined the robustness of the estimated relative survival to the choice of knots in

the hazard model. Recall that the final spline, selected by AIC, has knots at z = 60, 74 and

a slope but no spline term in t − z. In the first setting, we evaluated models with different

numbers of knots selected from z ∈ {55, 60, 65, 74, 80, 83}, with no knot in t − z. In the

second setting, we added knots in t − z at one and two years, testing various combinations

of spline terms in both z and t− z. We then evaluated sensitivity of Ŝage
R (t|z, x) (Equation

(1.10)) for both settings.

Figure (1.6) shows that the estimated relative survival at age t is similar for all choices

of knots. This suggests that our finding of increased relative survival at advanced ages is

robust to the specifics of the spline model.

1.6.3. Population hazard adjustment

The age-specific population hazard from US national life tables represents a sum of

hazards from a mixed population with different underlying conditions — for example, people

who have diabetes or COPD. Knowing the prevalence and relative risk associated with a

condition, one can adjust the population hazard to reflect the hazard for subjects who do or

do not manifest the risk factor. Details appear in the Appendix.

We calculated the overall relative survival at age t, Ŝage
R (t|z, x), using unadjusted and

adjusted population hazards reflecting effects of diabetes and COPD. Adjusting for diabetes

or COPD produces only minimal changes in relative surivival (Figure 1.7). We also compared

the results from model M1 (including only demographics) to model M6 (also including pre-op

TAA size, smoking, and comorbidities; see Table 1.4) and found no difference.
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Figure 1.7: Relative survival Ŝage
R (t|z, x) using adjusted population hazard (h0) based on

prevalences of diabetes (DM) and COPD using model M1 and model M6.
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1.7. Discussion

We have applied the relative survival framework to data from a registry of patients who

underwent TEVAR for treatment of TAA. Our goal is to determine whether the endovascular

repair of TAA renders patients effectively cured, in the sense that their survival is equivalent

to that of demographically matched controls in the general population.

1.7.1. Statistical methods

Our hazard model relies on splines, [9, 11, 21–24] which offer considerable flexibility

at some risk of over-fitting. Using model selection strategies, we obtained a satisfactory

fit with simple models that yield smooth survival curves. Simulations confirmed that our

model performs well even with a modest-sized sample, giving negligible bias with coverage

probability close to nominal levels. Sensitivity analyses demonstrated robustness to the

choice of knots.

An advantage of our approach is that it can model situations where the mortality hazard

in the population of interest is reduced over the general population. Although such a feature

is not needed for many chronic diseases, it can be valuable for modeling survival after curative

therapy in conditions that are effectively reversible.

In order to incorporate life-table information effectively, it is reasonable to model the

post-TEVAR mortality hazard as a discrete variate, which leads naturally to the use of a

logistic model for annual death hazards. Whereas the model represents the effect of age

at TEVAR and time since TEVAR on mortality hazard, our ultimate graphical analysis

represents relative survival at each age, averaging across the distribution of ages at surgery

in the registry prior to the age of interest. This approach leads to estimates that reflect the

distribution of procedure times in the registry [25–27].
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Relative survival analysis requires the proportion of diseased patients in the general

population to be negligible. Studies on cancer have shown that the bias from violation of

this assumption is modest [28], but no such studies exist in TAA. Relative survival also

relies on external data from the general population. A weakness of such data is that they

are seldom stratified by more than sex and race, whereas registries typically contain other

relevant predictors of mortality [29, 30]. We attempted to adjust the population hazard

with multiple covariates, but the robustness of our results after accounting for diabetes — a

common comorbidity in TAA — suggest that this may be unnecessary.

1.7.2. Substantive findings

We observed that younger TEVAR patients experience superior survival compared to

the general population, with those aged 60–80 often performing slightly worse and those over

80 substantially better. Our sensitivity analysis showed that this curious finding disappears

when one excludes older subjects from the calculation. Past studies that estimated survival

after TAA repair using Cox models reported higher risk in males and older patients [31,32].

A retrospective case-control study with repaired TAA found that survival is lower than

controls in the younger groups, but not different from the controls in octogenarians [31].

Studies in other diseases have also found superior relative survival in the elderly; examples

include abdominal aortic aneurysm [33] and prostate cancer [34].

Previous authors have suggested that elderly patients should be considered candidates for

TEVAR [35, 36]. In practice, physicians remain skeptical; a survey of 50 vascular surgeons

in Europe and the US showed that they were uncertain about the benefits of TEVAR in

patients aged 80–85 [37]. Thus, apparently some older patients who might benefit from the

procedure are not receiving it.

A possible explanation for the upturn in relative survival among TEVAR recipients is that

they receive additional attention from physicians, who are able to discover and treat other
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conditions before they become fatal; this effect may be most pronounced among the oldest

patients. Moreover, because we have included only elective TEVARs, it is possible that the

oldest group is exceptionally fit — other than having a TAA — relative to comparably aged

seniors in the general population [31,38]. This “healthy screening effect” was also discussed

in the estimation of relative survival of prostate cancer patients [34].

A third possibility is that there is a bias in the collection of the death dates in our data,

which are known only for subjects who have a complete, 9-digit Social Security number (SSN)

and, of course, are dead. As our dataset does not contain an indicator of completeness of

the SSN record, we do not know how large this bias is or in what direction it would tend.

Further sensitivity analyses will help elucidate these effects.
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Chapter 2

Sensitivity analysis of potential sampling bias in registry data

2.1. Introduction

Registries provide valuable data for follow-up studies in clinical epidemiology. An ad-

vantage of registry studies is that they are not subject to selection bias in the description

of outcomes of those who receive the treatment [39]. Limitations, however, can include

incompleteness of covariate data, absence of extensive pre-treatment data, and the lack of

data on untreated controls. Most importantly, because decisions about who will receive the

treatment are not randomized, extrapolation of findings to the larger population of subjects

who could have received the treatment, some of whom did not, is subject to bias.

In a previous article [40], we used procedure registry data to show that older thoracic aor-

tic aneurysm (TAA) patients who underwent thoracic endovascular aortic repair (TEVAR)

had superior survival relative to age-, sex-, and race-matched members of the general US

population. This motivates us to investigate whether this is a real effect or a result of a

bias in the selection of patients to treat. With the limitations in registry data, we generally

cannot determine whether “hidden bias” exists because we cannot or did not measure the

confounding variables. Certain additional data are required to fully analyze the biases, but

this is not possible with limitations in observational studies. Methods to adjust for control-

lable confounding — such as stratification, adjustment, or inverse probability weighting —

are not applicable in this context.

To address these issues, we need to resort to sensitivity analysis, as others have proposed

in various epidemiologic contexts [41–45]. Specifically, we describe our data using a causal
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model within the potential outcomes framework. We then conduct analyses to determine

the potential impact of sampling bias on post-treatment relative survival from a registry of

TEVAR recipients. We describe sensitivity parameters that govern biases in sampling based

on age and fitness. A specific goal is to identify the degree of bias necessary to abrogate the

putative advantage in relative survival that accrues to patients who are older at diagnosis.

We conduct multiple such analyses and discuss advantages and limitations of our approach.

2.2. Methods

2.2.1. Notation

Suppose TAA subject i, i = 1, 2, ..., n who has baseline covariate vector Xi is diagnosed

at age Zi and undergoes TEVAR (Ai = 1). In addition, we assume there is an unknown

numberm of “potential patients” who were diagnosed with TAA but did not undergo TEVAR

(Ai = 0). Denote Ti(0) to be the age at death of subject i should he not receive TEVAR,

and Ti(1) to be his age at death should he receive TEVAR. Thus Ti = (Ti(0), Ti(1)) is the

vector of potential outcomes for subject i, only one of which we can observe.

Because our data are from a registry that includes only TAA subjects who undergo

TEVAR, we do not know the number of subjects who were not offered TEVAR or declined

it, let alone their covariates or survival times. Table 2.1 is a schematic of the data structure.

2.2.2. Models

We henceforth assume that the discrete on-treatment survival time T (1) is affected by

the age at diagnosis (Z) and the baseline covariate (X). We further assume that physicians

recommend a patient for treatment based on the patient’s age at diagnosis, and that the

operation follows diagnosis quickly. We assume independence between Z and X. When

the selection mechanism is nonignorable (i.e., the measured covariates do not include all
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Table 2.1: Example data and potential outcomes of TEVAR patients.

Unit (i) Ai Ti(0) Ti(1) Zi Xi

1 1 ? 2226 82 x1
...

...
...

...
...

...

n 1 ? 302 59 xn

n+ 1 0 ? ? ? ?
...

...
...

...
...

...

n+m 0 ? ? ? ?

confounders), we must address selection bias. We illustrate these relationships in the directed

acyclic graphs in Figure 2.1.

Our sensitivity analysis seeks to examine the effect of applying various models for the

selection mechanism and effect of age on TEVAR survival on the distribution of survival

post-surgery given age, could all subjects be induced to undergo TEVAR. We begin by

making the following definitions (omitting the subscript for subjects):

� pψ(z) = Pr[A = 1|Z = z], the fraction of subjects diagnosed at age z who receive

TEVAR.

� f1(t|z, a = 1) = Pr[T (1) = t|Z = z, A = 1] is the probability of death at age t for a

TEVAR patient.

Figure 2.1: The directed acyclic graft on the left shows random patient selection to have
surgery; the graph on the right illustrates dependence between patient selection and age
(Z), thus confounding survival.
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� f1(t|z, a = 0) = Pr[T (1) = t|Z = z, A = 0] is the probability of death on TEVAR at

age t for a non-TEVAR patient.

From these, we derive the distribution of the age at death post-TEVAR given age at diagnosis,

including both those who received TEVAR and those who did not:

f(t|z) = f1(t|z, a = 1)pψ(z) + f1(t|z, a = 0) (1− pψ(z)) , t ∈ {z, z + 1, z + 2, ...}. (2.1)

That is, this is the distribution of age at death given age at diagnosis if all subjects undergo

TEVAR, not just those who ultimately received it under current practice. We are able

to directly estimate only f1(t|z, a = 1) from the available TEVAR data. The sensitivity

analysis consists of positing forms for pψ(z) and f1(t|z, a = 0) and assessing their effects

on the distribution f(t|z) of age at death given z could all subjects be induced to undergo

TEVAR.

2.2.2.1. Model for selection probability (ψ)

We hypothesize that the observed superior relative survival of older TEVAR patients

reflects bias in the selection of patients to receive the surgery — essentially, the bar for

suitability for TEVAR is higher in older TAA patients. To examine how large such an effect

would have to be to abrogate the observed result, we add hypothetical patients according

to a selection probability model governed by a sensitivity parameter ψ. We represent the

probability that a subject diagnosed at age z receives TEVAR as pψ(z), which we assume

has the following form:

Pr[A = 1|Z = z] = pψ(z) =


1, z ≤ 40

ψ−(z−40), z > 40,

(2.2)
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with ψ ≥ 1. This model implies that patients diagnosed at ages up to 40 all receive TEVAR,

whereas older patients are increasingly unlikely to receive TEVAR. In the boundary case

ψ = 1, all subjects receive TEVAR, and the registry equals the entire TAA population.

When ψ > 1, the registry systematically excludes older subjects.

2.2.2.2. Model for mortality hazard in the non-treatment group (δ)

Denote the discrete hazard function at age t for a TEVAR patient to be

h1(t|z, a = 1) = Pr[T (1) = t|T (1) ≥ t, Z = z, A = 1], t ∈ {z, z + 1, z + 2, ...}. (2.3)

We can rewrite the probability of death at age t for a TEVAR patient, as a function of

discrete death hazards:

f1(t|z, a = 1) = h1(t|z, a = 1)
t−1∏
u=z

[1− h1(u|z, a = 1)], t ∈ {z, z + 1, z + 2, ...}

where we define the hazard function of TEVAR patients depending on age as [40]

h1(t|z, a = 1) = expit[η0k(t) + g(t, z; θ)], t ∈ {z, z + 1, z + 2, ...} (2.4)

and

g(t, z; θ) = θ0

+ θ10z + θ11(z − p1)+ + θ12(z − p2)+

+ θ20(t− z).
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Similarly, we denote the discrete hazard function at age t for the on-TEVAR potential

outcome in a non-TEVAR patient to be

h1(t|z, a = 0) = Pr[T (1) = t|T (1) ≥ t, Z = z, A = 0]

and rewrite his probability of death at age t as

f1(t|z, a = 0) = h1(t|z, a = 0)
t−1∏
u=z

[1− h1(u|z, a = 0)], t ∈ {z, z + 1, z + 2, ...}.

Extending from the hazard model (2.4) for TEVAR patients, we assume the non-TEVAR

patients follow a mortality hazard model governed by an additional unknown parameter, δ:

h1(t|z, a = 0) = expit [η0k(t) + l(t, z; θ, δ)] , t ∈ {z, z + 1, z + 2, ...}, (2.5)

with the relative hazard l(t, z; θ, δ) following taking four different forms as follows:

� Case (a) — overall effect on the linear predictor:

l(t, z; θ, δ) = θ0 + δ[θ10z + θ11(z − p1)+ + θ12(z − p2)+ + θ20(t− z)]. (2.6)

� Case (b) — effect on the first knot in z:

l(t, z; θ, δ) = θ0 + θ10z + δθ11(z − p1)+ + θ12(z − p2)+ + θ20(t− z). (2.7)

� Case (c) — effect on the second knot in z:

l(t, z; θ, δ) = θ0 + θ10z + θ11(z − p1)+ + δθ12(z − p2)+ + θ20(t− z). (2.8)
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� Case (d) — effect on t− z:

l(t, z; θ, δ) = θ0 + θ10z + θ11(z − p1)+ + θ12(z − p2)+ + δθ20(t− z). (2.9)

In every case, when δ = 1 we have g(.) = l(.), implying that the patients who did not

receive TEVAR have on-TEVAR mortality risk equal to patients who did receive TEVAR.

In case (a), we assess sensitivity of the results to the overall slope governed by all terms: age

at surgery (z) and its knots, and time since surgery (t − z) (Equation 2.6). In cases (b–d),

we target individual terms in the relative hazard linear predictor. First, in case (b), we place

δ next to the coefficient of the first knot of z, which is at the 10th centile (Equation 2.7).

This will tell us how the results change specifically for the people who are older than the

10th centile age. Similarly, in case (c), we evaluate the sensitivity around the second knot,

which we have placed at the median age at surgery (Equation 2.8). In case (d), we evaluate

the effect of time since surgery to the overall result (Equation 2.9). We hypothesize that

the shorter the survival time since surgery, the lower the relative survival compared to the

general population. Different values of δ in cases (a) and (d) might change the curve overall,

and part of the curves after the first and second knot of z in case (b) and (c). In the next

section, we propose a series of settings with different combinations of sensitivity parameters

(δ, ψ) to visualize their effects on relative survival results.

2.2.2.3. Model settings for sensitivity analyses

When δ = 1 and ψ = 1, we obtain the null model from our previous paper. [40]

The effect of δ in each case on the mortality hazard of the on-TEVAR potential out-

come differs depending on the sign of the MLEs obtained in the previous analysis. Here

we focus on the subgroup of white males, in which the MLE for (θ0, θ10, θ11, θ12, θ20) is

(−5.24, 0.11,−0.14,−0.10,−0.48). We seek to identify sensitivity parameters that are suf-
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ficient to abrogate the superior relative survival seen at older ages, thereby explaining the

observed advantage for older patients as a selection bias.

We consider five settings:

� Setting 1: Fix ψ = 1.1 and set δ = 1.02, 1.05, 1.1 in case (a).

� Setting 2: Fix ψ = 1.1 and set δ = 0.9, 0.8, 0.7, 0.6 in case (b).

� Setting 3: Fix ψ = 1.1 and set δ = 0.1, 0.01,−0.1,−0.3 in case (c).

� Setting 4: Fix ψ = 1.1 and set δ = 0.8, 0.5, 0.1 in case (d).

� Setting 5: Combinations of δ = 0.8, 0.5, 0.1, 0.01 and ψ = 1.01, 1.05, 1.1 in four cases

(a–d).

Because both θ̂11 and θ̂12 are negative, reducing δ in cases (b) and (c) will increase the death

hazard for the untreated patients. In Settings 2 and 3, we propose decreasing values of δ

and a fixed value for ψ. This is slightly trickier in cases (a) and (d), because we set δ such

that the changes in both t and z can affect the overall results. Thus, in Settings 1 and 4 we

vary values and direction of δ. In setting 5, we examine how the changes in both selection

probability and mortality hazard for the potential patients affect the overall results.

2.2.2.4. Estimating relative survival for TAA patients post-TEVAR

From equation (2.1), we can similarly derive the hazard function at age t post-TEVAR

given age at diagnosis (z), including patients who received TEVAR and who did not:

h(t|z) = Pr[T (1) = t|T (1) ≥ t, Z = z]

= h1(t|z, a = 1)pψ(z) + h1(t|z, a = 0)(1− pψ(z)), t ∈ {z, z + 1, z + 2, ...}

where h1(t|z, a = 1) and h1(t|z, a = 0) are defined in (2.4) and (2.5).
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With the hazard function defined above, let the new discrete conditional survival function

for post-TEVAR patients be

S̄(t|t > z) = Pr(T (1) > t|Z = z) =
t∏

u=z

[1− h(u|z)], t ∈ {z, z + 1, z + 2, ...}. (2.10)

Suppose t̃ is the vector of observed survival times for n patients who underwent TEVAR

and z is their vector of observed ages at diagnosis. Using the method from our previous

paper [40], we estimate the relative survival at age t for post-TEVAR patients, given age at

diagnosis for a particular subgroup (e.g. white male), as

ˆ̄Sage
R (t|z) =

∑n
i=1 I[zi ≤ t ≤ t̃] ˆ̄S(t|zi)∑n
i=1 I[zi ≤ t ≤ t̃]SP (t|zi)

, (2.11)

where ˆ̄S(t|z) is the model-estimated survival probability at age t defined above in (2.10) and

SP (t|z) is the survival of the corresponding patients (white males with matching ages) from

the general population, estimated by Ederer II [2].

2.3. Results

2.3.1. Varying δ

We varied δ to identify potential effects of the addition of patients who do not receive

the treatment on the relative survival. Increasing or decreasing δ has a different effect in

each case, depending on the signs of the MLE regression coefficients. If the MLE is negative,

increasing δ lowers the relative hazard for the control group. In case (a), by increasing δ

we assume that the potential patients have higher mortality risk than those who received

TEVAR. Figure (2.2) shows that with higher values of δ, we obtained lower relative survival

for patients at age 55 or above. In case (b), lowering δ affects the MLE at the first knot in z,

resulting in lower post-TEVAR relative survival for patients aged 65 and older (Figure 2.3).

We observe a similar pattern in case (d), where we examined the sensitivity around term
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t− z, such that the overall relative survival curve is also lower than the one in null model as

δ decreases (Figure 2.5). In case (c), where we checked sensitivity of results to the second

knot in z, lowering δ implies that the potential TEVAR patients aged 74 and older have

higher hazard, because the MLE for θ12 is negative. Thus, if these individuals were given

the treatment, the overall relative survival would be lower. This effect is shown in Figure

(2.4) by the relative survival decline at the tail as δ decreases.

2.3.2. Varying ψ

Figure (2.6)–(2.9) present sensitivity analysis results in case (a)–(d) respectively, with

varying combinations of ψ and δ. Increasing ψ results in higher relative survival in case (a)

only, and lower relative survival in cases (b–d). The results are similar across different values

of δ when increasing ψ in case (a), but show larger changes in other cases.

Higher ψ values indicate lower selection probability for older patients in the observed

treatment group. The change is largest in case (b) with small values of δ = 0.1, 0.01. The

potential patient group consists of a larger portion of older patients as ψ increases, and these

patients also have higher hazard as δ at the first knot in z is small. By removing the older

patients in the observed treatment group, the reduction in relative survival at age 60 implies

that the old individuals in our data are healthy and fit. We observe similar patterns in cases

(c) and (d), but with moderate changes between different values of ψ. The relative survival

at older ages declines as we remove more older patients in the observed treatment group.

The results in case (a) are reversed in that higher ψ values lead to higher relative survival.

2.4. Discussion

We have investigated the effect of the suspected exclusion from TEVAR surgery of elderly

TAA patients on the survival of TEVAR patients relative to matched population controls.

First, we included a proportion of patients who could have been treated, but are excluded,
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Figure 2.2: Left: Relative survival ˆ̄Sage
R (t|z) for white males, defined in equation (2.11),

including both TEVAR and non-TEVAR patients, with the mortality hazard for
non-TEVAR patients is defined in (2.6), case (a). Right: One year post-TEVAR relative
hazard for non-TEVAR white males defined in (2.6). Different curves correspond to
different values of δ.
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Figure 2.3: Left: Relative survival ˆ̄Sage
R (t|z) for white males, defined in equation (2.11),

including both TEVAR and non-TEVAR patients, with the mortality hazard for
non-TEVAR patients is defined in (2.7), case (b). Right: One year post-TEVAR relative
hazard for non-TEVAR white males defined in (2.7). Different curves correspond to
different values of δ at the first knot of z. Smaller values of δ indicate higher risk for
TEVAR patients aged 60 and older.
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Figure 2.4: Left: Relative survival ˆ̄Sage
R (t|z) for white males, defined in equation (2.11),

including both TEVAR and non-TEVAR patients, with the mortality hazard for
non-TEVAR patients is defined in (2.8), case (c). Right: One year post-TEVAR relative
hazard for non-TEVAR white males defined in (2.8). Different curves correspond to
different values of δ at the second knot of z. Smaller values of δ indicate higher risk for
TEVAR patients aged 74 or older.
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Figure 2.5: Left: Relative survival ˆ̄Sage
R (t|z) for white males, defined in equation (2.11),

including both TEVAR and non-TEVAR patients, with the mortality hazard for
non-TEVAR patients is defined in (2.9), case (d). Right: One year post-TEVAR relative
hazard for non-TEVAR white males defined in (2.9). Different curves correspond to
different values of δ for the t− z term.
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Figure 2.6: Left: Relative survival ˆ̄Sage
R (t|z) for white males, defined in equation (2.11),

including both TEVAR and non-TEVAR patients, with the mortality hazard for
non-TEVAR patients is defined in (2.6), case (a). We specify different values of ψ and δ to
test sensitivity around the overall slope in the relative hazard for the non-TEVAR group.
Larger ψ indicates a lower selection probability for older subjects to undergo TEVAR.
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Figure 2.7: Left: Relative survival ˆ̄Sage
R (t|z) for white males, defined in equation (2.11),

including both TEVAR and non-TEVAR patients, with the mortality hazard for
non-TEVAR patients is defined in (2.7), case (b). We specify different values of ψ and δ to
test sensitivity around the first knot in z in the relative hazard for the non-TEVAR group.
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Figure 2.8: Left: Relative survival ˆ̄Sage
R (t|z) for white males, defined in equation (2.11),

including both TEVAR and non-TEVAR patie+nts, with the mortality hazard for
non-TEVAR patients is defined in (2.8), case (c). We specify different values of ψ and δ to
test sensitivity around the second knot in z in the relative hazard for the non-TEVAR
group.
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Figure 2.9: Left: Relative survival ˆ̄Sage
R (t|z) for white males, defined in equation (2.11),

including both TEVAR and non-TEVAR patients, with the mortality hazard for
non-TEVAR patients is defined in (2.9), case (d). We specify different values of ψ and δ to
test sensitivity around the t− z term in the relative hazard for the non-TEVAR group.
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to the treated group with a selection probability depending on age. We achieved this by

introducing a one-parameter selection model that assumes that older TAA patients are less

likely to receive TEVAR. We then modeled the mortality hazard for the potential patients by

multiplying terms in the linear predictor for mortality hazard by a scale factor. We examined

the changes in survival by varying values of these two parameters. Although the underlying

hazard model is complex, the sensitivity analysis is revealing and simple to conduct.

The results show that adding the potential patients to the treated group can substantially

affect the overall results. In particular, adding frail, elderly patients results in lower relative

survival at older ages. This confirms our hypothesis that the oldest patients selected in

our data are likely to be in more robust health, apart from having a TAA, than those in

equivalent strata in the general population.

The choice of selection model can influence the sensitivity assessments. We used a mono-

tone exponential decay function for the selection probability, restricting the selection prob-

ability to 1 for subjects diagnosed at age 40 or before and to decline with age thereafter.

The results are more robust to the selection parameter ψ when the hazard of the potential

patients is similar to the treated ones in the data.

We have examined only age as a potential confounder of the association between selection

for surgery and mortality. This is because we observed the unexpected superior survival

at older ages, which could due to the “healthy screening effect” in older patients that we

mentioned in our earlier analysis of the registry patients only. One can investigate other

potential confounding variables, or incorporate prior quantitative knowledge regarding the

unknown parameters, but sensitivity analysis results become complicated and difficult to

interpret if we attempt to evaluate many parameters at once. Moreover, in this analysis,

we create pseudo-data for the potential patients who could have been treated and included

in the study. One might debate the suitability of this approach, but the goal of sensitivity
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analysis is not to correctly identify the exact bias, but to add a further element to objectivity

in understanding the results.
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Chapter 3

Identifying the Optimal Size for Repair of a Thoracic Aortic Aneurysm

3.1. Introduction

Thoracic aortic aneurysm (TAA) is a potentially lethal, often asymptomatic condition

that is commonly detected during medical visits for other reasons. Its incidence is roughly

5.3/100,000/year [46], and its mortality rate is over 90% [47,48]. Most of these deaths could

be prevented by early repair of the TAA. Thoracic endovascular aortic repair (TEVAR), a

minimally invasive approach, has gradually replaced open repair as treatment for thoracic

aortic disease. Although generally safer than open repair, the procedure can be complicated

depending on factors such as the patient’s overall health and the location and size of the

aneurysm.

Clinical research has identified aneurysm size as having a significant impact on rates of

aneurysm rupture and dissection and mortality. Larger aneurysms have an increased risk of

rupture: The mean rupture rate is 2% for small aneurysms, rising to 6% for aneurysms of

size 6cm or greater. The rate of serious complications also rises significantly as aneurysm size

increases [49]. Several surgical guidelines recommend 6 cm to be the critical diameter [49]

and suggest 5.5 to 6 cm as the ideal diameter for prophylactic surgical aortic repair [50,51].

These pioneering studies assessed size as a risk factor for aneurysm rupture regardless of

whether patients underwent surgical treatment. In this paper, we investigate the question

further by examining the effect of aneurysm size on post-surgery survival for TAA patients

who underwent elective TEVAR. In particular, we want to determine the dependence of

survival on size at repair and identify the optimal size at which to conduct TEVAR surgery.
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As there have been no randomized clinical trials of TAA diameter at operation, we ex-

tract information for these treatments from observational data — specifically the Society for

Vascular Surgery Vascular Quality Initiative registry of TEVAR patients. A significant defi-

ciency of observational data is the potential for confounding bias due to covariate imbalance.

That is, if there are covariates that are predictive of both size at surgery and post-surgical

outcome, straightforward comparisons of mortality by size at surgery may be biased. One

can reduce this bias by applying statistical methods designed to extract causal inferences

from observational data. In this paper, we propose using propensity score analysis and the

marginal structural model to estimate the marginal effect of aneurysm size on post-surgery

survival.

Because aneurysm size at surgery is a continuous variable, a causal analysis of its effect on

mortality must specify a functional form for this relationship. As the true form is unknown

and possibly nonlinear, we seek to model the effect of size on mortality using a flexible

function that will represent the data well without substantial bias. Common approaches

to flexible modeling of this kind include piecewise polynomial models such as restricted

cubic splines [52], B-splines [53], and penalized splines [54]. An alternative approach that

does not require segmentation of the range of the predictor is the fractional polynomial

(FP) [55]. With this method, one describes potential nonlinear effects using a multiple

regression model that includes a limited number of terms involving logs and low powers of

the predictor variable. The choice of function balances quality of fit with model complexity.

We propose using the FP approach to ensure that models are parsimonious while providing

consistent and meaningful results. To our knowledge, this paper represents the first use of

fractional polynomials in a marginal structural model.

In subsequent sections, we describe the TEVAR data and methods, present the results

of the analysis and discuss advantages and limitations of our study.
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3.2. Patients and methods

3.2.1. The TEVAR registry

The Society for Vascular Surgery Vascular Quality Initiative (SVS VQI) prospectively

enrolled patients who underwent TEVAR from 2010 to 2020 at 182 centers into a database of

thoracic and complex EVAR procedures. The registry records patient demographics, baseline

clinical characteristics, and follow-up outcomes. Baseline variables include pre-op maximum

aortic diameter of the aneurysm, age at surgery, sex, race, smoking status, and indicators

for chronic obstructive pulmonary disease (COPD), coronary artery disease (CAD), and

diabetes. The outcome is post-procedure survival. Patient mortality status is identified by

electronic health records at the centers, or by the Social Security Death Index for subjects

who have valid 9-digit Social Security numbers.

We limited our analysis to patients aged less than 90 years, as those with true age 90 or

above were coded as 90. We also restricted attention to patients who underwent TEVAR

procedures with initial aneurysm sizes 30–190 mm. In addition to the full sample (including

all eligible subjects), we examined two subgroups: (1) Those who had elective surgery and

(2) those who had elective surgery with asymptomatic presentation.

3.2.2. Marginal structural model

The marginal structural model (MSM) [56,57] is a causal model that allows adjustment

for confounding in potentially complex observational studies. The MSM is “marginal” in

that it seeks to represent the relationship of potential outcomes to treatments averaged over

covariates in the population of interest. It is “structural” in that it aims to explore causal

effects, a common notion in the econometric literature. [58]

Suppose subject i ∈ {1, ..., n} with baseline covariate vector Xi underwent TEVAR at

aneurysm size Si. We denote Ti to be the post-TEVAR survival outcome of patient i,
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measuring survival time since the operation. To reflect that physicians had a choice in TAA

size at surgery, we adopt a potential outcomes notation. Given that we treat aneurysm size

S ∈ S as the continuous exposure/treatment of interest, we denote the potential outcomes

to be {Ti(s) : s ∈ S}, which represent the set of post-TEVAR survival outcomes that are

possible for subject i. Only the factual survival outcome at size s, Ti(Si = s) is observed

for patient i; outcomes at other sizes, Ti(Si ̸= s), are unobserved counterfactual potential

outcomes.

Consider the following model for potential outcome T (s)

T (s) ∼ FT (s) = g(s; β),

which describes the distribution FT (s) of T (s) as a function g(·; ·) of s and causal parameter

β. It is an MSM because it is a structural model for the marginal distribution of the

counterfactual variable T (s). In addition to correct model specification, valid estimation of

the MSM requires four main assumptions: Stable unit treatment values, exchangeability,

consistency, and positivity. The stable unit treatment value assumption (SUTVA) states

that there is no interference between units, in that the potential outcome of subject i is not

affected by the potential outcomes of other subjects. Exchangeability, often referred to as

no unmeasured confounding, states that the set of potential outcomes {T (s) : s ∈ S} are

independent of the exposure (aneurysm size), conditioning on the measured confounders.

Consistency, which relates the counterfactual outcome to the observed outcome, states that

the potential outcome for a subject who experiences treatment s under his observed covariates

is precisely his observed outcome, Si = s⇒ Ti = Ti(s). Positivity states that the probabilty

of being treated at each aneurysm size is positive for each combination of covariates; that is,

there are no impossible treatment conditions.
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In the TAA analysis, we estimate the mean causal effect of baseline aneurysm size on

the post-TEVAR survival outcome using a marginal structural Cox proportional hazards

model. Let λT (s)(t|s, β) be the hazard of death at time t, in a hypothetical study in which

all subjects underwent TEVAR at aneurysm size s:

λT (s)(t|s, β) = λ0(t) exp[Φ(s; β)], (3.1)

where λ0(t) is a baseline hazard at time t post-TEVAR, and Φ(s; β) is a smooth function of

aneurysm size with corresponding coefficient vector β, which quantifies the causal effect of

aneurysm size on post-TEVAR survival time.

Because of the potential for confounding, estimating the model by standard Cox regres-

sion generally gives a biased estimate of β in (3.1). One can eliminate the bias by estimating

the Cox model with a subject weight proportional to the inverse predicted density function

of the observed aneurysm size that the subject was treated at — so-called inverse probability

of treatment weighting (IPTW) [58]. This method gives regression parameter estimates that

are consistent for β in the MSM.

Two types of weights are in regular use: Unstabilized weights wi are calculated as

wi =
1

f(Si|Xi)
=

1

b(si, xi)
, (3.2)

where the denominator is also referred as the generalized propensity score [59, 60], defined

as the conditional density of treatment at aneursym size Si given covariate Xi. Generalized

propensity score is an extension of the traditional propensity score [61], to apply to continuous

exposure/treatment.

These unstabilized weights can vary substantially and lead to an undesirable dependence

of the estimate on a few individuals with small propensity scores. To avoid this problem,
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one can alternatively use stabilized weights, defined as

swi =
f(Si)

f(Si|Xi)
=

a(si)

b(si, xi)
, (3.3)

where the numerator is the marginal density function for aneurysm size [58]. In this ap-

plication we treat aneurysm size S as a continuous exposure, which implies that we can

obtain a finite variance only by using the stabilized weights. The estimated weights create a

pseudo-population that effectively contains swi copies of patient i. Thus the final estimated

MSM represents the relationship between exposure and outcome in a notional population

from which the subjects represent a probability-weighted sample.

3.2.3. A fractional polynomial model for post-TEVAR survival

We describe the effect of aneurysm size S on post-TEVAR survival T by the marginal

structural Cox proportional hazard model defined in (3.1). Particularly, we specify the

smoothing function Φ(s; β) in (3.1) with fractional polynomials [55]. In a model that includes

m powers of s, p1 ≤ ... ≤ pm, the fractional polynomial function [55] is defined as

ΦFP(s; β) =
m∑
j=0

βjHj(s) (3.4)

where H0(s) = 1, p0 = 0 and

Hj(s) =


s(pj) if pj ̸= pj−1

Hj−1(s) ln s if pj = pj−1.

(3.5)

One typically restricts pj to lie in the set {−2,−1,−0.5, 0, 0.5, 1, 2, 3}. The simplest fractional

polynomial is the first-degree (FP1), which includes only one term. The power p = 1 refers

to H(s) = s; all others are nonlinear functions, with p = 0 referring to the natural logarithm
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ln s. A second-degree fractional polynomial (FP2) contains two terms, with equal or unequal

power transformation.

3.2.4. A restricted cubic spline model for post-TEVAR survival

Another common smoothing tool to model nonlinearity is the restricted cubic spline [52],

which incorporates cubic spline functions with tails constrained to be linear. Instead of

fractional polynomials, we define Φ(s; β) in (3.1) with restricted cubic splines. Suppose

there are Q fixed knots, k1 < k2 < k3 < ... < kQ−1 < kQ, and k1 and kQ are two boundary

knots. The restricted cubic spline function is defined as

ΦRCS(s; β) = β00 + β0s+

Q−2∑
j=1

βjvj(s), (3.6)

where vj(.) is the jth basis function defined as

vj(s) = (s−kj)3+−
(s− kQ−1)

3
+(kQ − kj)

kQ − kQ−1

+
(s− kQ)

3
+(kQ−1 − kj)

kQ − kQ−1

, j = 1, ..., Q−2, (3.7)

with (u)+ = max(0, u) and β as the coefficient vector for the spline terms. In this analysis,

we fit different models by specifying 3, 4, or 5 fixed knots at different centiles of aneurysm

size (Table 2.3).

3.2.5. Estimation of optimal TAA size for TEVAR

3.2.5.1. Generalized propensity scores

To estimate the marginal effect of aneurysm size on post-TEVAR mortality using a

marginal structural model [58] defined in (3.1), we first estimated a propensity score model

that predicts aneurysm size at operation from the available covariates. We fit a linear
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regression model as

S = γX + ϵ

where the aneurysm size S is a continuous exposure, X is the vector of potential confounders,

and ϵ ∼ N(0, σ2
1). The propensity score for subject i is estimated as

b̂(si, xi) =
1√
2πσ̂2

1

exp

(
− 1

2σ̂2
1

(si − ŝi)
2

)
,

where σ̂2
1 is the estimated variance obtained from the regression model, and ŝi = γ̂xi. Thus,

the resulting estimated unstabilized weight for subject i is

ŵi =
1

b̂(si, xi)
. (3.8)

Next we compute stabilized weights (3.3) from the estimated propensity scores [58].

Because the exposure — aneurysm size at operation — is effectively continuous, we calculate

the stabilized weight as a ratio of density functions. We estimate the numerator in (3.3) by

fitting a model with only intercept:

S = γ0 + ϵ,

where ϵ ∼ N(0, σ2
2). The numerator, a(si) in (3.3) is estimated as

â(si) =
1√
2πσ̂2

2

exp

(
− 1

2σ̂2
2

(si − γ̂0)
2

)
,

with σ̂2
2 and γ̂0 are the variance and mean aneurysm size in the sample. Then the estimated

stabilized weight for subject i as

ŝwi =
â(si)

b̂(si, xi)
. (3.9)
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3.2.5.2. MSM for aneurysm size

We modeled the nonlinear effect of aneurysm size using fractional polynomials and

restricted cubic splines. We estimated the fractional polynomial models with R package mfp

[62], which uses a backfitting algorithm to search for the best transformation of continuous

variables from the set of powers. At a pre-specified significance level (we used α = 0.05), the

algorithm uses the closed testing selection procedure to maintain the Type I error rate [63].

In our case, the algorithm tests for non-linearity by comparing the best-fitting FP2 against a

straight-line model. It then tests the best-fitting FP2 against the best-fitting FP1 to identify

a final best-fitting model. Because mfp does not accommodate weights, we estimated the

FP function using a pseudo-dataset that included copies of each observation in proportion

to its stabilized weight.

In estimating spline models, we used function coxph in R package coxphw and rcs in

rms, selecting the model that minimizes the Akaike Information Criterion (AIC). We ran

this analysis separately for the full sample and the subgroups.

From each final model, either using FP or restricted cubic splines, we identified the

optimal aneurysm size by plotting the estimated log hazard against size and finding its

minimum. We then computed bootstrap 95% quantile confidence intervals for the optimal

aneurysm size with 2,000 random re-samples.

We executed all computations in R (R Foundation for Statistical Computing; Vienna,

Austria).

3.3. Results

3.3.1. Patient characteristics

Table 3.1 shows that roughly half of the sample underwent elective surgery, and about

2/3 had no symptoms at presentation. The sample is 70% white and includes slightly more
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males than females. Across all groups, the proportion of smokers is 27%; 36% have COPD;

21% have CAD; and 18% are diabetic. The covariates are reasonably well balanced between

the overall sample and the subgroups.

3.3.2. Application to the TEVAR data

For each sample, we first estimated the stabilized weight in (3.3) for TEVAR aneurysm

size. Specifically, we estimated the numerator in (3.3) by computing the marginal density of

selection of the observed aneurysm size, and the denominator by the conditional density of

the observed aneurysm size given age at surgery, sex, race, smoking status, COPD, diabetes,

and CAD. Figure 3.1 plots the distribution of stabilized weights by aneurysm size for patients

in each sample.

Table 2.1 presents fit statistics from various estimated FP models. The mfp algorithm

conducts test for non-linearity (FP against a straight line) and simplification (FP2 vs FP1)

to select the best fitting model. Table 3.2 displays the best-fitting univariate FP models for

aneurysm size in each sample. In the unweighted version, we estimated the Cox regression

with equal weights. In the weighted version, we estimated the same model using the stabilized

weights in Equation (3.3). In the full-sample and elective-only groups, there was little

difference between the unweighted and weighted estimates, with power terms of p = 1 and

p = 2, respectively. In the elective/asymptomatic group, the best-fitting model is FP1 with

power p = 3 for the unweighted sample, and FP2 with two powers (3, 3) for the weighted

model.

Table 2.3 shows AIC values for restricted cubic spline models for aneurysm size in each

sample. We tested different combinations of knots at various locations based on the centiles

of aneurysm size in the samples. For the full sample, we selected the final model with knots

at the 10, 30, 40 centiles, which has the lowest AIC. Using same criteria, we selected the

model with knots at the 5, 50, 95 centiles of aneurysm size for the elective-TEVAR subgroup.
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Table 3.1: Baseline variables in the TEVAR registry data

All Elective Elective/Asymptomatic

Variable Value (n = 2240) (n = 1802) (n = 1472)

Discrete: n (%)

Sex Male 1213 (54.2) 992 (55.0) 830 (56.4)

Female 1027 (45.8) 810 (45.0) 642 (43.6)

Race Non-Hispanic White 1585 (70.8) 1296 (71.9) 1093 (74.3)

Non-Hispanic Black 396 (17.7) 305 (16.9) 223 (15.1)

Hispanic 106 (4.7) 78 (4.3) 58 (3.9)

Other 153 (6.8) 123 (6.8) 98 (6.7)

Current smoking Yes 607 (27.1) 476 (26.4) 369 (25.1)

COPD Yes 815 (36.4) 681 (37.8) 559 (38.0)

CAD Yes 470 (21.0) 377 (20.9) 291 (17.8)

Diabetes Yes 394 (17.6) 308 (17.1) 254 (17.3)

Elective surgery Yes 1802 (80.4) — —

Presentation Asymptomatic 1513 (67.5) — —

Symptomatic 567 (25.3) — —

Ruptured 160 (7.1) — —

Continuous: mean (SD)

Age at surgery 72.0 (10.7) 71.8 (10.5) 72.2 (9.8)

Max pre-op TAA diameter (mm) 59.6 (13.3) 58.7 (12.0) 58.5 (11.1)
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Figure 3.1: Distribution of stabilized weights for aneurysm size at operation in each
sample, estimated from Equation (3.9). Most weights are near 1 in all samples.

For the elective/asymptomatic subgroup, we selected the model with knots at the 5, 50, 95

centiles. Though its AIC value is not the lowest, it has fewer parameters than the model

that gives the lowest AIC.

Figure 3.2 shows the estimated log mortality hazard in each group, estimated from the

marginal structural models with fractional polynomials (FP) and restricted cubic splines

(RCS) in aneurysm size. For comparison purposes, we scaled the log relative hazards to

have value 0 at the minimum. All curves show a similar trend of increasing hazard as
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Table 3.2: Estimated fractional polynomials in the marginal structural Cox model

Sample Model Power (p) Coefficient SE

All (n=2240) Unweighted p1 = 1 0.019 0.0034

Weighted p1 = 1 0.019 0.0030

Elective (n=1802) Unweighted p1 = 2 1.5 ×10−4 2.7× 10−5

Weighted p1 = 2 1.4 ×10−4 2.1× 10−5

Elective/Asymptomatic (n=1472) Unweighted p1 = 3 1.7 ×10−6 3.8× 10−7

Weighted p1 = 3 −2.5× 10−5 8.1× 10−6

p2 = 3 5.7 ×10−6 1.7× 10−6

aneurysm size increases. RCS curves, however, show more upward concavity at the specified

knots than FP curves. For the full sample, the chosen hazard model is the first-degree FP

with power p = 1, giving a linear increase in the hazard with aneurysm size. Meanwhile,

the RCS curve shows a minimum hazard at 52 mm, with 95% CI 30–53. In the elective

sample, the hazard is concave upward in the FP model, while the RCS curve shows a dip in

the 50–65 mm range. We identified the optimal aneurysm size to be approximately 55 mm,

with bootstrap 95% CI (30–59). Similarly, in the E+A subgroup, the FP and RCS curves

both show dips near 60mm. The estimated optimal TAA size in the FP model is 60 (95%

CI: 30–69), and in the RCS model it is 57 (95% CI: 50–61).

3.4. Discussion

We have estimated marginal structural models to identify the causal effect of aneurysm

size on the post-surgery survival outcome for patients with TAA who underwent TEVAR.

First, we estimated a propensity score model predicting aneurysm size at operation from

a panel of available covariates. We then estimated a Cox model predicting survival from

aneurysm size at operation, using weights calculated from the propensity score analysis.

The survival model estimated in this way has the interpretation of describing the average

survival hazard as a function of aneurysm size in the population of interest, and therefore

is a basis for causal inferences. Best-fitting models reflected non-linearity in the effect of
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Table 3.3: Optimal TAA size in mm (95% CI) for TEVAR surgery

Model All Elective Elective/Asymptomatic

(n = 2240) (n = 1802) (n = 1472)

Fractional polynomial 30 (30–49) 30 (30–58) 60 (30–69)

Restricted cubic spline 52 (30–53) 55 (30–59) 57 (50–61)

aneurysm size on mortality hazard. Our findings largely support medical guidelines that

recommend conducting TEVAR when the aneurysm is slightly smaller than 60mm [50,51].

An alternative way to model aneurysm size would be to categorize it into broad ranges.

Although this would simplify modeling to some extent, it introduces other problems: The

need to choose the number and bounds of the categories, and some potential loss of efficiency

compared to retaining size as continuous [64]. When analyzing the continuous aneurysm size

variable, it is advisable to use a flexible functional form. Fractional polynomials are flexible

and straightforward to apply, and avoid the need for arbitrary selection of knots [55, 65].

In our analysis, we limited the number of FP regression terms to two, as recommended by

Royston & Altman (1994), to simplify model selection. We note that in Figure 3.2, the FP

models are generally smoother than restricted cubic spline curves estimated from the same

data. With RCS, it appears that there is a substantial chance of overfitting, in the sense

that the estimated model prominently reflects artifacts in the data.

The validity of our results depends on the five assumptions indicated above. That the

models “fit” the data is plausible thanks to our use of flexible curve-fitting approaches.

SUTVA is also plausible, because each patient is selected for surgery based on the size of his

own aneurysm only and not the sizes of others’ aneurysms. Positivity also seems plausible, as

— in principle, at least — operation is possible at any aneurysm size. The exchangeability

assumption, which posits that we have all measured confounding covariates and modeled

them properly, is more speculative, as it would be in any analysis of an observational study.
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Deviation from correctly specifying model for continuous exposure can result in extrement

weights and biased causal inference [66]. Such assumptions are not testable from the data,

but can be examined using sensitivity analysis [43, 67]. For instance, we specified a stan-

dard approach based on normal distribution to construct the inverse propensity scores for

aneurysm size, assuming constant variance for the exposure. One can explore other dis-

tributional forms for the exposure to examine for heteroscedasticity or outliers that could

potential lead to extreme weights [68].
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Appendix A

APPENDIX of CHAPTER 1

A.1. Figures
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Figure 1.1: Overall relative survival for TEVAR patients at age t, given TEVAR was
performed at age z prior to age t. Model M1 was used in the main analysis, adjusting for
sex and race and their interaction. Model M2 to M6 adjusted for additional baseline clinical
covariates: aneurysm size, diabetes, smoking status, COPD, and CAD (see Table 1.4).

A.2. Population hazard adjustment

A.2.1. Diabetes

Denote h0k(t) to be the population mortality hazard at age t from national life tables,

stratified on a subset of demographic covariates, k(x), such as race and sex. Suppose this
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population hazard can be further decomposed based on other clinical characteristics. Con-

sidering diabetes (DM), for example, we can express the total population hazard as the

sum of hazards at age t of diabetics, denoted as h0k(t|DM), and non-diabetics, denoted as

h0k(t|DMc),

h0k(t) = h0k(t|DM)Pr(DM) + h0k(t|DMc)Pr(DMc)

= HRDM,kh0k(t|DMc)Pr(DM) (1.1)

+ h0k(t|DMc)(1− Pr(DM)).

where

� Pr(DM) and Pr(DMc) are the age- and sex-adjusted prevalences of diabetes and non-

diabetes, respectively, stratified by race (Table 1.1), calculated using multiple logistic

regression [69]; and

� HRDM,k is the mortality hazard ratio for diabetes in stratum k (here, age, race, and

sex; see Table 1.2). We use estimated hazard ratios obtained from Cox proportional

hazard models [70].

Table 1.1: A subset of crude and adjusted prevalence of total diabetes in the US, NHANES
2011-2016 [69]

Race/Ethnicity Crude prevalence (% (95% CI)) Age-sex-adjusted prevalence (% (95% CI))

Non-Hispanic white 13.3 (12.1, 14.6) 12.1 (11.0, 13.4)

Non-Hispanic black 18.3 (16.6, 19.9) 20.4 (18.8, 22.1)

. . .

. . .
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Thus, the adjusted population hazard at age t for non-diabetics follows as

h0k(t|DMc) =
h0k(t)

HRDM,kPr(DM) + (1− Pr(DM))
. (1.2)

For example, we estimate the adjusted population hazard at age 40 for a non-Hispanic white

male non-diabetic as

0.0024

(2.886)(0.204) + (1− 0.204)
≈ 0.0017,

which is 30% lower than the one from national life tables with the same age, sex, and race

(h0k(40) = 0.0024). The adjusted population hazard for a diabetic with the same age, sex,

and race is calculated by multiplying that of a non-diabetic by a factor HRDM,k, resulting in

(0.0017)(2.886) ≈ 0.0049, 100% higher than the unadjusted population hazard from the life

tables.

A.2.2. COPD

We have also recalculated the population hazard using COPD statistics. The age-

adjusted prevalences of COPD in men and women are 5.3 and 6.5 respectively, collected

from self-reported and physician diagnosed COPD cases; the paper also reported separately

the age-adjusted prevalence of COPD by race [71]. The hazard ratio for moderate COPD was

1.6, calculated from a multivariate Cox regression [72]. For example, the adjusted population

hazard at age 40 for a non-COPD male is

0.0024

(1.6)(0.053) + (1− 0.053)
≈ 0.0023,

and the adjusted population hazard for corresponding individual with COPD is (0.0023)(1.6) ≈

0.0037.
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Table 1.2: A subset of age-specific hazard ratios associated with diabetes, for age 30 and
above [70]

Age interval Non-Hispanic White Non-Hispanic Black

Men Women Men Women

30−34 3.549 3.9993 2.815 3.167

35−39 3.201 3.601 2.538 2.856

40−44 2.886 3.248 2.289 2.576

. . . . .

. . . . .

80−84 1.263 1.421 1.002 1.127

85 + 1.139 1.281 1.000 1.016
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Appendix B

APPENDIX of CHAPTER 3

B.1. Tables

Table 2.1: Evaluating the fit of estimated fractional polynomial functions in the marginal
structural Cox model

Unweighted Weighted
a

Sample Model Power (p1, p2) Deviance Power (p1, p2) Deviance

All (n = 2240) Linear 1,— 5329.17 1,— 5458.95

FP1 2,— 5329.10 2,— 5457.18

FP2 −1,−1 5322.76 −1,−0.5 5451.16

Elective (n = 1802) Linear 1,— 3398.01 1,— 3486.43

FP1 2,— 3394.27 2,— 3482.17

FP2 −1, 0 3389.44 −0.5, 0 3477.65

Elective/Asymptomatic (n = 1472) Linear 1,— 2586.09 1,— 2710.91

FP1 3,— 2578.89 3,— 2693.70

FP2 −2, 3 2574.26 3, 3 2683.32

Deviance = −2 times the maximized log-likelihood.
aAdjusted for sex, race, smoking status, COPD, CAD, and diabetes.
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Table 2.3: AIC values of restricted cubic spline models for post-TEVAR survival

Model Location of knots∗ All Elective Elective/Asymptomatic

(size centiles) (n = 2240) (n = 1802) (n = 1472)

1 5, 50, 95 5384.29 3413.04 2649.37

2 10, 50, 90 5383.99 3413.39 2650.89

3 20, 50, 80 5383.80 3413.96 2652.20

4 25, 50, 75 5383.71 3414.10 2652.34

5 30, 50, 70 5384.00 3414.20 2652.64

6 10, 30, 70 5382.35 3413.39 2653.76

7 10, 30, 50 5381.97 3413.34 2654.37

8 10, 30, 40 5381.80 3413.31 2654.74

9 30, 50, 70, 90 5385.13 3415.90 2649.66

10 10, 30, 70, 90 5383.66 3415.21 2651.28

11 5, 27.5, 50, 72.5, 95 5385.66 3415.02 2647.41
∗Percentiles of aneurysm sizes.

Bolded AIC values belong to the final selected model in each sample.
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Appendix C

Supplementary R codes

C.1. Chapter 1

C.1.1. Maximum likelihood estimators

We first created dataset dd, in which each subject has multiple rows, with each row
representing the data for every age from start of surgery until age at last follow-up. This
was done to incorporate the mortality hazard by age of general population from the national
life tables. The function fun.mod4bmaximizes the log-likelihood for the survival of TEVAR
patients and computes the maximum likelihood estimators for the vector of coefficients, θ,
corresponding to the regression terms in the hazard model (Equation 1.3 & 1.4). To obtain
the optimal MLEs, we iterate this function until the MLEs converge.

fun.mod4b <- function(b){

beta0 <- b[1]

beta1 <- b[2]

beta2 <- b[3]

beta3 <- b[4]

beta4 <- b[5]

beta5 <- b[6]

beta6 <- b[7]

beta7 <- b[8]

d1 <- subset(dd, dd$event==1 & dd$alive.age == floor(dd$surv.age))

d2 <- subset(dd, dd$event==1 & dd$alive.age < floor(dd$surv.age))

d3 <- subset(dd, dd$event==0 & dd$alive.age <= floor(dd$surv.age))

p1 <- exp(beta0 + beta1*d1$AGE + beta2*d1$V2 + beta3*d1$V3 +

beta4*d1$tminusz + beta5*d1$gender1 + beta6*d1$race1 +

beta7*d1$gender1*d1$race1)*d1$census.h0

↪→

↪→

p2 <- exp(beta0 + beta1*d2$AGE + beta2*d2$V2 + beta3*d2$V3 +

beta4*d2$tminusz + beta5*d2$gender1 + beta6*d2$race1 +

beta7*d2$gender1*d2$race1)*d2$census.h0

↪→

↪→
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p3 <- exp(beta0 + beta1*d3$AGE + beta2*d3$V2 + beta3*d3$V3 +

beta4*d3$tminusz + beta5*d3$gender1 + beta6*d3$race1 +

beta7*d3$gender1*d3$race1)*d3$census.h0

↪→

↪→

logl <- sum(log(p1/(1+p1))) + sum(log(1 - p2/(1+p2))) + sum(log(1 -

p3/(1+p3)))↪→

return(-logl)

}

### Iterations to find optimal MLEs

model <- fun.mod4b # ML function to estimate the maximum likelihood

kk <- 8

dd <- temp2

est.method="Nelder-Mead"

opt <- optim(rep(0.1,kk), model, hessian=T, method=est.method, control=ctr)

int.values <- opt$par

iterCount <- 0

repeat {

int.values <- opt$par

opt <- optim(int.values, model, hessian=T, method=est.method, control=ctr)

iterCount = iterCount + 1

print(iterCount)

print(round(opt$par,4))

print(opt$value)

if(sum(int.values - opt$par)==0) {

break

}

}

C.1.2. Relative survival

Function fun.RS.tt estimates the overall relative survival at age t, Ŝage
R (t|z, x) in Equa-

tion (1.10). Function fun.t.z computes Ŝyears
R (t|z, x), relative survival of a TEVAR patient

at age t given the operation occurred at age z (< t) (Equation 1.11).

### Overall relative survival at age t:

fun.RS.tt <- function(pop.data, tt) {

for (j in 1:length(tt)){

obs.data <- subset(TEVARdata1, AGE <= tt[j] & surv.age >=tt[j])

temp.h0.1 <- subset(pop.data, AGE <= (tt[j]-1))

for (i in 1:length(obs.data$AGE)) {
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# observed surv

rrace[i] <- obs.data$RACE[i]

ggender[i] <- obs.data$GENDER[i]

temp.h0 <- subset(temp.h0.1, RACE==rrace[i] & GENDER==ggender[i] & AGE

>= (obs.data$AGE[i]))↪→

zz <- temp.h0$AGE

h0 <- temp.h0$h0

race1 <- ifelse(temp.h0$RACE==5,1,0)

gender1 <- ifelse(temp.h0$GENDER==1,1,0)

exp.beta.m8 <- exp(bb[1] + bb[2]*(zz) + bb[3]*ifelse(zz-knot[1] > 0,

zz-knot[1], 0) + bb[4]*ifelse(zz-knot[2] > 0, zz-knot[2], 0) +

bb[5]*(tt[j]-zz) + bb[6]*gender1 + bb[7]*race1 +

bb[8]*gender1*race1)

↪→

↪→

↪→

haz.est.m8 <-

((h0/(1-h0))*(exp.beta.m8)/(1+(h0/(1-h0))*(exp.beta.m8)))↪→

obs.surv <- 1-haz.est.m8

obs.surv.t[i] <- prod(obs.surv)

# expected surv

exp.surv.t[i] <- prod(1-h0)

}

sum.obs.surv.t[j] <- sum(obs.surv.t)

sum.exp.surv.t[j] <- sum(exp.surv.t)

rs[j] <- sum.obs.surv.t[j]/sum.exp.surv.t[j]

}

tbl <- cbind(tt, sum.obs.surv.t, sum.exp.surv.t, rs)

return(tbl)

}

### Relative survival at age t given TEVAR at age z:

fun.t.z <- function(pop.data, aage, rrace, ggender) {

tbl.obs <- matrix(rep(NA, length(aage)*5), length(aage), 5)

tbl.exp <- matrix(rep(NA, length(aage)*5), length(aage), 5)

for (j in 1:length(aage)){

tt <- aage[j] + 1:5

for (i in 1:length(tt)) {

## observed surv

temp.h0 <- pop.data %>% filter(RACE==rrace & GENDER==ggender & AGE <=

tt[i]-1 & AGE >= aage[j])↪→

zz <- temp.h0$AGE

zz.star <- temp.h0$AGE - 70

h0 <- temp.h0$h0
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race1 <- ifelse(temp.h0$RACE==5,1,0)

gender1 <- ifelse(temp.h0$GENDER==1,1,0)

exp.beta.m8 <- exp(bb[1] + bb[2]*(zz) + bb[3]*ifelse(zz-knot[1] > 0,

zz-knot[1], 0) + bb[4]*ifelse(zz-knot[2] > 0, zz-knot[2], 0) +

bb[5]*(tt[i]-zz) + bb[6]*gender1 + bb[7]*race1 +

bb[8]*gender1*race1)

↪→

↪→

↪→

haz.est.m8 <-

((h0/(1-h0))*(exp.beta.m8)/(1+(h0/(1-h0))*(exp.beta.m8)))↪→

obs.surv <- 1-haz.est.m8

obs.surv.t[i] <- prod(obs.surv)

## expected surv

exp.surv.t[i] <- prod(1-h0)

}

tbl.obs[j,] <- obs.surv.t

tbl.exp[j,] <- exp.surv.t

}

colnames(tbl.obs) <- c("obs1", "obs2", "obs3", "obs4", "obs5")

colnames(tbl.exp) <- c("exp1", "exp2", "exp3", "exp4", "exp5")

rs1 <- tbl.obs[,1]/tbl.exp[,1]

rs2 <- tbl.obs[,2]/tbl.exp[,2]

rs3 <- tbl.obs[,3]/tbl.exp[,3]

rs4 <- tbl.obs[,4]/tbl.exp[,4]

rs5 <- tbl.obs[,5]/tbl.exp[,5]

final.tbl <- cbind(aage, rs1, rs2, rs3, rs4, rs5)

return(final.tbl)

}

C.2. Chapter 2

Similar to function fun.RS.tt, function fun.RS.tt.sen also estimates the overall relative
survival at age t for TEVAR patients. However, it is slightly different because now we
consider the hazard of the “potential patients” governed by δ, and incorporate parameter
governs the patient selection probability (ψ). The function below shows the mortality hazard
of untreated TEVAR patients in case (a) (Equation 2.6). One can move δ to appropriate
locations to represent the hazard models in other cases (b–d). When δ = 1 and ψ = 1, we
obtain the results from the main model in Chapter 1.

fun.RS.tt.sen <- function(pop.data, tt, delta, psi) {

for (j in 1:length(tt)) {

obs.data <- subset(TEVARdata1, AGE <= tt[j] & surv.age >= tt[j])

temp.h0.1 <- subset(pop.data, AGE <= (tt[j]-1))

for (i in 1:length(obs.data$AGE)) {
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# observed surv

rrace[i] <- obs.data$RACE[i]

ggender[i] <- obs.data$GENDER[i]

temp.h0 <- subset(temp.h0.1, RACE==rrace[i] & GENDER==ggender[i] & AGE

>= (obs.data$AGE[i]))↪→

zz <- temp.h0$AGE

h0 <- temp.h0$h0

race1 <- ifelse(temp.h0$RACE==5,1,0)

gender1 <- ifelse(temp.h0$GENDER==1,1,0)

exp.beta1 <- exp(bb[1] + bb[2]*(zz) + bb[3]*ifelse(zz-knot[1] > 0,

zz-knot[1], 0) + bb[4]*ifelse(zz-knot[2] > 0, zz-knot[2], 0) +

bb[5]*(tt[j]-zz) + bb[6]*gender1 + bb[7]*race1 +

bb[8]*gender1*race1)

↪→

↪→

↪→

exp.beta0 <- exp(bb[1] + delta*(bb[2]*(zz) + bb[3]*ifelse(zz-knot[1]

> 0, zz-knot[1], 0) + bb[4]*ifelse(zz-knot[2] > 0, zz-knot[2], 0)

+ bb[5]*(tt[j]-zz)+ bb[6]*gender1 + bb[7]*race1 +

bb[8]*gender1*race1))

↪→

↪→

↪→

haz1 <- ((h0/(1-h0))*(exp.beta1)/(1+(h0/(1-h0))*(exp.beta1)))

haz0 <- ((h0/(1-h0))*(exp.beta0)/(1+(h0/(1-h0))*(exp.beta0)))

p1 <- psi^-(zz-40)

p0 <- 1 - p1

haz.total <- haz1*p1 + haz0*p0

obs.surv <- 1-haz.total

obs.surv.t[i] <- prod(obs.surv)

# expected surv

exp.surv.t[i] <- prod(1-h0)

}

sum.obs.surv.t[j] <- sum(obs.surv.t)

sum.exp.surv.t[j] <- sum(exp.surv.t)

rs[j] <- sum.obs.surv.t[j]/sum.exp.surv.t[j]

}

tbl <- cbind(tt, sum.obs.surv.t, sum.exp.surv.t, rs)

return(tbl)

}
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C.3. Chapter 3

### Estimate stabilized weights for continuous exposure (aneurysm size)

wt.1 <- ipwpoint(exposure = PREOP_MAXAAADIA,

family = "gaussian",

numerator = ~ 1,

denominator = ~ AGE + I(gender_grp=="M") +

as.factor(race_grp) + as.factor(current_smoking) +

as.factor(COPD_1) + as.factor(DM) + as.factor(CAD),

data = temp)

↪→

↪→

↪→

### Create pseudo-population using estimated weights above

temp1 <- temp %>% dplyr::select(PRIMPROCID, DEAD, PROC_SURVIVALDAYS,

PREOP_MAXAAADIA, AGE, gender_grp, race_grp, current_smoking, COPD_1, DM,

CAD) %>% dplyr::mutate(wt = wt.1$ipw.weights, wt.r = round(wt))

↪→

↪→

temp2 <- temp1 %>% tidyr::uncount(wt.r)

### Run marginal structural Cox model with fractional polynomials

f <- mfp(Surv(PROC_SURVIVALDAYS, DEAD) ~ fp(PREOP_MAXAAADIA), family = cox,

method="breslow", alpha=0.05, select=1, data = temp2, verbose=T)↪→

### Run marginal structural Cox model with restricted cubic splines

cph.rcs <- coxph(Surv(PROC_SURVIVALDAYS, DEAD) ~ rcs(PREOP_MAXAAADIA,

quantile(PREOP_MAXAAADIA, c(0.1, 0.3, 0.4))), weights =

wt.1$ipw.weights, data=temp)

↪→

↪→
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