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As multiphysics simulations grow in complexity and application scientists desire more

accurate results, computational costs increase greatly. Time integrators typically cater to

the most restrictive physical processes of a given simulation, which can be unnecessarily

computationally expensive for the less restrictive physical processes. Multirate time in-

tegrators are a way to combat this increase in computational costs by efficiently solving

systems of ordinary differential equations that contain physical processes which evolve at

different rates by assigning different time step sizes to the different processes. Adaptivity

is a technique for further increasing efficiency in time integration by automatically growing

and shrinking the time step size to be as large as possible to achieve a solution accurate

to a prescribed tolerance value. Adaptivity requires a time step controller, an algorithm

by which the time step size is changed between steps, and benefits from an integrator with

an embedding, an efficient way of estimating the error arising from each step of the inte-

grator. In this thesis, we develop these required aspects for multirate infinitesimal time

integrators, a subclass of multirate time integrators which allow for great flexibility in the

treatment of the processes that evolve at the fastest rates. First, we derive the first adap-

tivity controllers designed specifically for multirate infinitesimal methods, and we discuss

aspects of their computational implementation. Then, we derive a new class of efficient,

v



flexible multirate infinitesimal time integrators which we name implicit-explicit multirate

infinitesimal stage-restart (IMEX-MRI-SR) methods. We derive conditions guaranteeing up

to fourth-order accuracy of IMEX-MRI-SR methods, explore their stability properties, pro-

vide example methods of orders two through four, and discuss their performance. Finally,

we derive new instances of the class of implicit-explicit multirate infinitesimal generalized-

structure additive Runge-Kutta methods, developed by Chinomona and Reynolds (2022),

with embeddings and explore their stability properties and performance.
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Chapter 1

Introduction

1.1. Multiphysics problems

A multiphyics initial-value problem (IVP), is an IVP which contains the coupling of var-

ious physical processes. Multiphysics problems appear in many areas of science as they are

used to model complex real-world phenomena. Areas of science that commonly model mul-

tiphysics behavior include aerospace engineering, climate modeling, cosmological modeling,

nuclear reactor design, and more. Multiphysics problems can prove to be quite compu-

tationally challenging and are a highly active area of research with some of the largest

supercomputers in the world are built with multiphysics applications in mind [27].

A canonical example of a system with multiple coupled physical processes is the com-

bustion of a jet of flammable gas, where the reaction of the gas, forming a flame, occurs

simultaneously with the general motion along the direction of travel and the dispersion of

the gas.

These problems are defined in terms of differential equations. A common partial dif-

ferential equation formulation of a multiphysics problem is the advection-diffusion-reaction

equation,

y′ = ∇ · (D∇y)−∇ · F (y) +R(y, t). (1.1)

y is a quantity of interest, such as the density of a fluid, which can vary in time and space.

The term ∇ · (D∇y) corresponds to the diffusion, or general spreading over space, of the

quantity. The term ∇ · F (y(t)) corresponds to the advection, or general motion through

space along a direction, of the quantity. The term R(y, t) corresponds with the interaction
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of the quantity with sources or sinks, often called the “reaction” term. The term y′ indicates

that the terms on the right-hand side of the equation describe the rate at which the quantity

changes over time. The quantity of interest y and right-hand side operators are often vector-

valued, or, when appropriate, matrix-valued, coupling values such as velocity, momentum,

energy, or others.

1.2. Multirate problems and methods

Multirate IVPs are a subclass of multiphysics IVPs in which the various physical processes

defining the problem evolve at different rates. For example, the turbulent mixing of a fluid

can evolve much more rapidly than the general motion of the fluid in the direction of travel.

Multirate time integrators, commonly referred to as multirate methods, are time integrators

designed to efficiently solve multirate IVPs by partitioning the right-hand side into various

operators and assigning a different step size to each. By assigning differing step sizes to the

various operators involved, the slower-evolving operators can be evaluated less frequently,

thereby saving computational cost.

1.2.1. Multirate problem formulation

An initial-value problem is defined as

y′(t) = f(t, y(t)), y(t0) = y0 (1.2)

where y can be vector-valued, and y0 is a known initial-condition value. A multirate problem

additively partitions the right-hand side function f into the different physical processes,

y′(t) =
n∑

ν=1

f {ν}(t, y(t)), y(t0) = y0. (1.3)

While a multirate problem can consist of arbitrarily many physical processes, they are

typically grouped into fast-changing and slow-changing processes, often called the fast dy-
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namics and slow dynamics, respectively.

y′(t) = f {F}(t, y(t)) + f {S}(t, y(t)), y(t0) = y0. (1.4)

In the example (1.1), the diffusion and advection commonly change much more slowly over

time than the reaction term so the problem might be partitioned as

f {S} = ∇ · (D∇y)−∇ · F (y), f {F} = R(y, t).

The slow dynamics might include stiff processes characterized by having large eigenvalues

(computed by taking the maximum absolute value of the Jacobian of the partition), requir-

ing smaller steps to be stable if the slow dynamics are treated explicitly. Instead of taking

smaller steps, the method could solve the slow dynamics implicitly. This requires increased

computational work per step but may allow for larger time steps. For additional flexibil-

ity and efficiency, the slow dynamics can be further partitioned into components handled

implicitly and explicitly. This is commonly referred to as an IMEX partitioning,

y′(t) = f {F}(t, y(t)) + f {I}(t, y(t)) + f {E}(t, y(t)), y(0) = y0, (1.5)

and leads to the benefit of simpler implicit solves in the time integration algorithm, stem-

ming from the implicit partition containing less information than the full slow partition. In

the above IMEX multirate partitioning (1.5), the implicit and explicit partitions are both

considered to be part of the slow dynamics. In the example (1.1), the diffusion term may be

both stiff and evolve on the slow timescale, so the problem might be partitioned as

f {I} = ∇ · (D∇y), f {E} = −∇ · F (y), f {F} = R(y, t).
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1.2.2. Multirate infinitesimal methods

Multirate infinitesimal (MRI) methods are a subclass of multirate methods which extend

the theory of Runge-Kutta methods and Additive Runge-Kutta (ARK) methods [3, 6, 23, 26].

Runge-Kutta methods are one-step multi-stage methods. That is, they compute a step of the

solution using only the most recent solution value to build up the next step in the solution

by computing several stages. Computing these stages involves taking linear combinations

of evaluations of the IVP’s right-hand side function. One step of an s-stage Runge-Kutta

method is computed as follows.

ki = f

(
tn + cih, yn + h

s∑
j=1

aijkj

)
, i = 1, ..., s, (1.6a)

yn+1 = yn + h
s∑

i=1

biki. (1.6b)

Here, yn is the solution value at the previous step, yn+1 is the computed solution value at

the next step, tn is the time at which the previous step was computed, and h is the size of

the time step. A is an s× s matrix and b and c are s-length vectors of coefficients defining

the specific method used.

Multirate infinitesimal methods are similarly one-step multi-stage methods. However,

multirate infinitesimal methods instead compute each stage by solving a sequence of modified

fast IVPs. One step of a typical s{S}-stage explicit multirate infinitesimal method is defined

as follows.

Let: Y
{S}
1 := yn (1.7a)

For: i = 2, ..., s{S} (1.7b)
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
Let: vi(θi,0) := Y

{S}
i−1

Solve: v′i(θ) = f {F} (θ, vi(θ)) + gi(θ), for θ ∈ [θi,0, θi,f ]

Let: Y
{S}
i := vi(θi,f ),

(1.7c)

Let: yn+1 := Y
{S}
s{S} . (1.7d)

The structure of the function gi(θ) is determined by the class of multirate infinitesimal

method used, and is typically constructed using linear combinations of f {S} from previous

stages.

The fast IVPs are solved with a time step of h = H/M where H is the time step size of

the overall multirate method and M is the multirate ratio of the problem, a factor indicating

how much faster the fast dynamics evolve than the slow dynamics. A higher value of M

indicates a high degree of separation between the fast and slow dynamics.

These methods are highly flexible, allowing usage of any time integration algorithm for

solving the fast IVPs. These methods are efficient in that they require far fewer evaluations

of f {S} than f {F}, where f {S} is often much more expensive to evaluate.

1.3. Temporal adaptivity

Basic usage of a numerical time integration algorithm is to select a fixed time step size

and evolve the solution step-by-step from the initial condition to some desired time. How-

ever, frequently the user of a numerical time integration algorithm has no preference on the

exact step size used, and would rather obtain a solution that is accurate to a prescribed

tolerance from the exact solution of the problem in as efficient a manner as possible. For

example, initial conditions may only be known to be accurate to two decimal places, so any

computational work performed in obtaining further accuracy in the IVP solution may be

considered wasted. In this case, the IVP can be solved with temporal adaptivity.
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Temporal adaptivity, the process of adjusting the time step size between steps of the

numerical integration algorithm, seeks to select the largest time step size at any point such

that the solution obtained over that step is accurate to a user-prescribed tolerance. Typically,

the change in time step size is informed by a short history of previous time step sizes and a

short history of estimated solution error values at those steps. This history usually includes

one to three time step sizes and one to three estimated error values. There are alternate

formulations of temporal adaptivity which are informed by the characteristics of the problem

and the spatial discretization [12], but we do not focus on those here.

Classical examples of time step controllers include the so-called “elementary” controller,

hn+1 = hn

(
tol

εn+1

) 1
p

, (1.8)

the I-controller [54],

hn+1 = hn

(
tol

εn+1

) k1
p

, (1.9)

and the PID-controller [23],

hn+1 = hn

(
tol

εn+1

) k1
p
(
tol

εn

)− k2
p
(
tol

εn−1

) k3
p

. (1.10)

Here, k1, k2, and k3 are free parameters, p is the order of accuracy of the method used, hn

is the previous time step size, hn+1 is the predicted next time step size, tol is the user-

prescribed tolerance value, and εn+1 is the estimated solution error from using time step size

hn to compute yn+1. This estimate of the solution error is efficiently computable if a given

method has an embedding, a means of providing a solution with a different order of accuracy

to the primary method with few (or zero) extra function evaluations.

The solution error estimate is a local error estimate, which assumes the previous time step

solution yn is exact. Thus, these time step controllers do not perfectly control the overall
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global error observed, often allowing error buildup over time. These buildup effects are

usually negligible and can be tuned to acceptable levels through the free parameters. Error

control techniques exist to control global error values, but these typically involve solving the

entire IVP several times, searching for a fixed time step size which provides a desired global

error value.

1.4. Aim of thesis

The aim of this work is to develop robust approaches for temporal adaptivity in MRI

methods. The first multirate time step controllers for MRI methods are introduced, which

take advantage of the algorithmic structure of the methods for increased efficiency. Ad-

ditionally, a new class of MRI methods are introduced, named implicit-explicit multirate

infinitesimal stage-restart (IMEX-MRI-SR), that improves upon the class of IMEX-MRI-

GARK methods. The algorithmic structure of IMEX-MRI-SR methods allows for far easier

creation of high quality, efficient methods with embeddings than existing multirate infinites-

imal methods. Finally, the first two IMEX-MRI-GARK methods with embeddings are intro-

duced to provide more options and a more thorough testing environment for the ecosystem

of efficient adaptivity-capable IMEX multirate infinitesimal methods.

1.5. Review of multirate infinitesimal methods

The earliest forms of multirate infinitesimal methods are operator splitting methods, such

as the first-order accurate Lie–Trotter splitting method [37] and the second-order accurate

Strang–Marchuk splitting method [36, 58].

One step of the Lie–Trotter splitting method applied to an IVP of the form (1.4) may be

computed as follows.

Let: y
(1)
n+1 = yn +Hf {S}(tn, yn), (1.11a)
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
Let: v(0) = y

(1)
n+1,

Solve: v′(θ) = f {F}(tn + θ, v), for θ ∈ [0, H],

(1.11b)

Let: yn+1 = v(H). (1.11c)

This corresponds to one step with the Forward Euler method to evolve the slow dynamics,

followed by a fast IVP solve to evolve the fast dynamics. The Lie–Trotter method can be

extended to solve IVPs of the form (1.5). This is merely one form of a Lie–Trotter splitting

method. In general, Lie–Trotter methods focus on applying one operator at a time.

One step of the Strang–Marchuk splitting method applied to an IVP of the form (1.4)

may be computed as follows.

Let: y
(1)
n+1 = yn +

H
4
f {S} (tn, yn) (1.12a)

+ H
4
f {S} (tn + H

2
, yn +

H
2
f {S} (tn, yn)

)
, (1.12b)


Let: v(0) = y

(1)
n+1,

Solve: v′(θ) = f {F} (tn + θ, v) , for θ ∈ [0, H],

(1.12c)

Let: y
(2)
n+1 = v(H), (1.12d)

Let: yn+1 = y
(2)
n+1 +

H
4
f {S}

(
tn +

H
2
, y

(2)
n+1

)
(1.12e)

+ H
4
f {S}

(
tn+1, y

(2)
n+1 +

H
2
f {S}

(
tn +

H
2
, y

(2)
n+1

))
.

This corresponds to a half-step of the explicit Heun method to evolve the slow dynamics,

followed by a fast IVP solve to evolve the fast dynamics, and finally another half step with

the explicit Heun method to finish evolving the slow dynamics. The Strang–Marchuk method

can also be extended to solve IVPs of the form (1.5). Like with Lie–Trotter methods, this is
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merely one form of a Strang–Marchuk method. In general, Strang–Marchuk methods focus

on applying half steps with any second order method to f {S}.

These operator splitting methods have some flexibility in terms of the order in which the

different dynamics are evolved but they are limiting in their low orders of accuracy. Other

splitting methods which can be extended to IVPs of the form (1.5) exist [4, 57], though they,

along with any operator splitting method with higher than second-order accuracy, require

evolving the fast dynamics backwards in time which can lead to instability [11].

The seminal work introducing multirate infinitesimal methods outside of the operator

splitting context was proposed by Knoth and Wolke in 1998 [28]. This work proposed

methods which evolve the slow dynamics explicitly and the fast dynamics through a sequence

of fast IVPs. In 2009, Wensch et al. coined the term multirate infinitesimal step (MIS) [61]

to describe the methods and formalized the structure. The term infinitesimal implies the

assumption that the fast IVPs are solved exactly, or with infinitely small steps, to achieve

a solution, although in practice the fast IVPs are solved with another method as mentioned

in Section 1.2.2. Subsequent work by this group and others proposed several third-order

accurate MIS methods [50, 51, 62] and the first fourth-order accurate MIS method [52].

In 2015, Sandu and Günther proposed a new mathematical theory that generalized the

idea of additive Runge-Kutta methods [23] such that the solution was computed using mul-

tiple sets of stages, with each set having their own corresponding sets of coefficients [46].

These generalized-structure additive Runge–Kutta (GARK) methods proved instrumental

as a foundation for deriving new kinds of multirate infinitesimal methods. Notably, GARK

method formulation and order conditions will be used in this thesis, and are discussed in

Section 2.3.

Sandu used his GARK theory in 2019 to extend MIS methods, allowing arbitrary degree

of polynomials in time for the forcing functions gi(θ) in (1.7c) (previously these had been

restricted to constant in time for MIS methods) and allowing implicit slow stages for added

stability. This new class of methods was named multirate infinitesimal GARK (MRI-GARK)
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[45]. Roberts et al. extended MRI-GARK methods to provide increased coupling for further

stability, but with the drawback of more computationally expensive solves, with their MRI-

GARK step predictor-corrector (MRI-GARK-SPC) methods [41]. In 2022, Chinomona and

Reynolds proposed an extension to MRI-GARK, IMEX-MRI-GARK [5], which allowed for

IMEX partitioning of the slow dynamics which which increases flexibility of usage and reduces

cost compared to methods that treat the slow dynamics fully implicitly. IMEX-MRI-GARK

and by reduction, MRI-GARK, method formulation, order conditions, and stability are

discussed in Section 2.4.

Luan et al. proposed a new class of multirate infinitesimal methods as an extension

to exponential Runge-Kutta (ExpRK) methods [21, 30, 33] called multirate exponential

Runge-Kutta (MERK) [32]. The derivation of these methods took a different approach than

MRI-GARK methods, in that they used ExpRK theory rather than GARK theory to build

the methods. While this dramatically simplified construction of MERK methods due to

their vastly reduced number of order conditions, MERK methods inherited the restrictions

of ExpERK methods, namely that the fast operator of (1.4) must be linear. Luan et al. then

proposed a similar new class of multirate infinitesimal methods called multirate exponential

Rosenbrock (MERB) methods [32], as an extension to exponential Rosenbrock (ExpRB)

methods [34, 35]. These methods inherited a similar but more lax requirement on the fast

dynamics, where the underlying problem may have a nonlinear fast operator but the method

acts on a form of the problem where the fast dynamics have been linearized. MERK method

formulation is discussed in Section 2.6.

While MERK and MERB methods were restricted to being applied to certain types of

problems, they could achieve higher order accuracy than any published method in the MRI-

GARK family due to their reliance on exponential method theory. Luan et al. introduced a

fifth-order accurate MERK method, a fifth-order accurate MERB method, and a sixth-order

accurate MERB method, the first multirate infinitesimal methods higher than fourth-order

accurate published.
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Fish and Reynolds proposed a new class of methods that extend both IMEX-MRI-GARK

and MERKmethods to include IMEX treatment of the slow dynamics and allow for nonlinear

fast dynamics named IMEX-MRI-SR methods [10], included in Chapter 4 of this thesis.

This work allowed for far easier derivation of high quality instances of the class of methods

with efficiently computable embeddings. Additionally, this work provides the first theoretical

proof that despite Luan et al.’s assumptions about the linearity of the fast dynamics, MERK

methods can be applied to problems with nonlinear fast dynamics without order reduction.

1.6. Review of adaptive time step controllers

The creation of time step controllers takes inspiration from control theory, a field of

engineering dealing with automatic control and stabilization of machines and processes [7],

and starts with an analytical expression for the error from a given step of a time integration

algorithm,

εn+1 = ϕnh
p+1
n +O(hp+2). (1.13)

Here, εn+1 is the error in the solution achieved when evolving from time tn to time tn+hn and

p is the order of accuracy of the method used. ϕn = ϕ(tn) is a function which depends on time

but does not depend on h and is unknown in general as it incorporates high-order derivative

terms of the exact solution of the IVP and depends on the specific method being used. This

analytical error expression is then approximated by truncating to only the lowest-order term,

εn+1 ≈ ϕnh
p+1
n . (1.14)

Different controllers are derived by assuming different forms of the function ϕ.

The I-controller (1.9) is the most elementary time step controller. It has been discussed

in the context of IVPs at least as early as 1971 [13] and likely earlier. This controller assumes

ϕ is constant from one step to the next [54] and thus depends only on the most recent time
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step size and error value. This controller is able to react to sudden increases in stiffness of

the IVP but can often get stuck oscillating between very small steps which produce a small

error value, leading to a large increases in step size which produce a large error value, leading

back to very small steps.

Controllers with extended error histories attempt to fix the issue of rapid oscillations by

smoothing out the change in step size, using values of the step size or error from further in

the past to inform the new step size. Such controllers include the PI-controller [17],

hn+1 = hn

(
tol

εn+1

) k1
p
(
tol

εn

)− k2
p

, (1.15)

and the PID-controller (1.10) which depend on the previous time step value and two or

three previous error values, respectively. These controllers tend to perform far better than

the basic I-controller [54].

Histories of time step controllers can include any number of previous time step sizes and

error values, and can take on a wide range of structures [54, 55, 56, 15, 16].

One controller is of particular interest for its thorough derivation from principals of

control theory. This is the controller of Gustafsson [16],

hn+1 = hn
hn

hn−1

(
tol

εn+1

) k1
p
(

εn
εn+1

) k2
p

. (1.16)

This controller has a further smoothing factor of hn/hn−1 which dampens the potential

growth in step size if the previous step size was smaller than the one before. The tech-

niques used in the derivation of this controller were used in the development of the multirate

infinitesimal controllers developed in this thesis.

The first and, before the work comprising this thesis, only multirate time step controllers

was proposed by Sarshar et al. [47]. These controllers were designed for multirate GARK

(MRGARK) methods [14, 39], a subclass of GARK methods which, should be noted, are not

infinitesimal methods. Sarshar et al. proposed two types of controllers with different goals,
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one to ensure that the error coming from the fast and slow dynamics remains approximately

equal, and one to yield the lower computational costs. These controllers require three dif-

ferent embeddings to compute three separate error estimates εn+1, ε
{F}
n+1, and ε

{S}
n+1. These

represent the overall error estimate and the estimates of errors coming specifically from the

evolution of the fast and slow dynamics, respectively. Their first “balancing error” controller

takes a fairly standard form as seen above,

Hn+1 = Hn

(
tol

εn+1

) 1
p

, (1.17)

Mn+1 = Mn

(
ε
{F}
n+1

ε
{S}
n+1

) 1
q

. (1.18)

Here, p is the order of accuracy of the method, and q = min(p, p̂) where p̂ is the order of

accuracy of the embeddings. The H update function is equal to the I-controller with the free

parameter k1 = 1 and the M update function has a similarly short history. Their second

“efficiency optimization” controller updates H and M to be the results of an optimization

problem which simplifies to

Mn+1 = argmin
Mn+1

t{S} +Mn+1t
{F}

Hn

(
ε
{S}
n+1 + ε

{F}
n+1

M q
n

M q
n+1

) 1
q+1

, (1.19)

Hn+1 = Hn

(
ε
{S}
n+1 + ε

{F}
n+1

M q
n

M q
n+1

)− 1
q+1

, (1.20)

which is structured quite differently than previous controllers. Here t{S} and t{F} are the

computational costs of evolving the slow and fast stages, respectively.

These multirate controllers are less suitable for multirate infinitesimal methods. Comput-

ing the four solutions necessary for three error estimates can be computationally expensive

because infinitesimal methods use the last stage computed as the step solution, which might

involve an implicit solve or fast IVP solve, and thus do not have as cheaply computable
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embeddings as MRGARK methods. Additionally, the difference between overall error and

slow error is not clear, as multirate infinitesimal methods consider the last “slow stage” to

be the step solution.

Fish and Reynolds developed the first family of controllers designed for multirate in-

finitesimal methods, included in this thesis. The derivation of these controllers considers

the infinitesimal structure and includes discussions on efficiently computing error estimates.

One such controller is the so-called “Constant-Constant” controller,

Hn+1 = Hn

(
tol

ε
{S}
n+1

)k1/P

, (1.21)

Mn+1 = Mn

(
tol

ε
{S}
n+1

)(p+1)k1/(Pp)(
tol

ε
{F}
n+1

)−k2/p

, (1.22)

where P is the order of accuracy of the multirate infinitesimal method, and p is the order of

accuracy of the method used to solve the fast IVPs. Here, again, we see an I-controller like

structure and history. Fish and Reynolds also introduced controllers inspired by the classical

PI-controller (1.15), PID-controller (1.10), and Gustaffson’s controller (1.16).

1.7. Thesis outline and summary of contributions

This dissertation consists of five chapters. These chapters are: introduction (Chapter 1,

background theory (Chapter 2), new results (Chapters 3-4), and conclusion (Chapter 6).

Chapter 1 discusses the state of multirate infinitesimal method literature and the moti-

vation to develop previously untouched aspects of the topic.

Chapter 2 lays out background theory which the work in this thesis will build upon.

This includes a discussion on the motivation behind time step controllers and methods

with embeddings, time step controller derivation theory, GARK theory, IMEX-MRI-GARK

theory, derivation of new IMEX-MRI-GARK methods, and a description of MERK methods.
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Chapter 3 develops the first time step controllers designed for multirate methods. This

work is inspired by Gustafsson’s control theoretic derivations of his controller (1.16) and

introduces a family of new time step controllers which simultaneously update the time step

H and the multirate ratio M , discusses computational implementation aspects, and tests

the controllers against classical controllers with a variety of performance measurements on

a suite of test problems using a range of MRI-GARK methods with embeddings. This work

has been accepted for publication.

Chapter 4 derives a new class of implicit-explicit multirate infinitesimal methods named

implicit-explicit mulriate infinitesimal stage-restart (IMEX-MRI-SR) methods, derives con-

ditions guaranteeing orders of accuracy up to four, analyzes linear stability, provides exam-

ple methods with embeddings, and performs numerical experiments, comparing the example

methods against existing IMEX-MRI-GARK methods.

Chapter5 proposes the first IMEX-MRI-GARK methods with embeddings, one second-

order method and one third-order method, details their construction, explores their stability

properties, and evaluates their performance against existing IMEX multirate infinitesimal

methods.

Chapter 6 summarizes the contributions and discusses potential future work.

Background theory Sections 2.1 and 2.2 are useful in understanding Chapter 3. Back-

ground theory Sections 2.3, 2.4, 2.5, 2.6, and optionally 2.1 are useful in understanding

Chapter 4.
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Chapter 2

Background Theory

In this chapter, we lay out the groundwork theory of some of the inspirational topics

behind the work in this thesis. First, the motivation behind using time step controllers

and methods with embeddings. Next, we discuss we discuss control-theoretic derivations

of time-step controllers for classical “single-rate” Runge–Kutta methods. Then, we lay the

groundwork GARK theory with which many multirate infinitesimal methods rely upon,

including the method introduced in Chapter 4. Then, we discuss the theory of IMEX-MRI-

GARK methods, their order conditions, and linear stability. We additionally discuss the

design and derivation of efficient IMEX-MRI-GARK methods with embeddings. Finally, we

describe MERK methods, their differences from the wider family of MRI-GARK methods,

and their limitations.

2.1. Time step controller and method embedding motivation

A brute force method of choosing a step size to achieve a given error from solving an

IVP numerically is to solve the IVP over the entire desired time interval several times with

different choices of fixed step sizes. These solutions, when compared to a known reference

solution (generated from an analytical formula or another numerical solution which used

much smaller time steps), provide a measurement of the global error of the numerical solution.

The step size which provided the desired global error is then chosen for future solves. While

this error error measurement is desirable, solving the entire IVP several times and generation

of the reference solution is very costly computationally.

A more efficient method of achieving a solution accurate to a given tolerance value is to

use a time step controller. A time step controller changes the time step size between steps of
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the time integration algorithm such that the local error, or an estimate of it, is approximately

equal to the given tolerance value. The local error differs from the global error in that it is

the error from a single step of the time integration algorithm, assuming no error occurred

before the step, and therefore does not consider any accumulation of error from one step to

the next. This leads to a less accurate control of the global error but is far less costly as

the IVP need only be solved once, and the IVP could require no more work than a single

fixed-step solve using embeddings, described below. Performance can additionally be tuned

by altering the values of the controller’s parameters.

Using a time step controller requires an estimate of the error between the exact solution

of the IVP the time integration method’s solution for a given step. This can be achieved

by taking the difference between two solutions computed with methods of different orders of

accuracy. In this setting, the solution with the higher order of accuracy is estimated to be

the exact solution to the IVP. Often the lower order of accuracy of the two solutions is used

as the value of p in the time step controllers.

This error estimate could be computed with two completely separate methods taking

separate steps, but this would require roughly twice the computational work to evolve the

solution a single step. The error estimate can be more cheaply computed through the use of

an embedding.

An embedding is an alternate set of coefficients which can be used to compute a solution

with an alternate order of accuracy for very little extra computational work once the primary

solution has been computed. For example, a Runge–Kutta method’s embedded solution,

ŷn+1, is computed with the alternate set of coefficients b̂i, i = 1, ..., s as follows:

ki = f

(
tn + cih, yn + h

s∑
j=1

aijkj

)
, i = 1, ..., s (2.1a)

yn+1 = yn + h

s∑
i=1

biki (2.1b)
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ŷn+1 = yn + h

s∑
i=1

b̂iki (2.1c)

yn+1 and ŷn+1 are solutions with different orders of accuracy. For example, they could be

third- and second-order accurate, respectively. Computing the stages ki, i = 1, ..., s comprises

the majority of the computational work which is usually measured in the number of times

the righthand side function f is evaluated, or the number of linear solves required if the

method is implicit. Once the stages are computed, computing yn+1 and ŷn+1 simply requires

taking different linear combinations of the stages.

Multirate infinitesimal methods are not guaranteed to have this final step of simply

combining the previously computed stages to form the solution as they use the last stage

as the solution for the step. To efficiently compute error estimates, multirate infinitesimal

methods use “last stage embeddings,” which, as the name suggests, use alternate coefficients

for the last stage to compute a solution with an alternate order of accuracy. Because of this,

embeddings are not as computationally cheap to compute as in Runge–Kutta methods, but

are still far cheaper to use than computing a step with two completely separate methods.

Section 2.5 contains a discussion on designing multirate infinitesimal methods (specifically

IMEX-MRI-GARK methods) to include cheaply computable embeddings.

2.2. Control theoretic derivation of time step controllers

In this section, we discuss control theoretic approaches to derive time step controllers.

The process starts with the analytical error approximation formula (1.14). Controllers are

developed by imposing approximations onto the leading error function ϕ(t). As mentioned

in Section 1.6, the I-controller (1.9) is formed by the approximation that ϕ(t) is constant,

that is, ϕ̂n = ϕn−1, where ϕ̂n is the approximated value of ϕn.

Time step controllers are only informed by the duration of their history–the elementary

and I-controllers are only informed by the previous time step and the PID-controller (1.10)

is only informed by the previous three time steps. The approximation of constant ϕ(t) is
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actually an approximation of piecewise constant ϕ(t). This is due to each approximation ϕ̂n

only depending on the single value ϕn−1, which can change from step to step because of the

approximate nature of the error estimate εn.

If we take the analytical error approximation formula (1.14) and evaluate it at the pre-

vious time step tn−1, we can solve for ϕn−1,

ϕn−1 = εnh
−p
n−1 (2.2)

We can then enforce the elementary controller’s approximation of ϕ̂n = ϕn−1 by substituting

(2.2) into ϕn in (1.14).

εn+1 = εnh
−p
n−1h

p
n (2.3)

If we want to set the value of hn such that εn+1 = tol given the previous error εn and the

previous time step hn−1, we can replace εn+1 with tol in (2.3) and solve for hn. This results

in the elementary time step controller (1.8) after shifting the indices up one.

It it common to take the log function of the analytical error approximation formula to

convert from a multiplicative formula with exponents to a simpler additive formula with

coefficients,

log(εn) ≈ log(ϕn) + p log(hn). (2.4)

It is easier to derive a time step update function in log-space and convert back to the expected

form at the end by taking the exponential of both sides.

The I-controller (1.9) approximates ϕ(t) as piecewise constant with an introduced cor-

rection term incorporating a corresponding free parameter k1,

log(ϕ̂n) = log(ϕ̂n−1) + k1(log(ϕn−1)− log(ϕ̂n−1)) (2.5)
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This approximation acknowledges that the previous step likely incorporated error in its own

approximation of ϕ(t). This correction term is called an “observer” [7, Chapters 11,13]

and includes information about the difference between the true value of ϕn−1, which is only

measurable after a step has been taken, and its approximation ϕ̂n−1. When k1 = 1, this

reduces to the elementary controller’s approximation of ϕ(t). While it may seem that k1 = 1

is the most natural, effective choice for the free parameter value, a lesser value is often more

effective at regulating the step size change in practice.

Introducing the shift parameter q, common in control theory [7, 54, 55, 56, 15] and defined

such that qa log(ϕ̂n) = log(ϕ̂n+a) for arbitrary temporal shift a, into (2.5),

log(ϕ̂n) = q−1 log(ϕ̂n) + k1(log(ϕn−1)− q−1 log(ϕ̂n)), (2.6a)

= (1− k1)q
−1 log(ϕ̂n) + k1 log(ϕn−1), (2.6b)

=
k1q

q + q0(1− k1)
log(ϕn−1), (2.6c)

leads to an alternative piecewise constant approximation formulation for ϕ(t) which includes

the observer correction term. The I-controller is then created by substituting (2.2) into

(2.6c), then (2.6c) into (1.14), setting εn+1 = tol as above, solving for hn, and shifting the

indices up one.

Gustafsson’s controller (1.16) similarly includes this observer correction term in the ap-

proximation of ϕ(t) but uses a piecewise linear approximation rather than piecewise constant

[16]. This approximation takes the following form, introducing a gradient correction to the

piecewise constant approximation.

log(ϕ̂n) = log(ϕ̂n−1) +∇ log(ϕ̂n−1) + k1(log(ϕn−1)− log(ϕ̂n−1)), (2.7a)

∇ log(ϕ̂n) = ∇ log(ϕ̂n−1) + k2(log(ϕn−1)− log(ϕ̂n−1)). (2.7b)
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Chapter 3 contains more detail on how this approximation is used to derive a controller.

2.3. Generalized-structure additive Runge–Kutta theory

In this section, we summarize the main theoretical results for generalized-structure addi-

tive Runge–Kutta (GARK) [46] methods upon which many multirate infinitesimal methods

rely. GARK methods can be derived to solve an IVP with arbitrarily many partitions (1.3).

A GARK method computes N sets of s stages. This value of N can be less than or equal to

the number of partitions n.

In the context of a multirate IVP, we compute N = 2 sets of stages–a set for the fast

dynamics and a set for the slow dynamics. For a two-partition multirate IVP (1.4), N is

equal to the number of partitions. For the three-partition multirate IVP (1.5), N is less than

the number of partitions.

We focus on the case of a GARK method with two sets of stages (fast and slow) applied to

the above three-partition problem. One step of this GARK method is computed as follows,

Y
{F}
i = yn +H

s{F}∑
j=1

a
{F,F}
i,j f {F}(Y

{F}
j ) +H

s{I}∑
j=1

a
{F,I}
i,j f {I}(Y

{S}
j ) +H

s{E}∑
j=1

a
{F,E}
i,j f {E}(Y

{S}
j ),

(2.8a)

Y
{S}
i = yn +H

s{F}∑
j=1

a
{S,F}
i,j f {F}(Y

{F}
j ) +H

s{I}∑
j=1

a
{S,I}
i,j f {I}(Y

{S}
j ) +H

s{E}∑
j=1

a
{S,E}
i,j f {E}(Y

{S}
j ),

(2.8b)

yn+1 = yn +H
s{F}∑
j=1

b
{F}
j f {F}(Y

{F}
j ) +H

s{I}∑
j=1

b
{I}
j f {I}(Y

{S}
j ) +H

s{E}∑
j=1

b
{E}
j f {E}(Y

{S}
j ).

(2.8c)

Note that this formulation is in autonomous form, with no explicit dependence on time t.

Any IVP with explicit dependence on t can be converted to autonomous form by appending
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t to the end of the solution and stage vectors, and 1 to the end of the right-hand side function

vector and replacing t in the functions with the corresponding new entry of the solution and

state vectors. Thus, this representation is valid for all IVPs.

These sets of coefficients A{σ,ν},b{σ}, σ ∈ {F, S}, ν ∈ {F, I, E} can be written in the

form of an extended Butcher tableau.

A{F,F} A{F,E} A{F,I}

A{S,F} A{S,E} A{S,I}

b{F},T b{E},T b{I},T

.

The matrices A{σ,ν} relate the set of stages Y {σ} to the partition f {ν}.

We note that, while this GARK method structure does not imply a multirate structure,

multirate infinitesimal methods can be represented with this structure. The benefit of ana-

lyzing a multirate infinitesimal method as if it were a GARK method is that order conditions

are inherited.

The GARK order conditions are derived from standard Runge–Kutta theory combined

with the N-tree theory of Araujo et al. [1]. A GARK method is called “internally consistent”

if the following conditions hold:

c{F} = c{F,F} = c{F,I} = c{F,E}, (2.9a)

c{S} = c{S,F} = c{S,I} = c{S,E}. (2.9b)

where c{σ,ν} = A{σ,ν}
1
{ν}. The following are the conditions guaranteeing up to fourth-

order accuracy for a GARK method with the structure described above, assuming internal
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consistency conditions hold, represented in matrix-vector form:

b{σ},T
1
{σ} = 1, (order 1) (2.10a)

b{σ},Tc{J(ν)} =
1

2
, (order 2) (2.10b)

b{σ},T (c{J(ν)} × c{J(µ)}) =
1

3
, (order 3) (2.10c)

b{σ},TA{J(σ),ν}c{J(ν)} =
1

3
, (order 3) (2.10d)

b{σ},T (c{J(ν)} × c{J(ν)} × c{J(µ)}) =
1

4
, (order 4) (2.10e)

(b{σ} × c{J(ν)})TA{J(ν),µ}c{J(µ)} =
1

8
, (order 4) (2.10f)

b{σ},TA{J(ν),µ}(c{J(µ)} × c{J(λ)}) =
1

12
, (order 4) (2.10g)

b{σ},TA{J(ν),µ}A{J(µ),λ}c{J(λ)} =
1

24
, (order 4) (2.10h)

for σ, ν, µ, λ ∈ {F, I, E}. Here, 1{σ} is an s{σ}-length vector of ones, a× b denotes element-

wise multiplication of vectors, and J is a function which maps function partitions to sets of

stages. In this case,

J(F ) = F, J(I) = J(E) = S

A GARK method must satisfy all conditions through the desired order of accuracy to achieve

that order.
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2.3.1. Additive Runge–Kutta Methods

If only a single set of stages is used across all partitions of an IVP with arbitrarily many

partitions (1.3), a GARK method reduces to an additive Runge–Kutta (ARK) method.

Yi = yn +H
n∑

ν=1

s∑
j=1

a
{ν}
i,j f

{ν}(Yj), (2.11a)

yn+1 = yn +H

n∑
ν=1

s∑
i=1

b
{ν}
i f {ν}(Yi). (2.11b)

This is again represented in autonomous form. An ARK method boils down to n separate

classical Runge–Kutta methods, (A{ν}, b{ν}, c{ν}) working together. More detail on ARK

methods can be found in [3, 6, 23, 26]. In particular, the work done by Kennedy and

Carpenter is quite thorough.

A main strength of ARK methods is their ability to form IMEX structures, where the

IVP is partitioned into a nonstiff partition, handled explicitly, and a stiff partition, handled

implicitly. This is by the nonstiff partition’s corresponding A matrix, A{E}, having a strictly

lower-triangular structure (thus, only using already-computed data) and the stiff partition’s

corresponding A matrix, A{I}, having a lower-triangular structure (forming the common

diagonally-implicit structure where each stage requires an implicit solve) or an arbitrary

structure (forming the uncommon and more expensive fully-implicit structure where all

stages must be solved implicitly simultaneously). This is useful in common multiphysics

problems, described in Chapter 1.

2.4. Implicit-explicit multirate infinitesimal GARK theory

Implicit-explicit multirate infinitesimal GARK (IMEX-MRI-GARK) methods [5], devel-

oped by Chinomona and Reynolds in 2022, are multirate infinitesimal methods which solve

a three-partition IVP (1.5). They are extensions to MRI-GARK methods [45], developed

by Sandu in 2019. If f {I} = 0, an IMEX-MRI-GARK method reduces to a fully explicit
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MRI-GARK method. If f {E} = 0, an IMEX-MRI-GARK method reduces to an implicit

MRI-GARK method. Thus, analyzing IMEX-MRI-GARK methods incorporates the analy-

sis of MRI-GARK methods.

2.4.1. Method definition

One step of an IMEX-MRI-GARK method is defined as follows,

Let: Y
{S}
1 := yn (2.12a)

For: i = 2, ..., s{S} (2.12b)



Let: v(0) := Y
{S}
i−1 , Ti−1 := tn + c

{S}
i−1H, ∆c

{S}
i := c

{S}
i − c

{S}
i−1

Solve: v′i(θ) = ∆c
{S}
i f {F}

(
Ti−1 +∆c

{S}
i θ, vi(θ)

)
+ gi(θ),

for θ ∈ [0, H]

where gi(θ) =
∑i

j=1 γi,j
(

θ
H

)
f
{I}
j +

∑i−1
j=1 ωi,j

(
θ
H

)
f
{E}
j

Let: Y
{S}
i := vi(H),

(2.12c)

Let: yn+1 := Y
{S}
s{S} . (2.12d)



Let: ṽ(0) := Y
{S}
s{S}−1

, Ts−1 := tn + c
{S}
s{S}−1

H, ∆c
{S}
s{S} := c

{S}
s{S} − c

{S}
s{S}−1

Solve: v′i(θ) = ∆c
{S}
i f {F}

(
Ts−1 +∆c

{S}
s{S}θ, ṽi(θ)

)
+ g̃s{S}(θ),

for θ ∈ [0, H]

where g̃s{S}(θ) =
∑s{S}

j=1 γ̃j
(

θ
H

)
f
{I}
j +

∑s{S}−1
j=1 ω̃j

(
θ
H

)
f
{E}
j

Let: ỹn+1 := ṽ(H).

(2.12e)

The step (2.12e) computes the embedding solution and is not required in fixed-step settings.
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An IMEX-MRI-GARK method is uniquely defined by the number of stages s{S}, abcissae

vector c{S}, nΓ matrices of coefficients {Γ{k}}nΓ−1
k=0 , and nΩ matrices of coefficients {Ω{k}}nΩ−1

k=0 .

The coefficient functions γi,j(τ) and ωi,j(τ) are given by

γi,j(τ) =

nΓ−1∑
k=0

γ
{k}
i,j τ k, (2.13a)

ωi,j(τ) =

nΩ−1∑
k=0

ω
{k}
i,j τ k. (2.13b)

The embedding coefficient functions γ̃(τ) and ω̃(τ) are defined similarly and the sets of

embedding coefficient vectors {γ̃{k}}nΓ−1
k=0 and {ω̃{k}}nΩ−1

k=0 serve to further uniquely define the

method.

For computational simplicity, either ∆c
{S}
i or γi,i may be nonzero for a given stage, but

not both. When ∆c
{S}
i = 0, the stage reduces to a simple ARK-like stage,

Y
{S}
i = Y

{S}
i−1 +H

i∑
j=1

γi,jf
{I}
j +H

i−1∑
j=1

ωi,jf
{E}
j (2.14)

where

γi,j =

ˆ 1

0

γi,j(τ)dτ =

nΓ−1∑
k=0

γ
{k}
i,j

k + 1
, (2.15a)

ωi,j =

ˆ 1

0

ωi,j(τ)dτ =

nΩ−1∑
k=0

ω
{k}
i,j

k + 1
. (2.15b)

This leads to a “solve-decoupled” structure in which each stage is computed via either a fast

IVP solve or an ARK-like stage which may require an implicit solve via Newton-Raphson

or some other root-finding method. If both ∆c
{S}
i = 0 and γi,i = 0, the stage is a simple

explicit ARK stage.
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The slow dynamics f {I} and f {E} are only evaluated once per stage and the resulting

values are used as coefficients for the polynomial-in-time forcing function gi(θ).

We note that θ in the fast IVPs is a sort of “stretched” time variable. Examining the fast

IVP we can see that, despite each fast IVP solving for θ ∈ [0, H], the “real” time interval

being solved over is only t ∈ [tn + ci−1H, tn + ciH]. Thus, each fast IVP starts where the

previous one finished. This minimizes the total fast integration to evolve over an interval

of size ∆ciH per stage for a total duration of H per step. This is in contrast to MERK

methods, discussed in Section 2.6, which typically integrate a total duration larger than H.

Because each stage integrates from tn + ci−1H to tn + ciH, the abcissae vector c{S} must

be non-decreasing to avoid stability issues.

2.4.2. Order conditions

Order conditions are derived by assuming the fast IVPs are solved with one step of a

Runge–Kutta method defined by A{F}, b{F}, c{F}. We note that without loss of generality, any

subcycled one-step method may be expressed as a Runge–Kutta method with a sufficiently

large number of stages, and thus this is a reasonable assumption. With this “fast method,”

one step of an IMEX-MRI-GARK method can be formulated as a single step of a GARK

method (2.8a). The GARK coefficients are identified as the following:

A{F,F} = diag(∆c{S})⊗ A{F} + L∆C{S} ⊗ 1
{F}b{F},T ∈ R(s{S}·s{F})×(s{S}·s{F}), (2.16a)

A{F,I} = LA{I} ⊗ 1
{F} +

nΓ−1∑
k=0

Γ{k} ⊗ (A{F}c{F}×k) ∈ R(s{S}·s{F})×s{S}
, (2.16b)

A{F,E} = LA{E} ⊗ 1
{F} +

nΓ−1∑
k=0

Ω{k} ⊗ (A{F}c{F}×k) ∈ R(s{S}·s{F})×s{S}
, (2.16c)

A{S,F} = ∆C{S} ⊗ b{F},T ∈ Rs{S}×(s{S}·s{F}), (2.16d)

A{S,I} = EΓ ∈ Rs{S}×s{S}
, (2.16e)
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A{S,E} = EΩ ∈ Rs{S}×s{S}
, (2.16f)

b{F} = ∆c{S} ⊗ b{F} ∈ Rs{S}·s{F}
, (2.16g)

b{I},T = 1
{S},TΓ ∈ Rs{S}

, (2.16h)

b{E},T = 1
{S},TΩ ∈ Rs{S}

, (2.16i)

where

∆c
{S}
i =


0 i = 0

c
{S}
i − c

{S}
i−1 i = 2, ..., s{S}

, E ∈ Rs{S}
,

∆C{S} =



∆c
{S}
1 0 · · · 0

∆c
{S}
1 ∆c

{S}
2 · · · 0

...
...

. . . 0

∆c
{S}
1 ∆c

{S}
2 · · · ∆c

{S}
s{S} ,


∈ Rs{S}×s{S}

,

Ei,j =


1 i ≥ j

0 else

, E ∈ Rs{S}×s{S}
, Li,j =


1 i = j + 1

0 else

, L ∈ Rs{S}×s{S}
,

A{I} = Γ =

nΓ−1∑
k=0

Γ{k}

k + 1
∈ Rs{S}×s{S}

, A{E} = Ω =

nΩ−1∑
k=0

Ω{k}

k + 1
∈ Rs{S}×s{S}

,

and ⊗ is the Kronecker product. We can insert these GARK coefficients into the GARK

order conditions to get simplified order conditions.
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An IMEX-MRI-GARK method reduces to its corresponding base ARK method, defined

by (A{I}, b{I}, A{E}, b{E}), where b{I} = b{I}, b{E} = b{E}, when ∆ci = 0 or if f {F} = 0. The

stage is solved as defined in (2.14).

When the base ARK method, defined by (A{I}, b{I}, A{E}, b{E}), where b{I} = b{I}, b{E} =

b{E}, is at least first order accurate, the first-order GARK conditions are automatically

satisfied.

When the base ARK method is at least second-order accurate and internal consistency

conditions are satisfied, the second-order GARK conditions are automatically satisfied. The

internal consistency conditions for an IMEX-MRI-GARK method are:

Γ{0}
1
s{S}

= Ω{0}
1
{S} = ∆c{S}, (2.17a)

Γ{k}
1
{S} = Ω{k}

1
{S} = 0{S}, k ≥ 1. (2.17b)

When the base ARK method is at least third-order accurate and the fast method is

order max(3, nΓ + 1, nΩ + 1) accurate, and the IMEX-MRI-GARK method satisfies internal

consistency conditions, there are two additional coupling conditions for third-order accuracy:

∆c{S},TA{I,ζ}c{S} =
1

6
, (2.18a)

∆c{S},TA{E,ζ}c{S} =
1

6
, (2.18b)

where

A{I,ζ} = LA{I} +

nΓ−1∑
k=0

ζkΓ
{k},

A{E,ζ} = LA{E} +

nΩ−1∑
k=0

ζkΩ
{k},
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ζk = b{F},TA{F}c{F}×k.

When the base ARK method is at least fourth-order accurate and the fast method is

order max(4, nΓ + 2, nΩ + 2) accurate, and the IMEX-MRI-GARK method satisfies inter-

nal consistency and third-order accuracy coupling conditions, there are sixteen additional

coupling conditions for fourth-order accuracy:

(
∆c{S} × Lc{S}

)T A{σ,ζ} +
(
∆c{S}×2

)T A{σ,β}c{S} =
1

8
, (2.19a)

∆c{S}A{σ,ξ}c{S}×2 =
1

12
, (2.19b)

(
∆c{S} × (Db{σ})

)T A{ν,ζ}c{S} =
1

24
, (2.19c)

(
∆c{S}×2

)T A{σ,ξ}c{S} +∆c{S},TL∆C{S}A{σ,ζ}c{S} =
1

24
, (2.19d)

∆c{S},TA{σ,ζ}A{ν}c{S} =
1

24
, (2.19e)

for σ, ν ∈ {I, E}, where

A{I,β} =
1

2
LA{I} +

nΓ−1∑
k=0

βkΓ
{k}, A{E,β} =

1

2
LA{E} +

nΩ−1∑
k=0

βkΩ
{k},

A{I,ξ} =
1

2
LA{I} +

nΓ−1∑
k=0

ξkΓ
{k}, A{E,ξ} =

1

2
LA{E} +

nΩ−1∑
k=0

ξkΩ
{k},

βk = (b{F} × c{F})TA{F}c{F}×k, ξk = b{F},TA{F}A{F}c{F}×k.

When using an existing ARK method as a base method when deriving a new IMEX-

MRI-GARK method, the above listed coupling conditions are all that must be enforced.

However, if simply computing the base method from the IMEX-MRI-GARK coefficients in
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the derivation of a new method, the base ARK method’s order conditions must also be

enforced.

2.4.3. Linear stability

Linear stability analysis centers on the long-term behavior of time integration algorithms

and the tendency for approximation errors to grow to infinity, regardless of the true solution

to the IVP, when time step sizes grow too large. The standard means of linear stability

analysis in Runge–Kutta methods is the Dahlquist test problem

y′(t) = λy(t), y(t0) = y0, λ ∈ C− (2.20)

where C− is the negative real half of the complex plane. This IVP has the true solution

y(t) = y0e
λt. Attention is focused on λ ∈ C− as the true solution decays from the initial

condition and any growth of the solution to infinity is an artifact of the time integration

algorithm.

A goal of linear stability analysis is the investigation of a method’s growth function

R(hλ), which is derived through the application of the Runge–Kutta method to the IVP

(2.20), arriving at the formula yn+1 = R(hλ)yn. A method’s “stability region” is defined as

{z ∈ C− : |R(z)| < 1}, (2.21)

where z = hλ and λ is the eigenvalue of the problem. This is the region of stepsize scaled

eigenvalues in which the solution to the test problem (2.20) decays as expected.

Linear stability analysis of IMEX multirate methods generally focuses on a partitioned

version of (2.20),

y′(t) = λ{F}y(t) + λ{I}y(t) + λ{E}y(t), y(t0) = y0, λ{F}, λ{I}, λ{E} ∈ C−, (2.22)

31



The analysis of multirate infinitesimal linear stability assumes the fast IVPs are solved

exactly to consider strictly the multirate method’s effects on stability. As usual, the goal

is to derive and investigate a growth function. For IMEX multirate methods, this growth

function takes the form R(z{F}, z{I}, z{E}), where z{F} = Hλ{F}, z{I} = Hλ{I}, z{E} = Hλ{E}

are the stepsize scaled eigenvalues corresponding to the various partitions of the right-hand

side function.

The growth function for IMEX-MRI-GARK methods is given by

R(z{F},z{I}, z{E}) = (2.23)

eTs{S}

(
I − diag

(
φ0(∆c{S}z{F})

)
L− z{E}η(z{F})− z{I}µ(z{F})

)−1
e1, (2.24)

where

(ei)j =


1 i = j

0 else

, ei ∈ Rs{S}

φ0(z) = ez, φk(z) =
kφk(z)− 1

z
, k ≥ 1

η(z{F}) =

nΩ−1∑
k=0

diag
(
φk+1(∆c{S}z{F})

)
Ω{k}

µ(z{F}) =

nΓ−1∑
k=0

diag
(
φk+1(∆c{S}z{F})

)
Γ{k}

Chinomona and Reynolds [5] extend the definition of “joint stability” from [63], originally

devised for IMEX two-step Runge–Kutta methods, into the multirate setting. While the

classical definition of stability considers whether the method is stable for a given value of

z, this definition considers whether the method is stable for a given value of z{E} when z{I}

and z{F} take on any value in some infinite wedge centered on the negative real axis of the
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complex plane. This joint stability region is defined as

Jα,β = {z{E} ∈ C− : |R(z{F}, z{I}, z{E})| < 1, ∀z{F} ∈ S{F}
α , ∀z{I} ∈ S{I}

β }, (2.25)

where

S{σ}
α = {z{σ} ∈ C− : | arg(z{σ})− π| ≤ α}. (2.26)

This definition of stability can be over-restrictive. In real-world applications, the implicit

and fast eigenvalues are not infinitely more stiff than the explicit eigenvalue. This definition

gives a region of z{E} which produce stable solutions for any value of z{I} and z{F} in the

given wedge, but does not give the region of all z{E} which may produce a stable solution

for specific values of z{I} and z{F}. Further considerations on the linear stability regions of

IMEX multirate infinitesimal methods are contained in Chapter 4.

2.5. Design and derivation of IMEX-MRI-GARK methods

The first step in deriving a new IMEX-MRI-GARK method is to choose a few parameters

including the number of stages s{S}, the number of Γ{k} matrices nΓ, and the number of

Ω{k} matrices nΩ. The number of stages corresponds roughly to the total work required to

complete a step, so it is good to keep this number small. It is common for simplicity to

have nΓ = nΩ and to keep this number small since although a larger number of matrices

can potentially achieve a higher order of accuracy for the same number of stages, it seems

as though the stability of such methods can suffer.

When these parameters are chosen, the next step is to create s{S}-by-s{S} matrices filled

with undetermined coefficients. The Ω matrices should be strictly lower triangular, and the

Γ matrices should be lower triangular with the first row being filled with zeros. This Γ

structure exists because the first stage is explicitly set to the solution from the previous time

step.
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The next step is to decide whether to use an existing ARK method as the base method,

or simply compute the base method from the IMEX-MRI-GARK coefficients. Using an

existing ARK base method simplifies the process of solving the order conditions, but can

be detrimental to the IMEX-MRI-GARK method’s stability. In contrast, computing the

ARK base methods complicates the process of solving the order conditions as the IMEX-

MRI-GARK coupling conditions must be solved alongside the base ARK method’s order

conditions. These competing effects can be seen in Chinomona and Reynolds [5] and in

Chapter 4.

2.5.1. Using an existing ARK base method

When using an existing ARK base method, the A{I} and A{E} matrices must be padded

with the b{I} and b{E} vectors and a column of zeros to ensure that the ARK method has

the first-same-as-last (FSAL) structure where the last stage is equal to the stage solution, if

that property does not already exist in the ARK method. This padded ARK structure has

the form

c{S} A{I} 0s
{S}

A{E} 0s
{S}

1 b{I},T 0 b{E},T 0

b{I},T 0 b{E},T 0

,

where 0s
{S}

is an s{S}-length vector of zeros.

If deriving an embedded IMEX-MRI-GARK method from an existing embedded ARK

method, the ARK method’s matrices must be padded with the embedding b̂{I} and b̂{E}

vectors when deriving the embedding coefficients.

As mentioned in Section 2.4.1, the abcissae vector c{S} must be non-decreasing. This is

an uncommon feature in Runge–Kutta methods [3, 23, 24, 25] and limits the options of base

methods, especially at fourth-order and higher.
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Once the FSAL ARK method is in place, it must be further padded to introduce c{S}

values such that ∆c
{S}
i = 0. As mentioned in Section 2.4, stages in which ∆c

{S}
i = 0

correspond to an ARK stage, the only stages which can require implicit solves in the simple

and efficient “solve-decoupled” structure. To introduce these stages, new rows are interwoven

into the existing ARK method with the same value of c
{S}
i as the stage after. To keep the

matrices square, new columns of all zeros are introduced at the same indices. For example,

if padding the explicit portion of a three-stage ARK method that has already been padded

with the b{E} vector,

0 0 0 0 0

c
{S}
2 a

{E}
2,1 0 0 0

c
{S}
3 a

{E}
3,1 a

{E}
3,2 0 0

1 b
{E}
1 b

{E}
2 b

{E}
3 0

b
{E}
1 b

{E}
2 b

{E}
3 0

→

0 0 0 0 0 0 0 0

c
{S}
2 a

{E}
2,1 0 0 0 0 0 0

c
{S}
2 a

{E}
2,1 0 0 0 0 0 0

c
{S}
3 a

{E}
3,1 0 a

{E}
3,2 0 0 0 0

c
{S}
3 a

{E}
3,1 0 a

{E}
3,2 0 0 0 0

1 b
{E}
1 0 b

{E}
2 0 b

{E}
3 0 0

1 b
{E}
1 0 b

{E}
2 0 b

{E}
3 0 0

1 b
{E}
1 0 b

{E}
2 0 b

{E}
3 0 0

.

The a
{E}
i,j and bj coefficients are introduced to maintain the structure of the method. These

coefficients have no effect if the ARK method padded in this way is used purely as an ARK

method due to the new zero b values, thus the padded method retains its expected order

of accuracy. These coefficients do have an effect on the behavior of the IMEX-MRI-GARK

method which is derived from the padded ARK method.

The relations A{E} = Ω and A{I} = Γ create 2s{S} simple relations enforcing the IMEX-

MRI-GARK’s usage of the base method.
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To complete the solve-decoupled structure, in rows corresponding to ∆c
{S}
i ̸= 0 the

coefficients on the diagonal of the Γ matrices must be manually set to zero.

2.5.2. Computing the base method from the IMEX-MRI-GARK method

Another valid technique of handling the base method in deriving an IMEX-MRI-GARK

method is to simply compute it in terms of the IMEX-MRI-GARK coefficients through

the relations A{E} = Ω and A{I} = Γ. This gives an ARK method defined in terms of

undetermined IMEX-MRI-GARK coefficients. The base method’s order conditions must

then be enforced up through the desired order of the IMEX-MRI-GARK method, along

with the coupling conditions.

To achieve the solve-decoupled structure, the vector c{S} must be chosen such that there

are repeated values, thereby introducing ∆c
{S}
i = 0. In rows corresponding to ∆c

{S}
i ̸= 0 the

coefficients on the diagonal of the Γ matrices must be manually set to zero.

2.5.3. Choosing a solve-decoupled structure

It is natural to introduce a ∆ci = 0 for every other stage, thus creating an alternating

fast IVP solve-implicit correction pattern. However, several implicit corrections could be

chained together, or several fast IVP solves could happen in a row. There is a balance to

be struck between the increased work in adding implicit solve stages, considered costly for

the increased amount of slow dynamics and Jacobian evaluations, and the increased stability

from them.

As with classical Runge–Kutta methods (2.1), it is desirable to have an embedding be

as cheap as possible to compute. The computationally cheapest stage would correspond to

∆c
{S}
i = 0 and γi,i = 0, a simple explicit ARK stage which requires no additional function

evaluations.
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2.5.4. Solving the order conditions

Once the base method and IMEX-MRI-GARK method have been appropriately set up,

they can be plugged into the order conditions. All order conditions for the base method

and the coupling conditions on the IMEX-MRI-GARK method must be satisfied up through

the desired order of accuracy. The order conditions take the form of polynomials of the

coefficients with potentially many terms, especially at fourth-order. These can be solved by

hand or through the use of a computer algebra system.

Often, solving the order conditions leaves a few free variables which can be set to any

value while the method retains its expected order of accuracy. There are a variety of ways to

use these free variables. Some involve trying to decrease the expected error from a step by

solving a subset of the order conditions one higher up, minimizing the norm of the residuals

of the order conditions one higher up, etc. Others involve maximizing the size of the joint

stability region by solving extra algebraic constraints or by setting up an expression to

optimize.

2.6. Multirate exponential Runge–Kutta methods

Multirate exponential Runge–Kutta (MERK) methods [31] are explicit multirate in-

finitesimal methods which use Exponential Runge–Kutta (ExpRK) theory [21, 33, 59] rather

than GARK theory as the foundation for derivation and analysis. MERKmethods solve IVPs

which are partitioned with linear fast dynamics and arbitrarily nonlinear slow dynamics,

y′(t) = f {F}(t, y(t)) + f {S}(t, y(t)) = Ly(t) +N (t, y(t)) (2.27)

where L is a constant scalar or matrix and N is an arbitrarily nonlinear function. This

restriction on the linearity of f {F} is inherited from ExpRK methods.
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One step of a MERK method is defined as follows.

Let: Y
{S}
1 = yn (2.28a)

For i = 2, ..., s{S} − 1 (2.28b)



Let: vi(0) = yn

Solve: v′i(τ) = Lv(τ) + gi(τ), for τ ∈ [0, ciH]

where gi(τ) =
∑i−1

j=2 γi,jD̂n,j, γi,j =
∑ℓi,j

k=1

α
(k)
i,j

cki H
k−1(k−1)!

τ k−1,

D̂n,j = N (tn + cjH, Yj)−N (tn, Y1).

Let: Y
{S}
i = vi(H)

(2.28c)

Let: vs{S}(0) = yn (2.28d)

Solve: v′s{S}(τ) = Lvs{S}(τ) + gs{S}(τ), for τ ∈ [0, H] (2.28e)

where gs{S}(τ) =
s{S}−1∑
j=2

γs{S},jD̂n,j, γs{S},j =

mj∑
k=1

β
(k)
j

ckiH
k−1(k − 1)!

τ k−1. (2.28f)

Let: yn+1 = vs{S}(H) (2.28g)

The values of α
(k)
i,j , β

(k)
i , ℓi,j,mj come from the base ExpRK method. Luan et al. provide

example MERK methods of orders two through five with the coefficients γi,j computed and

simplified. Like the general class of MRI-GARK methods, the slow dynamics N are only

evaluated once per stage and used as coefficients for the polynomial-in-time forcing function

gi(τ). We further note that all MERK methods introduced by Luan et al. do not include

embeddings.

While each stage of an MRI-GARK method evolves each fast IVP over an interval in

“real” time of size ∆ciH, MERK methods evolve each fast IVP over an interval of size ciH.
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This leads to increased computational work per step but can have benefits in terms of stability

and decreased error from the true solution to the multirate IVP (2.27) because each fast IVP

contains more information in the forcing function gi(θ). The increased computational work

from solving fast IVPs over longer intervals is essentially negligible as the fast dynamics are

assumed to be cheap to evaluate.

Because MERK methods start each stage i at the beginning of the time interval tn and

evolve the solution to tn + c
{S}
i H, a MERK method can be defined by non-sorted abcissae

vector c{S}. As mentioned in Section 2.5, IMEX-MRI-GARK’s restriction to non-decreasing

abcissae vector (such that c
{S}
i ≥ c

{S}
i−1) is quite limiting for the derivation of new methods,

thus MERK methods have a greater freedom of choice in their coefficient values, potentially

leading to more efficient methods.
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Chapter 3

Adaptive time step control for multirate infinitesimal methods

The contents of this chapter have been accepted for publication to the SIAM Journal on

Scientific Computing with the title “Adaptive time step control for multirate infinitesimal

methods” in collaboration with Dr. Daniel Reynolds. Background theory Sections 2.1 and

2.2 are useful in understanding this work.

3.1. Introduction

Multirate methods are numerical time integration algorithms used to approximate solu-

tions to ordinary differential equation (ODE) initial-value problems (IVP),

y′(t) = f(t, y) = f {S}(t, y) + f {F}(t, y), y(0) = y0,

in which some portion of the right-hand side function f(t, y) evolves on a slower time scale

(and can therefore be evaluated less frequently) than the rest of the function. Multirate

methods typically split f(t, y) additively into two parts, f {S}, the slow function, which is

evaluated less frequently, and f {F}, the fast function, which is evaluated more frequently. For

many large-scale applications, multirate methods become particularly attractive when f {S}

has significantly larger computational cost than f {F}, and thus a method that minimizes

calls to f {S} may achieve significant gains in computational efficiency for achieving a desired

solution accuracy.

A variety of families of multirate methods have been proposed, including MrGARK [14],

MIS [49, 61], MRI-GARK [45], IMEX-MRI-GARK [5], MERK [31], MERB [32], and others.

In this work, we focus on so-called infinitesimal -type methods, which include all of the above

methods except MrGARK. Generally speaking, an infinitesimal method for evolving a single
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time step yn ≈ y(tn) to yn+1 ≈ y(tn + H), with its embedded solution ỹn+1 ≈ y(tn + H),

proceeds through the following sequence of steps.

1. Let: Y1 = yn

2. For i = 2, ..., s:

(a) Solve: vi
′(θ) = Ci f

{F}(θ, vi(θ)) + ri(θ), for θ ∈ [θ0,i, θF,i] with vi(θ0,i) = v0,i.

(b) Let: Yi = vi(θF,i).

3. Solve: ṽ′s(θ) = Cs f
{F}(θ, ṽs(θ)) + r̃s(θ), for θ ∈ [θ0,s, θF,s] with ṽs(θ0,s) = v0,s.

4. Let: yn+1 = Ys and ỹn+1 = ṽs(θF,s).

In the above, the multirate method is uniquely defined by its choice of leading constant

Ci, fast stage time intervals [θ0,i, θF,i], initial conditions v0,i, forcing functions ri(θ), and

embedding forcing function r̃s(θ). These forcing functions are typically constructed using

linear combinations of
{
f {S}(θF,j, Yj)

}
, that serve to propagate information from the slow to

the fast time scales. The embedded solution ỹn+1 is similar to embedded solutions in standard

Runge-Kutta methods. It is a solution with an alternate order of accuracy computed with

minimal extra effort once the primary solution yn+1 is computed, in this case it is computed

by re-solving the last stage with an alternate forcing function, r̃s(θ).

As seen in step 2a above, computation of each stage in an infinitesimal method requires

solving a secondary, inner, IVP. Typically, these inner IVPs are not solved exactly, and

instead they are approximated through another numerical method using inner time step size

h ≪ H. In this work, we consider these inner IVPs to be solved using a one-step method

that “subcycles” the solution using step sizes h = H
M
, where M is an integer multirate ratio

that describes the difference in dynamical time scales between f {S} and f {F}.

Adaptive time step control is the technique of changing the time step size throughout a

solve with the goal of producing a solution which is accurate to a given tolerance of the true

solution. This topic has been thoroughly researched with numerous algorithms developed
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for single-rate methods, i.e., methods that use a shared step size H for all components of

f(t, y) [16, 55, 56, 54]. Savcenco and collaborators developed a component-wise multirate

adaptivity strategy designed for use with single-rate methods [48]; however, minimal work has

been done in developing multirate controllers for use with multirate methods. Specifically,

to our knowledge, the only published work on error-based multiple time step adaptivity

for multirate methods was developed by Sarshar and collaborators [47]. The two simple

adaptivity schemes proposed in that work were designed for MrGARK methods, and were

not a primary focus of the paper.

To address the need for a wider ecosystem of algorithms for multirate time step adaptivity,

in Section 3.2 we develop a family of simultaneous controllers for both H and M , following

the techniques of Gustafsson [16], derived using constant and linear approximations of the

principal error function. We additionally introduce two methods that modify our derived

controllers so that they more closely emulate the structure of standard single-rate PI [23, 19,

Chapter IV.2] and PID [23, 55] controllers.

All of the proposed controllers update both the values of the slow step size H and the

multirate ratio M because single-rate adaptivity of just H while keeping M static may lead

to an unnecessary amount of computational effort when H is small, or stages with insufficient

accuracy when H is large. Conversely, single-rate adaptivity of only h = H/M while hold-

ing H static inhibit the solver flexibility, again either resulting in excessive computational

effort or solution error, particularly for problems where the dynamical time scales change

throughout the simulation.

Each of our proposed controllers strive to achieve a target overall solution accuracy.

However, errors in multirate infinitesimal approximations can arise from both the choice of

H and M , where the former determines the approximation error arising from the slow time

scale, and the latter determining the error that results from approximating solutions in step

2a of the above algorithm. We thus propose a set of options for estimating the errors arising

from each of these contributions in Section 3.3.
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Finally, in Section 3.4 we identify a variety of test problems and a range of multirate

infinitesimal methods to use as a testing suite and define metrics with which to measure

performance of our controllers. We then use this test suite to examine the performance of our

proposed algorithms for multirate infinitesimal error estimation, followed by a comparison

of the performance of our proposed controllers.

3.2. Control-theoretic approaches for multirate adaptivity

The error in a multirate infinitesimal method at the time tn, εn := ∥y(tn)− yn∥, can be

bounded by the sum of the slow error ε
{S}
n inherent to the method itself (which assumes

that stages in step 2a are solved exactly), and the fast error ε
{F}
n caused by approximating

these stage solutions using some other “inner” solver, i.e.,

εn = ∥y(tn)− yn∥ = ∥y(tn)− y∗n + y∗n − yn∥ ≤ ∥y(tn)− y∗n∥+ ∥y∗n − yn∥ = ε{S}n + ε{F}
n .

Here, we use y∗n to denote the “imagined” solution in which each stage is solved exactly. We

can express the above error contributions over the time step tn → tn+1 = tn +Hn as

ε
{S}
n+1 = ϕ{S}

n HP
n +O

(
HP+1

n

)
ε
{F}
n+1 = ϕ{F}

n

(
Hn

Mn

)p

Hn+O

((
Hn

Mn

)p+1

Hn

)
,

(3.1)

where P and p are the global orders of accuracy for the multirate method embedding and

inner method embedding, respectively. We use the embedding orders of accuracy (as opposed

to the order of the main methods) since those will be used in Section 3.3 for computing our

estimates of ε{S} and ε{F}. The above expression for ε{F} is the global error for a one-step

method with step-size Hn/Mn over a time interval of size Hn [18, Chapter II.3]. We note

the introduction of the subscript “n” to indicate that these values only apply to the single

multirate time step, and that these will be adaptively changed as the simulation proceeds.
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The principal error functions ϕ{S} and ϕ{F} are functions of t that are unknown in general

and assumed to be always nonzero, as they depend on the specific test problem and method

used; however, they do not depend on the step size Hn or multirate ratio Mn. The notation

ϕn is used in place of ϕ(tn) for brevity. We note that, by convention, Hn, Mn, ϕ
{S}
n , and ϕ

{F}
n

give rise to errors ε
{S}
n+1 and ε

{F}
n+1, i.e., at the following time step tn+1.

Although stages are typically solved over intervals of size less than Hn, the upper bound

of the size of the interval is Hn, so we use Hn as an approximation for the interval size for the

purposes of error estimation. Additionally, the inner method’s step size Hn/Mn may be lead

to overstepping the end of the interval, in which case the step size for the last step would

need to be reduced. We similarly use the upper bound for the inner time step, Hn/Mn, as

an approximation for the inner time step size for the purposes of error estimation.

In the derivations that follow we treat Mn as a real number, thus when implementing

these controllers M must be rounded up to the nearest integer. Dropping the higher order

terms from (3.1) and solving them for log(Hn) and log(Mn) gives

log(Hn) =
log(ε

{S}
n+1)− log(ϕ

{S}
n )

P

log(Mn) =
(p+ 1)(log(ε

{S}
n+1)− log(ϕ

{S}
n ))− P (log(ε

{F}
n+1)− log(ϕ

{F}
n ))

Pp
.

(3.2)

We wish to choose values of Hn and Mn such that the resulting error εn+1 is equal to tol,

the desired tolerance for the numerical solution to approximate the true solution of the IVP.

Since εn has contributions from both ε{F} and ε{S}, we enforce that these sources be equal

to their time-scale-specific tolerance values, i.e., we set ε
{S}
n+1 = tol{S} and ε

{F}
n+1 = tol{F},

where tol = tol{S} + tol{F}.

log(Hn) =
log(tol{S})− log(ϕ

{S}
n )

P

log(Mn) =
(p+ 1)(tol{S})− log(ϕ

{S}
n ))− P (log(tol{F})− log(ϕ

{F}
n ))

Pp
.
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Because the principal error function values are generally unknown, we must approximate

log(ϕ
{S}
n ) and log(ϕ

{F}
n ) with some log(ϕ̂

{S}
n ) and log(ϕ̂

{F}
n ). Assuming sufficiently accurate

approximations of the principal error functions, we insert these in place of the exact principal

error functions above to arrive at our final log-space formulation for the update functions,

log(Hn) =
log(tol{S})− log(ϕ̂

{S}
n )

P

log(Mn) =
(p+ 1)(log(tol{S})− log(ϕ̂

{S}
n ))− P (log(tol{F})− log(ϕ̂

{F}
n ))

Pp
.

(3.3)

3.2.1. Approximations for log(ϕ(t))

In [16], Gustafsson developed a single-rate controller by approximating log(ϕ(t)) with a

piecewise linear function. We extend this work by approximating log(ϕ{S}(t)) and log(ϕ{F}(t))

with piecewise constant functions and reiterate Gustafsson’s piecewise linear derivation with

further details on motivations throughout. As with Gustafsson’s work, we introduce the

shift operator q, defined as qa log(ϕn) = log(ϕn+a); this is a common operator used in control

theory to derive algebraic expressions in terms of a single iteration index [43]. By convention,

the shift operator is assumed to be invertible, i.e., q−aqa log(ϕn) = q−a log(ϕn+a) = log(ϕn).

The identity shift operator is defined as q0 such that q0 log(ϕn) = log(ϕn).

3.2.1.1. Piecewise Constant log(ϕ(t)) Approximation

If we assume log(ϕ(t)) is constant in time, then log(ϕ̂n) = log(ϕ̂n−1). We can convert

this to a piecewise constant by adding a corrector based on the true value of log(ϕ), via an

“observer” in the control [7, Chapters 11,13]. Introducing the observer with free parameter

k > 0 gives

log(ϕ̂n) = log(ϕ̂n−1) + k(log(ϕn−1)− log(ϕ̂n−1))

45



= (1− k)q−1 log(ϕ̂n) + k log(ϕn−1).

As in Gustafsson [16], we assume that q+(k− 1)q0 is invertible to solve for log(ϕ̂n) to arrive

at the piecewise constant approximation,

log(ϕ̂n) =
kq

q + q0(k − 1)
log(ϕn−1). (3.4)

3.2.1.2. Piecewise Linear log(ϕ(t)) Approximation

In this section we reproduce the derivation of Gustafsson, albeit with additional details

that were lacking from [16]. Thus, assuming that log(ϕ(t)) is linear (and its time derivative

is constant), we have

log(ϕ̂n) = log(ϕ̂n−1) +∇ log(ϕ̂n−1),

∇ log(ϕ̂n) = ∇ log(ϕ̂n−1).

where ∇ is the gradient with respect to the iteration number, indexed by n, as in Gustafsson.

We rewrite the system as

x̂n = Ax̂n−1

log(ϕ̂n) = Cx̂n

where

x̂n =


log(ϕ̂n)

∇ log(ϕ̂n)

 , x̂n−1 =


log(ϕ̂n−1)

∇ log(ϕ̂n−1)

 , A =


1 1

0 1

 , C =

[
1 0

]
.
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Again inserting a corrector based on the true values of log(ϕ) and ∇ log(ϕ), via an observer

with free parameter vector K = [k1 k2]
T in the control (here both k1, k2 > 0), we have

x̂n = Ax̂n−1 +K(log(ϕn−1)− log(ϕ̂n−1))

= (A−KC)x̂n−1 +K log(ϕn−1).

Using a backwards difference approximation for ∇, applying the shift operator to convert

all approximate log(ϕ̂) terms to the same iteration, summing the equations, and solving for

log(ϕ̂n) in terms of log(ϕn−1) leads to the piecewise linear approximation for log(ϕ),

log(ϕ̂n) =
(k1 + k2)q

2

2q2 + q(k1 + k2 − 4) + 2q0
log(ϕn−1), (3.5)

where we again assume that 2q2 + q(k1 + k2 − 4) + 2q0 is invertible. We note that this

approximation will lead to H-M controllers with the following structure, which depend on

the two most recent values of H, but only on the most recent error term:

Hn+1 = Hγ1
n Hγ2

n−1

(
tol

ε
{S}
n+1

)α

This short error history was expected for our earlier piecewise constant derivation, but,

because the controller now depends on a longer history of H, it is typical to convert this to

depend on an equal history of error terms. We follow Gustafsson’s derivation by enforcing

the additional condition

k1 log(ϕ̂n−1) = k1 log(ϕn−1) (3.6)

that enforces continuity in the piecewise approximation. Subtracting this from (3.5), we may

arrive at the modified approximation for log(ϕn), assuming 2q2 + q(k1 + k2− 4) + q0(2− k1)
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is invertible,

log(ϕ̂n) =
(k1 + k2)q

2 − k1q

2q2 + q(k1 + k2 − 4) + q0(2− k1)
log(ϕn−1). (3.7)

3.2.1.3. Expression for log(ϕn−1)

Both the piecewise constant and piecewise quadratic approaches above resulted in ap-

proximations (3.4) and (3.7) that depend on the true values of the principal error function

at the previous step, log(ϕn−1). Although these principal error function values are generally

unknown, they may be approximated using estimates of the error at the end of the previous

step. Depending on whether log(ϕ{S}) or log(ϕ{F}) is being approximated, we may estimate

the principal error function at the previous time step by rearranging (3.2),

log(ϕ
{S}
n−1) = log(ε{S}n )− Pq−1 log(Hn)

log(ϕ
{F}
n−1) = log(ε{F}

n )− (p+ 1)q−1 log(Hn) + q−1p log(Mn),

(3.8)

3.2.2. H-M Controllers

At this point we have all of the requisite parts to finalize controller formulations for Hn

and Mn. To this end, we insert the expressions (3.8) into the approximations (3.4) or (3.7).

We then insert the resulting formulas into the log-space formulation of the update functions

(3.3), apply the shift operator, and solve the resulting equations for log(Hn+1) and log(Mn+1)

in terms of known or estimated values of log(Hn), log(Mn), log(ε
{S}
n ), and log(ε

{F}
n ). We then

finalize each controller by taking the exponential of these log-space update functions.

For simplicity of notation, we introduce the “oversolve” factors, η
{S}
n :=

(
tol{S}

)
/ε

{S}
n

and η
{F}
n :=

(
tol{F}) /ε{F}

n . The values of these factors reflect the deviation between the

achieved errors and their target, where a value of one indicates an optimal control.

There are four potential combinations of our two piecewise approximations for each of

log(ϕ
{S}
n ) and log(ϕ

{F}
n ). While using differing order approximations is valid in theory, we

48



have not found this useful in practice. In particular, due to the coupled nature of the general

controllers (3.3), the extent of the error history for both fast and slow errors in the Mn

update function will correspond to the higher-order of the log(ϕ
{S}
n ) and log(ϕ

{F}
n ) approx-

imations, and thus it makes little sense to use a lower-order approximation for log(ϕ
{F}
n )

than log(ϕ
{S}
n ). Additionally, we expect the fast time scale (associated with M) to vary

more rapidly than the slow time scale for multirate applications, so we also we rule out cases

where the approximation order for log(ϕ
{F}
n ) exceeds that of log(ϕ

{S}
n ).

3.2.2.1. Constant-Constant Controller

When using a piecewise constant approximation for both log(ϕ{S}) and log(ϕ{F}), we

follow the procedure outlined above to arrive at the following equations for log(Hn) and

log(Mn),

log(Hn) =
k1q

P (q − 1)
log
(
η{S}n

)
,

log(Mn) =
(p+ 1)k1q

Pp(q − 1)
log
(
η{S}n

)
− k2q

p(q − 1)
log
(
η{F}
n

)
.

These give the controller pair

Hn+1 = Hn

(
η
{S}
n+1

)α
,

Mn+1 = Mn

(
η
{S}
n+1

)β1
(
η
{F}
n+1

)β2

,

(3.9)

where

α =
k1
P
, β1 =

(p+ 1)k1
Pp

, and β2 =
−k2
p

.
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3.2.2.2. Linear-Linear Controller

Similarly, using a piecewise linear approximation for both log(ϕ{S}) and log(ϕ{F}), and

solving for log(Hn) and log(Mn), we have

log(Hn) =
(k11 + k12)q

2 − k11q

2P (q2 − 2q + 1)
log
(
η{S}n

)
log(Mn) =

(p+ 1) ((k11 + k12) q
2 − k11q)

2Pp(q2 − 2q + 1)
log
(
η{S}n

)
− (k21 + k22)q

2 − k21q

2p(q2 − 2q + 1)
log
(
η{F}
n

)
.

This results in the controller pair

Hn+1 = H2
nH

−1
n−1

(
η
{S}
n+1

)α1 (
η{S}n

)α2
,

Mn+1 = M2
nM

−1
n−1

(
η
{S}
n+1

)β11 (
η{S}n

)β12
(
η
{F}
n+1

)β21 (
η{F}
n

)β22
,

(3.10)

where

α1 =
k11 + k12

2P
, α2 =

−k11
2P

β11 =
(p+ 1)(k11 + k12)

2Pp
, β12 =

−(p+ 1)k11
2Pp

,

β21 =
−(k21 + k22)

2p
, β22 =

k21
2p

.

(3.11)

3.2.3. A Note on Higher Order log(ϕ(t)) Approximations

Following the preceding approaches, it is possible to form controllers based on higher

order polynomial approximations to log(ϕ(t)). While we have investigated these, we did not

find such multirateH-M controllers to have robust performance. For example, a “Quadratic-

Quadratic” controller that uses piecewise quadratic approximation for both log(ϕ
{S}
n ) and

log(ϕ
{F}
n ) depends on an extensive history of both H or M terms, and by design attempts to
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limit changes inH andM to ensure that these vary smoothly throughout a simulation. In our

experiments, we found that this over-accentuation of smoothness rendered the controller to

lack sufficient flexibility to grow or shrinkH orM at a rate at which some multirate problems

demanded. The Quadratic-Quadratic controller thus exhibited a “bimodal” behavior, in that

for some problems it failed quickly, whereas for others it performed excellently, but we were

unable to tune it so that it would provide robustness across our test problem suite. Since

our goal in this paper is to construct controllers with wide applicability to many multirate

applications, we omit the Quadratic-Quadratic controller, or any other controllers derived

from a higher order log(ϕn) approximations, from this paper.

However, to address the over-smoothness issue we introduce two additional controllers,

one that results from a simple modification of the Linear-Linear controller above, and the

other that extends this idea to include additional error estimates.

3.2.4. PIMR Controller

The “PI” controller, popular in single-rate temporal adaptivity, has a similar qualitative

structure to the Linear-Linear controller (3.10), albeit with a reduced dependence on the

history of Hn as in [23] and [19, Chapter IV.2],

Hn+1 = Hn

(
tol

εn+1

)α1
(
tol

εn

)α2

. (3.12)

We thus introduce a “PIMR” controller by eliminating one factor of both Hn/Hn−1 and

Mn/Mn−1 from (3.10):

Hn+1 = Hn

(
η
{S}
n+1

)α1 (
η{S}n

)α2
,

Mn+1 = Mn

(
η
{S}
n+1

)β11 (
η{S}n

)β12
(
η
{F}
n+1

)β21 (
η{F}
n

)β22
,

(3.13)

where α1, α2, β11, β12, β21 and β22 are defined as in (3.11).
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3.2.5. PIDMR Controller

The higher-order “PID” controller from single-rate temporal adaptivity has a similar

qualitative structure to the PI controller, but includes dependence on one additional error

term [23, 55],

Hn+1 = Hn

(
tol

εn+1

)α1
(
tol

εn

)α2
(

tol

εn−1

)α3

. (3.14)

The parameters in PID controllers typically alternate signs, with α1 > 0, α2 < 0 and α3 > 0,

where each takes the form of a constant divided by the asymptotic order of accuracy for the

single-rate method.

We thus introduce an extension of the PIMR controller to emulate this “PID” structure,

resulting in the “PIDMR” controller. We strive to make this extension as natural as possible

– we thus introduce new free parameters k13 and k23, adjust the coefficient in the denominator

of the exponents from 2 to 3, and assume that the exponents alternate signs. We thus define

the PIDMR controller as

Hn+1 = Hn

(
η
{S}
n+1

)α1 (
η{S}n

)α2
(
η
{S}
n−1

)α3

,

Mn+1 = Mn

(
η
{S}
n+1

)β11 (
η{S}n

)β12
(
η
{S}
n−1

)β13
(
η
{F}
n+1

)β21 (
η{F}
n

)β22
(
η
{F}
n−1

)β23

,

(3.15)

where

α1 =
k11 + k12 + k13

3P
, α2 =

−(k11 + k12)

3P
, α3 =

k11
3P

,

β11 =
(p+ 1)(k11 + k12 + k13)

3Pp
, β12 =

−(p+ 1)(k11 + k12)

3Pp
, β13 =

(p+ 1)k11
3Pp

,

β21 =
−(k21 + k22 + k23)

3p
, β22 =

k21 + k22
3p

, β23 =
−k21
3p

.
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3.3. Multirate infinitesimal method error estimation

In infinitesimal methods, the embedded solution is only computed in step 3, i.e., as with

standard Runge–Kutta methods the embedding reuses the results of each internal stage

computation (step 2). Thus to measure ε
{S}
n+1 we will use a standard last-stage embedding

of the infinitesimal method, e.g., ε
{S}
n+1 ≈ ∥yn+1 − ỹn+1∥. However, estimation of ε

{F}
n+1 is less

obvious.

Within each of the fast IVP solves in steps 2a and 3, one must employ a separate IVP

solver. For these, we assume that an embedded Runge–Kutta method is used which provides

two distinct solutions of differing orders of accuracy for the fast IVP solution. There are a

number of ways to utilize the embedded fast Runge–Kutta method to estimate ε
{F}
n+1. We

outline five potential approaches with a range of computational costs here, and will compare

their performance in Section 3.4.

3.3.1. Full-Step (FS) strategy

Our first approach for estimating the fast time scale error runs the entire infinitesimal

step twice, once with a primary fast method for all fast IVP solves (producing the solution

yn+1) and once with the fast method’s embedding (to produce the solution ŷn+1). We use

the difference of these to estimate the fast error, ε
{F}
n+1 ≈ ∥yn+1 − ŷn+1∥:

1. Let: Y1 = yn

2. For i = 2, ..., s:

(a) Solve with primary fast method: vi
′(θ) = Ci f

{F}(θ, vi(θ))+ri(θ), for θ ∈ [θ0,i, θF,i]

with vi(θ0,i) = v0,i.

(b) Solve with embedded fast method: v̂′i(θ) = Ci f
{F}(θ, v̂i(θ)) + r̂i(θ), for θ ∈

[θ0,i, θF,i] with v̂i(θ0,i) = v̂0,i.

(c) Let: Yi = vi(θF,i) and Ŷi = v̂i(θF,i).

3. Let: yn+1 = Ys and ŷn+1 = Ŷs.
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4. Let: ε
{F}
n+1 = ∥yn+1 − ŷn+1∥.

While this is perhaps the most accurate method for estimating ε{F}, it requires two separate

computations of the full infinitesimal step, including two sets of evaluations of the slow

right-hand side function, f {S}. See Figure 3.1 for a diagram of this strategy.

ti ti+c2H ti+c3H ti+H

v2(0)=Y1

v2(0)=Y1
^

       ^  f      ||    -Y ε
    n  =  ||   Y    4      4

Figure 3.1: Full-Step strategy for fast error estimation. A full step is solved with both the
primary fast method (solid line) and the embedded fast method (dashed line), which start
from the same initial condition Y1 at the first stage solve.

3.3.2. Stage-Aggregate (SA) strategy

As above, we consider two separate fast IVP solves for each stage, once with the primary

fast method and once with its embedding. However, here both fast IVP solves use the results

from the primary fast method for their initial conditions and the forcing terms ri(θ). Here,

we estimate the fast error by aggregating the norms of the difference in computed stages,

denoted as

ε
{F}
n+1 ≈ aggregate(∥Yi − Ŷi∥, i = 2, . . . , s),

where Yi are the stages computed using the primary fast method, and Ŷi are the stages

computed using the fast method’s embedding. We consider aggregating by mean and max,

and refer to these as Stage-Aggregate-mean (SA-mean) and Stage-Aggregate-max (SA-max),

respectively:

1. Let: Y1 = yn

2. For i = 2, ..., s:
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(a) Solve once using primary fast method and once using embedded fast method:

vi
′(θ) = Ci f

{F}(θ, vi(θ)) + ri(θ), for θ ∈ [θ0,i, θF,i] with vi(θ0,i) = v0,i.

(b) Let: Yi = vi(θF,i) when using primary fast method.

(c) Let: Ŷi = vi(θF,i) when using embedded fast method.

3. Let: yn+1 = Ys.

4. Let: ε
{F}
n+1 = aggregate(∥Yi − Ŷi∥, i = 2, . . . , s).

Because this estimation strategy solves the same IVP at each stage using two separate

methods, the number of f {S} evaluations is cut in half compared to the Full-Step strategy.

See Figure 3.2 for a diagram of this strategy.

v2(0)=Y1

v2(0)=Y1^

v3(0)=Y2
^

v3(0)=Y2 v4(0)=Y3

v4(0)=Y3
^

^fεn=aggregate(||Yi -Yi||, i=2,3,4)

ti ti+c2H ti+c3H ti+H

Figure 3.2: Stage-Aggregate strategy for fast error estimation. Each stage is solved with both
the primary fast method (solid line) and the embedded fast method (dashed line). Both the
primary and embedded fast methods use the result of the primary fast method as their initial
condition for the next stage solve. The error is computed with an aggregating function on
the stage errors.

3.3.3. Local-Accumulation-Stage-Aggregate (LASA) strategy

Our final ε
{F}
n+1 measurement strategy is designed to minimize the overall algorithmic cost.

As with the Stage-Aggregate approaches above, we solve a single set of fast IVPs, however

instead of using the embedded method solution as a separate fast solver, we evolve only the

primary fast method and use its embedding to estimate the temporal error within each fast

sub-step. To estimate the overall error within each slow stage, we sum the fast sub-step
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errors, i.e., for the slow stage i and fast step j, we define dj,i = ∥vj,i − v̂j,i∥ as the norm

of the difference between the primary fast method and its embedding. Then as with the

Stage-Aggregate strategy, we aggregate the stage errors to estimate

ε
{F}
n+1 ≈ aggregate(∥Yi − Ŷi∥, i = 2, . . . , s)

≈ aggregate

(
M∑
j=1

dj,i, i = 2, . . . , s

)
.

We again consider aggregating by mean and max, and we refer to the corresponding es-

timation strategies as Local-Accumulation-Stage-Aggregate-mean (LASA-mean) and Local-

Accumulation-Stage-Aggregate-max (LASA-max), respectively:

1. Let: Y1 = yn

2. For i = 2, ..., s:

(a) Solve : vi
′(θ) = Ci f

{F}(θ, vi(θ)) + ri(θ), for θ ∈ [θ0,i, θF,i] with vi(θ0,i) = v0,i.

i. Let: vj,i be the step solution using the primary fast method at sub-step j,

j = 1, ...,M .

ii. Let: v̂j,i be the step solution using the embedded fast method at sub-step j,

j = 1, ...,M .

iii. Let: dj,i = ∥vj,i − v̂j,i∥.

iv. Use vj,i as the initial condition for the next step.

(b) Let: Yi = vi(θF,i)

(c) Let: ∥Yi − Ŷi∥ ≈
∑M

j=1 dj,i.

3. Let: yn+1 = Ys.

4. Let: ε
{F}
n+1 = aggregate(∥Yi − Ŷi∥, i = 2, . . . , s).

Here, since all fast IVPs use the same set of f {S} evaluations, then this approach uses half

as many slow right-hand side evaluations as the Full-Step strategy. Additionally, since each
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fast IVP is solved only once, then it uses approximately half the number of f {F} evaluations

in comparison to both the Full-Step and Stage-Aggregate strategies. See Figure 3.3 for a

diagram of this strategy.

v2(0)=Y1

v2(0)=Y1^

v3(0)=Y2
^ v4(0)=Y3

^

v4(0)=Y3v3(0)=Y2

d2,1=||v2,1-v2,1||^ d3,1=||v3,1-v3,1||^ d4,1=||v4,1-v4,1||^

d2,2=||v2,2-v2,2||^ d3,2=||v3,2-v3,2||^ d4,2=||v4,2-v4,2||^

ti ti+c2H ti+c3H ti+H

^fεn=aggregate(||Yi -Yi||, i=2,3,4)
 ~aggregate(Σ

j=1,2
 di,j , i=2,3,4)~

Figure 3.3: Local-Accumulation-Stage-Aggregate strategy for fast error estimation. Each step
of each stage is solved with both the primary fast method (solid line) and the embedded fast
method (dashed line), requiring no extra function evaluations. Each subsequent step of the
fast method uses the result from the primary fast method as its initial condition. The norm
of the difference between the fast step solutions is summed for each multirate stage and used
as an approximation of the stage error, and the overall error is computed by aggregating the
stage error approximations.

In Section 3.4.5, we compare the performance of these five strategies, based on both how

close their solutions come to the desired tolerance, and on the relative computational cost

of each strategy.

3.4. Numerical results

We assess performance for our five measurement strategies and four multirate controllers.

We base these assessments both with respect to how well their resulting solutions match the

desired tolerance, and also how close their computational costs were to a set of estimated

optimal costs, which are discussed in Section 3.4.3 and Appendix A.1. All of the codes used

for these computational results are available in the public GitHub repository:

https://github.com/fishac/AdaptiveHMControllerPaper.
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3.4.1. Test problems

We assessed the performance of both our fast error estimation strategies and multirate

controllers using a test suite comprising seven multirate test problems. For each problem,

we compute error using analytical solutions when available; otherwise we use MATLAB’s

ode15s with tight tolerances AbsTol = 10−14 and RelTol = 2.5×10−14 to compute reference

solutions at ten evenly spaced points in the problem’s time interval.

3.4.1.1. Bicoupling

The Bicoupling problem is a nonlinear and nonautonomous multirate test problem pro-

posed in [32],



u′

v′

w′


=



γv − w − pt

−γu

−lw − lpt− p

(
u− aw

al + bγ
− apt

al + bγ

)2

− p

(
v − bw

al + bγ
− bpt

al + bγ

)2


,

for t ∈ [0, 1], with initial conditions u(0) = 1 + a, v(0) = b, w(0) = al + bγ and parameters

a = 1, b = 20, γ = 100, l = 5, and p = 0.01. This IVP has true solution

u(t) = cos(γt) + ae−lt, v(t) = − sin(γt) + be−lt, w(t) = (al + bγ)e−lt − pt.

We apply the same multirate splitting of the right-hand side function as [32], that used

f {S} =

[
γv −γu 0

]T
and f {F} = f − f {S}.

3.4.1.2. Stiff Brusselator ODE

The Brusselator is an oscillating chemical reaction problem which is widely used to test

multirate, implicit, and mixed implicit-explicit methods. We define the problem with the
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same parameters as in [31],



u′

v′

w′


=



a− (w + 1)u+ u2v

uw − u2v

b− w

ϵ
− uw


,



u(0)

v(0)

w(0)


=



1.2

3.1

3


for t ∈ [0, 2], and using the parameters a = 1, b = 3.5, and ε = 0.01. As we are unaware of

an analytical solution to this IVP, we compute reference solutions as described above.

We apply the same multirate splitting of the right-hand side function as in [31],

f {S} =



a+ (w + 1)u+ u2v

uw − u2v

b

ϵ
− uw


, f {F} =



0

0

−w

ϵ


.

3.4.1.3. Kaps

The Kaps problem is an autonomous nonlinear problem with analytical solution that has

been frequently used to test Runge–Kutta methods, presented in [53],


u′

v′

 =


−(µ+ 2)u+ µv2

−v2 + u− v

 ,


u(0)

v(0)

 =


1

1


for t ∈ [0, 2], where we use the stiffness parameter µ = 100. This IVP has true solution

u(t) = e−2t, v(t) = e−t,
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and we split the right-hand side function into slow and fast components as

f {S} =


0

−v2 + u− v

 , f {F} =


−(µ+ 2)u+ µv2

0

 .

3.4.1.4. KPR

The KPR problem is a nonlinear IVP system with analytical solution, with variations

that have been widely applied to test multirate algorithms. We use the same formulation as

in [5],


u′

v′

 = Λ


−3+u2−cos(βt)

2u

−2+v2−cos(t)
2v

−


β sin(βt)
2u

sin(t)
2v

 ,


u(0)

v(0)

 =


2

√
3



Λ =


λ{F} 1−ε

α
(λ{F} − λ{S})

−αε(λ{F} − λ{S}) λ{S}

 ,

for t ∈ [0, 5π/2], and with the parameters λ{S} = −1, λ{F} = −10, α = 1, β = 20, and

ϵ = 0.1. This IVP has true solution

u(t) =
√
3 + cos(βt), v(t) =

√
2 + cos(t),

and we split the right-hand side function component-wise as in [5, 45],

f {S} =


0 0

0 1

Λ


−3+u2−cos(βt)

2u

−2+v2−cos(t)
2v

−


0

sin(t)
2v

 ,
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f {F} =


1 0

0 0

Λ


−3+u2−cos(βt)

2u

−2+v2−cos(t)
2v

−


β sin(βt)
2u

0

 .

3.4.1.5. Forced Van der Pol

We consider a forced version of the widely-used Van der Pol oscillator test problem,

defined in [40],


u′

v′

 =


v

−u− 8.53(u2 − 1)v + 1.2 sin
(π
5
t
)
 ,


u(0)

v(0)

 =


1.45

0


for t ∈ [0, 25]. As this IVP does not have an analytical solution, we compute reference

solutions as described above.

We split the right-hand side function into linear and nonlinear slow and fast components,

respectively,

f {S} =


v

−u

 , f {F} =


0

−8.53(u2 − 1)v + 1.2 sin(π
5
t)

 .

3.4.1.6. Pleiades

The Pleiades problem is a special case of the general N-Body problem from [18, Chap-

ter II.10], here comprised of seven bodies in two physical dimensions, resulting in fourteen

position and fourteen velocity components (p and v). This problem has initial conditions

p1(0) =

[
3 3

]
, p2(0) =

[
3 −3

]
, p3(0) =

[
−1 2

]
, p4(0) =

[
−3 0

]
,
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p5(0) =

[
2 0

]
, p6(0) =

[
−2 4

]
, p7(0) =

[
2 4

]

v1(0) =

[
0 0

]
, v2(0) =

[
0 0

]
, v3(0) =

[
0 0

]
, v4(0) =

[
0 −1.25

]
,

v5(0) =

[
0 1

]
, v6(0) =

[
1.75 0

]
, v7(0) =

[
−1.5 0

]
,

and solutions were considered on the interval t ∈ [0, 3].

This IVP has no analytical solution, so we approximate reference solutions as described

previously. We split the right-hand side function component-wise, such that f {S} contains

the time derivatives of the positions, and f {F} contains the time derivatives of the velocities.

3.4.1.7. FourBody3D

The FourBody3D problem is another special case of the general N-Body problem, with

four bodies in three spatial dimensions, defined in [40]. This problem has initial conditions

p1(0) =

[
0 0 0

]
, p2(0) =

[
4 3 1

]
, p3(0) =

[
3 −4 −2

]
,

p4(0) =

[
3 4 5

]
, v1(0) = v2(0) = v3(0) = v4(0) =

[
0 0 0

]
,

and solutions were considered on the interval t ∈ [0, 15].

This IVP has no analytical solution, and so reference solutions are approximated appro-

priately. As with the Pleiades problem, we split the right-hand side function so that f {S}

contains the time derivatives of the positions, while f {F} contains the time derivatives of the

velocities.
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3.4.2. Testing Suite

We evaluated the performance of each of the five proposed fast error estimation strategies,

FS, SA-mean, SA-max, LASA-mean, and LASA-max, over the above test problems, over

the tolerances {10−3, 10−5, 10−7}, and using each of the Constant-Constant, Linear-Linear,

PIMR, and PIDMR controllers. For simplicity of presentation, we always set tol{S} =

tol{F} = 1
2
tol. When using controllers with extended histories, we used the Constant-

Constant controller until a sufficient history had built up. Because we consider integer

values of M , we take the ceil of the value from the M update functions resulting from each

controller.

MRI-GARK [45] is the only family of infinitesimal methods we are aware of that has

available embeddings for temporal error estimation. For our testing set we used:

• MRI-GARK-ERK33, a four-stage third-order MRI-GARK method with a second-order

embedding, which is explicit at each slow stage.

• MRI-GARK-ERK45a, a six-stage fourth-order MRI-GARK method with a third-order

embedding, which is explicit at each slow stage.

• MRI-GARK-IRK21a, a four-stage second-order MRI-GARK method with a first-order

embedding, which is explicit in three slow stages, and implicit in one.

• MRI-GARK-ESDIRK34a, a seven-stage third-order MRI-GARKmethod with a second-

order embedding, which is explicit in four slow stages, and implicit in three.

We chose these methods because they cover a range of orders of accuracy, and include an

equal number of explicit and implicit methods. A post-publication correction was made to

the method MRI-GARK-ERK45a [44], where the embedding coefficient row of the Γ0 matrix

is replaced with

Γ̂0
6 =

[
−1482837

759520
175781
71205

− 790577
1139280

− 6379
56964

47
96

0

]
.
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We used the corrected coefficients in our tests.

In our numerical tests, we pair each MRI-GARKmethod with a fast explicit Runge–Kutta

method of the same order. Specifically, for MRI-GARK-IRK21a we use the second-order

Heun–Euler method, for MRI-GARK-ERK33 and MRI-GARK-ESDIR34a we use the third-

order Bogacki–Shampine method [2], and for MRI-GARK-ERK45a we use the fourth-order

Zonneveld method [64].

3.4.3. Assessing Adaptive Performance

To assess performance of adaptivity controllers, we defined a brute force algorithm which,

for a given IVP problem, numerical method, and tol, finds the largest value of Hn and

smallest value of Mn at each step that will result in an approximate solution with error at

or very near tol. We consider the resulting total numbers of f {S} and f {F} evaluations,

denoted f
{S}
opt and f

{F}
opt , to be the estimated optimal costs of an adaptive solve. We provide a

detailed description if this brute force algorithm (including pseudocode) in Appendix A.1.

3.4.4. Controller Parameter Optimization

Each of the controllers derived in Section 3.2 depend on a set of two to six free param-

eters. To compare the “best case” for each controller and error measurement strategy, we

first numerically optimized the controller parameters across our testing suite of problems,

methods, tolerances, and fast error measurement strategies.

To measure the quality of a given set of parameters, we computed three metrics. We first

define the “Error Deviation” arising from a given adaptive controller on a given test τ as

(Error Deviation)τ = log10

( ε

tol

)
, (3.16)

where ε is defined as the maximum relative error over ten equally spaced points in the test

problem’s time interval, which provides a robust error performance measurement across the

entire interval. Here, a method that achieves solution accuracy close to the target tol will
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have (Error Deviation)τ close to zero. A value of (Error Deviation)τ > 0 indicates ε > tol

and (Error Deviation)τ < 0 indicates ε < tol.

Next, we use the total number of f {S} and f {F} evaluations, f
{S}
evals and f

{F}
evals (referred to

as the “slow cost” and “fast cost”, respectively), in relative factors to measure performance

on a given test τ .

(Slow Cost Deviation)τ =
f
{S}
evals

f
{S}
opt

, (3.17)

(Fast Cost Deviation)τ =
f
{F}
evals

f
{F}
opt

, (3.18)

A method that achieves costs close to optimal will have (Slow Cost Deviation)τ and (Fast

Cost Deviation)τ close to one, although typically these values are significantly larger. The

primary purpose of this relative-to-optimal definition of cost is to accommodate the fact

that different problems may require vastly different amounts of function evaluations, and we

would like to consider the controllers’ average performance across the testing suite.

To severely penalize parameter values that led to a lack of controller robustness, we

defined an optimization objective function to be

E(k) =
∑

τ∈test set

Eτ (k),

Eτ (k) =


10(Slow Cost Deviation)τ + (Fast Cost Deviation)τ

+10(Error Deviation)2τ , if τ finished

1010, if τ failed.

(3.19)

Here, the contribution to the objective function for a particular test τ is small if the computed

error is close to the target tolerance, and if the computational costs are not much larger than

the “optimal” values. We chose a factor of 10 for the Slow Cost Deviation to ensure that
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f
{S}
evals has a greater weight than f

{F}
evals in the optimizer, and for the squared Error Deviation

to prioritize computations that achieve the target accuracy.

Due to the lack of differentiability in E(k) due to failed solves and integer-valued M ,

we performed a simple optimization strategy consisting of an iterative search over the two-

to six-dimensional parameter space. We performed successive mesh refinement over an n-

dimensional mesh [0, 1]n, with an initial mesh using a spacing of 0.2. After evaluating the

controller’s performance on all sets of the parameters in the initial mesh, we refined the mesh

around the parameter point having smallest objective function value with a mesh width of

0.4 in all n directions, and a spacing of 0.04. After evaluating the controller’s performance

on all of the parameters in this refined mesh, we refined the mesh a final time around the

parameter point having smallest objective function value, with a mesh width of 0.08 in all

n directions and a spacing of 0.02.

3.4.5. Fast error estimation strategy performance

Our primary question for the quality of each of our fast error estimation strategies is how

well it can estimate the solution error arising from approximation of each fast IVP. Thus

for each fast error measurement strategy, we define the average Error Deviation from the

target tolerance as the average value of (Error Deviation)τ over τ in a test set comprised

of all combinations of our seven test problems, four IVP methods, three tolerances, and

four controllers. We plot these results in Figure 3.4, where we see that although each

strategy followed a drastically different approach for error estimation, all were able to achieve

approximations that achieved the target solution accuracy. However, we note that the FS,

SA-max and LASA-max appear to have over estimated the fast error, leading to overly

accurate results.

Given that each fast error estimation strategy is able to obtain results of desirable accu-

racy, our second question focuses on the efficiency of using each approach in practice. We

thus define the relative cost of each fast error estimation strategy as the average value of both
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Figure 3.4: Mean Error Deviation arising from each fast error measurement strategy. All
proposed methods obtained results that achieved the desired tolerance.

(Slow Cost Deviation)τ and (Fast Cost Deviation)τ over τ in the same test set comprising all

combinations of our seven test problems, four IVP methods, three tolerances, and four con-

trollers. We provide these plots in Figure 3.5, where we see that all of the fast error estimation

strategies had average Slow Cost Deviation within a factor of two from one another, with the

LASA strategies providing the closest-to-optimal slow cost. Additionally, the “LASA-mean”

strategy provided by far the closest-to-optimal fast cost by a significant margin. This was

expected, since the two LASA strategies were designed to minimize computational cost, yet

their error estimates were sufficiently accurate. We believe that LASA-mean outperformed

LASA-max because it provided a sharper estimate of fast solution error, as seen in Figure

3.4. Based on these results, in all subsequent numerical results we restrict our attention to

the LASA-mean strategy alone.
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(a) Slow Cost Deviation (b) Fast Cost Deviation

Figure 3.5: Mean Slow and Fast Cost Deviation over test suite by each fast error measurement
strategy.

3.4.6. Optimized Controller Parameters

After refining our focus to only the LASA-mean fast error estimation strategy, we re-

ran the optimization approach described in Section 3.4.4 to determine an “optimal” set of

parameters for each H-M controller. These final parameters were:

• Constant-Constant controller (3.9):

k1 = 0.42, k2 = 0.44. (3.20)

• Linear-Linear controller (3.10):

K1 =

[
0.82 0.54

]T
, K2 =

[
0.94 0.9

]T
. (3.21)

• PIMR controller (3.13):

K1 =

[
0.18 0.86

]T
, K2 =

[
0.34 0.80

]T
. (3.22)
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• PIDMR controller (3.15):

K1 =

[
0.34 0.10 0.78

]T
, K2 =

[
0.46 0.42 0.74

]T
. (3.23)

3.4.7. Controller performance

With our chosen fast error estimation strategy and re-optimized parameters in place, we

now compare the performance of our newly-proposed H-M controllers against the standard

single-rate I, PI, and PID controllers, as well as Gustafsson’s controller. For these tests,

we utilized a subset of the testing suite above – namely, for each controller we considered

all seven test problems, all four IVP methods, and all three accuracy tolerances. For the

single-rate controllers, we held M = 10 constant for each test and used εs as the temporal

error estimate.

Figure 3.6: Mean Error Deviation over test suite for each controller.
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In Figure 3.6, we plot the average Error Deviation (3.16) for each controller. We see that

all controllers again lead to solutions with Error Deviation below zero, implying the achieved

errors for all approaches achieve their target tolerances with a slight bias toward over-solving

the problem. However, we note that although the differences are small, the Linear-Linear

controller provides solutions with errors furthest from tol of all of our proposed controllers,

with a mean Error Deviation of -0.20, indicating that the solution had error approximately

6× 10−4 when tol = 10−3, or 6× 10−8 when tol = 10−7, which are still well within range

of the target tolerance. We note that both the PID and Gustafsson single-rate controllers

achieved solutions that were considerably more accurate than requested, although even those

were within a reasonable range of the tolerance.

(a) Slow Cost Deviation (b) Fast Cost Deviation

Figure 3.7: Mean Slow and Fast Cost Deviation over test suite by each controller.

In Figure 3.7, we plot the average cost deviation for each controller, over all of the com-

binations of test problems, methods, and tolerances. The proposed multirate controllers

demonstrated comparable computational cost across our ODE test suite, with differences

between the best and worst controllers of only 20% in terms of the average Slow Cost Devi-

ation and only 16% in terms of the average Fast Cost Deviation. Meanwhile, the proposed

multirate controllers uniformly outperformed their single-rate counterparts. Of those, the

PID controller had the best performance which was on-par in average Slow Cost Deviation
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but 58% worse in average Fast Cost Deviation than the worst-performing multirate controller

(Linear-Linear). Gustafsson’s controller had a slightly worse performance, and the I and PI

controller’s were dramatically worse. Additionally, we note that the I controller failed all

runs on the Forced Van der Pol problem when using MRIGARKIRK21a and MRIGARKES-

DIRK34a, and so we did not include those runs in these I controller averages.

Based on these results, it is clear that the proposed multirate controllers all show excellent

performance, with no single method outperforming another. Thus, for relatively simple IVPs

we recommend the Constant-Constant controller due to its simplicity, whereas for more

complex IVPs we recommend testing with each multirate controller.

3.4.8. Multirate controller performance deep dive

The previous results focused on averaged controller performance over a wide range of

problems on which the controller parameters had already been optimized. In this section we

instead compare the performance of our proposed controllers on a new test problem for which

our adaptivity controllers have not been optimized, and that should thoroughly exercise their

ability to adapt step sizes at both the fast and slow time scales. Thus this should provide

an unbiased challenge problem on which we may compare controller performance, while also

allowing a deeper dive into controller behavior.

We adapt the stiff Brusselator example from Section 3.4.1.2 to a 1D reaction-diffusion

setting with time-varying coefficients,

∂tu = d(t) ∂xxu+ r(t)
(
a− (w + 1)u+ u2v

)
,

∂tv = d(t) ∂xxv + r(t)
(
uw − u2v

)
,

∂tw = d(t) ∂xxw + r(t)

(
b− w

ϵ
− uw

)
,
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for (t, x) ∈ (0, 2)× (0, 1), with initial conditions

u(0) = 1.2 + 0.1 sin(πx), v(0) = 3.1 + 0.1 sin(πx), w(0) = 3 + 0.1 sin(πx),

stationary boundary conditions,

∂tu(t, 0) = ∂tu(t, 1) = ∂tv(t, 0) = ∂tv(t, 1) = ∂tw(t, 0) = ∂tw(t, 1) = 0,

time-varying coefficient functions

d(t) = 0.006 + 0.005 cos(πt), r(t) = 0.6 + 0.5 cos(4πt),

and parameters a = 1, b = 3.5. Here, we increase the stiffness of the problem by setting

ε = 0.001 (previously this was 0.01). We partition this problem such that f {S} corresponds to

the diffusion terms, while f {F} corresponds to the reaction terms. We note that for the above

values, the diffusion coefficient d(t) lies within (0.001, 0.011) and the reaction coefficient r(t)

lies within (0.1, 1.1), but that the frequencies of these oscillations differ, leading to coefficient

ratios d(t)/r(t) that range from approximately 10−3 to 10−1. We thus expect that each of

our adaptivity controllers will need to vary both H and M to accurately track the multirate

solutions.

In lieu of averaging performance values across a multitude of methods, we focus on only

MRIGARKERK45a here, although we note that the results are similar when using other

multirate methods.

In Figure 3.8 we plot the time step sizes Hn and hn over time for each of our controllers

with a tolerance of 10−4. We can see that for the first half of each simulation the problem did

not exhibit multirate behavior, so all controllers varied H similarly and set M = 1 (except

for Linear-Linear, that showed a brief initial period with M > 1). At approximately t = 0.9,

some stiffness arises in the reaction network and the controllers all respond by increasing M
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(a) Constant-Constant (b) Linear-Linear

(c) PIMR (d) PIDMR

Figure 3.8: Hn and hn over time for each multirate controller with a tolerance of 10−4 on
the 1D stiff Brusselator problem.

and thus decreasing h. We can see the effect of some failed steps at t = 1.0 in the Linear-

Linear controller, where it decreases H and rapidly adjusts the value of M , while the other

controllers more smoothly adjust H with some higher-frequency changes to M . Once the

period of stiffness ends (around t = 1.25), the Linear-Linear controller resets M to 1, while

the other controllers maintain a small value of M = 2.

In Figure 3.9 we examine the performance of each controller as the tolerance is varied,

with plots of the Error Deviation, the total slow function evaluations, and the total fast

function evaluations for each controller. All multirate controllers over-solved the problem,

providing solutions two to four orders of magnitude more accurate than the chosen tol, how-
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(a)

(b) (c)

Figure 3.9: (a) Error Deviation, (b) Slow function evaluations, and (c) Fast function evalu-
ations vs. tol for each multirate controller on the 1D stiff Brusselator problem.

ever there was no consistent pattern as to which controller performed the best for loose/tight

tol values. Similarly, the controllers show comparable performance in terms of computa-

tional cost. Only the Linear-Linear controller had noticeably more function evaluations than

the others, with approximately 13% more slow and 11% more fast function evaluations than

the other controllers.

3.5. Conclusions

We followed the technique of Gustafsson [16] to develop controllers that approximate the

fast and slow principal error functions for multirate infinitesimal methods. To this end, we
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developed piecewise constant and linear approximations for each principal error function.

We then combined these approximations using pairs of piecewise polynomial approximations

to the principal error functions with like degree to construct Constant-Constant and Linear-

Linear controllers for both the slow time step size H and the multirate ratio M , within

multirate infinitesimal methods.

To assess the reliability and to measure the efficiency of these proposed controllers, we

devised a large testing suite encompassing seven multirate test problems, four MRI methods

and three accuracy tolerances. In order to measure method efficiency, we developed an

algorithm to determine the best-case pair of Hn and Mn values for each testing combination.

In our initial tests, however, we found that controllers with polynomial approximations of

degree two or larger to the principal error function tended to constrain step size changes too

tightly, leading to a large number of solver failures. To address this issue, we introduced the

PIMR controller, formed by taking the Linear-Linear controller and removing dependence on

H and M terms prior to Hn and Mn, and the PIDMR controller, an extension to the PIMR

controller with an increased error history. These controllers were developed to have similar

structures to the existing single-rate PI and PID controllers. Through these modifications,

the PIMR and PIDMR controllers can react more swiftly to a problem’s influences on the

multirate step size(s).

While estimation of the slow error ε{S} is straightforward for multirate methods with

embeddings, we developed multiple strategies to estimate the fast error value ε{F}, including

the Full-Step, Stage-Aggregate, and Local-Accumulation-Stage-Aggregate strategies. These

strategies trade off differing levels of computational effort with the expected accuracy in

their estimation. However, when examining the performance of these approaches over our

testing suite, we found that the Local-Accumulation-Stage-Aggregate strategy with mean

aggregation offered an ideal combination of low cost and reliable accuracy to the target

tolerance, and we therefore recommend it for practitioners.
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We then evaluated the performance of each controller over our testing set, finding that the

Constant-Constant, Linear-Linear, PIMR, and PIDMR controllers each tended to achieve

solutions close to the target tolerance. While our proposed controllers perform similarly, they

greatly outperform existing single-rate I, PI, Gustafsson’s controllers, and slightly outperform

the PID controller, in terms of both slow and fast function evaluations on average.

Finally, we evaluated our controllers on a stiffer, PDE version of the Brusselator problem.

We saw that the controllers adjust both H and M in response to a period of increased

stiffness, and readjusted after the period had ended. The controllers had a roughly equivalent

computational cost in solving this problem, with the Linear-Linear controller consistently

experiencing a slightly higher cost. Each controller tended to over-solve the problem, giving

solutions with errors two to four orders of magnitude lower than the chosen value of tol.

Significant work remains in the area of temporal adaptivity for multirate methods. MRI-

GARK is the only infinitesimal method family we have found that includes embeddings.

Thus, embedded methods from other multirate infinitesimal families need to be derived, along

with a greater ecosystem of embedded MRI-GARK methods that focus more specifically on

performance in a temporally adaptive context.

We additionally note that controllers which update H and M for each slow multirate

step may not be the most efficient choice. We focused on H-M controllers, as those give H

values that are an integer multiple of h values and result in a simpler method implementation;

however, controllers may be created instead forH and h by following the steps outlined in this

paper, replacing H
M

with h in the early steps. Perhaps the increased flexibility arising from

real-valued h could lead to efficiency improvements over the integer-valued M approaches

here.
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Chapter 4

Implicit-explicit multirate infinitesimal stage-restart methods

The contents of this chapter have been submitted for publication with the title “Implicit-

explicit multirate infinitesimal stage-restart methods” in collaboration with Dr. Daniel Reynolds

and Dr. Steven Roberts. Background theory Sections 2.3, 2.4, 2.5, 2.6, and optionally 2.1

are useful in understanding this work.

4.1. Introduction

Flexible time integration methods for solving systems of initial-value problems (IVPs)

have seen growing interest in recent years, largely due to their ability to provide highly ac-

curate approximations of the IVP solution with increased computational efficiency. These

integrators strive to reduce computational costs by partitioning the IVP into different com-

ponents, and then treating each using different step sizes or numerical methods. Some

of the primary families of flexible methods include implicit-explicit (IMEX) partitioning

[3, 23, 25, 46], linear-nonlinear partitioning [20, 31, 32, 30, 35], and multirate partitioning

[14, 45, 47, 61].

IMEX time integration methods solve IVPs in which the right-hand side function f(t, y(t))

is additively split into stiff {I} and nonstiff {E} processes,

y′(t) = f(t, y) := f {I}(t, y) + f {E}(t, y), t ≥ t0,

y(t0) = y0.

(4.1)

IMEX methods then couple two different numerical methods to treat these components: f {I}

typically uses a stiff but computationally expensive solver, whereas f {E} may use a cheaper

but nonstiff solver. For example, additive Runge–Kutta (ARK) methods typically combine
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an A-stable diagonally-implicit Runge–Kutta (DIRK) method with an explicit Runge–Kutta

(RK) method.

Similarly, multirate methods solve IVPs in which the right-hand side is additively parti-

tioned into rapidly and slowly evolving dynamics, {F} and {S},

y′(t) = f(t, y) := f {F}(t, y) + f {S}(t, y), t ≥ t0,

y(t0) = y0.

(4.2)

Multirate methods then apply numerical methods with different step sizes for each compo-

nent to save on computation time while retaining a desired level of accuracy.

In this work we combine the above approaches to consider a three-way additively parti-

tioned IVP, wherein the slow partition f {S} from (4.2) is split in an IMEX fashion,

y′(t) = f {F}(t, y) + f {I}(t, y) + f {E}(t, y), t ≥ t0,

y(t0) = y0.

(4.3)

In particular, we add a new class of methods to the ever-growing family of multirate in-

finitesimal (MRI) methods. These approximate the solution to (4.2) or (4.3) through solving

a sequence of “fast” IVPs,

v′i(θ) = f {F}(θ, vi) + gi(θ), θ ∈ [θ0,i, θf,i],

v(θ0,i) = v0,i.

(4.4)

The forcing functions gi(θ) incorporate information from the slow dynamics defined by f {I}

and f {E} in a manner defined by the method. MRI methods assume that these fast IVPs

(4.4) are solved exactly, but in practice these are approximated using an additional “inner”

numerical method with a smaller step size than the multirate method. This inner method
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can itself further decompose the problem through IMEX, linear-nonlinear, or multirate ap-

proaches.

Our proposed class of methods is called Implicit-Explicit Multirate Infinitesimal Stage-

Restart (IMEX-MRI-SR) methods. Each stage of an IMEX-MRI-SR method consists of

evolving a fast IVP followed by an implicit solve. This allows derivation of IMEX-MRI-SR

methods by extending a base ARK method. We discuss the role of base methods further in

Section 4.2.1, particularly focusing on their role in satisfying order conditions.

IMEX-MRI-SR methods are defined by nΩ coefficient matrices Ω{k} ∈ Rs{S}×s{S}
, k =

0, ..., nΩ − 1, a coefficient matrix Γ ∈ Rs{S}×s{S}
, and an abscissae vector c{S} ∈ Rs{S}

.

Embedded versions of these methods include additional coefficient vectors ω̂{k} ∈ Rs{S}
and

γ̂ ∈ Rs{S}
. The algorithm for evolving a solution to an IVP of the form (4.3) is defined as

follows.

Definition 4.1.1 (IMEX-MRI-SR methods for additively partitioned systems). An IMEX-

MRI-SR method evolves the solution to the problem (4.3) from tn to tn +H according to the

following algorithm.

Let: Y
{S}
1 := yn (4.5a)

For: i = 2, ..., s{S}



Let: vi(0) := yn,

Solve: v′i(θ) = f {F}(tn + θ, vi(θ)) + gi(θ), for θ ∈ [0, c
{S}
i H]

where gi(θ) =
1

c
{S}
i

i−1∑
j=1

ωi,j

(
θ

c
{S}
i H

)(
f
{E}
j + f

{I}
j

)
Solve: Y

{S}
i = vi

(
c
{S}
i H

)
+H

i∑
j=1

γi,jf
{I}
j ,

(4.5b)

Let: yn+1 := Y
{S}
s{S} , (4.5c)
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

Let: v̂(0) := yn,

Solve: v̂(θ) = f {F}(tn + θ, v̂(θ)) + ĝ(θ), for θ ∈ [0, H]

where ĝ(θ) =
s{S}−1∑
j=1

ω̂j

(
θ

H

)(
f
{E}
j + f

{I}
j

)
Solve: ŷn+1 = v̂ (H) +H

s{S}−1∑
j=1

γ̂jf
{I}
j +Hγ̂s{S}f {I}(tn +H, ŷn+1),

(4.5d)

where f
{E}
j := f {E}

(
tn + c

{S}
j H,Y

{S}
j

)
and f

{I}
j := f {I}

(
tn + c

{S}
j H,Y

{S}
j

)
. Here yn+1 is

the time-evolved approximation to y(tn + H), and ŷn+1 is an embedded solution used for

temporal error esimation. If temporal error estimation is not needed, then step (4.5d) may

be omitted.

Definition 4.1.2 (Slow tendency coefficients). The coefficients ωi,j in (4.5b) are defined as

in [5]

ωi,j(τ) :=

nΩ−1∑
k=0

ω
{k}
i,j τ k, ωi,j :=

ˆ 1

0

ωi,j(τ)dτ =

nΩ−1∑
k=0

ω
{k}
i,j

k + 1
, (4.6)

and we refer to Ω{k}, Ω, and Γ as the s{S}× s{S} matrices containing the coefficients {ω{k}
i,j },

{ωi,j}, and {γi,j}, respectively. As in [5] we assume the first row of the coefficient matrices are

identically zero, and that Ω{k} and Ω are strictly lower-triangular. The embedding functions

ω̂j(τ) are defined similarly to (4.6), with vectors of coefficients ω̂{k}.

The rest of this paper is structured as follows. In the next subsection, we present related

methods to IMEX-MRI-SR, discussing both their similarities and their limitations that are

improved upon by the proposed methods. In Section 4.2 we prove order conditions for IMEX-

MRI-SR methods up to order four, and in Section 4.3 we examine their linear stability. In

Section 4.4 we provide embedded IMEX-MRI-SR methods of orders 2 through 4. In Section

4.5 we show that a previous class of multirate methods may be reformulated as IMEX-MRI-

SR methods, and we use our convergence theory to show previously unproven features of

those methods. We then present numerical results in Section 4.6 to validate our convergence

theory, and to compare the efficiency of IMEX-MRI-SR methods against existing methods for

80



problems of the form (4.3). Finally, in Section 4.7 we conclude this article with a summary

of our contributions, and an outlook toward future work.

4.1.1. Related methods

To our knowledge, there exist three MRI algorithms that allow both IMEX partitioning

of the slow dynamics and infinitesimal treatment of the fast dynamics. These are the first-

order accurate “Lie–Trotter” [8, 42] and the second-order accurate “Strang–Marchuk” [36, 58]

operator splitting methods, and the recent fourth-order IMEX-MRI-GARK [5] method, an

IMEX variation of MRI-GARK [45] methods. Both Lie–Trotter and Strang–Marchuk operate

by sequentially applying distinct solvers to each component, only communicating with one

another through the initial conditions applied within each sub-solve. Variations of both

classes of methods for the IMEX multirate splitting (4.3) are shown in [5]. However, due

to their weak “initial condition” coupling, Lie–Trotter and Strang–Marchuk are limited to

at most first and second order accuracy in time, regardless of the order of accuracy of each

component solver.

IMEX-MRI-GARK methods are organized similarly to IMEX-MRI-SR, in that they ad-

vance the solution by alternating between evolving fast IVPs and solving implicit algebraic

equations involving f {I}, and they use the result from each stage to provide a contribution to

gi(θ) for later stages. However, unlike IMEX-MRI-SR methods, IMEX-MRI-GARK meth-

ods evolve each fast IVP over an interval [ci−1H, ciH], with an initial condition given as

the result of the previous stage. In each stage, either a fast evolution or implicit solve may

occur, with this choice dictated by the abscissae: when ∆ci := ci − ci−1 > 0 a fast evolu-

tion occurs, but when ∆ci = 0 an algebraic system must be solved. In all existing implicit

MRI-GARK and IMEX-MRI-GARK methods, authors have derived schemes by beginning

with a base DIRK or ARK method, and then introduced additional internal stages to ensure

an alternating pattern of ∆ci ̸= 0 followed by ∆ci+1 = 0, thereby ensuring an appropriate

structure [5, 45]. However, these methods inherently require abscissae vectors c{S} that are
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non-decreasing. This is generally an uncommon feature in RK methods, especially for or-

ders of accuracy higher than two [3, 23, 24, 25, 39, 41, 46], so there are relatively few base

DIRK and ARK methods available for deriving new MRI-GARK and IMEX-MRI-GARK

methods. Additionally, the “padding” process for adding internal stages to ensure ∆ci = 0 is

not obvious, and frequently results in an overly complicated trial-and-error process to decide

where to insert stages. As a result of these challenges, no authors have successfully created

IMEX-MRI-GARK methods with embeddings for temporal error estimation.

A second class of methods that are closely related to IMEX-MRI-SR are multirate ex-

ponential Runge–Kutta (MERK) methods [31]. While these do not support implicitness at

the slow time scale (i.e., f {I} = 0), and they assume that the fast partition is linear (i.e.,

f {F}(t, y) = Ly), their structure matches (4.5). Each internal stage is computed through

evolving a fast IVP over an interval [0, ciH], using a forcing function that is determined

through the values of f {E} at previous slow stages.

4.2. IMEX-MRI-SR Order Conditions

Similar to IMEX-MRI-GARK methods, we derive order conditions for IMEX-MRI-SR

methods by first representing the algorithm in GARK form. Due to the 3-component parti-

tioning (4.3), we must identify GARK coefficients A{σ,ν}, b{ν}, and c{ν} for σ ∈ {S, F} and

ν ∈ {I, E, F}. We refer to A{F,ν}, ν ∈ {I, E, F} as the fast GARK tables, and to A{S,ν},

ν ∈ {I, E, F} as the slow GARK tables. We assume the fast IVP (4.5b) is solved with one

step of a sufficiently accurate Runge–Kutta method having s{F} stages, and defined by the

Butcher table (A{F}, b{F}, c{F}). The jth sub-stage in computing the solution to the fast

IVP v′i(θ) is given by

Vi,j = yn + c
{S}
i H

s{F}∑
k=1

a
{F}
j,k f

{F}
i,k +H

s{F}∑
k=1

a
{F}
j,k

i−1∑
ℓ=1

ωi,ℓ(c
{F}
k )

(
f
{E}
ℓ + f

{I}
ℓ

)
(4.7)
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for i = 1, ..., s{S}, and j = 1, ..., s{F}, where f
{F}
i,k := f {F}(tn + c

{F}
k H,Vi,k), f

{E}
ℓ := f {E}(tn +

c
{S}
ℓ H, Y

{S}
ℓ ) and f

{I}
ℓ := f {I}(tn + c

{S}
ℓ H, Y

{S}
ℓ ). The IMEX-MRI-SR method’s slow stages

Y
{S}
i , i = 1, . . . , s{S}, are then computed by

Y
{S}
i = yn + c

{S}
i H

s{F}∑
j=1

b
{F}
j f

{F}
i,j

+H

s{F}∑
j=1

b
{F}
j

i−1∑
ℓ=1

ωi,ℓ

(
c
{F}
j

)(
f
{E}
ℓ + f

{I}
ℓ

)
+H

i∑
ℓ=1

γi,ℓf
{I}
ℓ .

(4.8)

We leverage GARK theory [46] to construct order conditions as in [5, 45]. Since the slow

partitions share the same stages, Y
{S}
i , these methods have six GARK matrices, A{F,F},

A{F,E}, A{F,I}, A{S,F}, A{S,E}, and A{S,I} and three GARK vectors b{F}, b{E}, and b{I},

A{F,F} A{F,E} A{F,I}

A{S,F} A{S,E} A{S,I}

b{F},T b{E},T b{I},T

.

Here, A{F,F} is a square s{SF}×s{SF} matrix (where we define s{SF} = s{S} ·s{F}), containing

the coefficients relating the fast stages {Vi,j} to each other. It is block-diagonal because Vi,j

depends only on Vi,k, k = 1, ..., s{F} through the A{F} coefficients, and never on Vℓj, ℓ ̸= i.

These s{F} × s{F} block-diagonal elements are named A{F,F,i}.

A{F,E} and A{F,I} are tall s{SF} × s{S} matrices relating the fast stages {Vi,j} to the

explicit and implicit function evaluations of the slow stages {Y {S}
i }, comprised of s{S} blocks

named A{F,E,i}.

A{S,F} is a wide s{S} × s{SF} matrix, containing the coefficients relating the slow stages

{Y {S}
i } to the fast stages {Vi,j}. We name these s{S} total s{S} × s{F} blocks that comprise
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A{S,F} as A{S,F,i}. Each A{S,F,i} contains at most one row of non-zero entries, located in row

i, because Y
{S}
i depends only on Vi,j, j = 1, ..., s{F}, and never on Vℓ,j, ℓ ̸= i.

A{S,E} and A{S,I} are square s{S} × s{S} matrices relating the slow stages {Y {S}
i } to the

explicit and implicit function evaluations of those slow stages.

The vectors b{σ} equal the last rows of A{S,σ}, σ ∈ {F,E, I}, because IMEX-MRI-SR

methods have the first-same-as-last (FSAL) property, where the last stage is used as the

solution to the step.

When an embedding (4.5d) is included, it will correspond to three additional GARK

vectors, b̂{F} b̂{E} and b̂{I}. Due to the structural similarity of (4.5d) to the last stage

Y
{S}
s{S} , the contents of these vectors will only differ from b{F}, b{E} and b{I} through their

dependence on ω̂
{k}
j and γ̂j instead of ω

{k}
s{S},j

and γs{S},j. Thus the order conditions that

follow for the primary GARK matrices and vectors can be applied to the embedding as well.

With the above simplifications, the GARK tableau can be expressed in block-matrix form

as

A{F,F,1} A{F,E,1} A{F,I,1}

. . .
...

...

A{F,F,s{S}} A{F,E,s{S}} A{F,I,s{S}}

A{S,F,1} · · · A{S,F,s{S}} A{S,E} A{S,I}

b{F},T b{E},T b{I},T

.

A GARK method with this tabular structure has stage update formulas

Vi,j = yn +H
s{F}∑
k=1

a
{F,F,i}
j,k f

{F}
i,j +H

s{F}∑
k=1

a
{F,E,i}
j,k f

{E}
j +H

s{F}∑
k=1

a
{F,I,i}
j,k f

{I}
j , (4.9a)

Y
{S}
i = yn +H

s{F}∑
j=1

a
{S,F,i}
i,j f

{F}
ij +H

s{F}∑
j=1

A
{S,E}
i,j f

{E}
j +H

s{F}∑
j=1

A
{S,I}
i,j f

{I}
j . (4.9b)
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By matching coefficients in (4.7) and (4.9a), we identify the fast GARK coefficients,

a
{F,F,i}
j,k = c

{S}
i a

{F}
j,k , (4.10a)

a
{F,E,i}
j,ℓ =

s{F}∑
l=1

a
{F}
j,k ωi,ℓ(c

{F}
l ) =

s{F}∑
l=1

nΩ−1∑
k=0

ω
{k}
i,ℓ a

{F}
j,l c

{F}×k
l , (4.10b)

a
{F,I,i}
j,ℓ = a

{F,E,i}
j,ℓ =

s{F}∑
k=1

b
{F}
j,k ωi,ℓ(c

{F}
k ), (4.10c)

where the superscript ×k denotes element-wise exponentiation of a vector by k. Converting

these to matrix form, we have the fast GARK tables,

A{F,F} = C{S} ⊗ A{F} ∈ Rs{SF}×s{SF}
, (4.11a)

A{F,E} =

nΩ−1∑
k=0

Ω{k} ⊗ A{F}c{F}×k ∈ Rs{SF}×s{S}
, (4.11b)

A{F,I} = A{F,E} =

nΩ−1∑
k=0

Ω{k} ⊗ A{F}c{F}×k ∈ Rs{SF}×s{S}
, (4.11c)

where ⊗ denotes the Kronecker product and C{σ} = diag(c{σ}).

We similarly find the slow GARK table coefficients by comparing (4.8) and (4.9b),

a
{S,F,i}
i,j = c

{S}
i b

{F}
j , (4.12a)

a
{S,E}
i,ℓ =

s{F}∑
k=1

b
{F}
k ωi,ℓ(c

{F}
k ) =

nΩ−1∑
k=0

ω
{k}
i,ℓ b{F},T c{F}×k, (4.12b)

a
{S,I}
i,ℓ =

s{F}∑
k=1

b
{F}
k ωi,ℓ

(
c
{F}
j

)
+ γi,ℓ =

nΩ−1∑
k=0

ω
{k}
i,ℓ b{F},T c{F}×k + γi,ℓ. (4.12c)
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Due to the infinitesimal nature of the fast method, we assume that it satisfies all bushy-tree

order conditions,

b{F},T c{F}×k =
1

k + 1
, k = 0, ..., nΩ − 1.

Leveraging this, and examining (4.12), the slow GARK tables in matrix-form are

A{S,F} = C{S} ⊗ b{F},T ∈ Rs{S}×s{SF}
, (4.13a)

A{S,E} =

nΩ−1∑
k=0

Ω{k} 1

k + 1
= Ω ∈ Rs{S}×s{S}

, (4.13b)

A{S,I} =

nΩ−1∑
k=0

Ω{k} 1

k + 1
+ Γ = Ω + Γ ∈ Rs{S}×s{S}

. (4.13c)

We additionally define the following variables, knowing that an IMEX-MRI-SR method

has the FSAL property with respect to the slow stages Y {S},

b{F},T = eTs{S}A
{S,F} = (C{S}es{S} ⊗ b{F},T ) = (es{S} ⊗ b{F})T , (4.14a)

b{E},T = eTs{S}A
{S,E} = eTs{S}Ω, (4.14b)

b{I},T = eTs{S}A
{S,I} = eTs{S}(Ω + Γ), (4.14c)

where es{S} is an s{S}-length vector of all zeroes except a one in the last position.

4.2.1. Base Consistency

If f {F}(t, y) = 0, then an IMEX-MRI-SR method reduces to a simple ARK method

defined by slow explicit and implicit base methods,

(A{E}, b{E}, c{E}) = (A{S,E},b{E},A{S,E}
1
s{S}

),

(A{I}, b{I}, c{I}) = (A{S,I},b{I},A{S,I}
1
s{S}

),
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where 1s{S}
is a vector of ones with length s{S}. This ARK method has stages

Y
{S}
i = yn +H

i−1∑
j=1

a
{E}
i,j f {E}(tn + c

{E}
j H, Y

{S}
j )

+H
i∑

j=1

a
{I}
i,j f

{I}(tn + c
{I}
j H,Y

{S}
j ),

with the last stage being equal to the solution for the step. We will refer to this ARK method

as the slow base method throughout the derivation of the order conditions.

Remark 4.2.1 (First order conditions). As long as the slow base method and the arbitrary

fast method are order one or higher, there are no additional first-order coupling conditions for

a GARK method. Thus, the effective first-order IMEX-MRI-SR condition is that A{S,E} = Ω

and A{S,I} = Ω + Γ form an order one ARK method, which can be simply achieved if both

A{S,E} and A{S,I} have first-order accuracy.

Remark 4.2.2 (Deriving IMEX-MRI-SR methods from existing ARK methods). Due to the

IMEX-MRI-SR structure, a base ARK method should be stiffly-accurate; otherwise it must

first be converted to stiffly-accurate form by appending the b vectors to the bottom and pad a

column of zeros to the right of the ARK’s A matrices.

4.2.2. Kronecker Product Identities

In the ensuing derivations we leverage the following identities:

(A⊗B)T = AT ⊗BT , (4.15a)

(A⊗B)(C ⊗D) = (AC)⊗ (BD), (4.15b)

(A⊗ v)1{r(A)} = (A1{r(A)})⊗ v, (4.15c)

(v ⊗ A)1{r(A)} = v ⊗ (A1{r(A)}), (4.15d)
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where A,B,C,D are arbitrary matrices with compatible dimemsions, v is an arbitrary vector,

and 1{r(A)} is a vector of ones with length equal to the number of rows of A. Identities (4.15a)

and (4.15b) can be found in [29]. Identities (4.15c) and (4.15d) can be shown through

elementary computation.

4.2.3. GARK Internal Consistency

Theorem 4.2.1 (GARK Internal Consistency). An IMEX-MRI-SR method satisfies the

GARK internal consistency conditions,

c{F,F} = c{F,E} = c{F,I}, (4.16a)

c{S,F} = c{S,E} = c{S,I}, (4.16b)

where c{F,ν} = A{F,ν}
1
s{SF}

, c{S,ν} = A{S,ν}
1
s{S}

, ν ∈ {I, E, F}, if the following conditions

hold:

Ω{0}
1
s{S}

= c{S}, (4.17a)

Ω{k}
1
s{S}

= 0s
{S}

, k = 1, ..., nΩ − 1, (4.17b)

Γ1s{S}
= 0s

{S}
, (4.17c)

where 0s
{S}

is a vector of zeros with length s{S}.

Proof. Computing the fast GARK abscissae from the respective fast GARK tables,

c{F,F} = A{F,F}
1
s{SF}

= (C{S} ⊗ A{F})1s{SF}
= c{S} ⊗ c{F},

c{F,E} = A{F,E}
1
s{S}

=

nΩ−1∑
k=0

Ω{k} ⊗ A{F}c{F}×k
1
s{S}
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= (Ω{0}
1
s{S}

)⊗ c{F} +

nΩ−1∑
k=1

(Ω{k}
1
s{S}

)⊗ A{F}c{F}×k,

c{F,I} = A{F,I}
1
s{S}

= A{F,E}
1
s{S}

= c{F,E},

thus c{F,F} = c{F,I} = c{F,E} when Ω0
1
s{S}

= c{S} and Ω{k}
1
s{S}

= 0s
{S}

, k = 1, ..., nΩ − 1.

Computing the slow GARK abscissae from the slow GARK tables,

c{S,F} = A{S,F}
1
s{SF}

= (C{S} ⊗ b{F})1s{SF}
= c{S},

c{S,E} = A{S,E}
1
s{S}

= Ω1s{S}
=

nΩ−1∑
k=0

Ω{k}
1
s{S} 1

k + 1
,

c{S,E} = A{S,I}
1
s{S}

= (Ω + Γ)1s{S}
=

nΩ−1∑
k=0

Ω{k}
1
s{S} 1

k + 1
+ Γ1s{S}

,

and thus c{S,F} = c{S,I} = c{S,E} is satisfied using the same conditions as above, with the

additional constraint that Γ1s{S}
= 0s

{S}
.

Remark 4.2.3 (Second order conditions). When the tables that comprise a GARK method

are each at least second-order accurate and internal consistency holds, there are no additional

second-order coupling conditions. Thus, the internal consistency conditions act as second-

order conditions when the slow base method and arbitrary fast method are at least second-

order accurate.

4.2.4. Higher Order Conditions

Theorem 4.2.2 (Third Order Conditions). An internally-consistent IMEX-MRI-SR method

with third-order accurate slow base method and with fast method of order max(3, nΩ + 1)

accurate is third-order accurate if the following condition holds:

eTs{S}

(
nΩ−1∑
k=0

Ω{k} 1

(k + 1)(k + 2)

)
c{S} =

1

6
. (4.18)
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Proof. From [5], a internally consistent GARK method of this structure with a third-order

accurate slow base method and an order max(3, nΩ + 1) fast method has four third-order

coupling conditions,

b{σ},TA{S,F}c{F} =
1

6
, (4.19a)

b{F},TA{S,σ}c{S} =
1

6
, (4.19b)

for σ ∈ {I, E}. An internally-consistent IMEX-MRI-SR method has

c{F} = c{F,F} = c{F,E} = c{F,I} = c{S} ⊗ c{F}, (4.20a)

c{S} = c{S,F} = c{S,E} = c{S,I} = c{E} = c{I} = c{S}. (4.20b)

Conditions (4.19a) are automatically satisfied for both values of σ:

1

6
= b{σ},TA{S,F}c{F}

= b{σ},T (C{S} ⊗ b{F},T )(c{S} ⊗ c{F}) =
1

3
· 1
2

Conditions (4.19b) reduce to the single condition (4.18) because A{F,E} = A{F,I} for an

IMEX-MRI-SR method:

1

6
= b{F},TA{F,σ}c{S} = (eTs{S} ⊗ b{F},T )

(
nΩ−1∑
k=0

Ω{k} ⊗ A{F}c{F}×k

)
c{S}

= eTs{S}

(
nΩ−1∑
k=0

Ω{k} 1

(k + 1)(k + 2)

)
c{S}.
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Theorem 4.2.3 (Fourth Order Conditions). An IMEX-MRI-SR method satisfying Theorem

4.2.2 is fourth-order accurate if the slow base method is fourth-order accurate, the arbitrary

fast method is order max(4, nΩ + 2) accurate, and the following conditions hold:

eTs{S}

(
nΩ−1∑
k=0

Ω{k} 1

(k + 1)(k + 3)

)
c{S} =

1

8
, (4.21a)

eTs{S}

(
nΩ−1∑
k=0

Ω{k} 1

(k + 1)(k + 2)

)
C{S}c{S} =

1

12
, (4.21b)

eTs{S}ΓC
{S}

(
nΩ−1∑
k=0

Ω{k} 1

(k + 1)(k + 2)

)
c{S} = 0, (4.21c)

eTs{S}ΩC
{S}

(
nΩ−1∑
k=0

Ω{k} 1

(k + 1)(k + 2)

)
c{S} =

1

24
, (4.21d)

eTs{S}

(
nΩ−1∑
k=0

Ω{k} 1

(k + 1)(k + 2)

)
Ωc{S} =

1

24
, (4.21e)

eTs{S}

(
nΩ−1∑
k=0

Ω{k} 1

(k + 1)(k + 2)

)
Γc{S} = 0. (4.21f)

Proof. From [5], there are 26 fourth-order coupling conditions for a third-order GARK

method with this structure; this further reduces to 21 when A{F,E} = A{F,I}. These GARK

coupling conditions are:

b{σ},TC{S}A{S,F}c{F} =
1

8
(4.22a)

b{σ},TA{S,ν}A{S,F}c{F} =
1

24
(4.22b)

b{σ},TA{S,F}C{F}c{F} =
1

12
(4.22c)
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b{σ},TA{S,F}A{F,F}c{F} =
1

24
(4.22d)

b{F},TC{F}A{F,σ}c{S} =
1

8
(4.22e)

b{F},TA{F,σ}C{S}c{S} =
1

12
(4.22f)

b{σ},TA{S,F}A{F,ν}c{S} =
1

24
(4.22g)

b{F},TA{F,F}A{F,σ}c{S} =
1

24
(4.22h)

b{F},TA{F,σ}A{S,ν}c{S} =
1

24
(4.22i)

b{F},TA{F,σ}A{S,F}c{F} =
1

24
(4.22j)

for σ, ν ∈ {I, E}. c{F} and c{S} are defined as in (4.20a) and (4.20b), respectively. We arrive

at the conditions (4.21) by checking each of the conditions (4.22) in turn.

The first four conditions (4.22a)-(4.22d) are automatically satisfied:

1

8
= b{σ},TC{S}A{S,F}c{F}

= b{σ},TC{S}(C{S} ⊗ b{F},T )(c{S} ⊗ c{F})

= b{σ},TC{S}C{S}c{S}
1

2
=

1

4
· 1
2
,

1

24
= b{σ},TA{S,ν}A{S,F}c{F}

= b{σ},TA{ν}(C{S} ⊗ b{F},T )(c{S} ⊗ c{F})

= b{σ},TA{ν}C{S}c{S}
1

2
=

1

12
· 1
2
,

1

12
= b{σ},TA{S,F}C{F}c{F}
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= b{σ},T (C{S} ⊗ b{F},T ) diag(c{S} ⊗ c{F})(c{S} ⊗ c{F})

= b{σ},TC{S}C{S}c{S}
1

3
=

1

4
· 1
3
,

1

24
= b{σ},TA{S,F}A{F,F}c{F}

= b{σ},T (C{S} ⊗ b{F},T )(C{S} ⊗ A{F})(c{S} ⊗ c{F})

= b{σ},TC{S}C{S}c{S}
1

6
=

1

4
· 1
6
.

Condition (4.22e) is not automatically satisfied and simplifies to (4.21a):

1

8
= b{F},TC{F}A{F,σ}c{S}

= (es{S} ⊗ b{F})T diag(c{S} ⊗ c{F})

(
nΩ−1∑
k=0

Ω{k} ⊗ A{F}c{F}×k

)
c{S}

= eTs{S}

(
nΩ−1∑
k=0

Ω{k} 1

(k + 1)(k + 3)

)
c{S}.

Condition (4.22f) is not automatically satisfied and simplifies to (4.21b).

1

12
= b{F},TA{F,σ}C{S}c{S}

= (es{S} ⊗ b{F})T

(
nΩ−1∑
k=0

Ω{k} ⊗ A{F}c{F}×k

)
C{S}c{S}

= eTs{S}

(
nΩ−1∑
k=0

Ω{k} 1

(k + 1)(k + 2)

)
C{S}c{S}.
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Condition (4.22g) is not automatically satisfied and reduces to (4.21c) and (4.21d) when

σ = I, E, respectively, and both conditions are enforced simultaneously,

1

24
= b{σ},TA{S,F}A{F,ν}c{S}

= b{σ},T (C{S} ⊗ b{F})

(
nΩ−1∑
k=0

Ω{k} ⊗ A{F}c{F}×k

)
c{S}

= b{σ},TC{S}

(
nΩ−1∑
k=0

Ω{k} 1

(k + 1)(k + 2)

)
c{S}.

Condition (4.22h) is not automatically satisfied but simplifies to (4.18) minus (4.21a),

1

24
= b{F},TA{F,F}A{F,σ}c{S}

= (es{S} ⊗ b{F})T (C{S} ⊗ A{F})

(
nΩ−1∑
k=0

Ω{k} ⊗ A{F}c{F}×k

)
c{S}

= eTs{S}

(
nΩ−1∑
k=0

Ω{k} 1

(k + 1)(k + 2)(k + 3)

)
c{S}.

Condition (4.22i) is not automatically satisfied and reduces to (4.21e) and (4.21f) when

ν = I, E, respectively, and both conditions are enforced simultaneously:

1

24
= b{F},TA{F,σ}A{S,ν}c{S}

= (es{S} ⊗ b{F})T

(
nΩ−1∑
k=0

Ω{k} ⊗ A{F}c{F}×k

)
A{S,ν}c{S}

= eTs{S}

(
nΩ−1∑
k=0

Ω{k} 1

(k + 1)(k + 2)

)
A{S,ν}c{S}.
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Finally, condition (4.22j) simplifies to the same condition as (4.21b),

1

24
= b{F},TA{F,σ}A{S,F}c{F}

= (es{S} ⊗ b{F})

(
nΩ−1∑
k=0

Ω{k} ⊗ A{F}c{F}×k

)
(C{S} ⊗ b{F})(c{S} ⊗ c{F})

= eTs{S}

(
nΩ−1∑
k=0

Ω{k} 1

(k + 1)(k + 2)

)
C{S}c{S}

1

2
.

Theorem 4.2.4 (Minimum nΩ for third-order accuracy). An IMEX-MRI-SR requires at

least nΩ = 2 for third-order accuracy.

Proof. An IMEX-MRI-SR method with one Ω matrix, Ω{0}, has A{S,E} = Ω = Ω0 and, from

the FSAL property, b{E},T = eT
s{S}Ω = eT

s{S}Ω
{0}. For an IMEX-MRI-SR method of order

p, we assume the slow-explicit base method also satisfies all standard Runge–Kutta order

conditions up to order p. Thus, a third-order IMEX-MRI-SR slow-explicit base method with

one Ω satisfies the second order condition b{E},T c{S} = 1
2
, which simplifies to

1

2
=

s{S}∑
j=1

ω
{0}
s{S},j

c
{S}
j .

However, the third-order IMEX-MRI-SR coupling condition (4.18) simplifies to

1

3
=

s{S}∑
j=1

ω
{0}
s{S},j

c
{S}
j .

Since these cannot hold simultaneously, a third-order IMEX-MRI-SR method with one Ω

matrix is not possible. There are no such mutually exclusive conditions for nΩ > 1, and in

Section 4.4 we introduce third and a fourth order methods with nΩ = 2.
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4.3. Linear Stability

As in [5, 45], we analyze the stability of IMEX-MRI-SR methods when applied to the

linear, scalar test problem

y′(t) = λ{F}y + λ{E}y + λ{I}y, t ≥ 0, y(0) = 1, (4.23)

with λ{F}, λ{E}, λ{I} ∈ C−. For convenience, we additionally define z{F} = Hλ{F}, z{E} =

Hλ{E}, and z{I} = Hλ{I}. When applied to (4.23), the IVP (4.5b) becomes

v′i(θ) = λ{F}vi(θ) +
1

c
{S}
i

i−1∑
j=1

ωi,j

(
θ

c
{S}
i H

)
(λ{E}Y

{S}
j + λ{I}Y

{S}
j )

= λ{F}vi(θ) +
1

c
{S}
i

i−1∑
j=1

nΩ−1∑
k=0

ω
{k}
i,j

(
θ

c
{S}
i H

)k

(λ{E}Y
{S}
j + λ{I}Y

{S}
j )

for i = 2, ..., s{S}, with θ ∈ [0, c
{S}
i H] and vi(0) = yn. The solution to this at θ = c

{S}
i H is

vi(c
{S}
i H) = ec

{S}
i z{F}

yn + (z{E} + z{I})
i−1∑
j=1

nΩ−1∑
k=0

ω
{k}
i,j

(ˆ 1

0

ec
{S}
i z{F}(1−t)tkdt

)
Y

{S}
j

= φ0(c
{S}
i z{F})yn + (z{E} + z{I})

i−1∑
j=1

ηi,j(z
{F})Y

{S}
j .

Here we define η as in [5] as a function of the fast eigenvalue z{F},

ηi,j(z
{F}) =

nΩ−1∑
k=0

ω
{k}
i,j φk+1(c

{S}
i z{F}), (4.24)

where the family of analytical functions {φk} are given by [45],

φ0(z) = ez, φk(z) =

ˆ 1

0

ez(1−t)tk−1dt, k ≥ 1.
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The ith IMEX-MRI-SR stage for the stability problem (4.23) then becomes

Y
{S}
i = φ0(c

{S}
i z{F})yn + (z{E} + z{I})

i−1∑
j=1

ηi,j(z
{F})Y

{S}
j + z{I}

i∑
j=1

γi,jY
{S}
j . (4.25)

Concatenating Y = [Y
{S}
1 · · · Y {S}

s{S} ]
T and writing (4.25) in matrix form,

Y = φ0(c
{S}z{F})yn + (z{E} + z{I})η(z{F})Y + z{I}ΓY

=
(
I − (z{E} + z{I})η(z{F})− z{I}Γ

)−1
φ0(c

{S}z{F})yn

where

η(z{F}) =

nΩ−1∑
k=0

diag(φk+1(c
{S}z{F}))Ω{k}.

Thus the stability function for an IMEX-MRI-SR method applied to (4.23) is

R(z{F},z{E}, z{I}) =

eTs{S}

(
I − (z{E} + z{I})η(z{F})− z{I}Γ

)−1
φ0(c

{S}z{F}).

(4.26)

We consider a few definitions of joint stability for IMEX-MRI-SR methods. As with

IMEX-MRI-GARK methods, we consider a region that incorporates all three z,

Jα,ρ,β,ξ = {z{E} ∈ C− : |R(z{F}, z{E}, z{I})| ≤ 1, ∀z{F} ∈ S{F}
α,ρ , ∀z{I} ∈ S{I}

β,ξ }, (4.27)

where S{σ}
α,ρ = {z{σ} ∈ C− : | arg(z{σ}) − π| ≤ α, |z{σ}| ≤ ρ}. We note that this definition

of joint stability may be overly-restrictive, as it demands the implicit and fast parts of the

method to be A(β)- and A(α)-stable, respectively, for any joint stability region to exist.

Thus, we also analyze the implicit and explicit stability regions of IMEX-MRI-SR methods
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independently, with stability regions defined as:

J {I}
α,ρ = {z{I} ∈ C− : |R(z{F}, 0, z{I})| ≤ 1, ∀z{F} ∈ S{F}

α,ρ }, (4.28)

J {E}
α,ρ = {z{E} ∈ C− : |R(z{F}, z{E}, 0)| ≤ 1, ∀z{F} ∈ S{F}

α,ρ }. (4.29)

These are more consistent with standard stability analyses of ARK methods, wherein explicit

and implicit stability are considered separately.

4.4. Example Methods

We introduce three IMEX-MRI-SR methods of orders 2, 3 and 4, each of which includes

an embedding with accuracy one order lower (1, 2 and 3, resp.) for temporal error estima-

tion. We note that we designed the embedding coefficients with efficiency in mind, so that

computation of the embedded solutions do not require an additional implicit solve at the

slow time scale (i.e., γ̂s{S} = 0).

When presenting the coefficients for each method we use the notation

Ω{k} =


Ω{k}

ω̂{k}

 , Γ =


Γ

γ̂

 ,

where Ω{k} and Γ are the matrices of coefficients defining the primary method, and ω̂{k} and

γ̂ are the embedding row of coefficients.

4.4.1. IMEX-MRI-SR2(1)

The first method is second-order with a first-order embedding. It has 4 stages, nΩ = 1,

and requires 3 slow nonlinear solves per step. The coefficients can be found in Appending

B.1.
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To create this method, we used the free coefficients of the primary method to maximize

the size of the stability region defined by (4.27). We used the free coefficients of the embedded

method to minimize the value of the C-statistic from Prince and Dormand [38],

C(p+1) =
∥τ̂ (p+1) − τ (p+1)∥2

∥τ̂ (p)∥2
, (4.30)

where τ (p) is the vector of order condition residuals at order p for the primary method, τ̂ (p)

is the vector of order condition residuals at order p for the embedded method, and p is the

order of the primary method (in this case, p = 2). The C-statistic gives an estimate of how

much the error stemming from unsatisfied (p + 1)-order conditions of the primary method

corrupts the error estimate provided by the embedded method.

This method has large, robust stability regions. Figures 4.1a and 4.1b show Jα,102,β,104

for α ∈ {10◦, 45◦} and varying β, along with the explicit slow base method’s stability region.

We see that the multirate method has a stability region essentially identical to the explicit

slow base method when α = 10◦ for any value of z{I}. When α grows to 45◦ we can see a

decay of the stability region associated with the β = 85◦, while the regions associated with

smaller β values experience negligible decay, if any.

Figure 4.1c shows J {E}
α,102 for varying α. We see that when z{I} = 0, the stability region is

again large, with only a slight decay in area when α = 85◦.

Figure 4.1c shows J {I}
α,102 for varying α. When z{E} = 0, the multirate method is A-

stable for 0◦ ≤ α ≤ 45◦. When α grows further to 65◦, the region decays slightly but is

still approximately A(80◦)-stable. When α = 85◦, the stability region decays to an enclosed

bubble similar to the regions in Figure 4.1c.

4.4.2. IMEX-MRI-SR3(2)

Our second method is third-order with a second-order embedding. It has 5 stages, nΩ = 2,

and requires 4 nonlinear solves per step. The coefficients can be found in Appendix B.2.
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(a) J10◦,102,β,104 (b) J45◦,102,β,104

(c) J {E}
α,102

(d) J {I}
α,102

Figure 4.1: Joint Stability Regions for IMEX-MRI-SR2(1)

To create this method, we used the free coefficients for both the method and embedding

as described in Section 4.4.1, this time using the C-statistic (4.30) with p = 3.

Figures 4.2a and 4.2b show the relatively large joint stability regions Jα,102,β,104 for α =

{10◦, 45◦}, respectively, along with the explicit slow base method’s stability region. Again,

at α = 10◦ and lower values of β, the method is essentially as stable as the explicit slow base

method. The areas of these stability regions decrease for higher values of β. When α grows

to 45◦ in Figure 4.2b, the stability regions shrink slightly in comparison with α = 10◦ from

Figure 4.2a.
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Figures 4.2c and 4.2d show J {E}
α,102 and J {I}

α,102 for varying α, respectively. We see that

when z{I} = 0, the stability region is reasonably large for smaller value of α, but the region

shrinks as α grows; however, even for α = 85◦, the region retains a good extent along the

imaginary axis. Similar to the second-order method, when z{E} = 0, the stability region is

A-stable for most values of α, only losing A-stability for α = 85◦, where the region decays

to a rather large, yet enclosed, bubble.

(a) J10◦,102,β,104 (b) J45◦,102,β,104

(c) J {E}
α,102

(d) J {I}
α,102

Figure 4.2: Joint Stability Regions for IMEX-MRI-SR3(2)
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4.4.3. IMEX-MRI-SR4(3)

Our final method is fourth-order with a third-order embedding, has 7 stages, nΩ = 2,

and requires 5 nonlinear solves per step. The coefficients can be found in Appendix B.3.

Due to the number of order conditions involved when simultaneously solving all IMEX-

MRI-SR coupling conditions and base ARK order conditions at fourth-order, we based this

method off of an existing 4(3) ARK method, LIRK4 [3]. Since this was not stiffly accurate,

then as discussed in Remark 4.2.2 we padded the A{E} and A{I} matrices with the b vector,

i.e.,

A{S,E} =


A{E} 0{6}

bT 0

 , A{S,I} =


A{I} 0{6}

bT 0

 , (4.31)

where 0{6} ∈ R6 is all zero.

Since the last row of A{S,E} and A{S,I} both equal bT , the last row of Γ equals zero,

as follows from the definitions (4.13b) and (4.13c). When A{S,I} has a zero in the bottom

right entry (and therefore Γ has a zero in the bottom right entry, from (4.13c)), there is

no nonlinear solve required to compute this last stage and therefore the updated time step

solution. We believe that this negatively affects stability, as we will show in Figure 4.3.

As before, we used the free variables of the IMEX-MRI-SR method to optimize stability.

This method had an empty joint stability region defined by (4.27) for all of our attempts

to choose or optimize values of the free variables, so we instead optimized the size of the

stability region defined by (4.29). To optimize the embedded method, we minimized the

2-norm of the fourth-order condition residuals, ∥τ̂ (4)∥2, to reduce the overall error in the

embedded solution. We note that our previous approach of minimizing the C-statistic (4.30)

was not possible since we do not yet have the fifth-order IMEX-MRI-SR coupling conditions.

Figure 4.3a shows the stability regions J {E}
α,1 for varying α. Unlike the lower-order meth-

ods, this method’s explicit stability region never fully matches that of the explicit base

method. Similarly to the other methods, as α grows the stability region shrinks.
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Figure 4.3b shows the stability regions J {I}
α,1 for varying α. Again unlike the lower-order

methods, these regions are not A-stable for α ̸= 0. Because J {I}
α,ρ is never A-stable for this

method, the stability region (4.27) is always empty. We suspect that this is primarily due

to the lack of an implicit solve in the last stage of the method. In future work we plan

to investigate this issue in more detail to better understand the factors that contribute to

IMEX-MRI-SR joint stability.

(a) J {E}
α,102

(b) J {I}
α,102

Figure 4.3: Joint Stability Regions for IMEX-MRI-SR4(3)

4.5. MERK Methods as Explicit IMEX-MRI-SR Methods

In [31], Luan et al. define MERK methods with orders of accuracy spanning two through

five by explicitly defining the abscissae c
{S}
i and the forcing functions gi(θ). Due to their

similar structure to IMEX-MRI-SR methods, we may analyze MERK methods using our

theory from Section 4.2. Because MERK methods are always explicit, their IMEX-MRI-SR

Γ matrices will be all zero. We recall that MERK methods are defined under an assumption

that the fast function is linear, f {F}(t, y) = Ly, but that the slow function can be arbitrary.

It is thus natural to assume that MERK methods might only satisfy a subset of the IMEX-

MRI-SR order conditions, potentially failing those that handle nonlinearity in f {F}.
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4.5.1. MERK2

Converting the three-stage second-order accurate MERK2 method from [31] into IMEX-

MRI-SR form, we have

Ω{0} =



0 0 0

c
{S}
2 0 0

1 0 0


, Ω{1} =



0 0 0

0 0 0

−1/c{S}2 1/c
{S}
2 0


. (4.32)

Interestingly, these coefficients (along with Γ = 0) satisfy all coupling conditions up to third

order, and the slow base method determined by Ω satisfies all conditions up to order two.

Thus, we expect MERK2 to have second-order accuracy, even for nonlinear f {F}. We confirm

this with numerical tests involving nonlinear f {F} in Section 4.6, where we use c
{S}
2 = 1

2
since

it was unspecified in [31].

Figure 4.4a shows the stability regions for MERK2. Because this method is explicit, we

only plot J {E}
α,102 . Notably, these regions nearly match that of the base explicit method for

most values of α examined.

(a) MERK2 (b) MERK3

Figure 4.4: J {E}
α,102 Regions for MERK2 and MERK3
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4.5.2. MERK3

Converting the four-stage, third-order accurate, MERK3 from [31] to an IMEX-MRI-SR

method, we have

Ω{0} =



0 0 0 0

c
{S}
2 0 0 0

2
3

0 0 0

1 0 0 0


, Ω{1} =



0 0 0 0

0 0 0 0

− 2

3c
{S}
2

2

3c
{S}
2

0 0

−3
2

0 3
2

0


. (4.33)

These satisfy all coupling conditions up to third order, and the corresponding slow base

method satisfies all conditions up to order three. Thus similarly to MERK2, we expect it

to show third-order accuracy on problems with nonlinear f {F}. We again confirm this result

on numerical tests in Section 4.6 using c
{S}
2 = 1/2.

Figure 4.4b shows the stability regions for MERK3, J {E}
α,102 . Notably, these regions show

no degradation of stability as α is increased.

4.5.3. MERK4

We may express MERK4 as an IMEX-MRI-SR method with 7 stages and nΩ = 3. The

corresponding coefficients are provided in Appendix B.4.

We find that this method satisfies all IMEX-MRI-SR coupling conditions through order

four, and its slow base method satisfies all order conditions up through fourth order, so

long as c
{S}
6 = (3− 4c

{S}
5 )/(4− 6c

{S}
5 ). This restriction on c

{S}
6 is satisfied by the choices in

[31] of c
{S}
2 = 1/2, c

{S}
3 = 1/2, c

{S}
4 = 1/3, c

{S}
5 = 5/6, and c

{S}
6 = 1/3. Thus like before,

we expect this method to demonstrate fourth-order accuracy for nonlinear f {F}, which we

confirm numerically in Section 4.6. Interestingly, the joint stability regions J {E}
α,102 for MERK4

are empty. However, given the reliability of this method in [31] and our own results from
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Section 4.6, we believe that these empty regions more strongly indicate a deficiency in these

definitions of joint stability than any actual issues with MERK4 itself.

4.5.4. MERK5

The IMEX-MRI-SR method that corresponds with MERK5 has 11 stages and nΩ = 4.

These coefficients are given in Appendix B.5. When analyzing this method, we find that

when

c
{S}
9 =

12− 15c
{S}
10 − 15c

{S}
8 + 20c

{S}
10 c

{S}
8

15− 20c
{S}
10 − 20c

{S}
8 + 30c

{S}
10 c

{S}
8

the method satisfies all IMEX-MRI-SR coupling conditions up through fourth-order, and

its slow base method satisfies all order conditions up through fifth-order. This condition is

satisfied by the choice in [31] of c
{S}
2 = 1/2, c

{S}
3 = 1/2, c

{S}
4 = 1/3, c

{S}
5 = 1/2, c

{S}
6 = 1/3,

c
{S}
7 = 1/4, c

{S}
8 = 7/10, c

{S}
9 = 1/2, and c

{S}
10 = 2/3, therefore we expect it to have at

least fourth-order accuracy without restriction on the linearity of f {F}. As we do not have

fifth-order IMEX-MRI-SR order conditions, we cannot check these for MERK5; however,

our numerical tests in Section 4.6 indeed show fifth-order convergence for nonlinear f {F}. As

with MERK4, the MERK5 joint stability regions J {E}
α,102 are empty.

4.6. Numerical Results

In this section we examine the convergence rates for our newly-proposed IMEX-MRI-SR

methods from Section 4.4, as well as for MERK methods applied to problems with nonlinear

f {F}. We also compare the efficiency of our IMEX-MRI-SR methods against both IMEX-

MRI-GARK and legacy Lie-Trotter and Strang-Marchuk methods from [5].

4.6.1. KPR

The Kværnø-Prothero-Robinson problem is a coupled system of IVPs which has been

widely used for testing multirate algorithms, since it is nonlinear, non-autonomous, includes
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stiffness and multirate tuning parameters, and has an analytical solution. We use the same

formulation and partitioning as in [5],


u′

v′

 = Λ


−3+u2−cos(βt)

2u

−2+u2−cos(t)
2v

−


β sin(βt)
2u

sin(t)
2v

 ,


u(0)

v(0)

 =


2

√
3



Λ =


λ{F} 1−ε

α
(λ{F} − λ{S})

−αε(λ{F} − λ{S}) λ{S}


(4.34)

for t ∈ [0, 5π/2], with parameters λ{F} = −10, λ{S} = −1, ε = 0.1, α = 1, and β = 20. This

problem has solution

u(t) =
√
3 + cos(βt), v(t) =

√
2 + cos(t). (4.35)

We partition the problem as

f {E} =


0

sin(t)
2v

 , f {I} =


0 0

0 1

Λ


−3+u2−cos(βt)

2u

−2+u2−cos(t)
2v



f {F} =


1 0

0 0

Λ


−3+u2−cos(βt)

2u

−2+u2−cos(t)
2v

 .

(4.36)

In Figure 4.5, we plot the convergence as H is refined for MERK methods and implicit-

explicit methods, including all provided IMEX-MRI-SR methods from Section 4.4, IMEX-

MRI-GARK3(a,b), IMEX-MRI-GARK4, Lie-Trotter and Strang-Marchuk. We see that all
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methods converge at their expected rates. Notably, as expected from Section 4.5, the MERK

methods show no convergence issues even though f {F} in (4.36) is nonlinear.

In these tests, we combined multirate methods with explicit inner Runge–Kutta meth-

ods of the same order, with the only exception of pairing a second-order inner solver with

the first-order Lie-Trotter method. Each of Lie-Trotter, Strang-Marchuk, and IMEX-MRI-

SR2(1) used the second-order Heun method given by the Butcher table

0 0 0

1 1 0

1/2 1/2

. The

IMEX-MRI-SR3(2) and IMEX-MRI-GARK3(a,b) methods used the third-order method by

Bogacki and Shampine [2]. The IMEX-MRI-SR4(3) and IMEX-MRI-GARK4 methods used

the fourth-order method by Zonneveld [64].

We measured error at 10 equally-spaced points in the time interval. The estimated

convergence rates for each method, using a least squares fit of log(Max Error) versus log(H),

are in the legend parentheses. For the MERK convergence tests, we used H = π/2k, k =

2, ..., 9 and for the implicit-explicit method convergence tests, we used H = π/2k, k =

4, ..., 11. For all tests we used fast time step size h = H/10. The implicit-explicit methods

used a standard Newton-Raphson method with a banded linear solver for the implicit solves.

4.6.2. Stiff Brusselator

The stiff brusselator problem is an advection-reaction-diffusion system of nonlinear partial

differential equations. It is a modification to the standard brusselator [19] used in [5], from

which we use the same formulation and partitioning:

ut = αuuxx + ρuux + ru(a− (w − 1)u+ u2v),

vt = αvvxx + ρvvx + rv(wu− u2v),
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IMEX-MRI-SR3(2) (3.11)

IMEX-MRI-SR4(3) (3.85)
IMEX-MRI-GARK3a (3.05)
IMEX-MRI-GARK3b (3.09)
IMEX-MRI-GARK4 (4.11)

Figure 4.5: Convergence for the KPR test problem (4.34) for MERK methods (left) and
implicit-explicit methods (right) using the partitioning (4.36). All methods converge at
the expected theoretical rates (with measured convergence rates in parentheses), including
MERK methods using the given nonlinear fast partition.

wt = αwwxx + ρwwx + rw(
b− w

ε
− wu),

for t ∈ [0, 3] and x ∈ [0, 1], with stationary boundary conditions

ut(t, 0) = ut(t, 1) = vt(t, 0) = vt(t, 1) = wt(t, 0) = wt(t, 1),

and initial conditions

u(0, x) = a+ 0.1 sin(πx),

v(0, x) = b/a+ 0.1 sin(πx),

w(0, x) = b+ 0.1 sin(πx).
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We partition the problem as

f {I} =



αuuxx

αvvxx

αwwxx


, f {E} =



ρuux

ρvvx

ρwwx


, f {F} =



ru(a− (w − 1)u+ u2v)

rv(wu− u2v)

rw(
b−w
ε
− wu)


,

and use second order centered difference approximations for all spatial derivative operators.

This problem has no analytical solution, so we used MATLAB’s ode15s with tight tolerances

AbsTol = 10−14 and RelTol = 2.5× 10−14 to generate reference solutions.

4.6.2.1. Fixed Time Step

In this section, we compare runtime efficiency of the splitting, IMEX-MRI-SR, and IMEX-

MRI-GARK methods using fixed time step sizes. We use the same fixed parameters αu =

αv = αw = 10−2, ρu = ρv = ρw = 10−3, ru = rv = rw = 1, a = 0.6, b = 2, and ε = 10−2 with

initial conditions

u(0) = a+ 0.1 sin(πx), v(0) = b/a+ 0.1 sin(πx), w(0) = b+ 0.1 sin(πx),

for 201 and 801 grid points as in [5]. All methods used fast time steps of h = H/10 and all

methods used the same inner methods and implicit algebraic solvers as in Section 4.6.1.

In Figure 4.6 we plot the observed maximum solution error over ten equally spaced points

in the time interval using step sizes of H = 0.1·2−k, k = 0, ..., 10. Both splitting methods and

both fourth-order methods experience significant order reduction, with IMEX-MRI-SR4(3)

taking the biggest hit in reducing an entire order of accuracy for the 201 grid, and two orders

of accuracy for the 801 grid. The second- and third-order IMEX-MRI-SR and IMEX-MRI-

GARK methods all achieve their expected order for the 201 grid. The third-order accurate

methods experience only slight order reduction for the 801 grid while IMEX-MRI-SR2(1)
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Figure 4.6: Efficiency for stiff brusselator problem using 201 grid points (left) and 801 grid
points (right). Estimated least-squares convergence rates before settling at the error-floor are
(0.76,1.59,2.00,3.09,3.00,3.36,3.25,3.41) and (0.72,1.24,2.01,2.90,1.90,2.71,2.69,2.42) for the
201 and 801 grids, respectively, for Lie-Trotter, Strang-Marchuk, IMEX-MRI-SR2(1), IMEX-
MRI-SR3(2), IMEX-MRI-SR4(3), IMEX-MRI-GARK3a, IMEX-MRI-GARK3b, IMEX-
MRI-GARK4.

remains steady at its expected order. All methods exhibit an error floor of approximately

10−11, that is likely caused by the accuracy of the reference solution.

The stiffness of this problem highlights the stability limitations of the fourth order meth-

ods, IMEX-MRI-SR4(3) and IMEX-MRI-GARK4, which was observed in [5]. For the 201

grid, IMEX-MRI-SR4(3) and IMEX-MRI-GARK4 were unstable for step sizes greater than

1/320 and 1/80 respectively. For the 801 grid, IMEX-MRI-SR4(3) and IMEX-MRI-GARK4

were unstable for step sizes greater than 1/640 and 1/160, respectively.

We can see that IMEX-MRI-SR2(1) is far more efficient than the first- and second-order

splitting methods, providing errors two to three orders of magnitude smaller for the same

runtimes. It also has a steady rate of error decrease as runtime increases, while the splitting

methods show periods of stagnation at larger step sizes.
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The third-order and fourth-order methods tend to have similar efficiency on this prob-

lem, attaining similar error for similar runtimes. The third-order IMEX-MRI-GARK meth-

ods have a slight edge for the 201 grid and for some error ranges in the 801 grid, but

IMEX-MRI-SR3(2) becomes the most efficient method for the 801 grid for errors between

approximately 10−7 and 10−11. The third-order methods are all more efficient than the

fourth-order methods, where IMEX-MRI-SR4(3) maintains a slight but consistent edge over

IMEX-MRI-GARK4.

4.6.2.2. Adaptive Time Step

In this section, we compare work-precision efficiency for the IMEX-MRI-SR methods in

the adaptive time step context. Because the splitting and IMEX-MRI-GARKmethods do not

have embeddings, we omit them from these tests. We use the Constant-Constant controller

from [9] with the recommended parameters k1 = 0.42, k2 = 0.44, and the recommended fast

error measurement strategy, LASA-mean. This controller adapts H and M , such that the

inner time step size h = H/M , in a similar manner to a standard I-controller.

We use time-varying parameters αu = αv = αw = ρu = ρv = ρw = 6 × 10−5 + 5 ×

10−5 cos(πt), ru = rv = rw = 0.6 + 0.5 cos(4πt) adapted from [9] with the same fixed

parameters a = 1, b = 3.5, ε = 10−3 and initial conditions

u(0) = 1.2 + 0.1 sin(πx), v(0) = 3.1 + 0.1 sin(πx), w(0) = 3 + 0.1 sin(πx),

with 101 grid points. All IMEX-MRI-SR methods used the same inner methods and implicit

algebraic solvers as in Section 4.6.1.

In Figure 4.7 we plot the number of fast function evaluations and the number of implicit

solves, good indicators of overall cost at the fast and slow timescales, versus the observed

maximum solution error over ten equally spaced points in the time interval when running

with controller tolerance values of tol = 10−k, k = 1, ..., 9. We use tol{S} = tol{F} =

1
2
tol in our tests for simplicity. We note that IMEX-MRI-SR3(2) failed the tests with

112



105 106 107

Fast Function Evaluations

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3
M

ax
 E

rro
r

102 103 104 105

Implicit Solves

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

M
ax

 E
rro

r

IMEX-MRI-SR2(1) IMEX-MRI-SR3(2) IMEX-MRI-SR4(3)

Figure 4.7: Fast function evaluations (left) and total implicit solves (right) versus the ob-
served maximum error for the stiff brusselator problem.

tol = 10−3, 10−5 and IMEX-MRI-SR4(3) failed the tests with tol = 10−4, 10−5 due to

getting stuck in oscillations between successful and failed steps.

We can see that IMEX-MRI-SR2(1) is much less efficient than the higher order methods

in terms of fast function evaluations (farthest from the bottom-left corner), where IMEX-

MRI-SR3(2) is generally the most efficient (closest to the bottom-left corner) across the

range of errors. IMEX-MRI-SR4(3) is generally comparable to IMEX-MRI-SR3(2) in terms

of fast function evaluations but occasionally gets “stuck,” providing approximately the same

error value for different total fast function evaluations, depending on the value of tol. This

is likely an indication that IMEX-MRI-SR4(3) has a low quality embedding which provides

inaccurate error estimates, possibly stemming from the embedding coefficients being defined

by minimizing ∥τ̂ (4)∥2 rather than the C-statistic.

The total number of implicit solves is comparable across all three methods for errors larger

than approximately 10−5. Below that, IMEX-MRI-SR3(2) and IMEX-MRI-SR4(3) are again

comparable with IMEX-MRI-SR2(1) falling further behind. We see the same phenomenon
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of IMEX-MRI-SR4(3) getting “stuck” at certain error values, achieving the same error for

varying total implicit solves.

4.7. Conclusions

We introduce a new class of multirate time integration methods which builds off of pre-

vious work in IMEX-MRI-GARK and MERK methods, serving to improve various aspects

of each. The proposed class of IMEX-MRI-SR methods are flexible, allowing IMEX treat-

ment of the slow time scale while allowing the use of any viable IVP solver for the fast

time scale. These methods remove the sorted abscissae requirement of IMEX-MRI-GARK

methods since they start each internal stage at the beginning of the time step, thereby

dramatically simplifying their order conditions and allowing introduction of embeddings.

IMEX-MRI-SR methods can also be viewed as an extension to MERK methods, in that

these allow implicitness at the slow time scale and nonlinearity at the fast time scale.

The convergence theory of IMEX-MRI-SR methods leverages GARK theory [46], through

which we established order conditions for methods of orders one through four. Due to their

structural similarity to IMEX-MRI-SR methods, we leveraged these new order conditions

to analyze the previously-proposed MERK methods without their restriction to linear fast

partitions. Using this analytical framework, we provided the first theoretical justification

that these MERK methods (at least up through fourth order) should retain their high orders

of accuracy even on problems with nonlinear fast partitions.

We analyzed joint stability as in [5], as well as in simplified implicit- or explicit-only

senses of joint stability. With these reduced definitions of stability, we gain some insight into

what happens when joint stability regions break down.

Using this theoretical framework, we provided three new IMEX-MRI-SR methods. These

included a second-order method with a first-order embedding, and a third-order method with

a second-order embedding, both derived from scratch by solving all order conditions simul-
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taneously. We additionally provided a fourth-order method with a third-order embedding,

that we derived from the existing LIRK4 ARK method [3].

We experimentally examined convergence for the three new methods and the existing

MERK methods on the KPR test problem, finding that they all converge at their expected

orders of accuracy. We also provided experimental efficiency results on the stiff brusselator

problem, a nonlinear advection-reaction-diffusion system of PDEs, where we found that our

methods are competitive with IMEX-MRI-GARK methods and even surpass them in some

cases. We also found that IMEX-MRI-SR2(1) is vastly more efficient than the similarly

second-order Strang-Marchuk operator splitting method. We found that in the context of

adaptive time stepping, the third- and fourth-order IMEX-MRI-SR methods were compa-

rable in work required for achieving a given error, while the second-order method lagged

behind.

More work remains to be done on IMEX-MRI-SR methods. Higher order conditions

can be derived which, while tedious due to the number of conditions at higher orders, is

tractable due to the use of Kronecker product identities. Further analysis should be done

on the factors that most strongly affect joint stability and what conditions, if any, can be

enforced to ensure a non-empty joint stability region. Additionally, more methods should be

derived, in particular an embedded fourth-order method with improved joint stability over

the method provided here.
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Chapter 5

New IMEX-MRI-GARK methods with embeddings

In this chapter, we propose two new IMEX-MRI-GARK methods. We propose a second-

order method with a first-order embedding, and a third-order method with a second-order

embedding. Not only is this the first proposed second-order IMEX-MRI-GARK method,

but these are also the first IMEX-MRI-GARK methods with embeddings. We discuss the

stability properties of these methods and evaluate their performance on the same test prob-

lems as in Chapter 4. We note that the background theory from Section 2.4 is useful in

understanding this chapter.

5.1. Second-order method

We propose a second-order accurate method with a first-order accurate embedding which

we name IMEX-MRI-GARK2(1). It has 4 stages, nΓ = nΩ = 2, requires 2 nonlinear solves

per step, and satisfies all order conditions analytically. Its coefficients are defined as follows.

c{S},T =

[
0 1 1 1

]
(5.1a)
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Γ{0} =



0 0 0 0

1 0 0 0

−567
290

0 567
290

0

−119623
80910

0 −133
279

567
290

1678
735

0 0 0



, Γ{1} =
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(5.1b)

Ω{0} =


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, Ω{1} =


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0 0 0 0

0 0 0 0
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

(5.1c)

A step defined by this method consists of a fast integration over the full interval [0, H],

followed by two ARK-like implicit solves. The second implicit solve was needed so that we

could add a sufficient number of degrees of freedom to solve the order conditions.

The last row of coefficients (below the horizontal line) define the alternate last stage, the

embedding. The embedding stage is purely explicit and requires no new function evaluations.

The primary set of coefficients were optimized to maximize the size of the stability region,

and the embedding coefficients were optimized to minimize the norm of the residuals of the

second-order conditions, ∥τ̂ (2)∥, discussed in Section 4.4.1.

Figure 5.1a shows the stability regions for IMEX-MRI-GARK2(1) defined by J10◦,1,β,104 ,

discussed in Section 4.3 and using the IMEX-MRI-GARK stability function defined by Chi-

nomona [5]. Similarly, Figure 5.1b shows the stability regions defined by J45◦,1,β,104 . We can
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see that, even with quite restrictive parameters on the value of z{F} (a maximum magnitude

of 1 and no more than 10◦ above the negative real axis), the joint stability region never

reaches its theoretical maximum extent, given by the explicit component of the base ARK

method, and the area of the region decays slowly as β grows.

(a) J10◦,1,β,104 (b) J45◦,1,β,104

5.2. Third-order method

We also propose a third-order accurate method with a second-order accurate embedding

which we name IMEX-MRI-GARK3(2). It has 8 stages, nΓ = nΩ = 1, requires 4 nonlinear

solves per step, and satisfies all order conditions analytically. Its coefficients are defined as

follows.

c{S},T =

[
0 3

7
3
7

8
15

8
15

1 1 1

]
(5.2a)
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Γ{0} =
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(5.2b)
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(5.2c)

A step defined by this method consists of three pairs of fast integrations followed by ARK-like

implicit solves, all followed by one additional ARK-like implicit solve. The fast integrations

are over the intervals [0, 3
7
H], [3

7
H, 8

15
H], and [ 8

15
H,H], respectively. As with IMEX-MRI-

GARK2(1), the last implicit solve was needed so that sufficient degrees of freedom were

present to solve the order conditions.

The primary set of coefficients were optimized to maximize the size of the stability region,

and the embedding coefficients were optimized to minimize the norm of the residuals of the

third-order conditions, ∥τ̂ (3)∥.

Figure 5.2a shows the stability regions for IMEX-MRI-GARK3(2) defined by J10◦,1,β,104 .

Figure 5.2b shows the stability regions defined by J45◦,1,β,104 . While this method’s joint

stability regions are larger than those of IMEX-MRI-GARK2(1), they suffer from similar

problems. Specifically, the regions never reach the theoretical maximum defined by the
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explicit component of the base ARK methods, and the regions decay more quickly as β

grows than IMEX-MRI-GARK2(1)’s regions.

(a) J10◦,1,β,104 (b) J45◦,1,β,104

5.3. Lack of fourth-order method

Although we attempted to create an embedded fourth-order IMEX-MRI-GARK method

for multiple months, we found that the structure of these methods and their corresponding

order conditions were overly complex for advanced computer algebra systems to handle. If

using a base method computed strictly from the IMEX-MRI-GARK coefficients, as done

with IMEX-MRI-GARK2(1) and IMEX-MRI-GARK3(2), fourth-order coupling and base

method conditions are prohibitively computationally expensive to solve. Mathematica [22],

arguably the strongest computer algebra system available, would spend weeks computing a

single Solve command of the order conditions. When attempting the alternate strategy of

starting with an existing base method, thereby automatically satisfying the base method’s

fourth-order conditions and greatly simplifying the coupling conditions, one must first find

a base ARK method with an embedding and with a non-decreasing abcissae vector c. As

noted in [5], we were unable to find any record of any such base method in the publication

literature, even without an embedding. Chinomona and Reynolds derived a new fourth-order
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base ARK method with non-decreasing abcissae, but the method did not have an associated

embedding.

5.4. Numerical results

In this section we compare the performance of these proposed IMEX-MRI-GARK meth-

ods against the previously published IMEX-MRI-GARK methods [5] and the IMEX-MRI-SR

methods introduced in Chapter 4. For all numerical tests, IMEX-MRI-GARK2(1) uses the

explicit Heun-Euler method, and IMEX-MRI-GARK3(2) uses the third-order method from

Bogacki and Shampine [2]. All parameters, inner solvers, nonlinear solvers, etc., are the

same as those used in Chapter 4. We omit the evaluation of splitting methods in this section

to reduce clutter in the plots.

5.4.1. KPR

We evaluate the new methods’ fixed-step convergence rates on the KPR problem defined

in Section 4.6.1. Figure 5.3 shows these convergence rates. We can see that the two new

methods achieve their expected rates of convergence. IMEX-MRI-GARK2(1) has a consis-

tently higher error than IMEX-MRI-SR2(1) by a small margin, while IMEX-MRI-GARK3(2)

has essentially identical performance to IMEX-MRI-GARK3b.

5.4.2. Stiff brusselator

We evaluate the new methods’ performance efficiency as in Section 4.6.2, on the same

versions of the stiff brusselator problem defined therein.

5.4.2.1. Fixed time step

Figure 5.4 shows the runtime-precision efficiency for the stiff brusselator problem de-

fined in 4.6.2.1. We might expect IMEX-MRI-GARK3a and b to be more efficient than

IMEX-MRI-SR3(2) due to evolving the fast dynamics over a shorter duration and requiring
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Figure 5.3: Convergence for the KPR test problem (4.34) for implicit-explicit multirate
infinitesimal methods using the partitioning (4.36). All methods converge at the expected
theoretical rates, with measured convergence rates in parentheses.

3 nonlinear solves per step versus 4 for IMEX-MRI-SR3(2), but this is not observed in the

experimental results. IMEX-MRI-GARK3a and b and IMEX-MRI-SR3(2) have approxi-

mately the same efficiency, hinting that IMEX-MRI-GARK methods have large coefficients

in their Taylor expansions. These coefficients don’t affect the convergence rate but do pro-

vide a large multiplicative constant on the error observed. This effect is also observed in the

proposed IMEX-MRI-GARK2(1) and IMEX-MRI-GARK3(2). Not only do the proposed

methods have large constant error factors, but they require the same amount of nonlinear

solves as the same-order IMEX-MRI-SR counterparts, the driving factor in runtime. When

IMEX-MRI-GARK3a and b require less work than IMEX-MRI-SR3(2) to achieve the same

efficiency, it follows that IMEX-MRI-GARK methods requiring roughly equivalent work to

same-order IMEX-MRI-SR methods would have worse efficiency.
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Figure 5.4: Efficiency for stiff brusselator problem using 201 grid points (left) and 801 grid
points (right).

5.4.2.2. Adaptive time step

Figure 5.5 shows the work-precision efficiency of the stiff brusselator problem defined in

Section 4.6.2.2. We can see that, while IMEX-MRI-GARK3(2) is far more efficient in terms

of total fast function evaluations, it is outclassed by IMEX-MRI-SR3(2) and IMEX-MRI-

SR4(3) in terms of total implicit solves, which are often the main driver of computational

cost. The IMEX-MRI-GARK methods’ improvements upon their same-order IMEX-MRI-

SR counterparts in terms of fast function evaluations is expected because, as noted in Section

2.4.1, their total fast IVP integration duration is H which is less than that of IMEX-MRI-SR

methods.

We note that IMEX-MRI-GARK3(2) gives error values approximately 100 times smaller

than desired for the lax tolerances of 10−k, k = 3, 4, 5. Additionally, we note that IMEX-MRI-

GARK2(1) failed its solves for tolerances of 10−k, k = 1, 2, 9, and IMEX-MRI-GARK3(2)

failed its solves for tolerances of 10−k, k = 1, 2.
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Figure 5.5: Fast function evaluations (left) and total implicit solves (right) versus the ob-
served maximum error for the stiff brusselator problem.

5.5. Conclusions

We proposed two new IMEX-MRI-GARK methods, a second-order accurate method

with a first-order embedding, IMEX-MRI-GARK2(1), and a third-order method with a

second-order embedding, IMEX-MRI-GARK3(2). IMEX-MRI-GARK2(1) is the first pro-

posed second-order IMEX-MRI-GARK method, and these are the first proposed IMEX-

MRI-GARK methods with embeddings. We discussed their construction and their stability

properties. We also discussed the challenges in deriving a fourth-order IMEX-MRI-GARK

method with an embedding.

We then evaluated the new methods’ performance against existing IMEX-MRI methods in

a variety of metrics, including convergence, runtime efficiency, and work-precision efficiency.

The new methods performed in line with convergence rate expectations without surprises.

However, the new methods demonstrated worse efficiency than the other same-order methods

in a fixed-step setting, due to large constant error factors and work required per step. Lastly,

we found that the new methods had mixed performance in the adaptive step setting. IMEX-

MRI-GARK3(2) had clearly the best performance in terms of total fast function evaluations
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versus the achieved error but was outclassed by IMEX-MRI-SR3(2) and IMEX-MRI-SR4(3)

in terms of total implicit solves versus the achieved error. IMEX-MRI-GARK2(1) performed

similarly to IMEX-MRI-SR2(1) in both adaptive step metrics. Based on these results, we

generally recommend using IMEX-MRI-SR methods over IMEX-MRI-GARK methods.
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Chapter 6

Conclusion

In this chapter we summarize the contributions made in this thesis and discuss potential

fruitful areas of future research.

6.1. Overall contributions

In this thesis we explored and developed the idea of adaptivity in multirate infinitesimal

methods. We proposed the first time step controllers designed specifically for multirate

infinitesimal methods, which are derived from ideas in control theory. We additionally

introduced a new class of implicit-explicit multirate infinitesimal IVP-solving methods which

improve upon several existing classes of multirate infinitesimal methods.

In Chapter 3 we proposed the first time step controllers for multirate infinitesimal meth-

ods. We used a control theoretic approach, inspired by Gustafsson [16] in their derivations.

We discussed several techniques of measuring error from the fast dynamics and weighed their

costs versus their expected accuracy. We tested these fast error measurement strategies and

controllers across a range of multirate IVPs, using a range of both implicit and explicit MRI-

GARK [45] methods. We found that the cheapest fast error measurement strategy was the

most efficient and that all of our multirate controllers outperform classical controllers with

a fixed multirate ratio M on average across the test suite.

In Chapter 4 we proposed a new class of multirate infinitesimal methods. These meth-

ods, implicit-explicit multirate infinitesimal stage-restart (IMEX-MRI-SR) methods, improve

upon IMEX-MRI-GARK [5] methods by including an implicit solve with every stage, thus

removing the uncertainty present in designing IMEX-MRI-GARK methods, deriving simpler

order conditions, and allowing for non-decreasing abcissae vector c{S} (thereby allowing for a
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wider variety of base methods to be used). These methods also extend MERK [32] methods

to arbitrary nonlinearity of the fast dynamics and to include implicit-correction terms.

In Chapter 5 we proposed the first IMEX-MRI-GARK methods with embeddings. We

discussed their construction, explored their stability problems, and discussed the challenges

in deriving a fourth-order methods. We evaluated their performance in a variety of numerical

tests and found that they behave in line with expectations in terms of convergence rates

but are out-shone by IMEX-MRI-SR methods in terms of both fixed-step and adaptive

performance. We recommend using IMEX-MRI-SR methods in both cases.

6.2. Future work

The area of multirate infinitesimal adaptivity is still fruitful. There are a variety of

extensions to this work which can be immediately useful.

While the multirate controllers developed work well, they cannot be used with “nested

adaptivity.” That is, the method that solves the fast IVPs must use the fixed step size

determined by H and M from the controller. A new family of controllers can be developed

which allow for adaptivity of the fast IVP solvers–perhaps a simultaneous time step and

tolerance controller, where the controller dictates the desired tolerance with which stage

should be solved to produce an overall accurate step.

A wider set of IMEX-MRI-SR methods can be produced which target certain problem

types or optimize their free coefficients in different ways.

New test problems which exhibit more strongly multirate behavior without being overly

computationally expensive would benefit the quality of testing of new controllers and multi-

rate methods.

Finally, a more thorough understanding of joint stability in multirate methods should

be explored, including any possible algebraic conditions on the coefficients of the methods

which can guarantee forms of stability.
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Appendix A

A.1. Optimal Performance Estimation Algorithms

In order to compare the performance of our proposed adaptive controllers and error

estimation algorithms, we create a baseline set of “optimal” cost values. We note that

in an practice the most computationally efficient values of Hn and Mn will depend on a

number of factors, including: the IVP itself, the multirate method under consideration, the

cost of any implicit solvers at either time scale, the desired solution accuracy, and even the

relative computational cost of evaluating the slow and fast right-hand side functions, f {S}

and f {F}. Furthermore, even these optimal values of Hn and Mn will vary as functions of

time throughout the simulation, particularly for nontrivial multirate problems.

In this work, we define the optimal cost as the minimal number of f {S} and f {F} evalu-

ations required to reach the end of the time interval, where each step results in local error

estimates that achieve the chosen tolerance, and with each step locally optimal with respect

to a prescribed computational efficiency measurement. For the sake of simplicity, we define

this efficiency measurement as

efficiency =
Hn

cost
, (A.1)

cost = slowWeight · f {S}
evals + f

{F}
evals, (A.2)

where f
{S}
evals and f

{F}
evals are the total number of f {S} and f {F} evaluations for the multirate

time step, respectively. Here, “slowWeight” provides a problem-specific factor that encodes

the relative costs of f {S} and f {F}. We note that for any given simulation, this value could

itself depend on numerous un-modeled factors, such as the IVP under consideration, its

numerical implementation, and even the computational hardware. However, irrespective of
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the “slowWeight” value used, for a given slow step size Hn, a method that results in a smaller

overall “cost” corresponds with increased efficiency.

We chose the definitions (A.1)-(A.2) because, in the goal of achieving the cheapest possi-

ble solve of a given IVP to a given tolerance, we want as large of step sizes as possible, and

as small of costs as possible. If a step is rather expensive, e.g. if the value of Mn is high,

the step can still achieve a high efficiency if the step size was large. Eventually, once the

errors arising from the fast time scale are sufficiently small for a given method or problem,

additional increases to Mn will not improve the overall accuracy and will thereby lead to

decreased efficiency. Similarly, Hn will be bounded from above due to accuracy considera-

tions, and although decreasing Hn below this bound may allow for a smaller Mn, the overall

efficiency could decrease.

With these definitions in place, our approach to find the optimal set of H-M pairs is

shown in pseudocode representation in Algorithms 1 and 2. This is essentially a brute-force

mechanism to rigorously determine the best-case values for multirate adaptivity algorithms.

The function “ComputeReferenceSolution” is a black box that computes the reference solu-

tion at a desired time ti +H and is assumed to be more accurate than the “ComputeStep”

function. The function “ComputeStep” is a black box function that takes one step with the

given method from ti to ti +H and returns the total slow and fast function calls, the error

in the step’s solution, and the solution itself. For a given IVP, initial condition, and initial

time, the algorithm iterates over increasing values of the integer multirate ratio Mn and uses

the given multirate method to find the maximal step size Hn for each Mn which gives an

error close to the chosen tolerance via a binary search process, stopping when the interval

width is smaller than a relative tolerance Htol of the midpoint of the interval. Once the

efficiency from increasing Mn decreases below some relative tolerance effrtol of the maximum

so far found, the solution is moved forward based on the most efficient (Hn,Mn) pair and

repeats, iterating until the algorithm reaches the end of the given time window [t0, tf ].
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Algorithms 1 and 2 are rather costly and the results from one run are specific to the

IVP, method, and other parameters. For consistency, we always run the algorithm with the

parameters slowWeight = 10, Hfine = 10−10, Htol = 10−5, Hinterval = 10−1, Mmax iter = 400,

Mmin iter = 10, effrtol = 10−1, and a sixth order explicit RK method [60] with small time

steps for reference solutions. We further note that the resulting “optimal” total f {S} and

f {F} evaluations across each most efficient step found by this algorithm achieve a cost that

is nearly impossible for a time adaptivity controller to reach in practice, and should thus be

considered a best possible scenario.
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Result: Optimal H array Hopt, Optimal M array Mopt, Total f
{S} evaluations f

{S}
opt ,

Total f {F} evaluations f
{F}
opt .

Given an IVP, multirate method, error tolerance tol, weight factor slowWeight,
initial condition y0, time interval {t0, tf}, minimum step Hfine, binary search H
tolerance Htol, binary search H interval width Hinterval, M maximum Mmax iter, M
minimum Mmin iter, and relative efficiency tolerance effrtol:;

f
{S}
opt ← 0, f

{F}
opt ← 0, i← 0, t← t0, yi ← y0;

while t+Hfine < tf do

empty Harray, Marray, effarray, f
{S}
evals,array, f

{F}
evals,array, yarray;

M ← 1;
while M < Mmax iter do

H, eff, f
{S}
evals, f

{F}
evals, ytemp ← FindH(IVP, method, tol, slowWeight, y, t,

Hfine, Mnew, Htol, Hinterval);

if effarray .max() - eff

effarray .max()
> effrtol and M > Mmin iter then

break;
else

Marray.append(M);
Harray.append(H);
effarray.append(eff);

f
{S}
evals,array.append(f

{S}
evals);

f
{F}
evals,array.append(f

{F}
evals);

yarray.append(ytemp)
end

end
opt idx←effarray.indexOf(effarray.max());
Hopt.append(Harray[opt idx]);
Mopt.append(Marray[opt idx]);

f
{S}
opt ← f

{S}
opt + f

{S}
evals,array[opt idx]

f
{F}
opt ← f

{F}
opt + f

{F}
evals,array[opt idx]

t← t+Harray[opt idx];
y ← yarray[opt idx];

end
Algorithm 1: Optimal H-M Search Algorithm
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Result: Maximal step size H giving error close to tol, efficiency of computation eff
using step size H, number of f {S} evaluations f

{S}
evals, number of f {F}

evaluations f
{F}
evals, computed solution yi+1 using step size H.

Given an IVP, multirate method, error tolerance tol, weight factor slowWeight,
initial condition yi, initial time ti, minimum step Hfine, multirate factor M , binary
search H tolerance Htol, and binary search H interval width Hinterval:;
yref ← ComputeReferenceSolution(IVP, yi, ti, Hfine);

err, f
{S}
evals, f

{F}
evals, yi+1 ← ComputeStep(IVP, method, yi, ti, Hmid, M , yref );

cost← slowWeight · f {S}
evals + f

{F}
evals;

eff ← H/cost;
if err < tol then

Hright ← 0;
while err < tol and ti +Hright < tf do

Hleft ← Hright;
Hright ← min(Hright +Hinterval, tf − ti);
Hmid ← 1

2
(Hleft +Hright);

yref ← ComputeReferenceSolution(IVP, yi, ti, Hright);

err, f
{S}
evals, f

{F}
evals, yi+1 ← ComputeStep(IVP, method, yi, ti, Hright, M , yref );

cost← slowWeight · f {S}
evals + f

{F}
evals;

eff ← H/cost;
n← n+ 1;

end
if err > tol then

while (Hright −Hleft)/Hmid > Htol do
Hmid ← 1

2
(Hleft +Hright);

yref ←ComputeReferenceSolution(IVP, yi, ti, Hright);

err, f
{S}
evals, f

{F}
evals, yi+1 ← ComputeStep(IVP,method,yi, ti, Hmid,M, yref );

cost← slowWeight · f {S}
evals + f

{F}
evals;

eff ← H/cost;
if err ≤ tol then

Hleft ← Hmid;
else

Hright ← Hmid;
end

end
H ← Hleft

else
H ← Hright

end

else
Failure (Hfine was insufficiently small).;

end
Algorithm 2: FindH Algorithm
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Appendix B

B.1. IMEX-MRI-SR2(1) Coefficients

c{S} =



0

3
5

4
15

1


, Ω{0} =



0 0 0 0

3
5

0 0 0

14
165

2
11

0 0

−13
54

137
270

11
15

0

−1
4

1
2

3
4

0



, Γ =



0 0 0 0

−11
23

11
23

0 0

− 6692
52371

−18355
52371

11
23

0

11621
90666

−215249
226665

17287
50370

11
23

−31
12

−1
6

11
4

0



. (B.1)

B.2. IMEX-MRI-SR3(2) Coefficients

c{S},T =

[
0 23

34
4
5

17
15

1

]
, (B.2a)
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Ω{0} =



0 0 0 0 0

23
34

0 0 0 0

71
70

− 3
14

0 0 0

124
1155

4
7

5
11

0 0

162181
187680

119
1380

11
32
− 5

17
0

76355
74834

−46
31

67
34
−36

71
0



, (B.2b)

Ω{1} =



0 0 0 0 0

0 0 0 0 0

−14453
63825

14453
63825

0 0 0

−2101267877
1206582300

−2476735438
301645575

−13575085
2098404

0 0

−762580446799
588660102960

11083240219
4328383110

−211274129
100368304

89562055
106641323

0

−3732974
2278035

13857574
2278035

−52
9

4
3

0



(B.2c)
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Γ =



0 0 0 0 0

−4
7

4
7

0 0 0

−2707004
3127425

919904
3127425

4
7

0 0

852879271
703839675

−1575000496
703839675

5
11

4
7

0

43136869
2019912118

− 73810600
1009956059

−17653551
87822266

−13993902
43911133

4
7

− 179
4140

799
14490

1
14

− 1
12

0



(B.2d)

B.3. IMEX-MRI-SR4(3) Coefficients

c{S},T =

[
0 1

4
3
4

11
20

1
2

1 1

]
, (B.3a)
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Ω{0} =



0 0 0 0 0 0 0

1
4

0 0 0 0 0 0

9
8

−3
8

0 0 0 0 0

187
2340

7
9

− 4
13

0 0 0 0

64
165

1
6

−3
5

6
11

0 0 0

1816283
549120

−2
9
− 4

11
−1

6
−2561809

1647360
0 0

0 7
11
−2203

264
10825
792

−85
12

841
396

0

1
400

49
12

43
6

− 7
10

−85
12

−2963
1200

0



(B.3b)

Ω{1} =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

−11
4

11
4

0 0 0 0 0

−1228
2925

− 92
225

808
975

0 0 0 0

−2572
2805

167
255

199
136

−1797
1496

0 0 0

−1816283
274560

253
36

−23
44

76
3

−20775791
823680

0 0

0 107
132

1289
88

−9275
792

0 −371
99

0

− 1
200

−137
24
−235

16
1237
80

0 2963
600

0



(B.3c)
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Γ =



0 0 0 0 0 0 0

−1
4

1
4

0 0 0 0 0

1
4

−1
2

1
4

0 0 0 0

13
100

− 7
30

−11
75

1
4

0 0 0

6
85
− 301

1360
− 99

544
45
544

1
4

0 0

0 −9
4
−19

48
−75

16
85
12

1
4

0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



(B.3d)

B.4. MERK4 IMEX-MRI-SR Coefficients

We list the non-zero coefficients of the MERK5 method’s IMEX-MRI-SR formulation

below.

Ω
{0}
i,1 = c

{S}
i , i = 1, ..., s{S} (B.4)

138



Ω
{1}
3,1 = −Ω{1}

3,2 , Ω
{1}
3,2 =

c
{S}×2
3

c
{S}
2

, Ω
{1}
4,1 = −Ω{1}

4,2 , Ω
{1}
4,2 =

c
{S}×2
4

c
{S}
2

,

Ω
{1}
5,1 = −(Ω{1}

5,3 + Ω
{1}
5,4 ), Ω

{1}
5,3 = − c

{S}
4 c

{S}×2
5

c
{S}
3 (c

{S}
3 − c

{S}
4 )

, Ω
{1}
5,4 =

c
{S}
3 c

{S}×2
5

c
{S}
4 (c

{S}
3 − c

{S}
4 )

Ω
{1}
6,1 = −(Ω{1}

6,3 + Ω
{1}
6,4 ), Ω

{1}
6,3 = − c

{S}
4 c

{S}×2
6

c
{S}
3 (c

{S}
3 − c

{S}
4 )

, Ω
{1}
6,4 =

c
{S}
3 c

{S}×2
6

c
{S}
4 (c

{S}
3 − c

{S}
4 )

Ω
{1}
7,1 = −(Ω{1}

7,5 + Ω
{1}
7,6 ), Ω

{1}
7,5 = − c

{S}
6

c
{S}
5 (c

{S}
5 − c

{S}
6 )

, Ω
{1}
7,6 =

c
{S}
5

c
{S}
6 (c

{S}
5 − c

{S}
6 )

(B.5)

Ω
{1}
5,1 = −(Ω{1}

5,3 + Ω
{1}
5,4 ), Ω

{1}
5,3 =

1

c
{S}
3 (c

{S}
3 − c

{S}
4 )

, Ω
{1}
5,4 = − 1

c
{S}
4 (c

{S}
3 − c

{S}
4 )

Ω
{1}
6,1 = −(Ω{1}

6,3 + Ω
{1}
6,4 ), Ω

{1}
6,3 =

1

c
{S}
3 (c

{S}
3 − c

{S}
4 )

, Ω
{1}
6,4 = − 1

c
{S}
4 (c

{S}
3 − c

{S}
4 )

Ω
{1}
7,1 = −(Ω{1}

7,5 + Ω
{1}
7,6 ), Ω

{1}
7,5 =

1

c
{S}
5 (c

{S}
5 − c

{S}
6 )

, Ω
{1}
7,6 = − 1

c
{S}
6 (c

{S}
5 − c

{S}
6 )

(B.6)

This method attains general fourth-order accuracy when

c
{S}
6 =

3− 4c
{S}
5

4− 6c
{S}
5

. (B.7)
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B.5. MERK5 IMEX-MRI-SR Coefficients

We list the non-zero coefficients of the MERK5 method’s IMEX-MRI-SR formulation

below.

Ω
{0}
i,1 = c

{S}
i , i = 1, ..., s{S} (B.8)

Ω
{1}
3,1 = −Ω{1}

3,2 , Ω
{1}
3,2 = c

{S}×2
3 α2,

Ω
{1}
4,1 = −Ω{1}

4,2 , Ω
{1}
4,2 = c

{S}×2
4 α2,

Ω
{1}
5,1 = −

(
Ω

{1}
5,3 + Ω

{1}
5,4

)
, Ω

{1}
5,3 = c

{S}×2
5 α3, Ω

{1}
5,4 = c

{S}×2
5 α4

Ω
{1}
6,1 = −

(
Ω

{1}
6,3 + Ω

{1}
6,4

)
, Ω

{1}
6,3 = c

{S}×2
6 α3, Ω

{1}
6,4 = c

{S}×2
6 α4

Ω
{1}
7,1 = −

(
Ω

{1}
7,3 + Ω

{1}
7,4

)
, Ω

{1}
7,3 = c

{S}×2
7 α3, Ω

{1}
7,4 = c

{S}×2
7 α4

Ω
{1}
8,1 = −

(
Ω

{1}
8,5 + Ω

{1}
8,6 + Ω

{1}
8,7

)
, Ω

{1}
8,5 = c

{S}×2
8 α5, Ω

{1}
8,6 = c

{S}×2
8 α6, Ω

{1}
8,7 = c

{S}×2
8 α7

Ω
{1}
9,1 = −

(
Ω

{1}
9,5 + Ω

{1}
9,6 + Ω

{1}
9,7

)
, Ω

{1}
9,5 = c

{S}×2
9 α5, Ω

{1}
9,6 = c

{S}×2
9 α6, Ω

{1}
9,7 = c

{S}×2
9 α7

Ω
{1}
10,1 = −

(
Ω

{1}
10,5 + Ω

{1}
10,6 + Ω

{1}
10,7

)
, Ω

{1}
10,5 = c

{S}×2
10 α5, Ω

{1}
10,6 = c

{S}×2
10 α6, Ω

{1}
10,7 = c

{S}×2
10 α7

Ω
{1}
11,1 = −

(
Ω

{1}
11,8 + Ω

{1}
11,9 + Ω

{1}
11,10

)
, Ω

{1}
11,8 = α8, Ω

{1}
11,9 = α9, Ω

{1}
11,10 = α10

(B.9)
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where

α2 =
1

c
{S}
2

, α3 =
c
{S}
3

c
{S}
3 (c

{S}
4 − c

{S}
3 )

, α4 =
c
{S}
4

c
{S}
4 (c

{S}
3 − c

{S}
4 )

α5 =
c
{S}
6 c

{S}
7

c
{S}
5 (c

{S}
5 − c

{S}
6 )(c

{S}
5 − c

{S}
7 )

, α6 =
c
{S}
5 c

{S}
7

c
{S}
6 (c

{S}
6 − c

{S}
5 )(c

{S}
6 − c

{S}
7 )

,

α7 =
c
{S}
5 c

{S}
6

c
{S}
7 (c

{S}
7 − c

{S}
5 )(c

{S}
7 − c

{S}
6 )

, α8 =
c
{S}
9 c

{S}
10

c
{S}
8 (c

{S}
8 − c

{S}
9 )(c

{S}
8 − c

{S}
10 )

α9 =
c
{S}
8 c

{S}
10

c
{S}
9 (c

{S}
9 − c

{S}
8 )(c

{S}
9 − c

{S}
10 )

, α10 =
c
{S}
8 c

{S}
9

c
{S}
10 (c

{S}
10 − c

{S}
8 )(c

{S}
10 − c

{S}
9 )

(B.10)

Ω
{2}
5,1 = −

(
Ω

{2}
5,3 + Ω

{2}
5,4

)
, Ω

{2}
5,3 = c

{S}×2
5 β3, Ω

{2}
5,4 = −c{S}×2

5 β4

Ω
{2}
6,1 = −

(
Ω

{2}
6,3 + Ω

{2}
6,4

)
, Ω

{2}
6,3 = c

{S}×2
6 β3, Ω

{2}
6,4 = −c{S}×2

6 β4

Ω
{2}
7,1 = −

(
Ω

{2}
7,3 + Ω

{2}
7,4

)
, Ω

{2}
7,3 = c

{S}×2
7 β3, Ω

{2}
7,4 = −c{S}×2

7 β4

Ω
{2}
8,1 = −

(
Ω

{2}
8,5 + Ω

{2}
8,6 + Ω

{2}
8,7

)
, Ω

{2}
8,5 = −c{S}×2

8 β5, Ω
{2}
8,6 = −c{S}×2

8 β6, Ω
{2}
8,7 = −c{S}×2

8 β7

Ω
{2}
9,1 = −

(
Ω

{2}
9,5 + Ω

{2}
9,6 + Ω

{2}
9,7

)
, Ω

{2}
9,5 = −c{S}×2

9 β5, Ω
{2}
9,6 = −c{S}×2

9 β6, Ω
{2}
9,7 = −c{S}×2

9 β7

Ω
{2}
10,1 = −

(
Ω

{2}
10,5 + Ω

{2}
10,6 + Ω

{2}
10,7

)
, Ω

{2}
10,5 = −c

{S}×2
10 β5, Ω

{2}
10,6 = −c

{S}×2
10 β6, Ω

{2}
10,7 = −c

{S}×2
10 β7

Ω
{2}
11,1 = −

(
Ω

{2}
11,8 + Ω

{2}
11,9 + Ω

{2}
11,10

)
, Ω

{2}
11,8 = β8, Ω

{2}
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This method satisfies all available coupling conditions (up through fourth-order) and its

base method satisfies all order conditions up through fifth-order when

c
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