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Wave turbulence theory has remained an active area of research since its inception in the

early part of the last century. In the kinetic regime, the main objects of study are the wave

kinetic equations. The breakthrough discovery of constant flux, time independent solutions

by Zakharov in the late 1960’s has allowed for the theories predictions to be verified both

experimentally and computationally in a wide array of physical systems. However, there

remain many open questions concerning the time dependent solutions of the wave kinetic

equations. In this thesis, we aim to partially address this open area of the wave turbulence

theory by providing numerical methods for the time dependent solutions of the isotropic

3-wave kinetic equations. The methods we develop herein are able to confirm previous

analysis for time dependent solutions, specifically the behavior of the energy cascade of

these solutions.
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Chapter 1

Some Wave Turbulence Theory

Wave turbulence theory (WTT) has its origins in the early to mid part of the last cen-

tury with the work of Peierls, Benney-Saffman, Hasselman, Benney-Newell, Zakharov and

many others [1–7]. An example we are all familiar with to which wave turbulence theory

(WTT) may be applied is that of a wind-driven sea. This scenario was considered by Klaus

Hasselmann, the recent Nobel laureate, in 1962-1963 [3–5] wherein one of the first formal

derivations of a wave kinetic equation (WKE) is given [3, 4]. The intent was to describe

the transfer of energy among waves on the open ocean. For more discussion than what the

present chapter provides on wave turbulence the reader is referred to the excellent review

article by Newell and Rumpf [8] as well as the recent books [9, 10].

The 3-wave kinetic equation, the protagonist of this thesis and one of the most important

classes of wave kinetic equations, reads (see [7, 11–14])

∂tf(t, p) = Q[f ](t, p),

f(0, p) = f0(p),

(1.1)

in which f(t, p) is the nonnegative wave density at wavenumber p ∈ RN , N ≥ 2; f0(p) is the

initial condition. The quantity Q[f ] describes pure resonance and is of the form

Q[f ](p) =

∫∫
R2N

[
Rp,p1,p2 [f ]−Rp1,p,p2 [f ]−Rp2,p,p1 [f ]

]
dNp1d

Np2 (1.2)

with

Rp,p1,p2 [f ] := |Vp,p1,p2|2δ(p− p1 − p2)δ(ω − ω1 − ω2)(f1f2 − ff1 − ff2)
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with the short-hand notation f = f(t, p), ω = ω(p) and fj = f(t, pj), ωj = ω(pj), for

wavenumbers p, pj, j ∈ {1, 2}. The function ω(p) is the dispersion relation of the wave

system. The 3-wave kinetic equation has a variety of applications from ocean waves, acoustic

waves, gravity capillary waves to Bose-Einstein condensates and many others (see [7,13,15–

17] and references therein).

In the isotropic case, we identify f(t, p) with f(t, ω), the isotropic 3-wave kinetic equation

can take the form (see the appendix of [18])

∂tf(t, ω) = Q[f ](t, ω), (t, ω) ∈ R+ × R+,

f(0, p) = f0(p),

(1.3)

where the collision operator is defined by

Q[f ](t, ω) =

∫ ∞

0

∫ ∞

0

[R(ω, ω1, ω2)−R(ω1, ω, ω2)−R(ω2, ω1, ω)]dω1dω2,

R(ω, ω1, ω2) := δ(ω − ω1 − ω2) [|U(ω1, ω2)|f1f2 − |U(ω, ω1)|ff1 − |U(ω, ω2)|ff2] ,
(1.4)

and U satisfies |U(ω1, ω2)| = (ω1ω2)
γ/2, in which γ is a non-negative constant which plays

an important role in the sequel. In what follows, we identify the variable k with the variable

ω as k is simply ω multiplied by a fixed constant. Starting from (4.1), we could rewrite the

3-wave kinetic equation under the following equivalent form

∂tf(t, k) = Q[f ](t, k), (t, k) ∈ R+ × R+,

f(0, k) = f0(k),

(1.5)

in which Q is the collision operator defined by

Q[f ](t, k) =

∫ k

0
[a(k1, k − k1)f(k1)f(k − k1)− a(k, k1)f(k)f(k1) − a(k, k − k1)f(k)f(k − k1)]dk1

− 2

∫ ∞

0
[a(k, k1)f(k)f(k1)− a(k + k1, k1)f(k + k1)f(k1) − a(k + k1, k)f(k)f(k1)]dk1,

(1.6)
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where the collision kernel satisfies a(k1, k2) = (k1k2)
γ/2.

To see that this is true, consider

R(ω, ω1, ω2) := δ(ω − ω1 − ω2) [|U(ω1, ω2)|f1f2 − |U(ω, ω1)|ff1 − |U(ω, ω2)|ff2] ,

R(ω1, ω, ω2) := δ(ω1 − ω − ω2) [|U(ω, ω2)|ff2 − |U(ω1, ω)|f1f − |U(ω1, ω2)|f1f2] ,

R(ω2, ω1, ω) := δ(ω2 − ω1 − ω) [|U(ω1, ω)|f1f − |U(ω2, ω1)|f2f1 − |U(ω2, ω)|f2f ] .

(1.7)

In the first and third line, apply the delta function to the ω2 integral, which sets ω2 = ω−ω1

and ω2 = ω+ω1, respectively. In the second line, apply the delta function to the ω1 integral

so that ω1 = ω+ω2. We then obtain for the first integral, considering that ω2 is constrained

to be positive

∫ ω

0

[
|U(ω1, ω − ω1)|f1f−1 − |U(ω, ω1)|ff1 − |U(ω, ω − ω1)|ff−1

]
dω1, (1.8)

where we used the notation f−1 = f(ω − ω1). The second integral is given by

∫ ∞

0

[
|U(ω, ω2)|ff2 − |U(ω + ω2, ω)|f+2f − |U(ω + ω2, ω2)|f+2f2

]
dω2, (1.9)

where f+2 = f(ω + ω2). Finally, the third integral is given by

∫ ∞

0

[
|U(ω1, ω)|f1f − |U(ω + ω1, ω1)|f+1f1 − |U(ω + ω1, ω)|f+1f

]
dω1, (1.10)

where f+1 = f(ω+ ω1). We can change variables in the second integral so that ω2 → ω1, we

then arrive at

Q[f ](t, ω) =

∫ ω

0

[
|U(ω1, ω − ω1)|f1f−1 − |U(ω, ω1)|ff1 − |U(ω, ω − ω1)|ff−1

]
dω1

−2

∫ ∞

0

[
|U(ω1, ω)|f1f − |U(ω + ω1, ω1)|f+1f1 − |U(ω + ω1, ω)|f+1f

]
dω1,

(1.11)
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which after identifying k with ω, as mentioned above, and using the definition of a(k1, k2)

provided above we arrive at the collision operator (4.3).

Zakharov and Filonenko 1967 [7] were able to derive analytically constant flux solutions

to the wave kinetic equation describing capillary wave systems. These solutions are now

referred to as the Kolmogorov-Zakharov solutions or K-Z spectra, which is a class of time-

independent solutions f∞ of equation (1.1):

f∞(p) ≈ C|p|−κ, κ > 0,

and have been found for many other systems [7,9,19,20]. These solutions are analogous to the

Kolmogorov 5/3 law of hydrodynamic turbulence with the important difference that the value

of κ in the weak turbulence theory is dependent upon the wave system under consideration.

The K-Z spectra describe constant flux of some conserved quantity (here, the energy density)

from low to high wavenumbers (direct cascade) and from high to low wavenumbers (inverse

cascade) within some inertial interval over the wave numbers p ∈ [pf , pd] where pf denotes

the upper bound for the forcing region and pd denotes the beginning of the dissipation region.

For these constant flux solutions, in many cases, there is some region in the wavenumber

domain where the K-Z spectra breaks down [21, 22] and ceases to be valid, attributed to a

breakdown in the weak coupling hypothesis, i.e. the assumption that the linear and nonlinear

time-scales are well separated is violated at small or large values of wavenumbers (see [23]).

Research in accordance with these stationary solutions has actively continued to the

present. Its predictions have been verified numerically and experimentally [24, 25], and ap-

plications have been found in weather forecasting, climate modeling, magnetohydrodynamics

and gravitational waves [26–29] as well as in local field potential recordings in the hippocam-

pus [30].
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However, in absence of forcing and dissipation, the K-Z solution scaling is only expected

for infinite capacity systems, e.g. for a forward cascade process such systems that the energy

integral
∫
ω(p)f∞(p)dp diverges at infinite p. In the opposite case of finite capacity systems,

again using the forward cascade process as an example, the energy integral converges at

p = ∞, indicating only a finite amount of energy can be contained by the system under

consideration. It has been argued that once that capacity is met, a sink ”opens up” at

p = ∞ to absorb the extra energy [21] in some finite time t∗ which destroys conservation of

the energy density. This means that for finite capacity systems, energy conserving solutions

are only local in time. In the paragraphs to come discussing time-dependent solutions to

(4.1), we call this time, t∗, the blow-up time.

Beyond constant flux solutions, comparatively little has been done on the time-dependent

solutions of (1.1). Connaughton and co-authors [18, 31, 32] designed numerical experiments

to investigate the isotropic 3-wave equation. In [18], it was pointed out that isotropic 3-wave

kinetic equations are equivalent to mean field rate equations for an aggregation-fragmentation

problem which possesses an unusual fragmentation mechanism. A numerical method for

solving isotropic 3-wave kinetic equations, with forcing and dissipation present, was also

introduced in the same work.

The global existence of 3-wave kinetic equations for capillary wave systems in the presence

of forcing has been done in [33]. An important work [34] by Gamba et. al. considers the

global existence and uniqueness of strong solutions of 3-wave kinetic equations with near

resonance conditions, which was inspired by earlier work of the same authors [35] and the

related important works [36–41]. An interesting connection to chemical reaction networks

was also pointed out in [42].

In [43], Soffer and Tran show that, the energy conserved time-dependent solutions of (4.1),

in the finite capacity case (with γ > 1 in equation (4.1) and, equivalently (4.2)), exhibit the

property that the energy is cascaded from small wavenumbers to large wavenumbers. They
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show that for a regular initial condition whose energy at infinity, ω = ∞, is initially 0, as

time evolves, the energy is gradually accumulated at {ω = ∞}. In the long time limit, all

the energy of the system is concentrated at {ω = ∞} and the energy function becomes a

Dirac function at infinity Eδ{ω=∞}, where E is the total energy. To be more precise, let us

define the energy of the solution (4.1) as g(t, ω) = ωf(t, ω). It has been proved in [43] that

g can be decomposed into two parts

g(t, ω) = ḡ(t, ω) + g̃(t)δ{ω=∞}, (1.12)

where ḡ(t, ω) ≥ 0 is the regular part, which is a function, and g̃(t)δ{ω=∞}, is the singular

part, which is a measure. The function g̃(t) is non-negative. Initially, ḡ(0, ω) = g(0, ω) and

g̃(0) = 0. But, there exists a blow-up time t∗1, such that for all time t > t∗1, the function

g̃(t) is strictly positive. Moreover, starting from time t∗1, there exists infinitely many blow-up

times

0 < t∗1 < t∗2 < · · · < t∗n < · · · , (1.13)

such that

ḡ(t∗1, ω) > ḡ(t∗2, ω) > · · · > ḡ(t∗n, ω) > · · · → 0, (1.14)

and

0 < g̃(t∗1) < g̃(t∗2) < · · · < g̃(t∗n) < · · · (1.15)

The phenomenon has been explained in [43] that, after the first blow-up time, t∗1, the en-

ergy starts to transfer from the regular part ḡ(t, ω) to the singular part g̃(t)δω=∞ at a rate

at least like O( 1√
t
), while the total energy of the two regular and singular parts is still

conserved. This decay rate has been obtained in item (iii) of the main theorem of [43]

(Theorem 10, pages 22-45), which states as follows. The energy cascade has an explicit rate∫
{|p|=∞} f(t, |p|)ω|p||p|2dµ(|p|) ≥ C1 − C2√

t
, where C1 and C2 are explicit constants. Item
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(iii) of the main theorem states that the total energy is accumulated at the point {∞} with

the rate O( 1√
t
).

In the limit that t → ∞, all of the energy will be accumulated to the singular part

g̃(t)δω=∞, while the regular part will vanish, ḡ(t, ω) → 0. This means if we look for a strong

(non-measured) solution, whose energy is conserved, it can only exist up to a very short time

t = t∗1, at which point it exhibits singular behavior. As a result, we refer to time t∗1 as the

first blow-up time. Let χ[0,R](ω) be a cut-off function of ω on the finite domain [0, R], the

multiple blow-up time phenomenon (1.12)-(1.13)-(1.14)-(1.15), with the decay rate O( 1√
t
),

can be observed equivalently as the decay of the total energy on any finite interval [0, R]

∫ R

0

g(t, ω)dω =

∫
R+

χ[0,R](ω)g(t, ω)dω ≤ O
( 1√

t

)
, (1.16)

as t → ∞, for all truncation parameters R > 0. Inequality (1.16) simply means that the

energy of the solution will move away from any truncated finite interval [0, R] as t → ∞

with the rate O
(

1√
t

)
. We validate this in chapter 2.

It is interesting to combine the above results of [43] with more physically intuitive ar-

guments. For systems without forcing and dissipation but where an ultra-violet cut-off,

χ[0,R](ω), precludes leakage to infinite wavenumbers, the Rayleigh-Jeans spectra is the steady

state attractor ( see [23], Chapter 1). The wave entropy [44] can be defined

S[f ](t, p) =

∫
log f(t, p)χ[0,R](ω)dp, (1.17)

which if we maximize subject to the constraint that
dE
dt

= 0, with λ a multiplier, we get

max
f

S[f ](t, p) = max
f

{∫
log f(t, p)χ[0,R](ω)dp− λ

∫
ω(p)f(t, p)χ[0,R](ω)dp

}
. (1.18)
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Then taking the variation of (1.17) with the constraint gives

δS[f ](t, p) =

∫ [δf(t, p)
f(t, p)

− λω(p)δf(t, p)
]
χ[0,R](ω)dp (1.19)

which, setting the above to zero, gives fRJ
∞ (p) = 1

λω(p)
as the maximum entropy solution.

The Rayleigh-Jeans spectrum corresponds to an equipartition of the energy, so that as R →

∞, Eχ[0,R] → 0 [45]. However, unlike the rigorous analysis presented in [43], this formal

argument, while adding some physical intuition, we can say nothing about the rate at which

the energy goes to zero, only that in a microcananical wave system we expect to reach

thermal equilibrium. On the other hand, to be fully understood, the arguments put forth

in [43] require a modification of the wave kinetic theory, since it is expected that the wave

kinetic equation is only relevant for some finite range of the wavenumber domain (see remark

1.2 page 8 of [43]).

With the above discussion in mind, we are now in a position to state the main contri-

butions of this thesis. First, we wish to consider time-dependent solutions of (4.1) with the

only assumption on the solution being that the energy is constant over the extended real

line. To this end, in chapter 2 we derive a new identity for the energy density, a conserved

quantity for 3-WKEs. This new identity will allow us to use well-known numerical meth-

ods for conservation laws to obtain solutions to (4.2). Therefore, we derive a finite volume

scheme based on the new identity. The solutions thus obtained are used to validate the

theory discussed above, originally put forth in [43]. We provide a CFL type condition for

the finite volume scheme in addition to experimental order of convergence tests. The results

obtained provide many new lines of inquiry for the analyst of 3-WKEs.

In chapter 3, we provide an alternative numerical method for the Smoluchowski co-

agulation equation and the 3-WKE. Specifically, we derive a deep learning framework to

approximate the solutions to these equations. For the 3-WKE, the obtained solutions also
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appear to conform to the theory provided in [43] and are consistent with solutions obtained

via the finite volume method of the previous chapter.

Some preliminary results of a forthcoming work studying an inverse problem are given

in chapter 4. Here, given an initial condition for the wave-action, data for a single point

in time later and some definition of the collision operator, we can first solve an inverse

problem to approximate the interaction kernel and from there reconstruct the solution for

the wave-action in some time interval t ∈ [0, T ].

In chapter 5, we provide more results of a forthcoming work in which a Residual Distri-

bution method is developed for the 3-wave kinetic equation. It is shown that this method

is a generalization of the finite volume method of chapter 2 and indeed zeroth order spatial

discretizations reproduce the finite volume solutions.

We conclude in chapter 6 and give some comments on future directions of research and

provide some details on ongoing work. A short discussion on transient spectra is provided.

The results of the finite volume method in chapter 2 provide a few avenues for the analyst

to travel, which we highlight. Finally, we give some comments on open directions provided

by the deep learning scheme in chapter 3.

Lastly, we provide an appendix 7 which contains enough background on the deep learning

methods employed in chapter 3 to make the thesis self-contained.
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Chapter 2

Finite Volume Methods for Isotropic 3-Wave Kinetic Equations

Scientific Product: Walton, Tran. A numerical scheme for wave turbulence: 3-wave

kinetic equations, SIAM Journal on Scientific Computing (to appear).

2.1. Introduction

The goal of the present chapter is to derive a finite volume scheme that allows us to

observe the time evolution of the solutions of (4.2) and to verify the theoretical results

of [43] for various values of γ > 1. In other words, we aim to observe the transferring of

energy from the regular to the singular part in (1.12) and to measure precisely the rate of

this energy transfer process via the inequality (1.16), that we call the energy cascade rate.

The finite volume scheme derived below relies on the combination of a new energy identity

represented in Lemma 2.1 and an adaptation of Filbet and Laurençot’s scheme [46] for the

Smoluchowski coagulation equation to the 3-wave kinetic equation. Most numerical schemes

that approximate integrals on an unbounded domain require the truncation of the unbounded

domain to a finite domain. Thanks to the new identity, the number of terms in the collision

operator is reduced, reducing the number of truncations needed in the approximation, making

the scheme more accurate and reliable. Indeed, we only need to truncate one term in our

numerical scheme. Let us comment that the CFL condition is restrictive in certain cases.

For other types of equations, the issue of positivity and accurate long-time behavior could be

resolved with using the implicit in time discretizations. For instance, a structure preserving

scheme has been designed for the Kolmogorov Fokker Planck equation, which is an equation

of degenerate parabolic type in the work [47].
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The advantage of degenerate parabolic type equations is that those equations are nor-

mally local while the 3-wave kinetic equation considered here is highly non-local. There-

fore, the previous strategies for parabolic equations, such as the one used for the above

Kolmogorov-Fokker-Planck equation, do not immediately carry over to the current 3-wave

kinetic equation. We do not attempt to treat an implicit or IMEX time integration method

in this thesis.

2.2. A New Identity for the Energy Density

In [46], Filbet and Laurençot derive a finite volume scheme (FVS) for the Smoluchowski

coagulation equation (SCE)

∂tf(t, k) = QSmo[f ](t, k),

f(0, k) = f0(k),

(2.1)

QSmo[f ](t, k) =

∫ k

0

a(k1, k − k1)f(k1)f(k − k1)dk1 − 2

∫ ∞

0

a(k, k1)f(k)f(k1)dk1, (2.2)

where a(·, ·) is the collision kernel for the 3-wave collision operator (4.3). Let us give a short

derivation of the non-conservative form of the SCE (see [48], [49], [46] and the references

therein).

Take a test function ϕ(k) = kχ[0,c](k) and apply it to the SCE∫ c

0
∂tf(t, k)kdk =

∫ c

0

∫ k

0
a(k, k − k1)f(k1)f(k − k1)kdk1dk

− 2

∫ c

0

∫ ∞

0
a(k, k1)f(k)f(k1)kdk1dk

= 2

∫ c

0

∫ c−k

0
a(k, k1)f(k)f(k1)kdk1dk

− 2

∫ c

0

∫ ∞

0
a(k, k1)f(k)f(k1)kdk1dk.

(2.3)

Rearranging the right-hand side, we find

∫ c

0

∂tf(t, k)kdk = −2

∫ c

0

∫ ∞

c−k

a(k, k1)f(k1)f(k)kdk1dk,

11



and upon taking the derivative with respect to c,

∂tf(t, c)c = −2∂c

∫ c

0

∫ ∞

c−k

a(k, k1)f(k1)f(k)kdk1dk,

and, after truncating the inner integral, we arrive at

∂tf(t, c)c = −2∂c

∫ c

0

∫ R

c−k

a(k, k1)f(k1)f(k)kdk1dk, (2.4)

where R is a suitable truncation of the volume domain. Then, one can apply any finite

volume scheme to solve the truncated problem. We note briefly that the choice of R can

effect the accuracy and efficiency of the scheme for the SCE. For example, when considering

the case of gelation, R must be quite large in order to avoid a loss of mass before the gelation

time. Also, in [50], the authors compare the FVS above with a finite element approximation

and find that for smaller truncation values, the finite element scheme is a better choice, while

for larger truncation values the FVS should be used.

If we compare equation (4.3) with equation (4.5), we see that the Smoluchowski coag-

ulation equation is a special case of the 3-wave equation. Thus, we would like to adapt

the (FVS) of Filbet and Laurençot to derive a numerical scheme for the 3-wave equation.

To do this we derive a similar identity to (2.4) for the wave kinetic equation. The role of

this identity is to reduce the number of terms in the collision operator. As discussed pre-

viously, the truncation of the terms in the collision operator can affect the accuracy of the

numerical scheme, thus reducing the number of truncated terms is crucial in the numerical

computations of the solutions, as it allows the scheme to be more accurate and reliable.

However, for the 3-wave equation the wave density, f(t, k), is not conserved, but the

energy, g(t, k) = kf(t, k), is conserved and so we solve for the energy. What’s more, since

we do not have an analytic solution to test against, we validate our scheme by verifying
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the energy cascade rate for the 3-wave equation found in Soffer and Tran [43] and discussed

above.

Lemma 2.1. The following identity holds true for the energy function g(t, k)

∂t
g(t, c)

c
= − 2∂c

∫ c

0

∫ c

0

a(k, k1)
g(k)

k

g(k1)

k1
χ{c < k + k1}dk1dk

+ ∂c

∫ ∞

0

∫ ∞

0

a(k, k1)
g(k)

k

g(k1)

k1
χ{c < k + k1}dkdk1,

(2.5)

with χ{ · } the characteristic function and initial condition g(0, k) = g0(k) = kf(0, k).

Proof. Let ϕ(k) be a test function. From [43], we have the following identity for the 3-wave

equation

∫ ∞

0

∂tf(t, k)ϕ(k)dk =

∫ ∞

0

∫ ∞

0

a(k, k1)f(k)f(k1)[ϕ(k+k1)+ϕ(|k−k1|)−2ϕ(max{k, k1})]dkdk1.

(2.6)

If we choose ϕ(k) = χ[0,c](k) (compare this with ϕ(k) = kχ[0,c](k) in [46]), we have

∫ ∞

0

∂tf(t, k)χ[0,c](k)dk =∫ ∞

0

∫ ∞

0

a(k, k1)f(k)f(k1)[χ[0,c](k + k1) + χ[0,c](|k − k1|)− 2χ[0,c](max{k, k1})]dkdk1.

(2.7)

Set K(k, k1) = χ[0,c](k + k1) + χ[0,c](|k − k1|)− 2χ[0,c](max{k, k1}). There are seven cases:

i Assume k+k1 ≤ c then we have χ[0,c](k+k1) = 1, χ[0,c](|k−k1|) = 1 and χ[0,c](max{k, k1}) =

1 which implies that K(k, k1) = 0.

ii Assume that k + k1 > c but k ≤ c and k1 ≤ c Then we have χ[0,c](k + k1) = 0,

χ[0,c](|k − k1|) = 1, χ[0,c](max{k, k1}) = 1 and so K(k, k1) = −1.

iii Now let k + k1 > c, k ≤ c but k1 > c then χ[0,c](k + k1) = 0, χ[0,c](|k − k1|) = 1, and

χ[0,c](max{k, k1}) = 0 giving K(k, k1) = 1.
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iv Assume k + k1 > c, with k > c and k1 ≤ c and |k − k1|> c, then χ[0,c](k + k1) = 0,

χ[0,c](|k − k1|) = 0, χ[0,c](max{k, k1}) = 0 leaving K(k, k1) = 0.

v Assume k + k1 > c, with k > c and k1 ≤ c and |k − k1|≤ c, then χ[0,c](k + k1) = 0,

χ[0,c](|k − k1|) = 1, χ[0,c](max{k, k1}) = 0 leaving K(k, k1) = 1.

vi Lastly, set k + k1 > c, k > c, k1 > c, and |k − k1|> c, then χ[0,c](k + k1) = 0,

χ[0,c](|k − k1|) = 0 and χ[0,c](max{k, k1}) = 0 resulting in K(k, k1) = 0.

vii Lastly, set k + k1 > c, k > c, k1 > c, and |k − k1|≤ c, then χ[0,c](k + k1) = 0,

χ[0,c](|k − k1|) = 1 and χ[0,c](max{k, k1}) = 0 resulting in K(k, k1) = 1.

Applying these computations to (2.7) and after taking the derivative as done for (2.4),

we have

∂tf(t, c) = − ∂c

∫ ∞

0

∫ ∞

0

a(k, k1)f(k)f(k1)χ{c < k + k1}χ{k ∧ k1 ≤ c}dk1dk

+ ∂c

∫ ∞

0

∫ ∞

0

a(k, k1)f(k)f(k1)χ{c < k + k1}χ{k ∧ k1 > c}dkdk1,
(2.8)

which gives,

∂tf(t, c) = − 2∂c

∫ c

0

∫ c

0

a(k, k1)f(k)f(k1)χ{c < k + k1}dk1dk

+ ∂c

∫ ∞

0

∫ ∞

0

a(k, k1)f(k)f(k1)k1χ{c < k + k1}dkdk1,
(2.9)

yielding (2.5).

With the identity (2.5) in hand, we now derive a finite volume scheme with which to

solve it. Note that with (2.5), we only need to truncate a single term, while with the original

formula (4.3), we are required to truncate three terms.
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2.3. Finite Volume Scheme

We give a discretization for the frequency domain for k ∈ [0, R]. Let i ∈ {1, 2, . . . ,M} =

IMh , with the maximum stepsize h ∈ (0, 1) fixed. We define the set of cells K =
⋃

i∈IMh
Ki =

[0, R] to be the discretization of the wavenumber domain into M cells. Let

Ki = [ki−1/2, ki+1/2)i∈IMh , {ki}i∈IMh =
ki+1/2 + ki−1/2

2
, {hi}i∈IMh = ki+1/2 − ki−1/2,

define the cells, pivots and step-size respectively, with the boundary nodes k1/2 = 0 and

kM+1/2 = R. Note that the discretization does not require a uniform grid, but does restrict

the step-size in each cellKi so that hi ≤ h. In practice, it can be useful to drop the restriction

that h ∈ (0, 1), especially when using a non-uniform grid, though we leave it here to simplify

the analysis. The set TN = {0, . . . , T} with N + 1 nodes, where T is the maximum time, is

the discretization of the time domain. We fix the time step to be ∆t = T
N
, and denote by

tn = ∆t · n for n ∈ {0, . . . , N}. We approximate equation (2.5) with

gn+1(ki) = gn(ki) + λi

(
Qn

i+1/2

[g
k

]
−Qn

i−1/2

[g
k

])
, (2.10)

where λi =
ki∆t
hi

, and

Qn
i+1/2

[g
k

]
−Qn

i−1/2

[g
k

]
= −2

(
Qn

1,i+1/2

[g
k

]
−Qn

1,i−1/2

[g
k

])
+
(
Qn

2,i+1/2

[g
k

]
−Qn

2,i−1/2

[g
k

])
,

with

Qn
1,i+1/2

[g
k

]
=

i∑
m=1

hm
gn(km)

km

(
i∑

j=1

hj
gn(kj)

kj
a(km, kj)χ

{
ki+1/2 < km + kj

})
, (2.11)
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Qn
2,i+1/2

[g
k

]
=

M∑
m=1

hm
gn(km)

km

(
M∑
j=1

hj
gn(kj)

kj
a(km, kj)χ

{
ki+1/2 < km + kj

})
, (2.12)

where we have used the midpoint rule to approximate the integrals in equation (2.5) and we

choose an explicit time stepping method.

We will be interested in computing the moments of our solution. We approximate the

ℓ-th moment, Mℓ(tn), by

Mℓ(tn) =
M∑
i=1

hig
n(ki)k

ℓ
i , (2.13)

with ℓ ∈ N.

The initial condition g0(k) is approximated by

g0(ki) =
1

hi

∫ ki+1/2

ki−1/2

g0(k)dk ≈ g0(ki),

by again employing the midpoint rule. We have that g0(ki) ≥ 0 for all i ∈ {1, . . . ,M} since

g0(k) ≥ 0 for all k ∈ [0, R] by assumption. To ease notation in the proof of the following

proposition, we write gni for gn(ki) and the negative flux as

[
Qn

i

]∓
= Qn

i−1/2

[g
k

]
−Qn

i+1/2

[g
k

]
, (2.14)

so that the forward Euler scheme becomes gn+1
i = gni −λi

[
Qn

i

]∓
. Let us analyze the collision

operator (2.14). For the moment, we leave (2.14) in continous form but will apply the same

16



midpoint approximation when appropriate. Then we have

[
Qn

i

]∓
=

(
2

∫ ki+1/2

0

∫ ki+1/2

0

gn1 g
n
2 (k1k2)

γ/2−1χ
{
ki+1/2 < k1 + k1

}
dk2dk1

−
∫ R

0

∫ R

0

gn1 g
n
2 (k1k2)

γ/2−1χ
{
ki+1/2 < k1 + k1

}
dk2dk1

)

−

(
2

∫ ki−1/2

0

∫ ki−1/2

0

gn1 g
n
2 (k1k2)

γ/2−1χ
{
ki−1/2 < k1 + k1

}
dk2dk1

−
∫ R

0

∫ R

0

gn1 g
n
2 (k1k2)

γ/2−1χ
{
ki−1/2 < k1 + k1

}
dk2dk1

)

= (I− II)− (III− IV),

(2.15)

with gni = gn(ki) for i = 1, 2. We may decompose the integrals above so that

I = 2

∫ ki−1/2

0

∫ ki−1/2

0

gn1 g
n
2 (k1k2)

γ/2−1χ
{
ki+1/2 < k1 + k1

}
dk2dk1

+2

∫ ki−1/2

0

∫ ki+1/2

ki−1/2

gn1 g
n
2 (k1k2)

γ/2−1χ
{
ki+1/2 < k1 + k1

}
dk2dk1

+2

∫ ki+1/2

ki−1/2

∫ ki−1/2

0

gn1 g
n
2 (k1k2)

γ/2−1χ
{
ki+1/2 < k1 + k1

}
dk2dk1

+2

∫ ki+1/2

ki−1/2

∫ ki+1/2

ki−1/2

gn1 g
n
2 (k1k2)

γ/2−1χ
{
ki+1/2 < k1 + k1

}
dk2dk1

= 2

∫ ki−1/2

0

∫ ki−1/2

0

gn1 g
n
2 (k1k2)

γ/2−1χ
{
ki+1/2 < k1 + k1

}
dk2dk1

+4

∫ ki+1/2

ki−1/2

∫ ki−1/2

0

gn1 g
n
2 (k1k2)

γ/2−1χ
{
ki+1/2 < k1 + k1

}
dk2dk1

+2

∫ ki+1/2

ki−1/2

∫ ki+1/2

ki−1/2

gn1 g
n
2 (k1k2)

γ/2−1χ
{
ki+1/2 < k1 + k1

}
dk2dk1,

(2.16)

17



and similar decompositions may be performed on II, III and IV, which, leaving out the

gn1 g
n
2 (k1k2)

γ/2−1 integrands to simplify the expressions, gives[
Qn

i

]∓
= 2

∫ ki−1/2

0

∫ ki−1/2

0

(
χ
{
ki+1/2 < k1 + k1

}
− χ

{
ki−1/2 < k1 + k1

})
dk2dk1

+

∫ R

0

∫ R

0

(
χ
{
ki−1/2 < k1 + k1

}
− χ

{
ki+1/2 < k1 + k1

})
dk2dk1

+4

∫ ki+1/2

ki−1/2

∫ ki−1/2

0
χ
{
ki+1/2 < k1 + k1

}
dk2dk1

+2

∫ ki+1/2

ki−1/2

∫ ki+1/2

ki−1/2

χ
{
ki+1/2 < k1 + k1

}
dk2dk1,

= −2

∫ ki−1/2

0

∫ ki−1/2

0
χ
{
ki−1/2 < k1 + k1 ≤ ki+1/2

}
dk2dk1

+

∫ R

0

∫ R

0
χ
{
ki−1/2 < k1 + k1 ≤ ki+1/2

}
dk2dk1

+4

∫ ki+1/2

ki−1/2

∫ ki−1/2

0
χ
{
ki+1/2 < k1 + k1

}
dk2dk1

+ 2

∫ ki+1/2

ki−1/2

∫ ki+1/2

ki−1/2

χ
{
ki+1/2 < k1 + k1

}
dk2dk1.

(2.17)

At this point, we apply the midpoint rule to approximate the integrals which, after making

use the characteristic functions, simplifies the above to

[
Qn

i

]∓
≈ 2gni k

γ/2−1
i hi

( i∑
j=1

gnj k
γ/2−1
j hj +

i−1∑
j=1

gnj k
γ/2−1
j hj

)
−

i−1∑
j=1

gnj g
n
i−j(kjki−j)

γ/2−1hjhi−j .

(2.18)

In what follow, we will abuse notation slightly and right
[
Qn

i

]∓
when we mean its midpoint

approximation above.

We are now in a position to state the following sufficient stability condition for the time

step.

Theorem 2.2. If the time step, ∆t satisfies

∆tRγ+1∥g0∥L∞(0,R)≤
γ

16
min
i∈IMh

hi, (2.19)
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then, for all n ≥ 0 and i ∈ IMh we have gni ≥ 0, and further,

∥gn+1∥L∞(0,R)≤ C(γ)∥gn∥L∞(0,R),

with C(γ) ∈ [15
16
, 1] so that finally,

∥gn∥L∞(0,R)≤ ∥g0∥L∞(0,R), (2.20)

for all n ≥ 0.

Proof. Assume R >> 1. We will proceed by induction. Starting from the forward Euler

scheme and using [Q0
i ]

∓ as computed above we obtain

g1i = g0i

(
1/2− λi

(
2k

γ/2−1
i hi

[ i∑
j=1

g0jk
γ/2−1
j hj +

i−1∑
j=1

g0jk
γ/2−1
j hj

]))

+
1

2
g0i + λi

i−1∑
j=1

g0j g
0
i−j(kjki−j)

γ/2−1hjhi−j = φ0
i (g) + ζ0i (g).

(2.21)

Given g0i ≥ 0, ζ0i (g) is clearly positive. Then, to conclude that g1i ≥ 0 it is sufficient to have

φ0
i (g) ≥ 0 or equivalently

∆t
ki
hi

(
2k

γ/2−1
i hi

[ i∑
j=1

g0jk
γ/2−1
j hj +

i−1∑
j=1

g0jk
γ/2−1
j hj

])
≤ 1

2
. (2.22)

To this end, note that

ki

(
2k

γ/2−1
i hi

[ i∑
j=1

g0jk
γ/2−1
j hj +

i−1∑
j=1

g0jk
γ/2−1
j hj

])
≤ 4k

γ/2
i ∥g0∥L∞(0,R)∥kγ/2−1∥L1(0,R)

≤ 8

γ
Rγ+1∥g0∥L∞(0,R).

(2.23)
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For now, we provide a provisional stability condition on ∆t so that

∆tRγ+1max
ℓ≤n

{∥gℓ∥L∞(0,R)} ≤ γ

16
min
i∈IMh

hi, (2.24)

which will be seen to be equivalent to the condition (2.19) by the end of the proof. Thus,

with (2.24) setting n = 0 we have that φ0
i (g) is positive. Now, assuming gni ≥ 0, we proceed

in the same fashion. The steps are identical except that now we have the condition that

∆tRγ+1∥gn∥L∞(0,R)≤
γ

16
min
i∈IMh

hi, (2.25)

which again is satisfied by the provisional assumption on ∆t and we have by induction that

gn+1
i ≥ 0 as desired.

To show stability, let us consider ζni (g) and gives estimates for its second term. To this

end, note that

ki
hi

i−1∑
j=1

gnj g
n
i−j(kjki−j)

γ/2−1hjhi−j ≤ ki∥gn∥2L∞(0,R)

M∑
j=1

kγ−1
j hj

≤ ki
γ
Rγ∥gn∥2L∞(0,R)

≤ 1

γ
Rγ+1∥gn∥2L∞(0,R),

(2.26)

where the rearrangement inequality was used in the second line. Then, using (2.24), we

obtain

∆t
ki
hi

i−1∑
j=1

gnj g
n
i−j(kjki−j)

γ/2−1hjhi−j ≤
1

16
∥gn∥L∞(0,R) (2.27)

Once again using the assumption (2.24), we see that

gn+1
i = φn

i (g) + ζni (g) ≤ gni

(8− γ

16

)
+

1

2
gni +

1

16
∥gn∥L∞(0,R), (2.28)
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which implies that

∥gn+1∥L∞(0,R)≤
(17− γ

16

)
∥gn∥L∞(0,R)= C(γ)∥gn∥L∞(0,R). (2.29)

We see that for γ ∈ [1, 2] we have C(γ) ∈ [15
16
, 1] and thus

∥gn+1∥L∞(0,R)≤ ∥g0∥L∞(0,R), (2.30)

which gives the equivalence of condition (2.24) with (2.19).

In the following section we provide numerical results for several initial conditions, which

give evidence for the dependence of the time steps on the initial condition and truncation

parameter as demonstrated above.

2.4. Numerical Tests

As mentioned above, the KZ spectrum is not expected in our equation, in absence of

forcing and dissipation. Our numerical tests are therefore only designed to verify the blow

up phenomenon first proved in [43] as well as to confirm the energy cascade growth rate

bound O(1/
√
t) obtained in the same paper. To verify this, in any finite interval of the

wavenumber domain, we should see the total energy E , or equivalently the zeroth moment

of g(t, k), decaying like O( 1√
t
) in the interval. As (1.12)-(1.13)-(1.14)- (1.15) is equivalent

with (1.16), our numerical tests will focus on verifying (1.16).

All tests were performed on a uniform grid, with h = 0.5 in the first two test and h = 0.1

in the last two. We solve the 3-wave equation via (2.5) for four different initial conditions.

For each initial condition, we either vary the truncation parameter, R, in (1.16), and hold the

degree of the collision kernel, γ, fixed or we vary γ with R kept at a fixed value. Specifically,

for the first two initial conditions, we run tests for R = 50, 100, 200 with γ = 2 fixed or

γ = 3
2
, 9
5
, 2 with R = 100 fixed. In the last two cases, we do something similar and again run
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tests with γ = 2 fixed but set R = 25, 50, 80 and then fix R = 50 and let γ = 3
2
, 9
5
, 2. We

provide an approximation of the convergence rate for the first initial condition by comparison

of approximated solutions over succesively refined grids. In all solutions presented, we use a

second-order Runge-Kutta scheme to integrate in time.

The first few moments of the energy, g(t, k), are then computed for each set of parameters.

We find our numerical experiments to be in good agreement with [43]. We note that, as with

explicit methods for the Smoluchowski equation, the CFL condition can be very restrictive

if one wants to maintain positivity (see [51]). Similarly to schemes for other types of kinetic

equations, maintaining positivity of the numerical solutions is also an important issue in our

scheme.

We provide a condition in Proposition 2.2 that guarantees the positivity of the solutions.

Under this condition, the positivity can be preserved when we choose ∆t sufficiently small.

We observe the choice of ∆t depends on the initial data and the size of the truncated

interval. For example, in Test 1 we set ∆t = 0.05 and in Test 2 we set ∆t = 0.005, though

we perform computations with the same truncation parameter. Also, in Tests 3 and 4, as

we increase the truncation parameter from R = 50 to R = 80, we must drop the time step

from ∆t = 0.0004 to ∆t = 0.00025, respectively.

We believe that common positive preserving techniques like those developed in [52–54]

could potentially be a solution to handle this instability issue.

2.4.1. Test 1

Here we choose our initial condition to be

g0(k) = 1.26157e−50(k−1.5)2 (2.31)
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with ∆t = 0.05 for t ∈ [0, T ], T = 10000 , over a uniform grid, as mentioned previously,

with h = 0.5. The initial condition and final state, g(T, k), are plotted in Figure 2.1a and

2.1b, respectively, for γ = 2. The theory developed in [43], in which it has been proven that

as t tends to ∞, the energy g(t, k) converges to a delta function Eδ{k=∞}, applies for γ > 1.

Moreover, due to (1.16), the energy on any finite interval also goes to 0

lim
t→∞

g(t, k)χ[0,R](k) = 0. (2.32)

The two Figures 2.1a and 2.1b indeed give strong evidence for the theoretical result (2.32),

proved in [43].

The first four moments of the energy are shown in Figure 2.2 for γ = 3
2
, 9
5
, 2 and k ∈

[0, 100]. The numerical results in Figure 2.2 show that higher moments of g also decay to 0,

due to (2.32). We also see that the onset of decay happens later for smaller degree, γ. For

the zeroth moment, the curve corresponding to γ = 2 is below the curve for γ = 3/2 and

the curve for γ = 9/5. However, for the higher order moments, an interesting phenomenon

happens. The γ = 3/2 curve has a big jump when t is around 10 to 40, and it lies above the

other moments from that time on, while the γ = 2 curve is still below the γ = 9/5 curve at

longer times. While (2.32) can be used to predict what happens in the Figures 2.1, Figure

2.2 indeed needs a different theoretical explanation, which should be an interesting subject

of analysis in a follow-up paper.

We then investigate the moments for increasing values of the truncation parameter. The

first four moments of g(t, k) are plotted in Figure 2.3 with γ = 2 fixed. For this initial con-

dition, as might be expected, increasing the truncation parameter seems to have a negligible

affect on the higher moments. For the other initial conditions in the test cases that follow,

the difference is more distinguishable. When we are able to make a distinction, the decay

(2.32) seems to be slower for larger values of the truncation parameter R, though the rate of
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(a) Initial Condition (2.31). (b) Final Condition.

Figure 2.1: Test Case 1

Figure 2.2: Here, we fix R = 100 and compute the moments of the energy as a function of time
for γ = 3/2, 9/5 and 2 for initial condition (2.31).
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cascade is unaffected. Moreover, when the initial condition spreads the energy across the in-

terval, larger truncation parameters result in larger amounts of energy initially, as one might

expect, but again the cascade rate is independent of the truncation value in these cases.

This observation is consistent with the findings of [43] and can be understood as follows. As

the energy moves away from the zero frequency k = 0 and goes to the frequency k = ∞ as

time evolves, the chance of having some energy in a finite interval k ∈ [0, R] increases when

R increases.

To test convergence without an exact solution, we provide two experimental order of

convergence (EOC) tests. First, we compare step sizes h, h/2 and h/4 for R = 50 and γ = 2.

Here we run the simulation for t ∈ [0, TEOC ] with TEOC = 25 and ∆t = 0.0125 for every

choice of h. The approximate order of convergence, p, is given by [55]

p ≈ log2

( ∥gh − gh/4∥L1

∥gh/2 − gh/4∥L1

− 1
)
. (2.33)

The coarser solutions are interpolated using matlab’s built-in piecewise cubic hermite inter-

polating polynomial (pchip) interpolator. Table 2.1 summarizes the approximation of p for

each h at tmax = argmax∥gh − gh/4∥L1 .

h 0.4 0.3 0.2

p 2.5777 2.6071 2.6392

Table 2.1: Approximation of p with formula 2.33 for various h values.

Next, we approximate p by comparison with a fine grid solution, gh∗ , with h∗ = 1
80

and

∆t as before. Then we approximate p with the ratio [55]

Rh(t) =
( ∥gh − gh∗∥L1(0,R)

∥gh/2 − gh∗∥L1(0,R)

)
. (2.34)

Then, the EOC is given by p ≈ log2{Rh(TEOC)}. The results for h = 0.2, h = 0.1 are

summarized in Table 2.2.
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Figure 2.3: For γ = 2 fixed, we compute the moments of the energy with initial condition (2.31)
for truncation parameters R = 50, 100, 200.
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h 0.2 0.1

p 2.0118 2.5288

Table 2.2: Approximation of p with formula 2.33 for various h values.

A log-log plot of the errors is provided in Figure 2.4. The verification of these experiments

requires further analysis, which is the subject of a forthcoming work.

We test the decay rate of the total energy in [0,∞) obtained in [43] in Figures 2.5a and

2.5b. We give a log-log plot of the zeroth moment of g(t, k) for varying truncation parameter

with γ = 2 and with fixed truncation parameter R = 200 with varying degree against the

theoretical decay rate of the total energy in [0,∞). In [43], it has been shown that the

decay rate can be bounded by O( 1√
t
) (see (1.16)), which has very good agreement with the

numerical results, where the slope of the decay rate curve in the long time limit are quite

below the slope of the line corresponding to 1√
t
. We also compare with a rate like O(1

t
).

Here, and for the other initial conditions we consider, it would appear that the rate is like

O( 1
ts
), with s ∈ [1/2, 1], depending on the degree and the initial condition. Confirmation of

this observation requires further analysis.

2.4.2. Test 2 We next choose a Gaussian further away from the origin

g0(k) = (5π)−1/2e−(k−50/3)2/2.5 (2.35)

as our initial condition. Solutions are computed up to T = 10000 with ∆t = 0.005 and

h = 0.5. The initial condition and final state can be seen in Figure 2.6a and 2.6b, respectively.

This test is designed based on Test 1, as we are curious to see what happens if we move the

Gaussian away from zero.

In figures 2.6a and 2.6b we see that the energy is pushed slightly toward the origin at

some Ts ∈ [0, T ) to k = 11.75, away from its initial concentration at k = 16.667 at t = 0.
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Figure 2.4: Log-log plot of the error between coarse and fine grid solutions.

(a) (b)

Figure 2.5: (a) Rate of decay of the total energy, corresponding to initial condition (2.31) with
degree γ = 2, allowing R to vary. The theoretical cascade rate is shown for comparison. (b) Rate
of decay of the total energy corresponding to the initial condition (2.31) with theoretical cascade
rate plotted for comparison.
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(a) Initial Condition (b) Final Condition

Figure 2.6: Test Case 2

From this time Ts onward, the L
∞ norm of ∥g(t, k)χ[0,R](k)∥L∞ decreases to 4.01× 10−5 for

t = 10000, maintaining its concentration at k = 11.75. This indicates the energy cascade

phenomenon does happen and happens in a very special way. An analysis then needs to be

done to explain this long time behavior of the solution.

In Figure 2.7, we give results for the computation of the first few moments of the energy

when allowing the degree to vary while holding the truncation value fixed. We notice a

similar behavior as in the previous test case.

The moment calculations are performed with γ = 2 fixed and varying truncation pa-

rameter. The results are plotted in Figure 2.8. In contrast to Figure 2.3, the difference in

moments is more distinguishable. However, as already mentioned, this is consistent with

the previous analysis in [43], being that the chance of finding energy in a larger frequency

interval is higher.

The theoretical decay rate is compared with the decay of total energy for all considered

values of γ and R = 100 in Figure 2.9b. As in Test 1, the numerical results have a good

agreement with the theoretical findings of [43]. It appears that the decay is more like O(1
t
),

which is bounded by O( 1√
t
) as shown in (1.16). We also compare the theoretical cascade
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Figure 2.7: Here, we fix R = 100 and compute the moments of the energy as a function of time
for γ = 3/2, 9/5, 2 with initial condition (2.31).

Figure 2.8: Moments of g(t, k) with initial condition (2.35) and fixed degree, γ = 2, and varying
truncation parameter.
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(a) (b)

Figure 2.9: (a) Rate of decay of the total energy with varying truncation parameter
corresponding to the initial condition shown in figure 2.6a. (b) Rate of decay of the total energy
corresponding to the initial condition shown in figure 2.6a with varying degree and theoretical
rate plotted for comparison.

rate to the decay of total energy for each interval considered in Figure 2.9a.

We see that increasing the truncation parameter has no influence on the cascade rate

and blow-up times, consistent with the theory found in [43]. We notice that here and in the

previous test case, that there is also not a distinguishable difference (if any) in the amount of

energy contained in the intervals after varying the truncation parameter, which will contrast

with the next two test cases, where much more energy is available initially.

2.4.3. Test 3 Here, we consider initial data given by

g0(k) =


1 k ∈ [2nπ, (2n+ 1)π]

0 k ∈ ((2n+ 1)π, 2(n+ 1)π)

for n = 0, 1, 3, 5, . . . (2.36)

and perform test for t ∈ [0, T ] for T = 100 and ∆t = 0.0004 when R = 25 and R = 50 and

∆t = 0.00025 for R = 80. The frequency step is h = 0.1 for each interval [0, R] considered.
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In Figure 2.10a we show the initial condition and in Figure 2.10b the final state at

T = 100. In the final state, it would appear that the remaining energy in the interval is

collected near k = 0 with decreasing maximum amplitude at k = 0.05. It seems that this

profile is maintained as T → ∞, in a similar fashion to Tests 1 and 2.

We then vary the truncation parameter and show the decay of the energy for R =

25, 50, 80 in Figure 2.11a. As mentioned previously, we can now see that the amount of

energy increases with the interval size, but, importantly, the rate of decay is the same for

each truncation value.

As in the previous tests, we explore varying the degree as seen in Figure 2.11b. Here, as in

the next case, we begin to see further contrasting behaviour as compared with the previous

two test cases. We see that the smaller the value of the degree, the longer the energy is

conserved, but now, once the first blow-up time t∗1 is reached, the rate of decay is larger for

γ = 3/2, 9/5 as compared to γ = 2. To see this, we add a reference line corresponding to a

rate of decay like O(1
t
) in Figures 2.11a and 2.11b. It would appear that for smaller values

of γ, the decay rate is better described by O(1
t
), but for γ = 2, the theoretical bound O( 1√

t
)

(see (1.16)), provides an excellent description of the cascade rate.

2.4.4. Test 4 Our last test has initial data given by

g0(k) =
k − 2nπ

2π
k ∈ [2nπ, 2(n+ 1)π), (2.37)

for n ∈ N0. As in Test 3, we set h = 0.1, T = 100 and ∆t = 0.0004 when R = 25 and R = 50

but ∆t = 0.00025 for R = 80.

We again give initial and final conditions in Figures 2.12a and 2.12b, respectively. As in

Test 3, we observe that the energy is accumulated to a frequency nearer to k = 0 in some

finite time Ts, where it remains fixed with decaying L∞ norm.
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(a) Initial Condition (b) Final Condition

Figure 2.10: Test Case 3

(a) (b)

Figure 2.11: (a) Zeroth moments of solution corresponding to initial condition (2.36), with γ = 2
and allowing R to vary. (b) Decay rate for initial condition (2.36) plotted against the theoretical
rate. The red and black lines are translated to match the intersection of the moments.
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(a) Initial Condition (b) Final Condition

Figure 2.12: Test Case 4

Now fixing γ = 2 once again, we see in Figure 2.13a that varying the truncation parameter

has a similar result on the total energy as in the previous test case. By extending the interval,

we see that a larger amount of energy is retained, but that the rate of decay is equal for all

truncation values. Further, we see a good fit with the theoretical decay rate.

Next, we let γ = 3
2
, 9
5
, 2 and keep R = 50 once again, and show the zeroth moments of

these solutions in Figure 2.13b. Here, as for the previous test cases, for γ = 3/2, 9/5, we see

that the energy is conserved for a longer amount of time when compared to γ = 2. As for

the previous initial condition, it would appear that once the decay begins, the rates of decay

are faster for γ = 3/2, 9/5 than for γ = 2. We again observe that for γ = 2, the decay rate

is more like O( 1√
t
) and for the smaller values of γ, the decay rate is more like O(1

t
).

2.5. Conclusions and Further Discussion

We introduce a finite volume scheme which allows us to observe the long time asymp-

totics of the solutions of isotropic 3-wave kinetic equations, including the energy cascade

behavior proved in [43]. Our numerical algorithm is based on the combination of the iden-

tity represented in Lemma 2.1 and Filbet and Laurençot’s scheme [46] for the Smoluchowski

coagulation equation.
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(a) (b)

Figure 2.13: (a) Zeroth moments of solution corresponding to initial condition (2.37), with
γ = 2 and allowing R to vary. The theoretical decay rate is shown for comparison. (b)
Zeroth moments of solution corresponding to initial condition (2.37), with R = 50 and
allowing γ to vary. The theoretical decay rate is shown for comparison.

From the four numerical tests, we can see that the energy cascade behavior happens for

γ = 3
2
, 9
5
, 2, and seem to verify the theory found in [43].

From the solutions computed in sections 2.4.1, 2.4.2, 2.4.3, and 2.4.4, One can see that

the smaller γ is, the slower is the onset of decay. The energy cascade behavior also seems to

occur independently of the smoothness of the initial data for all four cases with γ = 3
2
, 9
5
, 2.

The results in figure 2.3 and 2.8 serve as another verification of the theory since the decay

rate of the energy in any finite interval is the same due to the following fact proved in the

main theorem of [43]:

∫ R

0

g(t, ω)dω =

∫
R+

χ[0,R](ω)g(t, ω)dω ≤ O
( 1√

t

)
as t→ ∞,

for all truncation parameters R.

Therefore, the rate that the energy leaves any finite interval [0, R] is the same since

the convergence does not depend on the truncation parameter. As the theory is only for
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the energy cascade at the point ω = ∞, it is a challenging task theoretically to obtain a

convergence study pointwise with respect to all of the velocity variables in this ω.

We would like to comment that in contrast to Tests 3 and 4, the amount of energy

contained in the interval looks indistinguishable for the various truncation parameters in

Tests 1 and 2. This can be explained by comparing ∥g0∥L1(0,R) of the different test cases.

The initial energy serves as a kind of reservoir in the finite intervals [56]. Then, for tests like

Tests 3 and 4, we increase the amount of initial energy by increasing the size of the interval.

That is for R1 < R2 < R3 we have

∥g0∥L1(0,R1)< ∥g0∥L1(0,R2)< ∥g0∥L1(0,R3). (2.38)

This is not the case (or is negligible) for Tests 1 and 2, seen in figures 2.3, 2.8, due to the

initial conditions selected there. The important thing to notice is that the slopes (decay

rates) are independent of how much energy is contained in the interval initially, though the

amount of energy can vary depending on the initial condition.

The numerical results confirm the theoretical bound (1.16) and show that the decay rate

should be O( 1
ts
), with s ∈ [1

2
, 1] for various initial data. In section 2.4.3, the cascade rate

is described quite well by O( 1√
t
) for γ = 2. We then conclude that the cascade rate bound

obtained in [43] is optimal.
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Chapter 3

A Deep Learning Approximation

Scientific Product: Walton, Tran, Bensoussan. Deep learning approximation of non-

stationary solutions to wave kinetic equations, Applied Numerical Mathematics (2022).

3.1. Introduction

It is difficult to exaggerate the impact and scope of machine learning within applied math-

ematics and scientific computing more broadly. A very active branch of scientific machine

learning is the development of neural network approximations of the solutions to partial

differential equations. As opposed to data-driven discovery of the dynamics of a physical

process in which known governing equations may not be used, a physics-informed neural

network (PINN) [57, 58] trains the neural network by minimizing the residual of the gov-

erning PDE along with minimization terms for the initial and boundary conditions. For

completeness, we describe briefly the general idea.

Let L be a linear or non-linear (integro-)differential operator. Let (t, x) ∈ [0, T ] × Ω ⊂

R+ ×Rd for d ≥ 1 and Γ = ∂Ω smooth. Assume for simplicity that u(t, x) ∈ L2((0, T ); Ω) is

the solution to the evolution equation

(∂t + L)u = 0,

Bu = uΓ,

u(0, x) = u0(x),

(3.1)

where B denotes a boundary operator and u0 ∈ L2(Ω).
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If we wish to approximate the solution to (3.1) by a neural network n(t, x; θ) where θ ∈ Θ

the set of weights and biases of the neural network, then a common approach is to first define

the residual operator, R, such that

n(t, x; θ) ∈ HR = {φ(t, x) | φ(t, x) ∈ L2((0, T ); Ω), Rφ(t, x) ∈ L2((0, T );R)},

with

∥φ(t, x)∥HR= ∥φ(t, x)∥L2((0,T );Ω)+∥Rφ(t, x)∥L2((0,T );Ω),

for

R = (∂t + L). (3.2)

We then define the functional

Jθ[n](t, x) = ∥Rn(t, x; θ)∥2L2((0,T );Ω)+∥Bn(t, x; θ)− uΓ∥2L2(Γ)+∥n(0, x; θ)− u0∥2L2(Ω). (3.3)

To obtain the neural network approximation to u(t, x), one then solves the following

stochastic optimization problem

θ∗ = argmin
θ
Jθ[n](t, x), (3.4)

for the (probably local and non-unique) minimizer θ∗ from which we obtain

n(t, x; θ∗) ≈ u(t, x).

In solving (3.4), one has many choices even when one excludes the usual hyper-parameter

tuning that comes with selecting an architecture. In the absence of empirical measurements,

a major choice to be made is how one selects inputs (t, x) ∈ (0, T )× Ω for the residual and

initial and boundary conditions. A common approach is to take samples from the uniform
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distribution and approximate the integrals in (3.3) by taking expectations ( [57, 58] and

many, many others). As in [59], one may use knowledge about the underlying distribution

of the sample space to select a sampling distribution which more closely mimics empirical

measurements and may be more relevant to the approximated solution.

In the present article, we choose neither of the previous approaches and opt for a quasi-

Monte Carlo (qMC) approximation of the integrals in (3.3) selecting a low-discrepency se-

quence as our sample points, the Sobol sequence [60] (see figure 3.4).

We find the qMC approach to be appropriate for WKEs for two reasons. The first is that

given the highly non-local nature of the collision term, the approximation of this operator

is expensive and when coupled with the number of samples necessary to obtain an accurate

approximation of the collision term via MC methods, we find a uniform sampling procedure

to be impractical for our needs. The latter method introduces interesting challenges in that

the distribution with which we would like to sample the wavenumber domain in order to

take expectations is in fact the solution we want to find in the first place.

Thus a qMC approach which requires fewer sample points and being deterministic re-

quires no knowledge of the underlying distribution is a simple and natural choice. For a

more detailed analysis of qMC methods in neural network approximations to pdes with

applications to fluid dynamics the reader is referred to the works [61,62].

3.1.0.1. Outline

We now give a short overview of the remainder of the article. To build confidence in

our approach, we present a neural network (NN) approximation to the solution of a Smolu-

chowski coagulation equation (SCE) in section 2. We choose this examples because, 1) as

has been discussed elsewhere ( [31, 43]) the SCE can be considered as a special case of a

3-WKE and 2) unlike for the 3-WKE the SCE has a known analytic solution which we may
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compare our approximation against. In section 3, we present results for a neural network

representation of the non-stationary solution to a 3-WKE. The results are compared with

previously derived theoretical results for the decay rate of the total energy in any finite in-

terval of the wavenumber domain. As a means of validation for the neural network model,

we give solutions for the same 3-WKE obtained via a finite volume scheme (FVS).

3.2. The Smoluchowski Coagulation Equation

Before giving results for wave kinetic equations, we provide a check of the method on a

similar type of equation, the Smoluchowski coagulation equation, which has a known analytic

solution in contrast to wave kinetic equations. Comparisons of the SCE and 3-WKE can be

found in [31,43,63] and references therein.

The SCE may be written in the form [46]

v∂tf(t, v) = −∂vQSmol[f ](t, v) (t, v) ∈ R+ × R+,

f(0, v) = f0(v) ≥ 0 v ∈ R+ := (0,∞),

(3.5)

where the f(t, v) ≥ 0 gives the density of particles at time t with volume v and

QSmol[f ](t, v) =

∫ v

0

∫ ∞

v−v1

a(v1, v2)v1f(t, v1)f(t, v2)dv2dv1, (3.6)

where the kernel is given by a(v1, v2) = v1v2 in what follows. Let us define

m(t, v) = vf(t, v),

then the total volume can be defined as

V(t) =
∫ ∞

0

m(t, v)dv.
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We will consider the case where

f0(v) =
e−v

v
, (3.7)

i.e.,

m0(v) = e−v, (3.8)

and the analytic solution corresponding to this initial condition is given by [46]

f(t, v) = e−Tv I1(2vt
1/2)

v2t1/2
, (3.9)

where

I1(v) =
1

π

∫ π

0

ev cos θ cos θdθ,

is the modified Bessel function of the first kind and

T =


1 + t t ≤ Tgel

2t1/2 t > Tgel

,

in equation (3.9) above.

This SCE undergoes a gelation phenomenon at time Tgel = 1, that is,the particle number

density is entirely concentrated at v = ∞ (again, see [46] and the references therein). This

also means that V(t) = 1 if t ∈ [0, Tgel) and V(t) = t−1/2 if t ≥ Tgel.

3.2.1. NN Representation of the SCE

To begin, instead of (3.5), we solve the evolution equation for m(t, v). Then,

∂tm(t, v) = −∂vQSmol[m](t, v) (t, v) ∈ R+ × R+,

m(0, v) = m0(v) = vf0(v) ≥ 0 v ∈ R+,

(3.10)
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and the Smoluchowski collision operator is then written as

QSmol[m](t, v) =

∫ v

0

∫ ∞

v−v1

a(v1, v2)m(t, v1)
m(t, v2)

v2
dv2dv1. (3.11)

Let m(t, v; θ) be the neural network approximation to the solution of (3.10) with θ de-

noting the weights and biases of the neural network. The NN approximation is computed

for (t, v) ∈ [0, T ]× [0, R] for some time T > 0 and truncation value R > 0.

To compute the NN approximation m(t, v; θ), the problem (3.10) is recast as the following

functional minimization problem [?, 64]

m(t, v; θ∗) = min
θ∈Θ

JSmol[m](t, v; θ), (3.12)

with θ∗ ∈ Θ a minimizing set of parameters and JSmol[m](t, v; θ) is

JSmol[m](t, v; θ) = ∥Rm(t, v; θ)∥2L2((0,T ]×[0,R])+∥m(0, v; θ)−m0(v)∥2L2([0,R]), (3.13)

where R is the residual operator defined by

Rm(t, v; θ) = ∂tm(t, v; θ) + ∂vQ[m](t, v; θ). (3.14)

The functional JSmol[m] and collision term QSmol[m] are discretized via a Quasi-Monte Carlo

method ( [61], [62])). Sample points for the functional are drawn from the Sobol sequence

( [65]) in the unit square which are then mapped to the discrete set S ⊂ (0, T ]× [0, R]. For

the collision term, for each v, we draw samples from the Sobol sequence in the unit square

as before, but map the variables (v1, v2) to the discrete intervals V1 ⊂ [0, v] and, for each v1,

V2 ⊂ [v − v1, R], respectively.
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The discretized collision operator is then given by

Q̂Smol[m](t, v; θ) =
v

|V1|
∑
v1∈V1

v1m(t, v1; θ)

(
|R + v1 − v|

|V2|
∑
v2∈V2

m(t, v2; θ)

)
, (3.15)

which leads to the semi-discretized residual

r̂(t, v; θ) = ∂tm(t, v; θ) + ∂vQ̂Smol[m](t, v; θ), (3.16)

and so the semi-discrete functional ĴSmol[m](t, v; θ) to be minimized is

ĴSmol[m](t, v; θ) =
1

|S|
∑

(t,v)∈S

r̂(t, v; θ)2 +
1

|S0|
∑
v∈S0

(m(0, v; θ)−m0(v))
2, (3.17)

where the set S0 ⊂ S, |S0|≤ |S| denotes a subset of the volume samples in S.

3.3. A 3-Wave Kinetic Equation

In [63], a new identity for the energy of the solutions to 3-WKEs [43] is presented which

takes the form of a conservation law [46]. This is the equation we shall study in the present

paper due to the simplicity provided by this form of the equation. Specifically, there is

no need to compute the resonant manifolds of the system, though we emphasize that the

method does not depend on this simplification.

Let us write the equation to be solved. The equation is equivalent to (4.1) and is explained

in [43,63]

∂tg(t, p) = p∂pQ[g](t, p) (t, p) ∈ R+ × R+,

g(0, p) = g0(p) ≥ 0 (t, p) ∈ {0} × R+,

(3.18)

where the collision term is given by

Q[g](t, p) = −2

∫ p

0

∫ p

0

(p1, p2)
γ
2
−1g1g2χp,1,2dp2,1 +

∫ ∞

0

∫ ∞

0

(p1, p2)
γ
2
−1g1g2χp,1,2dp2,1, (3.19)
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where we have used the notation gi = g(t, pi) for i = 1, 2, dp2,1 = dp2dp1 and χp,1,2 = χ{p <

p1+ p2} where χ{A} is the set characteristic function of some set A. The parameter γ is the

degree of the kernel as discussed in the introduction and γ = 2 in the present work which

corresponds to acoustic wave systems.

As in the previous section, we define a neural network approximation, g(t, p; θ) to be a

solution to the optimization problem [66]

g(t, p; θ∗) = min
θ∈Θ

J [g](t, p; θ), (3.20)

with θ∗ ∈ Θ a minimizing set of parameters of the functional

J [g](t, p; θ) = ∥r(t, p; θ)∥2L2(R+×R+)+∥g(0, p; θ)− g0(p)∥2L2(R+), (3.21)

where, again, R denotes the residual operator of the evolution equation defined by

Rg(t, p; θ) = ∂tg(t, p; θ)− p∂pQ[g](t, p; θ). (3.22)

The functional (3.21) is approximated via a Quasi-Monte Carlo method with sample

points drawn from the Sobol sequence in the unit square and then transformed to some trun-

cated rectangle of the time, wavenumber domain, i.e. we generate the setW ∼ Sobol([0, T ]×

[0, R]), for T,R > 0 truncation parameters of the time and wavenumber domain, respectively.

The residual (3.22) is approximated similarly where the set of sample points for (p1, p2) are

given by P1 ∼ Sobol(0, p) for each p, and P2 ∼ Sobol(p−p1, p) for each p, p1 in the first term

of (3.19) and P̂2 ∼ Sobol(p− p1, R) for each (p, p1).
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To see how these sample sets are defined, note that the collision term can be rewritten

as

Q[g](t, p) = −2

∫ p

0

∫ p

p−p1

(p1p2)
γ
2
−1g1g2dp2,1 +

∫ p

0

∫ R

p−p1

(p1p2)
γ
2
−1g1g2dp2,1, (3.23)

where we have applied the truncation parameter of the wavenumber domain to the second

expression and enforced the restrictions p−p1 < p2 in both terms to satisfy the characteristic

set function and p1 < p to guarantee positivity of the variable p2 in the second term. Thus,

using the above collision operator and sample sets defined in the previous paragraph, we can

define the discrete collision operator to be

Q̂[g](t, p) =
−2p

|P1||P2|
∑
p1∈P1

p
γ
2
1 g1

( ∑
p2∈P2

p
γ
2
−1

2 g2

)

+
p

|P1||P̂2|

∑
p1∈P1

p
γ
2
−1

1 g1

[
(R− p+ p1)

( ∑
p2∈P̂2

p
γ
2
−1

2 g2

)]
.

(3.24)

Using the discrete collision operator, we can define the semi-discrete residual by

R̂g(t, p; θ) = ∂tg(t, p; θ)− p∂pQ̂[g](t, p; θ), (3.25)

and therefore we can minimize the semi-discrete functional

Ĵ [g](t, p); θ) =
1

|W |
∑

(t,p)∈W

R̂g(t, p; θ)2 + 1

|W0|
∑
p∈W0

(g(0, p; θ)− g0(p))
2, (3.26)

where W0 ⊂ W , |W0|≤ |W | contains only sample points for the wavenumber.

3.4. Numerical Results

In this section, we provide numerical results for the SCE with initial condition (3.7) and

compare with the anaylitc solution (3.9). A 3-WKE with initial condition (3.27) is then

solved and the decay rate of the total energy is compared with the results obtained in [43].
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The same initial condition (3.27) is then used to obtain a solution with the finite volume

scheme developed in [63]. The results of the two methods are discussed.

All deep learning tests were implemented in TensorFlow [67] with Keras [68]. Training was

accelerated using multiple GPUs utilizing Horovod [69]. All computations were performed on

SMU’s computing cluster MII. The finite volume computations were performed in Matlab.

3.4.1. Test 1

A simple, yet effective, architecture is chosen. Namely, it is enough to employ a feed-

forward network with only two hidden layers with 128 hidden units in each layer utilizing

sigmoidal activation functions [70]. Given its simplicity, we can write the neural network

(NN) out explicitly as

m(t, v; θ) = Wσ(W2σ(W1x⃗+ b1) + b2) + b,

with the entries of Wi,bi ∼ N (0, 1) for i = 1, 2, W, b ∼ N (0, 1) and σ(·) denoting the

sigmoid function. To fully discretize the functional (3.17), we employ TensorFlow’s built-in

automatic differentiation method.

The training samples were drawn from the rectangle (0, T ] × [0, R] using the strategy

described above for T = 0.8 and R = 8. To achieve the results shown in Figure 3.1, only

the first 32 Sobol points were used to minimize the residual term (16 time samples and 16

volume samples) and only the first 16 Sobol points were needed to train on the initial data.

Figure 3.1 shows the neural network predictions on unseen data within the training

interval. The inputs to the neural network to produce the plot were the first 128 Sobol

points transformed to the volume training interval and t = 0.0, 0.2, 0.4 and 0.62. We see the

NN solution gives a good approximation to the analytic solution.
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Figure 3.1: Neural Network (NN) approximation to the Smoluchoswki equation (3.10). The solid
lines denote the analytic solution (3.9) and ∗ markers denote the NN approximation at equivalent
snapshots in time.
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In Figure 3.2, we quantify the match of the NN approximation to the analytic solution by

giving the sup norm of the error at each snapshot. Here, we supply the first 210 Sobol points

within the volume training interval and use the same points in time t = 0.0, 0.2, 0.4, 0.62.

We note here that while the NN performs well on unseen points within the volume interval

v ∈ [0, R], for v > R we generalization error is larger. This is to be expected given the small

training sample size used (16 volume points). We show the absolute error in Figure 3.3 for

each snapshot in time over the interval v ∈ [0, 1000] with 213 Sobol points in this volume

interval. This result informed our decision to apply a batch sampling procedure for the wave

kinetic equation, the details of which are discussed below.

3.4.2. Test 2

We choose the initial condition

g0(p) =

√
7

2π
e−

7(p−2)2

2 . (3.27)

The neural network was trained using samples from the Sobol sequence in the rectangle

W ∼ Sobol((0, T ] × [0, R]) for T = 10 and R = 10. As illustrated in figure 3.4, the size of

the sample set |W | was 215, which was broken up into smaller training batches.

The architecture was again chosen to have 2 hidden layers, each with 128 units and sig-

moidal activation functions. The loss was again minimized using tensorflow’s implementation

of ADAM. The collision terms were approximated with the sampling procedure described

above with each sample comprised of 32 Sobol points. We consider only the case γ = 2 here.

We show a few early snapshots of the approximated solution in Figure 3.5. The behaviour

seems consistent with predictions in that the L∞ norm decays as time increases. This is more

clearly evidenced by the total energy discussed in the following paragraph. In Figure 3.5,
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Figure 3.2: Sup norm of the error at t = 0.0, 0.2, 0.4 and 0.62 where the maximum is taken over
the volume domain v ∈ [0, 10]. This shows the accuracy of the method on unseen data points
within the training interval.
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Figure 3.3: Absolute error of the NN approximation versus the analytic solution over the volume
interval v ∈ [0, 1000] with 213 volume samples given as input to the NN. We see a slow growth in
the error for large volume numbers.
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Figure 3.4: Batched samples of Sobol points. (Top Left) All sample points. (Top Right and
Bottom Row) Example batches of sampled points.
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we also present a comparison with the solution computed the Finite Volume Scheme of [63].

This comparison will be described later in this section, around equation (3.28)-(3.29).

The total energy of the solutions was computed and the log of the total energy is plotted

against the log of t. The comparison between the decay of the numerical solution is made

with the theoretical decay rate of t−1/2, obtained in [43] (see (1.16)), in Figure 3.6. The total

energy was predicted up to t = 148. From Figure 3.6, the energy decays and the decay is in

good agreement with the theoretical rate obtained in [43].

The neural network is able to make reasonable predictions for very large, unseen in

training, samples in the wave number domain. In Figure 3.7, we see the predicted solution

for wavenumber values up to 1e+06. In contrast, the most we could push for reasonable

predicitons in time was t = 148 as previously reported in the results shown in figure 3.6. For

better predictions in time, we needed to enforce more dense sampling in the time domain.

Thus, the neural network was not only trained on the set W for T= 10, but also for T = 5

and T = 2 with the same number of sample points, 215.

3.4.3. Comparison with a Finite Volume Scheme

As mentioned earlier, to validate the results, we provide a comparison with another

model. Here we use the finite volume scheme presented in [63], which we briefly outline

below.

The discretization of the wavenumber domain p ∈ [0, R], is given as follows. Let i ∈

{0, 1, 2, . . . ,M} = IMh , with h ∈ (0, 1) fixed and M =M(h). Define the set Sd = {0, . . . , R}

to be the discretization of the interval [0, R]. Let

Sd = {pi+1/2}i∈IMh , {pi}i∈IMh \{0} =
pi+1/2 + pi−1/2

2
, {∆pi}i∈IMh \{0} = pi+1/2 − pi−1/2 ≤ h,

(3.28)
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Figure 3.5: Top Picture: A few snapshots of the NN approximation corresponding to initial
condition (3.27). Bottom Picture: Comparative snapshots of the FVS solution for the same
initial condition (3.27).
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Figure 3.6: Top Picture: Log-Log plot of the total energy corresponding to initial condition
(3.27) as predicted up to t = 148 the NN. The decay rate is consistent with the decay rates
found in 2.

define the faces, pivots and step-size respectively, with p1/2 = 0 and pM+1/2 = R. For

simplicity, we use a uniform grid and set h = 0.01 which leads to

Sd = {ih}i∈IMh , {pi}i∈IMh \{0} =
h

2
(2i− 1), {∆pi}i∈IMh \{0} = h ∈ (0, 1).

The set TN = {0, . . . , T} with N + 1 nodes and T = 148 is the maximum time. We fix

the time step to be ∆t = T
N

= 0.005, and denote by tn = ∆t · n for n ∈ {0, . . . , N}. We

approximate equation (3.18) by

gn+1(pi) = gn(pi) + λi

(
Qn

i+1/2

[g
p

]
−Qn

i−1/2

[g
p

])
, (3.29)

where λi =
pi∆t
∆pi

, and

Qn
i+1/2

[g
p

]
−Qn

i−1/2

[g
p

]
= −2

(
Qn

1,i+1/2

[g
p

]
−Qn

1,i−1/2

[g
p

])
+
(
Qn

2,i+1/2

[g
p

]
−Qn

2,i−1/2

[g
p

])
,
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Figure 3.7: Top picture: Neural network prediction corresponding to initial condition
(3.27) for wavenumbers up to 1e+06. Bottom picture: The finite volume solution for
wavenumbers up to p = 250, the largest value for which stability is maintained without
further decreasing ∆t. The two figures highlight a key strength of the presented method, in
that the neural network approximation is consistent with more traditional solvers but is
able to produce results for computationally prohibitive values of the wavenumber for
traditional methods while maintaining positivity and stability.
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with

Qn
1,i+1/2

[g
p

]
=

i∑
m=1

∆pm
gn(pm)

pm

(
i∑

j=1

∆pj
gn(pj)

pj
a(pm, pj)χ

{
pi+1/2 < pm + pj

})
, (3.30)

Qn
2,i+1/2

[g
p

]
=

M∑
m=1

∆pm
gn(pm)

pm

(
M∑
j=1

∆pj
gn(pj)

pj
a(pm, pj)χ

{
pi+1/2 < pm + pj

})
, (3.31)

where we have used the midpoint rule to approximate the integrals in equation (3.18) and

we choose an explicit time stepping method.

The initial condition (3.27) is approximated by

g0(pi) =
1

∆pi

∫ pi+1/2

pi−1/2

g0(p)dp ≈ g0(pi),

by again employing the midpoint rule.

We draw the reader’s attention again to Figure 3.5 where a few comparative snapshots

of the solution are provided. Qualitatively, the two models seem to agree and capture the

main features of the theorized behavior of solutions. Namely, an evacuation of the energy

within any finite interval. Further, as is typical of simple feedforward architectures, the

finer oscillations seen in the FVS solutions appear to be averaged out in the NN solution as

expected. For our purposes, the dynamics captured by the simple feed-forward architecture

we have employed here are enough to confirm the theory presented in [43]. We leave it to

a future work to investigate more complicated architectures. For example, the architecture

described in [71] is able to capture highly oscillatory solutions for the stationary Navier-

Stokes equations.
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In Figure 3.6 (bottom) we see the decay rate of the total energy as provided by the

computed solution of the FVS, which is compared with the predicted values by the NN (top).

Both models are in good agreement with the theorized bound on the rate of decay [43, 63],

though the FVS appears to capture a slightly faster rate of decay.

Looking back to Figure 3.7, we make a comparison with the computed solution of the

finite volume method for large wavenumber values with predictions provided by the neural

network. Here, we have increased h to 0.8 and R = 250 while keeping the timestep fixed

at ∆t = 0.005 as in the previous figures. The two figures highlight a key strength of the

presented deep learning method, in that the neural network approximation is consistent

with more traditional solvers but is able to produce results for computationally prohibitive

values of the wavenumber for traditional methods, while maintaining positivity and stability.

Indeed, constructing positivity preserving schemes for PDEs is a very important direction of

research [52–54]. For the FVS (3.29), the positivity and thus stability is lost for wavenumber

values larger than 250 with the timestep set at ∆t = 0.005. In order to preserve the positivity

of the solutions produced by the FVS (3.29), the CFL condition is restrictive and the time

step ∆t needs to be chosen sufficiently small as shown in Proposition 3.1 of [63]. As thus,

being able to preserve the positivity of the solutions is indeed a very important feature of

the presented deep learning approximation.

3.5. Conclusions

We present a deep learning approximation, stochastic optimization based, method for the

3-wave kinetic equation, studied theoretically in [43] and numerically in [63]. We first apply

the method to a Smoluchowski coagulation equation with multiplicative kernel for which an

analytic solution exists. The deep learning method is proved to give a good approximation of

the analytic solution. Next, the learning approach is then used to approximate the solution

of the 3-wave kinetic equation. The deep learning approximation is tested and proved to be
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as good as the Finite Volume approximation introduced in [63] for the same equation and

both approximations are in good agreement with the theoretical results of [43].
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Chapter 4

An Inverse Problem and Reconstruction of the Wave-Action for 3-WKEs

Scientific Product: Walton, Tran, Bensoussan. An inverse problem for wave kinetic

equations, (in preparation).

4.1. Introduction A potentially challenging aspect in determining the behavior of

a particular wave system is the derivation of the interaction coefficient. For example, for

gravity waves on deep water, Zakharov in [72] derived what is currently the most compact

form of the interaction coefficient [9] which we provide below. The interaction coefficient for

pure gravity waves on deep water is given by

W 34
12 = − 1

16π2

1

(p1p2p3p4)
1
4

{
− 12p1p2p3p4

− 2

g2
(ω1 + ω2)

2
[
ω3ω4((p1 · p2)− p1p2) + ω1ω2((p3 · p2)− p3p4)

]
− 2

g2
(ω1 − ω3)

2
[
ω2ω4((p1 · p3) + p1p3) + ω1ω3((p2 · p4)− p2p4)

]
− 2

g2
(ω1 − ω4)

2
[
ω2ω3((p1 · p4) + p1p4) + ω1ω4((p2 · p3)− p2p3)

]
+((p1 · p2) + p1p2)((p3 · p4) + p3p4)

+ (−(p1 · p3) + p1p3)(−(p2 · p4) + p2p4)

+ (−(p1 · p4) + p1p4)(−(p2 · p3) + p2p3)

+ 4(ω1 + ω2)
2 ((p1 · p2)− p1p2)((p3 · p4)− p3p4)

ω(p1 + p2)2 − (ω1 + ω2)2

+4(ω1 − ω3)
2 ((p1 · p23− p1p3)((p2 · p4)− p2p4)

ω(p1 − p3)2 − (ω1 − ω3)2

+4(ω1 − ω4)
2 ((p1 · p4)− p1p4)((p2 · p3)− p2p3)

ω(p1 − p4)2 − (ω1 − ω2)2
,

where ωi = ω(pi) for i = 1, 2, 3, 4 is the dispersion relation for a given wavevector p. We

denote the wavenumber by p = |p| throughout.
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In this work, we provide a method for the approximation of such interaction coefficients

using the method of weighted residuals. The interaction coefficient is approximated by

a linear expansion of Legendre basis functions, whose coefficients are the solution to our

inverse problem.

As previously mentioned, we consider the isotropic 3-WKE. The dispersion relations we

consider are given by ω = c|p| which, after absorbing the constant, we simply write ω = p

in the sequel. The the isotropic 3-WKE is given by

∂tf(t, p) = Q[f ](t, p), ω ∈ R+, f(0, p) = f0(p),

Q[f ](t, p) =

∫ ∞

0

∫ ∞

0

[R(p, p1, p2)−R(p1, p, p2)−R(p2, p1, p)]dp1dp2,

R(p, p1, p2) := δ(p− p1 − p2) [U(p1, p2)f1f2 − U(p, p1)ff1 − U(p, p2)ff2] ,

(4.1)

where the interaction coefficient, U(·, ·), satisfies |U(p1, p2)| = (p1p2)
γ/2, in which γ ∈ [1, 2]

is constant. Similar to our notation for the dispersion relation, we us the shorthand for the

wave-action fi = f(t, pi) and f = f(t, p). Equation (4.1) can be written in the equivalent

form

∂tf(t, p) = Q[f ](t, p), p ∈ R+, f(0, p) = f0(p), (4.2)

in which Q is defined by

Q[f ](t, p) =

∫ p

0

[
|U(p1, p− p1)|f(p1)f(p− p1)− |U(p, p1)|f(p)f(p1)− |U(p, p− p1)|f(p)f(p− p1)

]
dp1

− 2

∫ ∞

0

[
|U(p, p1)|f(p)f(p1)− |U(p+ p1, p1)|f(p+ p1)f(p1)− |U(p+ p1, p)|f(p+ p1)f(p)

]
dp1.

(4.3)
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It is this form of the isotropic 3-WKE which often draws comparison with the Smolu-

chowski coagulation equation,

∂tf(t, v) = QSmol[f ](t, v), f(0, v) = f0(v), (4.4)

with the Smoluchowski collision term given by

QSmol[f ](t, v) =

∫ v

0

|U(v1, v − v1)|f(v1)f(v − v1)dv1 − 2

∫ ∞

0

|U(v, v1)|f(v)f(v1)dv1,

(4.5)

where v represents the particle volume and f(t, v) is the particle number density.

We do not go into a detailed comparison here but refer the reader to the works [18, 31,

32, 43, 63, 73] and the references therein. However, at this point we would like to mention

works on a similar inverse problem involving the Smoluchowski coagulation equation. In

the works [74, 75], the authors present a regularized least squares approach to to extract

the aggregation kernel (what is our interaction coefficient) with the assumption that the

solutions are self-similar and that gelation does not occur, i.e. γ < 1. In another work [76],

the authors drop these assumptions on the solution and do not preclude the possibility of

gelation. They reformulate the method of weighted residuals for the forward problem to

instead obtain an approximation for the aggregation kernel.

Given that the 3-WKE, for γ > 1, undergoes a process similar to the gelation behavior

observed in the Smoluchowski equation, specifically the energy accumulates at the point

p = ∞ and undergoes infinitely many blow-up times (see [43,63], we are better able to draw

inspiration from the work [76]. The present article provides an adaptation of the method of

weighted residuals applied to the inverse problem for Smoluchowski equation to the 3-WKE,

the details of which are the topic of the next section.
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However, in the context of wave turbulence, to our knowledge, the interaction coefficients

are always time independent. Therefore, in our case, we use only the initial condition and

one measurement at some other point in time to solve the inverse problem. From there,

we can then reconstruct the solution at every other point in time using our approximated

interaction kernel.

4.2. The Inverse Problem

Let us define the residual which will need to be minimized to obtain an approximation

of the interaction coefficient. The residual is given by

R(t, p) = ∂tf(t, p)−Q[f ](t, p). (4.6)

We will require that for any test function ψℓ(p) that R satisfies

∫
R+

R(t, p)ψℓ(p)dp = 0, (4.7)

as prescribed by the method of weighted residuals. This is quite a general method and, as

has been pointed out in the work [77], different choices of the test function ψ(p) and repre-

sentation of |U(p1, p2)| lead to other well-known methods. For example, if we represent the

interaction kernel by a neural network and choose ψℓ(p) = δ(p−pℓ) we get a physics-informed

neural network. However, employing neural networks does not seem to be necessary in the

cases we consider. The interaction coefficient will be represented as a linear combination of

basis functions

PM |U(p1, p2)|≈
M∑
i=1

Pi(p1, p2)Ui, (4.8)

where the Pi(p1, p2) is a tensor product of 1 dimensional Legendre basis functions defined

over the p1, p2 domain. The coefficients Ui are the unknowns we wish to obtain. We will use
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the notation Qφ[f ](t, p) to mean the interaction coefficient of (4.2) has been replaced by the

expansion (4.8).

Setting ψℓ(p) = δ(p−pℓ) and splitting the integral (4.7) we arrive at the matrix equation

Q0u = δf (4.9)

where Q0 ∈ RL×M , δf ∈ RL and u ∈ RM where L is the number of nodes in the wavenumber

grid and we assume that M < L, i.e. the system of equations (4.9) is overdetermined. The

entries of Q0 are

Q0
ℓ,m =

∫
R+

δ(p− pℓ)

(∫ p

0

[
Pm(p1, p− p1)f

0
1 f

0
−1 − Pm(p, p1)f

0f 0
1 − Pm(p, p− p1)f

0f 0
−1

]
dp1

−2

∫ ∞

0

[
Pm(p, p1)f

0
p f

0
1 − Pm(p+ p1, p1)f

0
+1f

0
1 − Pm(p+ p1, p)f

0
+1f

0
1

]
dp1

)
dp

(4.10)

where the notation f 0
±1 = f 0(p±p1) and f 0, f 0

1 denote f 0(p) and f 0(p1), respectively. Which

we find, similarly to [76], has a large condition number. The superscript Specific values will

be given in the results section. The entries of δf are given by

δf =
1

∆t

(
fk − f0

)
=

1

∆t



fk
1 − f 0

1

...

fk
ℓ − f 0

ℓ

...

fk
P − f 0

P


, (4.11)
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with f i
ℓ = f(ti, pℓ), for i = 0, k, where k is some future point in time with ∆t = tk − t0. The

entries of the vector u are simply the coefficients in the expansion 4.8,

u =



u1

...

um

...

uM


, (4.12)

as expected.

We then have the following optimization problem

argmin
u

{
∥δf −Q0u∥22+λ∥u∥22

}
, (4.13)

i.e. a Tikhanov regularized least-squares problem of the overdetermined system (4.9), with

λ a regularization parameter.

Once the u have been computed, we can then reconstruct solutions f̃ for the wave-action

with the following composition. Using ∆t above, compute

f̃1 = f0 +∆tQ0u. (4.14)

Use the approximated solution to compute Q1 and repeat. The update is then given by

f̃n = f̃n−1 +∆tQn−1u. (4.15)
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4.3. Numerical Results To obtain the data fk, we use the finite volume method

to solve the conservative form of the 3-WKE for the energy density g(t, p) = pf(t, p) as

proposed in [63]. We choose the initial condition

g0(p) = pe−p (4.16)

which is plotted in Figure 4.1 with the corresponding initial wave-action f0(p) which is used

in the inverse problem.

To test the method presented in this article, we solve the forward problem for various

values of the degree of homogeneity, γ, choosing γ = 3
2
, 15

8
and 2. In each case, we run the

forward simulation until t = 10 with truncation parameter R = 10. We set ∆t = 0.05 and

∆pi = ∆p = 0.1, i.e. we use a uniform grid. In the tests that follow, we choose M = 16

for the Legendre basis functions. From the forward data, we select only the solution after

the first time step as our fk in (4.11) defined above to perform the reconstruction procedure

described in (4.15).

Once the forward solution is obtained, we solve (4.9) to approximate the interaction

coefficient in each case. To assemble each Qn n = 0, 1, . . . , N , the integrals are computed

using SciPy’s adaptive quadrature method quad. The condition number for Q0 in each test

below is approximately 2.4×1010. The regularized least-squares problem (4.13) is solved using

scikit-learn’s [78] linear model Ridge with L-BFGS solver [79] and additionally enforcing the

computed coefficients to be positive. In each test below the penalty parameter λ = 0.01

throughout. Any subsequent matrix multiplication Qnu is computed with the linear models

predict method.

Before moving on to the next section, we provide a measure of accuracy for the approxi-

mated interaction kernel. Using the single set of coefficients u, we show that finite volume

data is reproduced by modifying the reconstruction procedure (4.15) to take in the finite
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Figure 4.1: Initial condition for the forward problem solved with the finite volume method,
g0(p), and the initial condition for the inverse problem, f0(p).

volume data f at each point in time rather than the learned data f̃ . We then compare these

results with the finite volume data by computing the L1 grid norm of the error at each point

in time. The results are given below in figure 4.2.

4.3.1. Reconstruction of the Higher Moments

Here the forward solution for the energy density is computed using the finite volume

method with γ = 2, 3
2
and 15

8
. We then use the procedure described above to reconstruct

this solution using only the initial condition (4.16) and the solution after the first time step,

f0.05, provided by the finite volume scheme in each case. That is, we require the initial

condition and a single snapshot in time of data. A few snapshots in time are shown for the

reconstructed solution in figure 4.3.

The L∞ grid norm for the difference between the finite volume data and the reconstructed

solution given by (4.15) is shown in figure 4.4. It would appear that the error for the

reconstructed solution with a single data point is well controlled for about 60 time steps,
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Figure 4.2: We test the accuracy of the approximated interaction kernel by measuring the
L1 grid norm of the error given by measuring the difference fn − dtQ[fn−1]u+ fn−1 at each
point in time, i.e. we check that the approximated interaction kernel can reproduce the
data that was used to compute it.

67



Figure 4.3: Reconstructed solution for the wave-action f(t, p) using the method outlined
above.

after which point it begins to grow. The results in figure 4.2 would indicate that adding

more measurements from the data would improve this result.

In chapter 2, we observed interesting behavior for the higher moments computed with

the finite volume method. Here, we use the computed coefficients for γ1 = 2, γ2 =
3
2
, γ3 =

15
8

which will be denoted uγ1 ,uγ2 ,uγ3 to reconstruct the particle density f̃γi , where i = 1, 2, 3.

The higher moments are then computed using

Mℓ
γi
= h(p)ℓ · f̃γi , (4.17)

for i = 1, 2, 3 similarly to chapter 2, where the ℓ-th power of the grid data p is computed

element-wise. The results for ℓ = 1, 2, 3, 4 are given in figure 4.5. It is clear that a longer

time simulation is necessary in order to compare with the results in chapter 2, and over a

larger wavenumber domain.
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Figure 4.4: The L∞ grid error is computed to compare the reconstructed solution with the
finite volume data at each point in time.

4.4. Conclusion

From the numerical results above in figure 4.2, it would appear that the method is

very capable of approximating the unknown interaction kernel with high accuracy. For the

reconstruction algorithm, with only an initial condition and a single data vector, There

seems to be room for improvement. A possible direction is a higher order time update as is

used for the finite volume method. Another possibility is to add additional data vectors at

successive points in time. However, we would like to emphasize that using a single inverse

solve, we were able to construct the interaction kernel quite accurately, which is probably a

more realistic application, since the approximated interaction kernel can be used with any

numerical method once obtained. This is still a work in progress.

69



Figure 4.5: Plots (semilogy) of the higher moments, Mℓ for γ = 2, 3
2
and 15

8
and

ℓ = 1, 2, 3, 4. There appear to be some similarities with the results in chapter 2, but the
short time scale makes a direct comparison difficult.
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Chapter 5

A Petrov-Galerkin Residual Distribution Method

Scientific Product: Walton. A residual distribution approach to 3-wave kinetic equations,

(in preparation).

5.1. Introduction

The present chapter is devoted to deriving a Petrov-Galerkin Residual Distribution (PG

RD) [80–83] scheme for equation (2.5) found in chapter 2 (reproduced below). We will see

that the PG RDmethod derived for equation (2.5) generalizes the Finite Volume (FV) scheme

derived in 2. In section 5.3, we provide numerical results and compare with the theory. The

computations are performed using the MATAR (MAtrix ARray) C++ library [84].

5.2. PG RD Scheme

We will derive the aforementioned PG RD method for the conservation form of the energy

density equation (2.5) of chapter 2, which reads

∂t
g(t, p)

p
= ∂pQ3[g](t, p), (5.1)

where we recall that the collision term is given by

∂pQ3[g](t, p) = − 2∂p

∫ p

0

∫ p

0

a(p1, p2)
g(p1)

p1

g(p2)

p2
χ{p < p1 + p2}dp2dp1

+ ∂p

∫ ∞

0

∫ ∞

0

a(p1, p2)
g(p1)

p1

g(p2)

p2
χ{p < p1 + p2}dp2dp1.

(5.2)
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It is easier to begin the derivation for the particle density f(t, p), sometimes called the

wave-action, and then solve for the energy density. We define the Petrov-Galerkin Residual

at d.o.f. ℓ in the time slab [tn, tk] to be

Rk,E
ℓ (f) =

(
∂tf(t, p)− ∂pQ3[f ](t, p), ψℓ

)
L2(tn,tk;E)

(5.3)

with ψℓ = ψℓ(p) ∈ V0
h a test function, with

V0
h = {ψ |ψ|Ei

∈ P0(Ei) ⊂ {L2 ∩ Cc}(Ei)}, (5.4)

for all i such that ∪iEi = Ω ⊂ R+. The total residual in element E is then defined to be

Rk,E(f) =
∑
ℓ∈E

Rk,E
ℓ (f). (5.5)

The distribution coefficients are then given by

βk,E
ℓ =

(
Rk,E

ℓ

Rk,E

)+
∑

j∈E

(
Rk,E

j

Rk,E

)+ , (5.6)

where (·)+ = max(0, ·). The definition of the above distribution coefficients is the one most

commonly used in residual distribution schemes, though by no means the only choice. In

multidimensional advection dominated problems, the above choice for β imparts a natural

upwinding property to the scheme [82]. The simplest case is a steady-state problem, in which

the total residual reduces to the flux of some quantity in element E. The sign of the Galerkin

residual is then penalized to match that of the flux. The limited residual at ℓ is then

Rk,E
ℓ = βk,E

ℓ Rk,E, (5.7)
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and the full update, using the deferred correction method (DeC) [85–88], of the solution is

given by

f(tk+1, p) = f(tk, p)−
∑
E∋ℓ

Rk,E
ℓ . (5.8)

where the notation
∑

E∋ℓ denotes the sum of elements, E, containing node ℓ. The details of

the DeC scheme are described in subsection 5.2.1 below.

So far, we have only discretized the wavenumber and time domain, and there are still

choices to be made for the approximation of Rk,E
ℓ (f). Returning to (5.3), we have

Rk,E
ℓ (f) =

(
∂tf(t, p)− ∂pQ3[f ](t, p), ψℓ

)
L2(tn,tk;E)

=

∫
E

{f(tk, p)− f(tn, p)}ψℓdp−
∫ tk

tn

∫
E

∂pQ3[f ]ψℓdpdt

=

∫
E

{f(tk, p)− f(tn, p)}ψℓdp+

∫ tk

tn

∫
E

∂pψℓQ3[f ]dpdt−
∫ tk

tn

[
Q3[f ]ψℓ

]±
E
dt.

(5.9)

Now, let us replace f(t, p) by its basis expansion, Φtkf = φνf
k
ν , where the repeated index

implies summation with ν ∈ {0, 1, . . . , N} and φ ∈ VN
h , with

VN
h = {φ |φ|Ei

∈ PN(Ei) ⊂ L1 ∩ C∞(Ω)}. (5.10)

Actually, we make a specific choice of polynomial functions, the Bernstein polynomials. This

choice is motivated by their total positivity. This feature will aid us in the proofs to come

and help ensure that the solutions are positive as demanded by the physics.

We may then write, using the notation δkf = fk − fn,

Rk,E
ℓ (Φtkf) =

∫
E

φνψℓdp δ
kfν +

∫ tk

tn

∫
E

∂pψℓQ3[Φtkf ]dpdt−
∫ tk

tn

[
Q3[Φtkf ]ψℓ

]±
E
dt, (5.11)
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choosing our test function to be ψℓ =
1

∆pℓ
and ∆pℓ as defined in the previous section, we get

Rk,E
ℓ (Φtkf) =

1

∆pℓ

∫
E

φνdp δ
kfν −

1

∆pℓ

∫ tk

tn

[
Q3[Φtkf ]

]±
E
dt. (5.12)

Lastly, we perform integration over the wavenumber domain by Gaussian quadrature and a

transformation to the reference element Eref . The time integral is also performed with an

exact Gaussian quadrature upon interpolation of the integrand in time. Specifically, we have

Rk,E
ℓ (Φtkf) =

1

∆pℓ

2N∑
j=0

φν(ξj)ωjdet(J) δ
kfν −

1

∆pℓ

M−1∑
j=0

IM
[
Q3[Φtj,kf ]

]±
E
θj, (5.13)

where ωm and θj and the quadrature weights for the wavenumber and time domain, respec-

tively, and IM denotes the time interpolator of orderM . Before describing the discretization

of the collision operator, let us prove that the scheme given by (5.8) using (5.13) is indeed a

generalization of the FV scheme found in [63].

5.2.0.1. Derivation of the FV scheme from the PG RD method

Let us return to equation (5.12) which we repeat here for convenience,

Rk,E
ℓ (Φtkf) =

1

∆pℓ
δkfν

∫
E

φνdp−
1

∆pℓ

∫ tk

tn

[
Q[Φtkf ]

]±
E
dt. (5.14)

Now, using the trapezoid rule to approximate the time integral, we could define the PG

residual to be

Rk,E
ℓ (Φtkf) =

1

∆pℓ
δkfν

∫
E

φνdp−
∆t

2∆pℓ

{[
Q3[Φtkf ]

]±
E
+
[
Q3[Φtnf ]

]±
E

}
. (5.15)

74



Choosing N = 0 results in a single point interior to the element in the wavenumber domain

so that ∆pℓ = ∆p = µ(E), φν = 1 for all ν and consequently

Rk,E
ℓ (Φtkf) = Rk,E

ℓ (fk) = δkfℓ −
∆t

2∆p

{[
Q3[f

k]
]±
E
+
[
Q3[f

n]
]±
E

}
. (5.16)

A further consequence of N = 0 for this choice of ψ is that the distribution coefficients will

all be identically one and thus

Rk,E
ℓ = Rk,E = Rk

ℓ . (5.17)

Applying this to equation (5.8) we get

fk+1
ℓ = fk

ℓ −Rk
ℓ = fk

ℓ −
(
δkfℓ −

∆t

2∆p

{[
Q3[f

k]
]±

+
[
Q3[f

n]
]±})

= fn
ℓ +

∆t

2∆p

{[
Q3[f

k]
]±

+
[
Q3[f

n]
]±}

.

(5.18)

Lastly, selecting k = n, i.e. setting the number of correction steps to one, we arrive at

fn+1
ℓ = fn

ℓ +
∆t

∆p

[
Q3[f

n]
]±
, (5.19)

which gives the finite volume scheme we wished to derive.

5.2.1. Deferred Correction Methods

In this section we give details of the DeC time-stepping method. To begin, we must

define the operators L1 and L2, which we will call the prediction operator and correction
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operator, respectively. Then, we define

L1(fk) =


φ̄ℓ(f

m,k
ℓ − fn,0

ℓ ) + ∆tm,n

∆pℓ

[
Q3[f

n,0]
]±
E

...

φ̄ℓ(f
1,k
ℓ − fn,0

ℓ ) + ∆t1,n
∆pℓ

[
Q3[f

n,0]
]±
E


, (5.20)

to be the m-th prediction step, where ∆tm,n = m
M
∆t, with M the number of sub-time steps.

We define

φ̄ℓ =
1

∆pℓ

∫
E

φℓ(x)dx,

the element average of the basis function which is positive thanks to the properties of the

Bernstein basis. The choice ofM plays a direct role in the stability of the method, and should

be at least that of the order of the spatial approximation [82, 87, 88]. This is essentially a

crude forward Euler approximation [82,86,87]. Next, define the correction operator

L2(fk) =



∑
E∋ℓ

1
∆pℓ

{∫
E
φνdx(f

m,k
ν − fn,0

ν ) +
∫ tm

tn
IM
[
Q3[f

n,k]
]±
E
dt
}

...∑
E∋ℓ

1
∆pℓ

{∫
E
φνdx(f

1,k
ν − fn,0

ν ) +
∫ t1

tn
IM
[
Q3[f

n,k]
]±
E
dt
}


, (5.21)

which is an M -th order operator for L2(f ∗) = 0. The full update is then given by

L1(fk+1) = L1(fk)− L2(fk) (5.22)

Moving both L1 operators to the left-hand side results in equation (5.8). From [85–87], we

have the following theorem.

Theorem 5.1. Assume that there exists an f ∗ such that L2(f ∗) = 0. Further assume that

L1 is coercive, with constant of coercivity C1 > 0, and that the difference L1−L2 is Lipschitz
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continuous with Lipschitz constant, C2 > 0, depending on ∆t, i.e.

C1∥u− v∥≤ ∥L1(u)− L1(v)∥ (5.23)

and

∥(L1(u)− L2(u))− (L1(v)− L2(v))∥≤ C2(∆t)∥u− v∥. (5.24)

Then, if C2(∆t)
C1

< 1 the DeC update (5.22) is convergent, and after k corrections, the error

is smaller than (C2(∆t)

C1

)k
∥f 0 − f ∗∥.

Proof. For completeness, we reproduce the proof found in [86]. From the coercivity of L1 we

have

∥fk − f ∗∥≤ 1

C1

∥L1(yk)− L1(y∗)∥

= ∥L1(fk−1)− L2(fk−1)− L1(f ∗) + L2(f ∗)∥

≤ ∆t
C2

C1

∥fk−1 − f ∗∥,

(5.25)

from the Lipschitz property of L1 − L2 and the assumption that L2(f ∗) = 0. The result

follows by induction.

5.2.2. Discretization of the Flux Collision Term

The goal of this section is to derive computationally efficient approximations to the term[
Q3[Φtkf ]

]±
E
in the definition of the residual, equation 5.12, above. Let us first add some

detail, [
Q3[Φtkf ]

]±
E
= Qi+ 1

2
3 [Φtkf ]−Qi− 1

2
3 [Φtkf ], (5.26)

where the nodes i + 1
2
and i − 1

2
denote the right and left endpoints of the element E,

respectively. Recalling the definition of Q3[f ](t, p), the 3-WKE collision operator and writing
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V1,2 = (p1p2)
γ/2, we may then write, ignoring the discretization of f for the moment,

Qi+ 1
2

3 [f ] = −2

∫ p
i+1

2

0

∫ p
i+1

2

0

(p1p2)
γ/2f1f2χ{pi+ 1

2
< p1 + p2}dp21

+

∫ P

0

∫ P

0

(p1p2)
γ/2f1f2χ{pi+ 1

2
< p1 + p2}dp21,

and likewise

Qi− 1
2

3 [f ] = −2

∫ p
i− 1

2

0

∫ p
i− 1

2

0

(p1p2)
γ/2f1f2χ{pi− 1

2
< p1 + p2}dp21

+

∫ P

0

∫ P

0

(p1p2)
γ/2f1f2χ{pi− 1

2
< p1 + p2}dp21,

with P >> 1 the truncation parameter. Before further discretization, it is convenient to leave

the above two terms as they are and simplify their difference. This simplification not only

aids in the analysis to follow but is necessary for a computationally efficient implementation.

More specifically, while it is natural to apply a quadrature rule to the above semi-discrete

flux collision term as is, this will result in slow computations without the aid of GPUs are

parallelism. See [89] for a comparison of a serial implementation of the finite volume scheme

(5.19) in Python against a C++ implementation using MATAR.

In what follows, to ease notation, we will only explicitly write the set characteristic

functions in the integrands and the term (p1p2)
γ/2f1f2 will be implied throughout. We can

group the terms in the difference via their bounds of integration so that we have

[
Q3[f ]

]±
E
=

∫ P

0

∫ P

0

(
χ{pi+ 1

2
< p1 + p2} − χ{pi− 1

2
< p1 + p2}

)
dp21

+2

∫ p
i− 1

2

0

∫ p
i− 1

2

0

χ{pi− 1
2
< p1 + p2}dp21

− 2

∫ p
i+1

2

0

∫ p
i+1

2

0

(p1p2)
γ/2f1f2χ{pi+ 1

2
< p1 + p2}dp21

= (I) + (II) + (III).
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We will first analyse (III), which can be written as

(III) = −2
{∫ p

i− 1
2

0

∫ p
i− 1

2

0

χ{pi+ 1
2
< p1 + p2}dp21

+2

∫ p
i− 1

2

0

∫ p
i+1

2

p
i− 1

2

χ{pi+ 1
2
< p1 + p2}dp21

+

∫ p
i+1

2

pi−1/2

∫ p
i+1

2

pi− 1
2

χ{pi+ 1
2
< p1 + p2}dp21

}
.

(5.27)

Combining this with (II), we get

(II) + (III) = 2

∫ p
i− 1

2

0

∫ p
i− 1

2

0

(
χ{pi− 1

2
< p1 + p2}dp21 − χ{pi+ 1

2
< p1 + p2}

)
dp21

− 4

∫ p
i− 1

2

0

∫ p
i+1

2

p
i− 1

2

χ{pi+ 1
2
< p1 + p2}dp21 − 2

∫ p
i+1

2

p
i− 1

2

∫ p
i+1

2

p
i− 1

2

χ{pi+ 1
2
< p1 + p2}dp21.

(5.28)

Taking into account the set characteristic functions, we obtain a further simplification of

(I)+(II)+(III) and may write
[
Q3[f ]

]±
E
as

[
Q3[f ]

]±
E
=

∫ p
i− 1

2

0

{∫ p
i+1

2
−p1

p
i− 1

2
−p1

(p1p2)
γ
2 f1f2dp2 + 2

∫ p
i− 1

2

p
i− 1

2
−p1

(p1p2)
γ
2 f1f2dp2

− 4

∫ p
i+1

2

p
i− 1

2

∨
p
i+1

2
−p1

(p1p2)
γ
2 f1f2dp2

}
dp1 − 2

∫ p
i+1

2

p
i− 1

2

∫ p
i+1

2

p
i− 1

2

∨
p
i+1

2
−p1

(p1p2)
γ
2 f1f2dp2dp1,

(5.29)

where we use x
∨
y to indicate taking the maximum of x and y. It is this form which we will

fully discretize and approximate with a quadrature rule in the Petrov-Galerkin Residual

Rk,E
ℓ (Φtkf) =

1

∆pℓ

2N∑
j=0

φν(ξj)ωjdet(J) δ
kfν −

1

∆pℓ

M−1∑
j=0

IM
[
Q3[Φtj,kf ]

]±
E
θj, (5.30)

resulting in the update

f(tk+1, p) = f(tk, p)−
∑
E∋ℓ

Rk,E
ℓ , (5.31)

already given above.
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5.3. Numerical Results

Next, we study the evolution problem with initial condition given by

g0(p) = pe−p, p ∈ [0, R], (5.32)

shown in figure 5.1 with various ordersN of the basis functions φ with the number of elements

fixed at 2R, where the figure is shown for R = 100, with the x-axis given in log-scale.

To verify numerically the derivation of the FVS from the PGRD method, we take initial

condition (5.32), set ∆t = 0.05 and compute solutions the WKE using the finite volume

method of chapter 2 and the update given in equation (5.8) choosing zeroth order polynomials

and using the trapezoidal rule for the time integration inside the residual. The results shown

in figure 5.2 match exactly as predicted.

5.4. Conclusions

Development of the higher-order code leveraging MATAR is currently underway. The

results of the zeroth order method are promising. We further plan to treat the issue of

convergence the scheme analytically in this forthcoming work. As the PG-RD method gen-

eralizes the method of chapter 2, the convergence analysis of the PG-RD method will apply

to the finite volume method as well. Similarly, we are constructing a rigorous error analysis

of the method, which will also be applicable to the finite volume method. With the higher-

order expansion polynomials, we plan to explore the use of non-uniform grids. Further, the

use of MATAR allows for easy parallelization, which when enable computations over longer

time intervals and larger truncation parameters.
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Figure 5.1: The initial condition (5.32) for various orders of interpolation N . The x-axis is
given in log-scale for clarity. Here R = 100 and the number of elements is 2R.
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Figure 5.2: Comparison of the finite volume solution with the residual distribution using
zeroth order expansion functions and the trapezoidal rule for time integration. The number
of elements/control volumes is 10R in the figure. The point p = 0 is not resolved on the
grid as the data corresponds to the cell averages.
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Chapter 6

Conclusions

In this final chapter, we would like to provide a discussion on research directions not

addressed in the preceding chapters. Some of the topics we address here have been touched

on to some extent in the previous chapters, but perhaps it worth collecting them all in one

place. Then, the current chapter will be organized as follows. We will address open questions

or possible research directions in the context of the work presented in chapter sequentially.

In chapter 2, we are provided with several results which should be studied analytically.

The first we will mention is the solution dynamics as the phenomena occurs. We observe

that regardless of the initial regularity, after some short time ts, the remaining energy in

the computational domain is concentrated at some small wavenumber value ks, and for any

time t > ts the energy concentrated at the point decays in a self-similar fashion. For some

initial conditions, we observe that in addition to the self-similar decay about ks, other low

amplitude pulses are generated a higher wavenumbers in the computational domain which

then also decay self-similarly after their initial generation. Can this behavior be verified

analytically?

Can an analytic explanation for the behavior of higher moments of the solutions as γ is

varied be given?

The next question is concerned with the so-called transient cascade phenomena. If forcing

is present at k = 0 and a sink is at k = ∞, for finite capacity systems, it has been observed

numerically that the constant flux solutions possess exponents a > κ > 0 where ftrans ≈

Ctransk
−a denotes the transient spectra and κ is the K-Z spectra exponent. This transient
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flux is carried by a ”front” until it reaches k = ∞ where a backward propagation of energy

then ”lifts” ftrans to f∞, the K-Z solution, closing the ”energy loop” from k = 0 to k = ∞ )

see [21, 23] and the references therein).

In our work, without forcing or dissipation, we found potential evidence for such a tran-

sient spectra before the first blow-up time. These transient spectra are different from the

KZ spectra as discussed above and cannot be estimated from dimensional arguments or

via applying Zakharov transformations in the 3-WKE. Briefly, the transient spectra should

occur just before the singular behavior time t∗1, and the solution should have the form

ftrans(t, k) ≈ Ctransk
−a for a > 0, where, importantly, a ̸= κ for κ the exponent of the

KZ solution. In Figure 6.1, we give a log-log plot of the initial condition and the solution

just before the cascade process begins. We draw a comparative line through this snapshot in

time of the solution. Lines corresponding to the KZ spectra for capillary and acoustic waves

are also shown for comparison. To rigorously compute a, one must solve a nonlinear eigen-

value problem as in [32]. However, as discussed above, solving such a nonlinear eigenvalue

problem is a difficult task: in [32], a hypothesis is imposed on the evolution of the solution.

The solution is assumed to grow linearly in time and additional hypotheses are also imposed

to treat the singularities of the integral. While these hypotheses remain interesting mathe-

matical questions to be verified, we assume the nonlinear interactions to be solely responsible

for the transfer of energy in our work. We provide Figure 6.1 as preliminary evidence that

the solution seems to give a cascade behavior consistent with the predicted transient spec-

tra, though further rigorous analysis is required for verification. Finding self-similar profiles

for the solutions before the n-th blow-up times, similarly to those done in [32, 90, 91], is

non-trivial.

In chapter 3, we presented a deep learning algorithm with non-local non-linear terms in

the residual of the loss function. However, the solutions were only presented for the radially

symmetric case where we can perform computations on R+. One of the biggest advantages
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Figure 6.1: Potential evidence for the transient cascade phenomena. The K-Z spectra for
acoustic and capillary waves are provided for reference. The above indeed shows a flux with larger
exponenet than either of the K-Z exponents.
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provided by a deep learning approach to differential equations is the ability to compute

solutions for very high dimensional problems. Here there are two challenges. The first is

computational. If the computations are not confined to R+, the one must contend with

integration over the resonant manifolds for each wavenumber value of the solution

δ(ω − ω1 − ω2)δ(k − k1 − k2), (6.1)

for each k in of the solution f(t, k) (see equation (1.2) and [9] for many examples). Then,

integration in the collision operators must be restricted to these energy surfaces (resonant

manifolds). In some cases, where the energy surface may be cast as an algebraic variety, this

can be accomplished via methods developed by computational algebraic geometrician [92]

(how efficiently is another question). The second issue is that currently, to the author’s

knowledge, there is no analysis for the long-time behavior of solutions which are not radially

symmetric. This a much more difficult issue.
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Chapter 7

Appendix: Background on Methods

For completeness, we give a short account of the methods employed in chapter 3. The

literature on deep learning methods is vast and we do not aim to be exhaustive. We will

review results on Physics-Informed Neural Networks (PINNs), the Deep Galerkin Method

(DGM) and a few applications to fluid mechanics as these are a some of the most relevant

results in scientific machine learning to the results in Chapter 3. Each of the previously

mentioned machine learning methods are founded upon established universal approximation

theorems for neural networks (see for example Hornik, Stithcomba and White, 1989).

7.1. Deep Learning for Partial Differential Equations

The main ideas of the current section can be found in [58] [57], and [59], for example,

though we do not follow them exactly. A very nice book chapter which surveys some of the

main idea of PINNs can be found in the recent second edition of the book [93] by Brunton and

Kutz. Our present goal is to give a brief overview of how one might go about solving partial

differential equations (PDEs) with deep neural networks (DNNs) and then to provide a few

examples on well known PDEs which, unlike in Chapter 3, only contain local differential

operators. While there exist a plethora of architectures one can use to solve PDEs with

DNNs, we show that one can get quite far with very simple feed-forward architectures.

For simplicity, we consider equations which are only first order in time. This is not a

requirement, but would increase the number of terms in the loss functional below. First,

define a partial differential operator, R, the residual operator, to be

R = ∂t +N , (7.1)
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where we do not specify whether N is linear or nonlinear. We will denote by B a boundary

operator. Let f(t, x) : R+ × Ω → R be the solution to the PDE

Rf(t, x) = 0 (t, x) ∈ R+ × Ω

Bf(t, x) = g(t, x) (t, x) ∈ R+ × ∂Ω

f(0, x) = f0(x) x ∈ Ω,

(7.2)

with Ω ⊆ Rd, d ≥ 1. Next, we introduce a feed-forward neural network, n(t, x; θ) for

θ ∈ Θ the set of weights and biases of the neural network. Specifically, the neural network

is a composition of nonlinear activation functions, σ, with inputs (t, x) = x ∈ R1+d. The

first layer of the neural network will be denoted L1 := W1x + b1 and the ℓth layer Lℓ =

Wℓσ(Lℓ−1) + bℓ, so that we arrive at the following representation for our approximating

neural network

n(t, x; θ) = id(LN) ◦ σ(LN−1) ◦ · · · ◦ σ(L2) ◦ σ(L1). (7.3)

Note that the activation functions, σ, from composition to composition, are not necessarily

the same and that the activation function in the last layer is simply the identity so that

LN = WNσ(LN−1) + bN ∈ R for our purposes.

Next, we define a loss functional, Jθ[n](t, x), which we will minimize with respect to the

parameter θ to find an approximate solution to (7.2) above. In general, the procedure which

we will describe in the sequel produces a solution which is not unique and most likely a

global minimum. Let us proceed with the definition of the loss functional. We have

Jθ[n](t, x) = ∥Rn(t, x; θ)∥2L2(R+×Ω)+∥Bn(t, x; θ)− g(t, x)∥2L2(R+×∂Ω)+∥f0(x)−n(0, x; θ)∥2L2(Ω),

(7.4)

and the idea is to find

θ∗ = argmin
θ
Jθ[n](t, x), (7.5)
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via some optimization procedure. There exist a plethora of options to consider when choosing

an optimization procedure, but often one uses stochastic gradient descent and specifically

the ADAM algorithm [94], which is the approach we will use below. Looking at equation

(7.4), we see that we still have choices to make regarding our space-time discretization and

just how we intend to approximate the operators R and B, let alone the L2 inner products.

To this end, let us truncate the time domain by some simulation parameter T > 0 so that

the integrals above are over (0, T ) ⊂ R+.

In what follows, we shall use a quasi-Monte Carlo approach to approximate the inner

products, which also determines the discretization of (0, T ) × Ω, namely to approximate

space-time with some low-discrepancy sequence [65]. The low discrepancy sequence we use

is the Sobol sequence [60], which is illustrated above in Chapter 3. The choice of quasi-Monte

Carlo is motivated by faster convergence rates and the obviation of the construction of a

measure over the samples [59], since it is deterministic. The author is aware of at least two

papers [61, 62] which provide comparisons of a quasi-Monte Carlo approach with classical

Monte Carlo, as well as a comparison between the various low-discrepancy sequences, in the

context of fluid dynamics.

With this in mind, we shall write out the fully discrete loss function, which, with some

abuse of notation, we simply denote as Jθ[n](t, x). Let S ⊂ (0, T )×Ω denote the set of Sobol

space-time samples, ∂S ⊂ (0, T ) × ∂Ω the set of Sobol samples for the boundary condition

and X ⊂ {0}×Ω the samples for the initial condition. Then the fully discrete loss function,

where the operators below should be understood to be their discrete analogues, is

Jθ[n](t, x) =
1

|S|
∑

(t,x)∼S

(
Rn(t, x; θ)

)2
+

1

|∂S|
∑

(t,x)∼∂S

(
Bn(t, x; θ)− g(t, x)

)2
+

1

|X |
∑
x∼X

(
f0(x)− n(0, x; θ)

)2
.

(7.6)

In what follows, we will consider two examples, a heat equation and an inviscid Burgers’

equation. For clarity, and to demonstrate the simplicity of the code, we will provide example
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code written in Tensorflow with Keras [67, 68] for the heat equation. We can recommend

libraries such as the DeepXDE library [58] and the more recent Modulus toolkit by NVIDIA

[95] which one can use to create models rather than writing the code from scratch. To adapt

the code for the Burgers’ equation, one needs only to modify the residual function and ensure

the boundary and initial conditions have been altered correctly. Otherwise, the code is the

same.

First, we consider the following heat equation

(∂t − ∂xx)f(t, x) = 0 (t, x) ∈ (0, T ]× (0, π)

f0(x) = sin(x) x ∈ (0, π)

f(t, 0) = f(t, π) = 0,

(7.7)

where we take T = 2. The exact solution is f(t, x) = e−t sin(x), as can be seen from

inspection. We define our neural network to be

n(t, x; θ) = id(L3) ◦ σ(L2) ◦ σ(L1), (7.8)

where we select σ = 1
1+e−x , the sigmoid function. Each hidden layer has 128 units [96]. To

solve the above heat equation with a neural network, we follow the framework presented

above. We take |S|= |∂S|= 1024 and |X |= 64. The residual for the heat equation is defined

below in the code listing.

def heat_res(model, x):

time = x[:,0]

space = x[:,1]

with tf.GradientTape(persistent=True) as tape:

tape.watch(time)

tape.watch(space)
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g = model( tf.stack( [time, space], 1) )

g_x = tape.gradient(g, space)

g_t = tape.gradient( g, time )

g_xx = tape.gradient( g_x, space)

return tf.subtract( g_t, g_xx)

The loss function is defined exactly as above in equation (7.6) and the code for its imple-

mentation is provided below.

def loss_fcn(model,x):

# PDE residual

L1 = tf.reduce_mean( tf.square( heat_res(model,x) ) )

# adherance to initial condition

t0 = tf.zeros(shape = (2**6, 1))

x_0 = sobol_transformation(

tf.math.sobol_sample( dim = 1, num_results = 2**6),

0 ,L )

x_ic = tf.concat( [t0, x_0], 1)

L2 = tf.reduce_mean(tf.square(tf.subtract(heat_IC(x_0),model(x_ic))))

# boundary conditions

x_naught = tf.zeros(shape = (loss_samples, ))

X_bc1 = tf.stack( [ x[:,0], x_naught], 1)

L3 = tf.reduce_mean( tf.square( model(X_bc1) ) )

x_pi = np.pi*tf.ones(shape = (loss_samples, ))
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X_bc2 = tf.stack( [x[:,0], x_pi], 1)

L4 = tf.reduce_mean( tf.square( model(X_bc2) ) )

return tf.add(L1, tf.add( L2, tf.add( L3, L4 ) ) )

The function sobol_transformation is a user defined function which tranforms Sobol sam-

ples in a unit hypercube to a hypercube with user specified lengths. Lastly, to perform

stochastic gradient descent on the loss function to obtain a local minimum we would use the

following function.

def train(model,x):

with tf.GradientTape(persistent=True) as tape:

tape.watch(model.variables)

loss = loss_fcn(model,x)

grad = tape.gradient(loss,model.variables)

optimizer.apply_gradients(zip(grad,model.variables))

return loss

where the optimizer can be set by optimizer = keras.optimizers.Adam(). See the online

documentation for possible input arguments. The training time depends on the tolerance

one sets for the loss function. The results in figure 7.1 were obtained with less than half a

minute of training.
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Figure 7.1: Comparison of DNN solution (black dots) to the heat equation against the
exact solution (colored lines).

We next consider the inviscid Burgers’ equation

(∂t + f(t, x)∂x)f(t, x) = 0 (t, x) ∈ (0, T ]× (0, 2π)

f0(x) = 1− cos(x) x ∈ (0, 2π)

f(t, 0) = f(t, 2π) = 0,

(7.9)

where T = 1.1 just after the shock time tshock = 1. Here, we take |∂S|= 8192 and, as before,

|X |= 64. For this problem, the architecture of the neural network is modified so that now

σ(x) = tanh(x) and we have 8 hidden layers each with 20 units. This architecture increased

training speed, though we note that the simpler architecture used for the heat equation also

works. We again use ADAM to minimize the loss functional. To better capture the shock,

we actually use two space-time samples, S1 ⊂ (0, 0.8] × (0, 2π) and S2 ⊂ [0.9, T ] × (0, 2π)

where each sample set has size 8192, which adds an extra residual term to the loss function.
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Specifically, we have

Jθ[n](t, x) =
1

|S1|
∑

(t,x)∼S1

(
Rn(t, x; θ)

)2
+

1

|S2|
∑

(t,x)∼S2

(
Rn(t, x; θ)

)2
+

1

|∂S|
∑

(t,x)∼∂S

(
Bn(t, x; θ)

)2
+

1

|X |
∑
x∼X

(
f0(x)− n(0, x; θ)

)2
.

(7.10)

For comparison, we solve the Burgers’ equation by applying Fourier transforms, solving

the spectral ODE and transforming back to physical space (see [93] for more details). We

can see in figure 7.2 that the solutions are in agreement but that after the shock develops

only the neural network remains stable.

Figure 7.2: Solution of the inviscid Burgers’ equation by FFT method (color) and DNN
(black dots). The shock time is t = 1, notice the breakdown of the FFT solution (pink
oscillating line) against the DNN solutions.
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