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As the world becomes more inter-connected and dependent on the Internet, networks

become ever more pervasive, and the stresses placed upon them more demanding. Similarly,

the expectations of networks to maintain a high level of performance have also increased.

Network performance is highly important to any business that operates online, depends on

web traffic, runs any part of their infrastructure in a cloud environment, or even hosts their

own network infrastructure. Depending upon the exact nature of a network, whether it be

local or wide-area, 10 or 100 Gigabit, it will have distinct performance characteristics and

it is important for a business or individual operating on the network to understand those

performance characteristics and how they affect operations.

To better understand our networks, it is necessary that we test them to measure their

performance capabilities and track these metrics over time. In our work, we provide an in-

depth analysis of how best to run cloud benchmarks to increase our network intelligence and

how we can use the results of those benchmarks to predict future performance and identify

performance anomalies. To achieve this, we explain how to effectively run cloud benchmarks

and propose a scheduling algorithm for running large numbers of cloud benchmarks daily. We

then use the performance data gathered from this method to conduct a thorough analysis of

v



the performance characteristics of a cloud network, train neural networks to forecast future

throughput based on historical results and detect performance anomalies as they occur.
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Chapter 1

Introduction

Cloud and cloud-connected networks continue to expand to meet emerging demands as

more applications move to being fully hosted in cloud environments. It has become in-

creasingly clear that it is essential that users, businesses, and providers understand the

performance dynamics of their networks at any point in time and are able to leverage that

knowledge to maintain a robust and stable network. This includes taking accurate perfor-

mance measurements, forecasting network performance at different time resolutions that are

of interest, identifying performance anomalies as they occur. However, some performance

measurements can be costly so we also must ensure that we are taking measurements as

efficiently as possible while maintaining a high level of accuracy.

For a individual user or company, hosting your own servers and network infrastructure

can be a costly and complex endeavor involving hardware, real estate, maintenance, and la-

bor costs as well as additional unforeseen expenses. Over the past decade, there has been a

move towards using third party services providers. These providers host a variety of services

from databases and file storage, to high performance compute clusters and virtualized infras-

tructure. Collectively these services are known as cloud services and the service providers

as cloud providers. These services largely rely on economies of scale for profitability. By

moving services to the cloud, users trade large upfront costs and continuous maintenance for

predictable expenses.

Additionally, services on the cloud have the ability to scale and expand to new regions

easily. Large cloud providers have globe-spanning networks of data centers often connected

by a network of private fiber optic links. Thus it becomes relatively simple to deploy an
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application on servers close to the target audience no matter their location. This also has

advantages when it comes to data backup and disaster recovery scenarios. We are focused

specifically on these cloud networks, both connecting Virtual Machines (VMs) in a single

data center as well as connecting VMs in geographically distinct data centers.

1.1. Motivation

Network intelligence is useful in scenarios ranging from high performance file transfers to

cloud computing requiring orchestration of computations across cloud resources distributed

in data centers across the globe. Cloud network connections tend to be multi-tenant and,

consequently, the competing traffic partially determines the achievable performance at any

given time, which can be a fraction of the total connection capacity and can have significant

variance.

With the growing dependence on cloud resources, there has been a significant amount of

research into performance when running in cloud environments. Most of this has tended to be

towards application specific performance such as web server [1] or micro-service performance

[2] in specific environments. Others have examined the network variability inherent in a

multi-tenant environment [3] [4] and how to provide guarantees on network performance

[5] [6]. There is less research on actually benchmarking cloud network performance and

using that data in a constructive manner. There is also a significant amount of effort in

analyzing and improving the performance of dedicated networks and private clouds such as

High Performance Computing (HPC) data centers [7] and OpenStack implementations [8].

In Chapter 2, we will further explore previous work in this field.

In an ideal world, we would have a complete view of all aspects of a network and use

all of the routing, traffic, and congestion information on all the routers to determine the

throughput we are likely to be able to achieve on each specific route, such as might be the

case with the control layer in a Software Defined Network (SDN) [9]. However, as users
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operating on a cloud network, we often have a more constrained view. We only have the

information that we can access via our endpoints and whatever network statistics are given

to us from the cloud provider, which can be very limited. In this situation, analyzing network

performance becomes a more difficult, yet not impossible, task. Given this more limited view

of the network, we can still gather adequate data to draw conclusions about the performance

characteristics of the network.

Additionally, the cloud providers themselves require comprehensive performance bench-

marking of their cloud as a whole, both for their own operations and to provide numbers

to inquiring customers. Currently, most of the benchmarking being done on these clouds

is internal to the cloud provider and is not executed by third parties. As a part of our

research, we perform an outside validation of these internal statistics with transparency to

our configurations and reproducible benchmarks. These same benchmarks, methods, and

data can be used by other cloud users to ensure that their network performance is adequate

for their application needs and meets the minimums set by any Service Level Agreements

(SLA) they may have with the cloud or network service provider. It is of great importance

to both parties that any resources meet the requirements of their respective SLAs. Network

benchmarking is an essential part of this. It allows the cloud provider to be confident that

they can meet the minimum agreed upon performance metrics, as well as informing them

which areas are in need of improvements or upgrades. Simultaneously, if the service does

not meet the required metrics, the customer can use the benchmarks as proof of breach of

contract.

All of this may sound like a relatively straightforward proposition of running a few tests,

but performance benchmarking especially in a cloud environment can quickly grow in com-

plexity and scope if we are unsure of exactly which metrics we may care about. We are

mainly concerned with two important network performance metrics: network latency and

throughput. Latency and throughput are, respectively, the amount of time packets take to
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reach their destination and how much data we can transfer in a specified time frame. Even

with a limited set of metrics, cloud performance is still quite a large area of study; we could

look at private network performance, local to cloud performance, or performance across

public internet. We focus our work primarily on cloud-to-cloud network performance using

Transmission Control Protocol (TCP). This also becomes more complicated given the vastly

different implementations of different cloud providers and the many options and possible

configurations for each. It also includes 2 distinct levels of connections that have very differ-

ent performance characteristics: intra-zone and inter-region. Intra-zone connections are high

bandwidth and low latency, taking place usually within the same data center. Inter-region

connections are between data centers located at different geographic locations, which causes

higher latencies and more variable throughput. As such, part of our research also entails

figuring out how to achieve the best possible network performance for the relevant situation.

Benchmarking with sub-optimal configurations will always lead to sub-optimal results.

In order to take accurate measurements, we must be familiar with the benchmarking

tools we are using and also be familiar with the needs of the system or application that we

are benchmarking for. As much as we focus on running benchmarks here, we recognize that

they do not exist in a vacuum. It is essential for the configurations of the tests we run to

reflect the needs, or predicted needs, of the application. For example, if our application must

send out millions of messages of a very small size in a short amount of time, it would not

make sense to test the throughput of the server using a large packet size. This would give

likely give higher throughput results, but these results might not reflect the performance

of the application in reality. In fact the metric you are concerned with may not be bulk

throughput, even with a small packet size, but instead packets per second.

If we are able to take consistent and accurate measurements, we can use those in a variety

of ways. As previously discussed, the measurements can allow us to accurately determine our

likely performance for a specific application or system. We can also use these measurements
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taken at specific intervals over a period of time to monitor changes in performance over time.

We can use historical data to create a model to predict future performance. An example

application of this is to use current and predicted measurements to create a alert system for

when it is the optimal time to perform a bulk transfer operation. Historical data can also

be used for anomaly detection. If we have a historical baseline for network performance we

can create a model to determine when our current measured performance deviates from our

baseline.

1.2. Objectives and Contributions

To achieve a high level of network intelligence, we will meet the following objectives.

First, we will define a way to effectively and efficiently benchmark network connections.

This should include both how to take precise, accurate measurements on cloud environments

and a way to find the optimal network parameters to give us the best possible network

performance consistently. We will also consider how to best automate provisioning of virtual

cloud infrastructure and the setup and execution of benchmarks. Another factor we must

keep in mind is the price of running benchmarks and how to minimize it so that we can run

benchmarks for the smallest cost possible, which becomes necessary when benchmarking at

scale. To meet this objective, we will present a method of running throughput benchmarks

for the minimum required time to achieve our desired level of accuracy.

Next, we will gather a large sample size of network performance data across a long period

of time. To do this, we need to be able to run and schedule a large number of benchmarks

to provide coverage over diverse cloud network connections. We also need to schedule these

benchmarks to fit within the constraints of each Cloud API that we use and their various

quotas and limitations. We will present a way to efficiently batch schedule a large number

of network benchmarks in different regions while minimizing setup and tear down time of

each individual benchmark as well as the total time of benchmark execution. This will help
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ensure both that we can run all the benchmarks we need to in a limited time frame and that

as little time is devoted to benchmarking as possible instead of other tasks.

After the infrastructure to run benchmarks is in place, we need to capture network

performance data over several weeks and then we thoroughly examine the performance an-

alytics from what we have gathered. This includes graphing throughput profiles, examining

performance using different parameters and TCP variants, and comparing their concavity-

utilization coefficients [7]. We also compare this data to emulated dedicated network con-

nections with similar settings.

Using what we learned from this analysis, we can create a model to forecast future

performance. To do this, we use several deep learning techniques that have not previously

been applied to this problem. We will then use the performance data previously gathered

to train and test these models and attempt to create the most accurate model possible. We

will also discuss how this and similar techniques can be applied to network performance

anomaly detection. Both of these uses for our data are important for our understanding and

management of our network resources and we will show practical example applications that

our forecasting and anomaly detection techniques can be used for.

1.3. Organization

The remainder of this dissertation will be organized as follows. In Chapter 2, we will be

examining a variety of other research that we build upon or is related to this topic. Then in

Chapter 3, we will explain how to effectively test and gather performance data. In Chapter

4, we discuss how we can gather this performance data more efficiently in regards to time,

cost, and data transfer. Then we look at the throughput profiles and dynamics of cloud

networks and how we can use emulated networks to draw conclusions above actual networks

in Chapter 5. In Chapter 6 we look at using the network performance data we have gathered

to predict future performance and detect anomalies in the network. Lastly, in Chapter 7,
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we review the work that we have completed and reflect on the contributions that we have

made.
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Chapter 2

Related Work

Performance analysis of network is a topic of study that has existed for as long as

computer networks themselves and similar to how networks have evolved since the days

of ARPANET, so have the techniques used to test and analyze their performance. In this

chapter, we will discuss the previous and similar work done in the areas relating to this work.

2.1. Network Performance Benchmarking

Let us begin by discussing the field of performance benchmarking as it pertains to net-

works. It was clear early into the advent of the Internet and large scale computer networks

that it would be necessary to develop tools to assist in measuring network performance.

One early example is in 1987 when Aronoff et al. describe tools developed by the National

Bureau of Standards (NBS) for taking consistent transport layer performance measurements

on a network testbed [10]. The purpose of these tools was to make taking measurements and

configuring experiments across distributed systems easier. A large part of the the reason

why we perform benchmarks is to test our network and system configurations to ensure that

we are achieving optimal performance and to test the system before it is stressed by real

world scenarios.

When it comes to benchmarking there are two general categories: fine grain, and coarse

grain [11]. Fine grain benchmarks focus on measuring individual operations, such as number

of Floating Point Operations per Second (FLOPS) or Round Trip Time (RTT) latency for

packets across a network path. Coarse grain benchmarks tend to involve something like

running a program with a given set of inputs and measuring the execution time and other
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metrics about the program’s execution such as CPU utilization. When deciding on how to

measure the performance of our system or network, we must consider which of these is more

appropriate. In either case the benchmark should represent real world workloads as closely

as possibly. To get as close to real workloads as possible, we can perform application layer

benchmarking [12]. This would be a form of coarse grain benchmarking where we test using

the actual application of interest. If we are concerned about file transfer performance using

File Transfer Protocol (FTP), we would test how FTP performs under various circumstances

and configurations.

On the other hand, fine grain testing might be preferable if there are a wide variety of

applications we are interested in that all depend on a certain operation. For example, we

perform fine grain network throughput tests to ascertain the average or maximum throughput

we are likely to achieve across a specific network path. We do this as opposed to executing

actual program workloads because TCP network throughput performance is applicable to

many programs and has the potential to be a bottleneck for those programs. In some sense,

this actually makes fine grain benchmarks more generalizable than coarse grain benchmarks

in many instances.

If we can not perform measurements on an actual network, we can instead choose to

simulate or emulate a network and perform our measurements there [13] [14]. This can allow

us to tweak our network configuration before deploying to a physical network and can also

be more cost efficient than buying hardware such as in the case of Caini et al. evaluating the

performance of different TCP variants across a simulated satellite network [15]. It is much

more efficient to simulate the characteristics of a satellite network than to perform extensive

benchmarking across the production network. One fairly widely used network simulator

is Mininet, which allows users to simulate large Software Defined Network (SDN) on their

personal computers [16]. If we can correctly simulate the characteristics of the original
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network, these can provide us fairly accurate data of how our applications or protocols will

perform on the actual network.

2.1.1. Performance Measurements and Benchmarking Tools

To actually measure network performance, we can either gather passive or active mea-

surements. Passive measurements record existing traffic on a network and uses that to

estimate throughput and latency statistics. Active measurements inject additional traffic

into a network [17]. These have the disadvantage of adding congestion, but have the benefit

of producing repeatable measurements. The type of performance measurements we gather

depend on whether our network can handle the additional workload of active measurements.

Our work relies on these active measurements and we believe they are worth the cost of the

potential disruption if performed in a conservative and efficient manner. In fact, multiple

later chapters focus on minimizing the workload and impact of these active measurements.

The remainder of this section will focus on active measurement techniques and tools.

2.1.1.1. Network Throughput Measurements

For network throughput, active measurement techniques can further be divided into

estimation and direct measurement methods. Both involve adding additional workloads

to the network, but estimation methods generally involve significantly fewer packets. One

common type of estimation is available bandwidth estimation [18]. Available bandwidth is

the portion of a path’s total end-to-end capacity that is not used during a specific interval

[19]. This is usually estimated using various techniques relating to the difference in delay

between TCP packets sent in a sequence [20]. Estimation is usually lighter weight than direct

measurement, but can also be less accurate. In particular, these delay based estimates are

much less accurate on multi-Gigabit network paths [21], which encompass the cloud network

paths we are primarily interested in.
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In addition to available bandwidth estimations, there are also studies for estimating

throughput in specific circumstances. De Silva et al. looked at estimating throughput

specifically on mobile networks. They were able to use 1MB of data to predict the throughput

for 5-20MB downloads. This estimate relied on an explicit model of the dynamics of TCP

CUBIC [22]. This seems to estimate throughput accurately, but is limited to one variant

of TCP operating under very specific circumstances. If we want to estimate throughput for

another TCP congestion control algorithm, we would need to model that as well.

Our work is focused on direct achieved throughput measurements. Achieved throughput

is the rate of network data transfer we were actually able to attain during a specified period.

This is different from bandwidth, which is the maximum theoretical capacity a link is capable

of. For example, the stated bandwidth of a link might be 10 Gbits/sec, but the achieved

throughput we actually measure might only be 8 Gbits/sec. Throughput is dependent on

the protocol being used, the congestion control algorithm, and variables such as the TCP

buffer size and MTU. One unfortunate side effect of measuring throughput in this manner

is the stress it can put on a network. Performing a large amount of throughput tests to find

the maximum capacity of a network could disrupt other traffic on that network and take

up a large amount of resources that could be otherwise used. When performing tests on a

cloud provider, it can also be expensive. Most providers have charges based on the amount

of data that egresses from their network or moves between their data centers. This is fine

when measuring throughput between machines in the same data center, but the cost can

quickly add up when taking measurements from machines in different data centers or to a

machine outside the provider’s network.

There are several tools available for measuring achieved network throughput. The idea

behind these tools are all quite similar. To measure achieved throughput, you execute a

sender and a receiver program on two machines. The direct measurement tool then gener-

ates traffic on the sender machine and sends it across the network to the receiver machine.
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Throughput is then easily calculated as the average amount of data in bytes/sec sent/received

during the test. Though on their surface the tools operate in a similar manner, their im-

plementations have some important details that can effect the measured results particularly

for high latency or high bandwidth links. The first tool that we use to measure throughput

is iPerf, specifically iPerf2 [23]. Though there also exists an iPerf3 [24], iPerf2 is also still

being actively maintained and improved at the time of writing. iPerf2 tends to be better

than iPerf3 for high bandwidth use cases. When measuring throughput on high bandwidth

links, one often has to use multiple parallel streams of data to reach the maximum possible

throughput. iPerf2 creates subprocesses to send multiple streams each with their own data

generator, while iPerf3 uses the same process for all of its streams. This can be a bottleneck

in some cases, leading to inaccurate measurements of the true throughput of the network

link. As such, when we refer to iPerf in this document, we are referring to iPerf2.

We also make use of Netperf [25] to perform throughput measurements. We have found

this to be a very versatile and powerful tool. It has a variety of protocols that can be used

in different directions of flow and has the best capabilities for performing packets per second

testing and multi-server testing from the tools we have used.

2.1.1.2. Network Latency Measurements

To measure latency, or RTT, the standard tool implemented and ubiquitous on all

command-line interfaces is ping. This utility measures latency using packets. By default

it sends 1 packet per second for a specified period of time. There are other similar imple-

mentations such as nping, and hping that offer additional features such as using different

packet types like TCP. These can be useful as networks are not uniform in how they handle

different types of packets. They might treat ICMP packets differently to TCP packets. This

is a problem we have encountered before when gathering measurement data, as one of the

networks we were using completely blocked or dropped our ICMP packets from ping, so we
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had to use TCP packets with nping. Because of these potential performance differences,

it can be useful to measure latency using the protocol that you are interested in. Latency

can also be subject to congestion on the network and the endpoints. If there is delay in

processing the packets, that can show up as an increase in the RTT.

2.1.1.3. Benchmark Suites

Beyond these tools, have been several efforts to make benchmarking easier and more

convenient for users. These tools, often referred to as benchmark suites, compile several

types of measurements or benchmarks and provide a convenient wrapper for their usage.

They can also encapsulate a reporting and configuration environment. Some examples of

these include BenchIT [26] and HPCBench, which is a benchmark suite for high performance

computing clusters [17]. Perhaps the most widely used benchmark suites are those produced

and maintained by the Standard Performance Evaluation Corporation (SPEC). They provide

benchmark suites for a variety of scenarios, including Cloud IaaS environments [27].

2.1.2. Cloud Benchmarking

Cloud computing is a relatively new field that has exploded in size. With this rise in

use, there has been extensive research done on how to adapt the technologies people use on

local systems, with those being hosted in the cloud. The topic of many papers in regards to

Cloud Computing deal with how professionals should classify cloud technologies, and how

they can adapt current standards to the new platform. Needless to say, we are not the first

to explore the topic of performing benchmarks in cloud environments.

For benchmarking, cloud computing represents a new challenge because the physical

architecture is obscured from the user. Not being able to see all of the specifications of cloud

machines has forced researchers to find other ways to benchmark cloud machines. Many
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research topics today deal with this new way of benchmarking and analyze the most efficient

and accurate ways to rate cloud machines. With the move from physical machines to virtual

ones, benchmarks had to be overhauled to accurately analyze the new systems. Klaver

et al. propose an independent cloud monitor that can be used to accurately benchmark

and compare virtual machines from different cloud providers [28]. This would allow cloud

consumers to hold cloud providers accountable for the machine performance they are paying

for, and would allow them to switch to other providers who offer better performance. In their

paper, To Cloud or Not to Cloud: A Study of Trade-offs between In-house and Outsourced

Virtual Private Networks [29], the authors chose to investigate the optimal Virtual Private

Network (VPN) that can allow end users to access cloud resources. The paper details how

pfSense can offer users the greatest throughput, but Cisco’s ASA 5520 VPN offers easy setup,

LDAP compatibility, and throughput that is sufficient for work.

In Fair Benchmarking for Cloud Computing Systems, the authors looked into micro

benchmarks and determined if cloud virtual machines were performing as they were ad-

vertised [30]. Their research revealed that cloud machines often had a variation in their per-

formance, even when the same machine was made on the same cloud service. They proposed

making a web portal for comparing providers and benchmarks to increase the transparency

between the cloud provider and consumer. An insight the researchers provided was a switch

from paying a standard price for a machine, to paying for performance, measured by Quality

of Service and Service Level Agreements.

Many of the new benchmarks being done are manual, where machines have to be spun up,

specifications and dependencies downloaded, the benchmark run, and then the machine is

spun down. This process can pose serious issues for organizations that must run benchmarks

across hundreds of different machines. In response to this challenge, automation tools have

been created that can automate this process and allow researchers to select a benchmark

and then run it against virtual machines that are automatically spun up and down for the
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tests. In the paper, Smart CloudBench, researchers detail the automating of benchmarks,

from a highly manual process, to one that is nearly hands-off [31]. They developed an

application that could automate the process of running benchmarks so that researchers would

not need to manually setup the machines, dependencies, and network rules. There have

been multiple similar efforts to this, including Cloud WorkBench [32] and the Automated

Performance Benchmarking Platform [33]. All of these tools have the same goal of making

cloud benchmarking more accessable to the end user by automating large parts of the process.

For the cloud benchmarks executed for this work, we have chosen to use the tool PerfKit

Benchmarker (PKB) [34]. PerfKit Benchmarker is an open source benchmarking tool that

automates the benchmarking process of cloud-based virtual machines and services. It works

with all of the major cloud service providers and provides simple and configurable access to

a wide range of benchmarks. This is a project that we have contributed to over several years

and we discuss it in extensive detail in Chapter 3.

2.2. Network Performance Analytics

Once we have obtained measurements from our cloud benchmarking efforts, we must

analyze this data. In this section, we will be discussing work in various types of network

performance analysis. The problem of achieving high performance, however it is defined,

across networks is a common and persistent one. As such, it has been previously examined

by numerous groups.

A large part of this analysis is comparing different settings and configurations to figure

out how we can achieve the best performance possible. A major contributing factor to this

is the congestion control algorithm that we choose to use. Our study includes tests of widely

used TCP congestion control algorithms (also referred to as TCP variants) such as TCP

CUBIC, as well as more recent TCP congestion control algorithms like BBR and BBRv2.
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In [35], the authors looked at performance on high bandwidth optical networks and

tested different TCP congestion control algorithms and TCP parameters across this type of

network. They found that STCP performs best for single flow, and CUBIC is most fair.

There are several other studies that also compare the efficacy of different TCP variants cross

different network types [36] [37].

Multiple studies also focus exclusively on BBR. Crichigno et al. look at how maximum

segment size and the number of parallel streams affects large file transfer performance when

using TCP BBR, finding that BBR shows a larger performance increase than other TCP

variants when using multiple parallel streams [38]. They found that BBR performs favorably

against loss based congestion control algorithms and that BBR shows more improvement

than its competitors when using parallel and an increased MSS. Jaegar et al. show how to

take reproducible measurements of TCP BBR [39] and Cao et al. examine what situations

BBR performs best in [40]. Ha et al. examined the performance of BBR in cloud networks

and found that BBR under-performs significantly when running on a shared CPU that is

scheduled between multiple users [41]. We have not observed this as our tests are on VM

types that have dedicated processors. It also may be much less fair when competing with

other congestion control algorithms [42]. Likewise, Kfourney et al. [43] look at at BBRv2

performance on an emulated network and focuses on how it differs from the original BBR in

areas such as parallel flows, bufferbloat, fairness to other variants of TCP, and how it deals

with packet loss.

In our work, the cloud network links we benchmark all have at least 10 Gigabits of

advertised bandwidth. Often analysis done on much smaller capacity links is not as applicable

to these larger links. There are several studies involving TCP performance over 10 Gigabit

connections [35] [44], including studies about the performance of specific TCP variants, such

as CUBIC [45], BBR [46], and BBRv2 [47]. Settlemyer et al. [44] looks at TCP transfers

over 10 Gbps links for wide-area dedicated connections and emulated connections. They
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used differential regression to compare measured collected on physical and emulated links

and found that measurements on the emulated infrastructure could be used to generate good

estimates for the physical infrastructure at a fraction of the cost.

Likewise, several papers have covered the evaluation and comparison of different TCP

congestion control algorithms [36] [37] [48] on 10 Gigabit networks; however, there has been

relatively little work involving measurements on production cloud networks. Ganji et al.

looked at which TCP variant to use as a cloud tenant based upon application type [49]. This

study focused on application traffic for specific workloads, such as streaming and distributed

IO in a single availability zone. Jouet et al. explored how to optimally tune TCP parameters

for cloud networks [50]. Our work differs from these in that we test multiple TCP congestion

control algorithms across a range of RTTs (between availability zones) on both a 10 Gbps

public cloud network as well as an emulated network of the same capacity.

Other researchers have looked at end to end data movement across a system, both with

physical and emulated connections [51]. They have also examined regression methods to

estimate the differences between these types of connections [44]. File transfer dynamics

tends to be more complex, since there are more possible bottlenecks to consider. For our

research, we are only looking at network performance, or memory to memory transfers.

There are also multiple studies that focus on the effects of using parallel TCP streams for

improved throughput performance [52] [53]. There has also been work in creating and using

coefficients for comparing different networks [7] [54]. This includes the utilization concavity

coefficient, which we use to compare our network throughput profiles and will explore more

in Chapter 5.
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2.3. Network Performance Forecasting

Another key part of our work is using the data we have gathered from performance

benchmarking to gain insight into how these network perform over time, how they might

perform in the future, and whether they are performing how they have historically.

2.4. Time Series Analysis

Before we discuss efforts into throughput prediction for networks, we should first discuss

the topic of time series and some of the methods that are commonly used to analyze them.

This will help us understand techniques we use in later sections.

Time series analysis refers to methods relating to working with Time series data, which

refers to any data set where the data points are indexed by time. Examples of this include a

wide range of domains from stock prices, to climate data, to network throughput and latency

data. Time series analysis consists of the study of data to find patterns, statistics, and

meaningful insight, as well as using existing data to try to predict future data points, which

is also called time series forecasting. There is a second branch of time series analysis which

is primarily concerned with signal analysis and related topics which are not immediately

relevant to our discussion, so we will not be covering them. This is not a new field and some

of its methods, many of which are still widely used, originate decades ago.

2.4.1. Time series statistics

In this section, we will discuss different statistical properties that are essential to under-

stand when dealing with time series data.
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2.4.1.1. Stationarity, Seasonality, and Trends

For time series, stationarity is the property that the mean and variance of a series does

not change over time and there is also no seasonality. Seasonality is when the data goes

through cycles that repeat regularly over time, such as one might see when looking at the

daily average temperature over the course of several years. It is also possible that a time

series has a trend over time. This is where the moving average of the series either increases

or decreases. In Fig. 2.2, we show an often used example dataset consisting of monthly

passengers for an airline over time from 1949 to 1960. Here, we can easily see that this

dataset has both a trend and seasonality and is not stationary. The number of passengers

tends to peak in the summer months and dips in the winter. This is the seasonality. Year

over year, the number of passengers increases. This is the trend.

Figure 2.1: Time series showing monthly airline passenger data

We can also decompose a time series into its component parts. We show the decomposi-

tion of the airline passenger dataset in Fig. 2.2. Using this method, we end up with a trend

component, a seasonal component, and then a residual component. The residual component

shows variability that is not accounted for by either the seasonal or trend components.
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Figure 2.2: Time series decomposition of airline passenger data

If a time series is not stationary and the algorithm we are using requires it to be, we

can usually induce stationarity through mathematical transformations. This can be done in

several ways, depending on the nature of the series. If the series has one of more distinct

jumps in value, like a step function, we can divide the dataset into windows, where each

window is stationary. If a series has a trend, we can try to de-trend the data. We can do

this by finding the rolling mean of the series at some given window size, k. Then for each

time step t, we subtract the rolling mean at that time step.

∆ti = ti −

i−1∑
j=i−k

tj

k
(2.1)

We can also try to difference the data. This is computing the difference between each

consecutive observation. Then the values of the series become the change from the previous

value. For for time step t, the new value of that time step would be
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∆ti = ti − (ti−1) (2.2)

2.4.2. Moving Average

A moving average, or a Simple Moving Average (SMA) is about as simple of a prediction

method as you can get. It simply predicts the next value based off of the average of the

previous n values. We can also use this to smooth our data, reducing the variance in each

individual data point to see a clearer picture of the trend.

2.4.3. ARIMA

ARIMA, one of the most well known and prolific models, has been used by several

studies for throughput prediction on different types of networks [55] [56]. These models have

the advantages of being simple and often very effective. They combine a simple moving

average with an autoregressive component to predict a future value based off of the weighted

summation of a number of lagged values and forecasted errors.

They do require that the time series be stationary. This property is definitely not guar-

anteed to be found in any arbitrary time series, but as we have discussed, the data can

often be transformed or normalized to ’induce’ stationarity. There are also specific variants

of ARIMA such as SARIMA that are designed to deal with seasonality. Just like the clas-

sic ARIMA model, the other history based methods here all use a function based on some

number of lagged values for prediction.
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2.4.4. Support Vector Regression

Support Vector Regression constructs a curve of best fit from past values. To predict

future results, it tries to fit them to the same curve. In Mirza et al, the authors employ a

support vector regression model that uses previous throughput as well as loss and queuing

delay measurements to help predict throughput [57], which they found increased the overall

accuracy of the model. A similar multivariate approach can be taken with ARIMA, which

is referred to as Vector ARIMA or VARIMA.

2.5. Throughput Prediction

Now let us look at times series analysis as it applies to the domain of throughput predic-

tion. There have been numerous studies that have looked at the problem of TCP throughput

prediction and prediction methods generally fall into one of two broad categories: formula

based methods, and history based methods.

2.5.1. Formula-based TCP Throughput Prediction Methods

Several formulas have been developed and often used to predict throughput between two

endpoints [58] [59]. These usually show throughput as a function of network and endpoint

traits, such as round trip latency, loss rate, and TCP buffer size, and the dynamics of the

congestion algorithm. These metrics are plugged into an equation to yield the predicted

throughput at a given point in the future. Their accuracy suffers when there are network

or metric changes that can’t be accounted for in the formula’s variables or occur during the

TCP transfer. That is to say, they can generally be less adaptable. On the positive side,

they benefit from being very quick, which is useful when predicting throughput on small

timescales, milliseconds or seconds in the future. These methods usually work better when

developed for and applied to a specific area, such as throughput for mobile network users [60].
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Overall, we like these methods for their speed, but they are generally not applicable to our

dataset, which shows throughput at the scale of days instead of seconds.

2.5.2. History-based TCP Throughput Prediction Methods The other category of

throughput prediction is history based methods. What unites these methods and defines this

category is the use of some number of past samples to predict future network throughput.

This includes classical time series analysis models such as a simple moving average (SMA),

an autoregressive integrated moving average (ARIMA) or one of its many derivatives, linear

support vector regression (SVR) [61], as well as more modern machine learning methods and

various architectures of neural networks.

ARIMA, one of the most well known and prolific models, has been used by several

studies for throughput prediction on different types of networks [55] [56]. These models have

the advantages of being simple and often very effective. They combine a simple moving

average with an autoregressive component to predict a future value based off of the weighted

summation of a number of lagged values and forecast errors. They do require that the time

series they are used with is stationary, meaning that the mean and variance does not change

over time and there is no seasonality. This property is definitely not guaranteed to be found

in any arbitrary time series, but data can often be transformed or normalized to ’induce’

stationarity. There are also specific variants of ARIMA such as SARIMA that are designed

to deal with seasonality. Just like the classic ARIMA model, the other history based methods

here all use a function based on some number of lagged values for prediction.

Support Vector Regression relies on using past values to construct a curve of best fit,

then trying to predict future results by fitting them on the curve. In Mirza et al, the authors

employ a support vector regression model that uses previous throughput as well as loss and

queuing delay measurements to help predict throughput [57], which they found increased the
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overall accuracy of the model. A similar multivariate approach can be taken with ARIMA,

which is referred to as Vector ARIMA or VARIMA.

A custom machine learning based method is proposed to identify concave-convex regions

of the throughput profile as a function of connection round trip time in [62] for data transport

infrastructures with dedicated connections. Several conventional machine learning based

methods are shown to fail in capturing the critical concave-convex regions.

Additionally, among most of the research on throughput prediction, each focuses on

a relatively narrow use case, such as streaming across mobile networks or throughput for

specific purpose-built applications. We focus on the use case of day to day bulk throughput

prediction in a cloud environment. This comes with its own set of challenges. Most of the

existing research in this area look at throughput at a much finer granularity, predicting on

the time scale of seconds rather than days. From our experience, TCP tends to be much more

predictable on those smaller timescales, which is one reason why formula based methods that

operate at this timescale have found success.

2.5.3. Neural Networks Applied to Time Series Prediction

If we slightly widen our view beyond the topic of throughput prediction, we find a signif-

icant volume of work detailing different methods for time series prediction that could easily

be applied to the throughput prediction problem. In this section, we will examine neural

network architectures for time series prediction, any of which could possibly be applied to

our use case. As with any time series prediction method, the goal is to find the most accurate

model and hopefully outperform traditional statistical models like ARIMA, which can often

be surprisingly difficult.

While attempts have been made to apply standard multi-layer perceptrons (MLP) to time

series forecasting, a fully connected neural network architecture is not terribly conducive to
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this task as it struggles with adequately modeling the necessary temporal relations. Recur-

rent neural network (RNN) based approaches evolved in part to address this inadequacy.

RNNs have a recursive structure that allows connections and learning across temporal se-

quences. This often proves advantageous over MLPs when it comes to time series prediction.

As such, they have frequently been applied to time series problems including throughput

prediction [63]. However, RNNs also suffer a widely known flaw: the vanishing gradient

problem [64], which becomes apparent when you have to perform back-propagation across a

large number of recurrent layers. The further back you propagate, the smaller the gradient

becomes. This can make training ineffective and leads to RNNs having an effectively ’short

memory’.

There are two well known improvements on RNNs that attempt to alleviate the vanishing

gradient problem. The first is the gated recurrent unit (GRU) network [65] and the second

is the long short-term memory (LSTM) network [66]. Both of these approaches have been

shown to exhibit improved performance over a simple RNN when predicting on time series

data [67].

Though most commonly used for problems such as image recognition and classification,

convolutional neural networks (CNNs) have also been applied to time series problems [68].

Similar to how they identify patterns on images, CNN’s are able to extract patterns and

correlations from multivariate time series data.

In practice, such architectures are usually not employed on their own and are combined

into a hybrid model, such as one that combines a CNN and an RNN or LSTM [69]. The CNN

is useful for finding correlations between variables and the LSTM finds temporal relations.

Together, they can collaborate into a valuable tool for multivariate time series. We also find

significant support for the idea of combining neural networks with more traditional time

series analysis techniques, such as a proposed hybrid ARIMA-ANN architecture [70] and a
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hybrid model that combines a CNN, a GRU, and a linear autoregressive element that operate

in parallel in an architecture called LSTNet [71].

2.6. Anomaly Detection Techniques

We can also use our collected network performance data to help us detect anomalies in

our data. Previously anomaly detection techniques have been applied to both performance

related anomalies and security anomalies such as with intrusion detection. In this subsection

we will look at a variety of other work in anomaly detection. This includes detection tech-

niques ranging from time tested statistical tests to more experimental deep learning models.

It also includes anomaly detection papers in our specific area of interest.

All of the techniques we discuss share a common methodology. That is, to figure out

what ‘normal’ data should look like and create a measurement such that we can determine

how ‘normal’ or ‘abnormal’ a particular data point is. If it is dissimilar enough to our other

data, we can label it an anomaly. This can apply to both a single data point, an outlier, or

a longer range or pattern of data.

There are several commonly used methodologies to identify anomalies and outliers in

time series, as defined in [72]. The first of these that we will discuss are statistical methods.

Some examples of these include using the euclidean distance or Kalman filtering [73] such as

AnomalyDetect [74], which is designed to detect anomalies in cloud based virtual machines.

The advantage of these methods is that the probability distribution can be easy to intuitively

explain. However, they often do not work as well if there is a large number of outliers or it

is a more complex, multivariate dataset.

Clustering based anomaly detection uses k-means based clustering to detect outliers

and anomalies. By partitioning data into clusters that are most similar, we can identify

outliers by observing how far outside of existing clusters they are, such as authors did in [75]

and [76]. [77].
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We can also use classification algorithms for anomaly detection such as SVMs or logistic

regression. Using a SVM for this task has the advantage of working well in high dimensional

space and being memory efficient [78].

There are also several neural network based models that have been applied to anomaly

detection. These include MLPs, LSTM networks [79] [80], Auto-Encoders [81] to Generative

Adversarial Networks (GANs) [82] [83]. LSTMs help extract temporal features from a time

series dataset. Auto-Encoders help us ignore noise in data and reproduce its most important

features by first encoding data in a reduced dimensional form and then attempted to recon-

struct the original input from that reduced form. When using this for anomaly detection, we

are looking for instances when the reconstruction performs worse than usual, as the network

will be trained using only normal samples and will be less able to accurately reconstruct

anomalous data. For all of these architectures, their specific parameters such as the number

of layers, number of LSTM cells, window size, and anomaly threshold can have a significant

effect on their accuracy. Therefore, it is essential that no matter what architecture we end

up using, we perform a thorough parameter sweep to obtain the most optimal model.

One of the more interesting models in this category is a LSTM-GAN-XGBOOST [80]

model that uses first uses an LSTM to extract temporal features, then a GAN to perform an

efficient dimensionality reduction. It then puts these extracted features through an ensemble

learning algorithm, XGBOOST, to classify the features and assign a score based on the

likelihood of a data point being anomalous.

We also consider anomaly detection research that specifically applies to networks and

performance. There has been research exploring anomaly detection applied to various types

of networks and metrics. Many of these focus on security and DDoS detection. We are

more interested in the ones that focus on performance anomalies for the sake of maintaining

consistent performance for Service Level Agreements. Qin et al. used an LSTM network for

anomaly detection for network throughput on a large IP bearer network [84]. They found
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it performed with high precision except in cases where a port did not have stable periodic

throughput. Gaikwad et al. [85] looked at performance anomalies for scientific workloads on

the cloud. They used an auto-regression (AR) based anomaly detection technique.
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Chapter 3

Network Measurements and Performance Benchmarking

In order to predict, or even analyze our network performance, we first need to be able

to measure performance. There are several ways to do this and many tools have been

created provide similar functionality. Before we discuss gathering measurements though,

it is important to figure out what we even care about measuring. In this chapter we will

discuss how we perform cloud benchmarking and how we tune machines for optimal network

performance.

3.1. Accurate Network Measurements

When performing network tests it is important that we get as accurate of results as

possible. Accurate, however, is relative to the target that we are trying to measure. For

our performance studies, we are trying to find the optimal performance that the machine

or network under test is capable of delivering under any specific circumstances. This means

that in order for us to obtain accurate results, we must ensure that we are able to get

optimal performance. For performance, we are measuring network throughput and round

trip latency. These metrics depend on several factors and we try to adjust our network and

host parameters to achieve the best possible throughput and latency results that the machines

are capable of. Often, using default configurations will result in sub-optimal performance,

so we will be discussing how we can adjust these parameters to improve performance.
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3.1.1. RTT latency

For improving inter-region latency there is not a lot we can do from a software perspective.

It depends largely on hardware and infrastructure setup both in a data-center and across a

wide area network (WAN). If we have a server and want to improve our latency with clients,

the best thing we can do is move our server closer to those clients. This is the core idea

behind content delivery networks (CDNs). For specific applications, caching can also help

by removing the latency associated with disk I/O. Congestion also has an effect on latency,

as the more time packets spend waiting in queues, the higher the latency will be. This

effect can sometimes be minimized by using a congestion control algorithm like BBR, which

attempts to operate at the level of minimum latency. However, if the network path is very

congested regardless, this my not help latency.

If we are concerned with intra-zone performance (within the same data center) there

is more that we can do to reduce latency such as disabling host firewalls and enabling

busy-polling. These changes can shave nanoseconds off our latency, which may be useful

in tightly-coupled HPC environments. This will only result in a noticeable performance

improvement if the latency of the network path was already in the sub-millisecond range.

These should also only be used in specific circumstances because disabling firewalls can have

adverse security implications.

To measure RTT accurately, we need to take certain external factors into account and

ensure that we are using the correct settings for our chosen tool, be it ping, nping, hping, or

Netperf TCP RR. If the machines are very close together, i.e. housed in the same datacenter

or have a sub-millisecond RTT, the interval time between pings can have a significant effect

on our measured RTT. Ping, which has a 1 second interval between transactions by default,

will show a significantly higher RTT than Netperf TCP RR, which sends the next transaction

immediately upon completion of the previous transaction.
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For both ping and Netperf, a flag exists to manually set the interval time (-i for ping

and -w for Netperf). So, if we are using ping to measure sub-millisecond latency, we should

reduce the interval size to 1 millisecond to obtain an optimal RTT measurement. This is also

often more consistent with the transaction rate of real world applications. If we are using

Netperf in the same situation, we can use default settings to get a optimal measurement, or

use the -w flag if we want to send at a specific interval spacing.

3.1.2. TCP Throughput

3.1.2.1. Maximum Transmission Unit

To achieve optimal throughput, we must use the correct settings for the network path

we are using. Specifically, we will discuss TCP throughput. The first thing we should do

is increase the MTU, or the largest size of packet or segment that can be passed along the

network. This is the frame size minus overhead of the frame header. On standard Ethernet

connections, the frame size is 1518 bytes and the overhead is 18 bytes, giving us an MTU

of 1500 bytes. In most cases, the MTU for the machines on a throughput test should be

set to this maximum of 1500 bytes or sometimes 1460, depending upon what the network

supports. In some cases, the network may support larger frame sizes, or jumbo frames. If

this is the case, the MTU should be increased to maximum allowable size. This can result

in significantly higher data throughput, because a smaller percentage of the bandwidth will

be dedicated to header data. If you are primarily concerned about the performance of an

application that sends out many smaller packets, a smaller MTU may be sufficient.
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3.1.2.2. TCP Buffer Size

The next settings we need to adjust are the TCP send and receive buffer sizes. On most

Linux based operating systems, these are located in /etc/sysctl.conf as net.ipv4.tcp wmem

and net.ipv4.tcp rmem, respectively. Here we can set a minimum, default, and maximum

size for each buffer in bytes. By default, these buffers tend to be quite small, around 64 KB.

We can get a good idea what to set the maximum buffer size to by using the Bandwidth-

Delay Product. This is found using the theoretical maximum throughput of a connection

multiplied by the RTT of the connection.

BDP = BW ×RTT (3.1)

It is essential to increase these buffer sizes when we have a high RTT, a high maximum

bandwidth, or both. If we do not, we will be severely limiting our achievable throughput.

Generally, we only have to set the maximum buffer size and leave the default and minimum

sizes as they are. If TCP window scaling is enabled, the operating system should increase

the TCP send and receive buffers to an appropriate size up to the maximum automatically.

For most of our tests, which often include long fat connections, we use maximum TCP send

and receive buffers of at least 500 MB.

3.1.2.3. Hardware Limitations

If attempting to achieve multi-gigabit throughput performance, we may also be limited

by the machine we are using or the network itself. High throughput can be both CPU and

memory intensive, so we should check on our CPU utilization to ensure that we are not

bottlenecked by our CPU performance or number of CPUs. In a cloud environment, this

can usually be remedied simply by provisioning a machine with more CPU cores.
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Network capacity can also be limited by other cloud parameters such as which specific

machine type we are using and whether or not we are using additional premium features.

3.1.3. TCP Congestion Control

We also need to consider the exact variant of TCP we are using. Different TCP variants

use their own algorithms to determine at what rate to send data. These algorithms attempt

to determine how congested a network is and increase or decrease their rate accordingly. If

performing multiple tests simultaneously across the same link, we might also want to consider

how fair the TCP variant we are using is to other streams. Some variants tend to dominate a

connection and squash competing traffic. For most of our measurements we use two common

and well performing congestion control algorithms: CUBIC and BBR. We also take some

measurements using HTCP and BBRv2 Alpha. To understand the performance differences

between these algorithms, it is essential that we know a little about the mechanisms each

one uses to control congestion. Here, we will briefly describe each of the congestion control

algorithms that we use in this thesis.

3.1.3.1. HTCP

HTCP uses time since the last loss to set its congestion window. The longer since the

last loss or congestion event, the faster the window increases in size. It also sets the decrease

factor by a function of RTTs. This is to estimate the queue size of current flow in the network

path. The congestion window size increase for HTCP is calculated as follows:

W (t+ 1) = W (t) +
2(1− β)fα(∆)

cwnd
, β =

RTTmin

RTTmax

(3.2)
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fα(∆) = 1 + 10(∆−∆L) + 0.25(∆i −∆L)
2 (3.3)

Where ∆i represents time since the last window decrease and ∆L is a threshold between

lowspeed and highspeed modes [86]. This function is quadratic and leads to quick recovery

times but does not handle large buffers well.

When congestion events (packet loss) occur, it decreases the congestion window propor-

tional to RTT, giving it better fairness between flows with different RTTs.

3.1.3.2. TCP CUBIC

CUBIC also uses time since the last loss event and uses a cubic function to set the

congestion window size to quickly recover

W (t) = C

(
t− 3

√
Wmax · β

C

)3

+Wmax (3.4)

Where C is a cubic parameter, Wmax is the previous window size before it was reduced, and

t is the time since the window was reduced [87].

This leads to CUBIC increasing the window quickly at first, slowing down when it ap-

proaches previous max window size. If the window size increases past the previous maximum

with no congestion event, the window size increases progressively faster.

3.1.3.3. BBR

BBR moves away from the loss based model and attempts to pace packets based on

an estimate of the bandwidth delay product (bdp), where bdp = BtlBw · RTprop. Here,

BtlBw is the estimated bottleneck bandwidth of the network and RTprop is the estimated
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physical latency of the network, not including queuing delays. This is supposed to reduce

the burstiness and limit queuing delay in large buffers [88].

BtlBw is estimated as the maximum delivery rate over a period of time, which is usually

around 6-10 RTTs. BtlBw ≈ max(deliveryRate), where deliveryRate = ∆delivered/∆time

and RTprop is estimated as the min(RTT ) over a window of several seconds [89].

It then paces packets with a maximum of 2 ∗ bdp inflight at once instead of using a

congestion window. Unlike HTCP and TCP CUBIC, BBR does not use loss as a congestion

signal or react with a multiplicative decrease.

3.1.3.4. BBRv2 Alpha

BBRv2 is a refinement of BBR that attempts to correct some of the unintended issues of

its predecessor, such as a very high rate of retransmissions under some circumstances [40].

The underlying theory and algorithm remain very much the same with a few additions.

BBRv2 adds a loss threshold. If losses exceed a certain amount, the pacing of packets will

be reduced. It also adds the ability to react to explicit congestion notifications (ECN), but

this requires devices on the network to have this ability implemented and enabled. Yang et

al. [?] found BBRv2 to be less aggressive than the original in networks with shallow buffers

with somewhat lower throughput in these cases and more fair when sharing the network

with loss-based congestion control algorithms. They also found that both BBR and BBRv2

perform worse in networks with high jitter.

3.2. Executing Cloud Benchmarks

When choosing a cloud provider, users are often faced with the task of figuring out

which one best suits their needs. Beyond looking at the advertised metrics, many users

will want to test these claims for themselves or see if a provider can handle the demands of
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their specific use case. This brings about the challenge of benchmarking the performance

of different cloud providers, configuring environments, running tests, achieving consistent

results, and sifting through the gathered data. Setting up these environments and navigating

the APIs and portals of multiple different cloud providers can escalate this challenge and

takes time and skill. Despite the sometimes difficult nature of this, benchmarking is a

necessary endeavor. This section demonstrates how to run a variety of network benchmarks

on the largest public cloud providers using PerfKit Benchmarker (PKB). We begin with an

overview of the PKB architecture and how to get started running tests, then describe specific

test configurations to cover a variety of deployment scenarios. These configurations can be

used to immediately compare the performance of different use cases, or run on a schedule to

track network performance over time.

3.3. PerfKit Benchmarker

Figure 3.1: PerfKit Benchmarker Architecture Diagram

Specifically for running cloud based benchmarks, we use PerfKit Benchmarker (PKB).

PerfKit Benchmarker is an open source tool created at Google that allows users to easily run

36



benchmarks on various cloud providers without having to manually set up the infrastructure

required for those benchmarks. PerfKit Benchmarker follows a 5 step process, consisting

of Configuration, Provisioning, Execution, Teardown, and Publish to automate each bench-

mark run. The Configuration phase processes command line flags, configuration files, and

benchmark defaults to establish the final specification used for the run. The Provisioning

phase creates the networks, subnets, firewalls, and firewall rules, as well as virtual machines,

drives, and other cloud resources required to run the test. Benchmark binaries and depen-

dencies like datasets are also loaded in this phase. The Execution phase is responsible for

running the benchmarks themselves, and Teardown releases any resources created during

the Provision phase. The Publishing phase packages the test results into a format suitable

for further analysis such as loading into a reporting system. The metadata returned from

the Publishing phase can include verbose details about the actual infrastructure used during

the test and timing information for each phase of the run along with the metrics returned

from the benchmark itself, providing the level of detail needed to understand the benchmark

results in context.

3.3.1. PerfKit Benchmarker Basic Example

Once PKB has been downloaded and its dependencies have been installed, running a

single benchmark with PerfKit Benchmarker is simple. We give it the benchmark we want

to run and where we want to run it. For example, here is a ping benchmark between two

VMs that will be located in zone us-east1-b on Google Cloud:

./pkb.py --benchmarks=ping --zone=us-east1-b --cloud=GCP

If the zone or cloud is not given, a default value will be used. We can also specify the

machine type with the --machine type flag. If this is not set, a default single CPU VM

will be used.
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3.3.2. PerfKit Benchmarker Example with config file

For more complicated benchmark setups, users define configurations using files in the

YAML format, as shown in the following example. At the top of the config file is the

benchmark that is being run. Next, we give it the name of a flag matrix to use, in this case

we’ll call it fmatrix. Then we define a filter to apply to the flag matrix and define the flag

matrix itself. PKB works by taking the lists defined for each flag in the matrix (in our case

this is zones, extra zones, and machine type) and finding every combination of those flags.

It will then run the benchmark once for each combination of flags defined under fmatrix, as

long as it evaluates to true with the flag matrix filters. The flags defined under flags at the

bottom will be used for all benchmarks runs.

netperf:

flag_matrix: fmatrix

flag_matrix_filters:

fmatrix: "zones != extra_zones"

flag_matrix_defs:

fmatrix:

zones: [us-west1-a, us-west1-b,us-west1-c]

extra_zones: [us-west1-a, us-west1-b,us-west1-c]

flags:

cloud: GCP

netperf_histogram_buckets: 1000

netperf_benchmarks: TCP_RR,TCP_STREAM,UDP_RR,UDP_STREAM

netperf_test_length: 30

netperf_num_streams: 1,4,32

machine_type: n1-standard-16

netperf_tcp_stream_send_size_in_bytes: 131072
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This config file can be run with the command:

./pkb.py --benchmarks=netperf --benchmark_config_file=interzone_us_west1.yaml

Using this config file will run netperf TCP RR, TCP STREAM, UDP RR and UDP STREAM

between pairs of n1-standard-16 instances in the us-west1-a, us-west1-b and us-west1-c zones.

Because of the flag matrix filter, it will exclude tests from the same zone. Each test will

be of 30 seconds duration and will be repeated for 1, 4, and 32 parallel streams. So from

one config file and command line, we will get 72 benchmarks run (6 zone combinations * 4

netperf benchmarks * 3 different stream counts).

In the following subsections, we will see several more examples of how to run specific

tests with PKB. Generally, they all use this same format; the structure and parameters of

the benchmark are defined in a config file and a relatively simple command is used to start

the benchmark with the specified config file.

3.3.3. PerfKit Benchmarker Configurations

All of the benchmarks that are presented here are simple and easy to reproduce should

anyone want to run their own tests. In this section we will discuss the configurations for

various test runs.

There are several general types of network benchmarks users may want to run, including:

same zone (intra-zone), cross zone (inter-zone), and cross region (inter-region) tests. Intra-

zone tests are between VMs within the same zone, which usually means that they are situated

in the same datacenter. Inter-zone tests run between VMs in different zones within the same

cloud region and Inter-region tests run between VMs in separate cloud regions. These kinds

of groupings are necessary as network performance can vary dramatically across these three

scales.
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Additionally, benchmarks can be run to test network performance across VPN connec-

tions, on different levels of network performance tiers, using different server operating sys-

tems, and on Kubernetes clusters.

In this subsection, we cover the basic flags and configurations that are most commonly

used for network tests. These benchmarks are fairly standard and used to gather metrics on

latency, throughput, and packets per second. The tools being used by PerfKit Benchmarker

here are the same ones we explored in Section 2.1.1.

3.3.3.1. Latency ping and TCP RR

Ping is a commonly used utility for measuring latency between two machines and uses

ICMP. The flag we should know for running a ping benchmark is --ip addresses= IN-

TERNAL/EXTERNAL/BOTH. Just as the name implies, this will tell PKB to get

latency results using either internal IP addresses, external IP addresses, or both.

./pkb.py --benchmarks=ping --ip_addresses=BOTH \

--zone=us-central1-a --zone=us-west1-b --cloud=GCP

Ping, with its default once-a-second measurement is quite sufficient for inter-region la-

tency. If we wish to measure intra-region latency (either intra-zone or inter-zone) a netperf

TCP RR test will show results that are more representative of application-level performance.

We will explore this topic further in Section 3.1.

./pkb.py --benchmarks=netperf --netperf_histogram_buckets=1000 \

--netperf_benchmarks=TCP_RR --netperf_test_length=60 \

--zone=us-west1-b --cloud=GCP
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3.3.3.2. Throughput with iPerf and Netperf

Both iPerf and Netperf can be used to gather throughput data about both TCP and

UDP connections with various numbers of parallel streams, so that we can test single stream

throughput performance as well as aggregate. The relevant flags for iPerf are as follows:

--iperf_runtime_in_seconds=60

--iperf_sending_thread_count=<num_threads>

The first sets the length of time the throughput tests are run (default: 60s) and the

second flag sets how many threads iPerf will use to send traffic (default: 1).

./pkb.py --benchmarks=iperf --iperf_runtime_in_seconds=120 \

--iperf_sending_thread_count=32 --zone=us-central1-a --cloud=GCP

To perform UDP tests or a request/response test in PKB, we should use netperf. We

can also set the number of streams, the test length in seconds, which netperf benchmarks

are being run, and how many buckets are in the optional histogram.

./pkb.py --benchmarks=netperf \

--netperf_histogram_buckets=1000 \

--netperf_benchmarks=TCP_STREAM,UDP_STREAM \

--netperf_test_length=30 \

--netperf_num_streams=4 \

--zone=us-central1-a --cloud=GCP

For any of the example benchmark configurations in sections 3.2 and after, we can use

iperf instead of ping, ping instead of netperf, etc. depending on what type of metrics we

would like to gather.
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3.3.3.3. Packets per Second Packets per second tests are performed using a script that

runs multiple instances of netperf UDP request/response (UDP RR) using small message

sizes to achieve the maximum possible packets per second the VM can achieve in the con-

figured situation. In PerfKit Benchmarker, it is called netperf aggregate and uses 1 client

machine and multiple server machines to test packets per second performance, as can be

seen in the configuration file:

netperf_aggregate:

vm_groups:

servers:

vm_spec:

GCP:

machine_type: n1-standard-4

zone: us-east4-b

vm_count: 2

client:

vm_spec:

GCP:

machine_type: n1-standard-4

zone: us-east4-c

This config file can be run with the following command:

./pkb.py --benchmarks=netperf_aggregate \

--benchmark_config_file=/path/to/config.yaml
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3.3.3.4. On-Premise to Cloud Benchmarks

On-premise to cloud benchmarks are highly specific to the user’s location, so unlike most

cloud to cloud benchmarks, we can’t simply look up results on a table online. PerfKit

Benchmarker makes it simple to setup our own benchmarking for our on-premise situation.

There are two ways to perform On-Prem to Cloud Benchmarks within the paradigm of

PerfKit Benchmarker. The first is to use a Static, On-Prem System (either VM or bare-

metal). This requires us to set up said on-prem system and can ssh to it. Then in a config

file, we can specify that machine be the static VM we have set up, and the other will be a

VM that will be created on the cloud provider of our choice. A config file to run a netperf

test between a sample static VM and a n1-standard-2 machine in GCP zone us-central1-a

would look the following:

netperf:

vm_groups:

vm_1:

static_vms:

ip_address: 192.168.0.1

ssh_private_key: <ssh_key>

user_name: <username>

zone: local

vm_2:

vm_spec:

GCP:

machine_type: n1-standard-2

zone: us-central1-a
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A potentially quicker option is to use Docker. If we have Docker installed, we can run

tests between a Docker container running locally and a VM in the cloud. For this, the config

file to use would look something like this:

netperf:

vm_groups:

vm_1:

cloud: Docker

vm_2:

vm_spec:

GCP:

machine_type: n1-standard-2

zone: us-central1-a

In the config file, specify two vm groups: vm 1 and vm 2. In vm 1, tell it to use Docker as

the cloud. In vm 2, use vm spec to set the machine type and zone manually, as shown in the

example. Doing this will create a new Docker image if we have not used the Docker provider

previously and a new Docker container on our local machine (wherever we execute PKB

from) that will function as a VM for the benchmark. The command to run the benchmark

from either of the preceding config files would be

./pkb.py --benchmarks=netperf --benchmark_config_file=/path/to/config.yaml

3.3.3.5. Cross-cloud Benchmarks

If we use multiple cloud providers, it may be of interest to run cross cloud benchmarks.

With PKB, this can be achieved simply with a config file similar to the one we used for the

on prem to cloud with Docker benchmark.
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netperf:

vm_groups:

vm_1:

cloud: AWS

vm_spec:

AWS:

machine_type: m4.4xlarge

zone: us-east-1a

vm_2:

cloud: GCP

vm_spec:

GCP:

machine_type: n1-standard-16

zone: us-central1-a

This will create one VM on AWS and another on GCP with the specified machine types

in the specified zones and run netperf between them. The command to run the benchmark

would be:

./pkb.py --benchmarks=netperf --benchmark_config_file=/path/to/config.yaml

3.3.3.6. VPN Benchmarks

Running benchmarks across an IPSec VPN is possible using the PKB VPN service. Base

requirements for IPSec VPNs across the Internet:

1. Public IP address on both ends of the tunnel.
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2. Unique subnet ranges behind each VPN GW. CIDRs can’t overlap unless using multiple

tunnels.

3. Pre-shared key

By default, GCP and some other providers in PKB run benchmarks from within a single

VPC and subnet range. To meet the requirement for mutually exclusive subnet ranges, we

can distinguish using the CIDR vm group property in our benchmark config file as follows:

iperf:

description: Run iperf on custom cidr

vm_groups:

vm_1:

cloud: GCP

cidr: 10.0.1.0/24

vm_spec:

GCP:

zone: us-west1-b

machine_type: n1-standard-4

vm_2:

cloud: GCP

cidr: 192.168.1.0/24

vm_spec:

GCP:

zone: us-central1-c

machine_type: n1-standard-4
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Then to establish the VPN for a benchmark config we can add –use vpn to the flags

passed to PKB and include the desired parameters to the vpn service section of the config-

uration:

ping:

flags:

use_vpn: True

vpn_service_gateway_count: 1

vpn_service:

tunnel_count: 2

ike_version: 2

routing_type: static

vm_groups:

vm_1:

cloud: GCP

cidr: 10.0.1.0/24

vm_spec:

GCP:

zone: us-west1-b

machine_type: n1-standard-4

vm_2:

cloud: GCP

cidr: 192.168.1.0/24

vm_spec:

GCP:

zone: us-central1-c

machine_type: n1-standard-4

47



3.3.3.7. Kubernetes Benchmarks

There are two ways to execute Kubernetes tests on a cloud provider. The first is to

create a Kubernetes cluster in the cloud provider and provide its config to PKB via the –

kubeconfig=〈/path/to/.kube/config〉 flag. Using this method, PKB handles the setup

and teardown of the Kubernetes pods, in the cluster we have setup manually. This will work

for most benchmarks that we want to run on a cluster. The second method involves using

a config file that looks like the following with the benchmark container netperf. Using this

benchmark will set up a Kubernetes cluster for us and deploy pods that use a specialized

netperf container image. In the config file, we have to specify the specs of both our containers

that will be deployed and the cluster itself.

container_netperf:

container_specs:

netperf:

image: netperf

cpus: 2

memory: 4GiB

container_registry: {}

container_cluster:

vm_count: 2

vm_spec:

GCP:

machine_type: n1-standard-4

zone: us-east1-b
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The command to run this benchmark will be:

./pkb.py --benchmarks=container_netperf \

--benchmark_config_file=</path/to/config.yaml>

3.3.3.8. Intra-zone Benchmarks

To run an intra-zone benchmark (two VMs in the same zone), we can simply specify the

zone we want both VMs to be in and any other flags we want to specify. The following

example runs an intra-zone netperf TCP RR benchmark in GCP zone us-central1-a with

n1-standard-4 machines.

./pkb.py --benchmarks=netperf --cloud=GCP --zone=us-central1-a \

--machine_type=n1-standard-4 --netperf_benchmarks=TCP_RR

3.3.3.9. Inter-zone Benchmarks

Inter-zone tests, like most other tests can be executed in one of two ways. It can be done

entirely from the command line using the –zone flag, as follows:

./pkb.py --benchmarks=iperf --cloud=GCP --zone=us-east4-b \

--zone=us-east4-c --machine_type=n1-standard-4

The same Inter-zone benchmark can also be set up using a config file:
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iperf:

vm_groups:

vm_1:

cloud: GCP

vm_spec:

GCP:

machine_type: n1-standard-4

zone: us-east4-b

vm_2:

cloud: GCP

vm_spec:

GCP:

machine_type: n1-standard-4

zone: us-east4-c

This config file can be run using the command:

./pkb.py --benchmarks=iperf --benchmark_config_file=/path/to/config.yaml

3.3.3.10. Inter-Region Benchmarks

Inter-Region benchmarks (between VMs located in separate geographic regions), can

likewise be run using command line flags or with a config file.

./pkb.py --benchmarks=iperf --cloud=GCP --zone=us-central1-b \

--zone=us-east4-c --machine_type=n1-standard-4
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The same Inter-Region benchmark can also be set up using the following config file:

iperf:

vm_groups:

vm_1:

cloud: GCP

vm_spec:

GCP:

machine_type: n1-standard-4

zone: us-central1-b

vm_2:

cloud: GCP

vm_spec:

GCP:

machine_type: n1-standard-4

zone: us-east4-c

And this config file can be run with the following command:

./pkb.py --benchmarks=iperf --benchmark_config_file=/path/to/config.yaml

3.3.4. Inter-Region Latency Example and Results

As an illustrative example, we present the actual results of our Google Cloud all-region

to all-region round trip latency tests, as shown in Fig. 3.2. This chart shows the average

round trip latency between regions from benchmarks run over the course of a month. The

benchmarks were all executed on n1-standard-2 machine types with internal IP addresses.
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The statistics are all collected using PerfKit Benchmarker to run ping benchmarks between

VMs in each pair of regions.

To reproduce this chart, we can run the following pkb command with the following config

file. If we want to run a smaller subset of regions, just remove the regions we don’t want

included from the zones and extra zones lists.

ping:

flag_matrix: inter_region

flag_matrix_filters:

inter_region: "zones < extra_zones"

flag_matrix_defs:

inter_region:

zones: [<list_of_all_regions>]

extra_zones: [<list_of_all_regions>]

flags:

cloud: GCP

machine_type: n1-standard-2

ip_addresses: INTERNAL

We can also add the –run processes=〈# of processes〉 to tell it to run multiple

benchmarks in parallel, but this will still likely take awhile (>12 hours). If we run too many

benchmarks in parallel, we may run into quota issues, such as regional CPU quotas and per

project subnet quotas, which limits us to around 8 processes. If we exceed a quota while

running PKB, it will tell us the exception that was thrown and the benchmark will fail.

Additionally, we can use the –gce network name=〈network name〉 flag to have each

benchmark use a GCP VPC that we have already created, so that each benchmark does not
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make their own, which adds up to a significant amount of time. This will also ensure that

we don’t run into subnet quota issues.

./pkb.py --benchmarks=ping --benchmark_config_file=/path/to/config.yaml

Figure 3.2: Inter-Region Latency results for Google Cloud. All numbers are in milliseconds

In the matrix shown in Fig. 3.2, The labels on the y-axis (left side) represent the sending

region and the labels on the x-axis (across the top) represent the receiving region. So if

we look at the intersection of asia-east2 on the y-axis and asia-east1 on the x-axis, this

represents the average of results from ping benchmarks executed from a VM in asia-east2 to

a VM in asia-east1.
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Figure 3.3: Example of JSON output from PerfKit Benchmarker

3.3.5. Viewing and Analyzing Results The report generated from a PKB run includes

the results of the benchmark test along with a significant quantity of metadata about the test

environment. The raw report is a JSON formatted dictionary of key:value pairs. The default

location for this file is 〈tmp dir〉/perfkitbenchmarker/runs/〈run uri〉/perfkitbenchmarker results.json.

PKB includes a number of publishing targets as well, which can be specified on the command

line when the test is launched to store the results in a backend like BigQuery or ElasticSearch

automatically. It is then possible to query these runs from a dashboard provider to visualize

the data.

3.3.5.1. Visualizing Results with BigQuery and Data Studio To use the BigQuery PKB

publisher, first create a BigQuery table in our GCP project (the schema will be created when

we first push a sample), and then include the table name and project name in the PKB run

flags:

54



./pkb.py --benchmarks=iperf --benchmark_config_file=/path/to/config.yaml

--bigquery_table=<bq.table> --bq_project=<bq.project>

Table 3.1: SQL Schema for PerfKit Benchmarker results

The schema for each sample published by a run is described in Table 3.1. Each run

can (and usually does) produce multiple samples. In a network test like ping for example,

the latency from zone 1 to zone 2 and the latency from zone 2 to zone 1 are recorded in

separate samples. Likewise, there are separate samples created when using public and private

networks, as well as samples that describe system metadata like lscpu and procmap. All of

the samples for a single run share the same run uri and can be joined on this field for grouping

in queries.
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Once the table is populated we can query run results directly for reporting. If we are

capturing several test types or tests with different parameters in the same table it may be

useful to create views for each test used in our reports. The following BigQuery Standard

SQL query shows how we can capture specific key:value pairs nested in the labels field and

how to work with the time format for use in reporting.

SELECT

value,

unit,

metric,

test,

TIMESTAMP_MICROS(CAST(timestamp * 1000000 AS int64)) AS thedate,

REGEXP_EXTRACT(labels, r"\|sending_zone:(.*?)\|") AS sending_zone,

REGEXP_EXTRACT(labels, r"\|receiving_zone:(.*?)\|") AS receiving_zone,

FROM <PROJECT>.<dataset>.<table>

To create a visualization using Data Studio, we start by adding a connection to the

BigQuery table we specified above. If using separate views, we can make each view its own

data source.

Figure 3.4: Example of JSON output from PerfKit Benchmarker
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Once Data Studio can see the PKB results table, we can design our charts and visual-

izations accordingly using the full range of reporting tools available. The example report in

Figure 3.4 shows inter-region ping latency results over time:
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Chapter 4

Architecture and Execution Efficiency of Benchmarks

4.1. Introduction

In the previous chapter, we discussed how we run cloud benchmarks and how to optimize

our networks to be able to measure the maximum possible throughput. In this chapter

we will discuss how we can run these benchmarks more efficiently. This includes making

each individual benchmark more efficient, as well as running a large number of benchmarks

efficiently.

First we will examine at how we can reduce the time and cost of individual benchmarks.

Here we focus on network throughput benchmarks, but we believe the techniques we use are

more widely applicable. We want to be able to run network throughput tests but reduce the

overall cost of these tests while maintaining accurate results

We will then be examining how to schedule and run a large number of network bench-

marks in a cloud environment. The motivation for this comes from a practical dilemma we

faced when running benchmarks. To support research in network analytics both for this

thesis and an outside research project, we are running a large number of benchmarks on a

daily basis on multiple cloud computing platforms. Scheduling these benchmarks in a naive

manner with bash scripts and PerfKit Benchmarker quickly led to a situation where there

were more benchmarks we needed to run daily than we had time or capacity for.
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4.2. Efficiency in Benchmark Execution

It is essential to the operation of network focused applications to be able to estimate

the achievable throughput across a link. This could be for bulk data transfer operations

such as with large scientific datasets, data streaming, or applications that need to sustain

consistent throughput. Similarly, if we are operating on a cloud provider, they may provide

an upper bandwidth limit or SLA, but it is often uncertain how much throughput can be

achieved at any point in time. This leaves it in the hands of the user to determine their

network throughput. To do this, we need to run throughput benchmarks to gain an accurate

understanding of the performance capabilities of our network. These tests may need to be

performed on a regular basis to monitor changing network conditions.

Unfortunately, throughput benchmarks are often costly to perform. If we are running

these tests on a cloud provider’s network, we can accumulate large fees for data transfer or

egress. Other networks such as mobile or home networks may be subject to data caps and a

throughput test may use a significant amount of the available data. Additionally, we need to

think about the quality of the measurement. Generally, the longer we run a test, the more

confident we can be that the reported throughput value is accurate and representative of

what we can expect from the network. This is the primary motivation for the work in this

section. To reduce the cost of these tests, we need to reduce the total amount of bandwidth

they consume or network traffic they produce. Reducing traffic is also beneficial for the rest

of the network as we do not want to cause too much disruption to actual traffic going across

the network, which a bulk throughput test has the ability to do, especially at scale in a cloud

or multi-user environment with a shared network.

To reduce the total bandwidth consumed, we can reduce the duration of tests. This has

the possibility of also reducing the granularity and accuracy of our data. So, if we reduce the

testing in this manner we must do so in a way that affects the quality of our data as little

as possible. To this end, we have come up with a method that can both decrease our data
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consumed and maintain statistically good test results. On the other hand, if we run tests

that are too short we may obtain results that are not accurate. This method also overcomes

the challenge of determining how long a throughput test should last for good results, as

our solution does this automatically. Our method takes iPerf2, an existing and widely used

throughput testing tool, and adds user specified confidence intervals. Instead of setting a

static test length, this allows the user to run a test until the gathered throughput samples

meet their specified level of confidence and interval width. If the given width is reached

before the maximum test time, the test will stop early. The user can set the maximum

test duration to the same amount of time they would normally run a throughput test for

and then in the worst case scenario, our auto-stopping feature will result in the exact same

test run as when not using it. If the test ends early, this can help lower testing costs and

durations.

A confidence interval is often a more accurate way to define throughput on a link, espe-

cially if that link is on a public network with large amounts of cross traffic and congestion.

Given the ever fluctuating state of the network, it is difficult with any sense of accuracy to

assign a single authoritative number for throughput on a link. We can say we achieved x

amount of throughput for a specific test, but that defines just that link at that single point

in time. To discuss a link more broadly, we must include some sort of error term, e.

4.2.1. Statistical Confidence

A confidence interval is a range of values that are estimates for an unknown mean. If

we took a large number of samples over time and calculated the confidence intervals for

each, the confidence level would be the percentage of these confidence intervals that actually

contain the true mean. So for a confidence level of 95%, 95% of the confidence intervals

should contain the true mean [90].
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To construct a confidence interval, we need the confidence level that we are using (i.e.

95%), a sample mean that estimates the population mean, and error bounds for the pop-

ulation mean. From the confidence level, we can use the standard normal distribution to

calculate a Z-score. Then we can we can calculate the error bound as:

ϵ = Z
σ√
n
, (4.1)

where Z is the Z-score, x is the sample mean, σ is the population standard deviation,

and n is number of samples. Of course, in many situations, σ is not known, so we must

estimate σ using the standard deviation for the sample, which is denoted as s. When this is

the case, we can express the error bound as:

ϵ = tn−1
s√
n
, (4.2)

Here, the Z term has been replaced by tn−1. This is because using s, an estimation of σ,

often leads to a less accurate confidence interval. To correct for this, we use a t-distribution

instead of the normal distribution. The exact t-distribution to be used depends upon the

degrees of freedom for the sample, which is defined as (n− 1). As we add more samples to

the calculation, the T-distribution we use gets close to a normal distribution and tn−1 gets

closer to Z for the confidence level we require. If we have over 30 samples, the T-distribution

is considered to be very close to the normal distribution.

Then the bounds for this confidence interval can be expressed as the sample mean plus

and minus the error bound

CI bounds = x± ϵ (4.3)
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When we discuss this interval, we can say that, with 95% confidence, we estimate the

true mean is in the range (x− ϵ, x+ ϵ).

In Fig. 4.1, we show measurements from one of our test paths and how the confidence

interval is applied to it. The confidence width is the distance between the mean and the

upper and lower bounds of the interval.

Figure 4.1: Confidence Interval for 240 samples in region pair C. As we add more samples,
the width of the CI becomes smaller until it reaches x± 2.5%.

If we set a given target width for the confidence interval, either as a numeric or a percent-

age difference from the mean, we can continue to gather samples until we meet the target

width. The width of the interval is based on the number of samples collected and the vari-

ability in the samples. If the target width is too low and the variability of the sample too

high, the target width may not be achieved before the test ends.

To apply these concepts to our network tests, we assume that for a specific network link

with specific system and network configurations, there exists a mean throughput value. If we

were to run a throughput test for an arbitrarily long time (a large number of measurements)

we could find this mean throughput value, which is equivalent to the population mean. When

we run a throughput test, we test for a much shorter period of time (a smaller number of
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measurements) and are able to find a sample mean. If we run a test for 120 seconds and

collect the average throughput over every 0.5 second interval, we end up with a sample of

240 measurements which we can use to calculate the confidence interval. If we recalculate

the confidence interval after each 0.5 second measurement period, we can stop the test after

the confidence interval has reached our target width.

4.2.2. Data Observations

Table 4.1: Region pairs

Region 1 Region 2 Key RTT (ms)

us-east1 us-east1 A 0.29

us-east1 us-east4 B 12.82

us-central1 us-east4 C 26.28

us-central1 us-east1 D 32.616

us-west1 us-central1 E 32.72

us-west1 us-east4 F 57.61

us-west1 us-east1 G 64.14

asia-southeast1 asia-northeast2 H 82.28

northamerica-northeast1 europe-west1 I 82.56

us-central1 europe-west4 J 102.60

europe-north1 us-east4 K 103.17

asia-east1 us-west1 L 119.44

us-central1 asia-east1 M 150.66

us-east4 asia-east1 N 178.47

asia-east1 us-east1 O 190.68

To examine the effect of the test length on the measured throughput value, we have run

a large number of network throughput tests using iPerf across several different region pairs

in Google Cloud that represent a range of round trip times (RTTs) from <1ms to ∼190ms.

These tests took place between pairs of n1-standard-16 virtual machines, each of which has

16 vCPU cores, 60 GB of Memory and are running Ubuntu 20.04 LTS. Each test had a total
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time of 120 seconds and data was collected for every 0.5 second interval in the test. This

gives us 240 total measurements for each test, or sample. This test duration was chosen

because it gives us a relatively small confidence interval even with our region-pairs with the

highest latency and variance. In Table 4.1, we show each region pair along with a short key

that we will use to represent the pair and the average RTT between each pair, as measured

by multiple ping tests.

(a) Region pair vs 1 flow throughput

(b) Region pair vs 32 flow throughput

Figure 4.2: Throughput by Region Pair

In Fig. 4.2, we show the the throughput from each sample for each of the region pairs

under test. The names of the region pairs are abbreviated for space. Fig. 4.2a shows

throughput for 1 flow and we can see that for many of the region-pairs, there are fairly tight
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bounds on our throughput samples with few outliers. The exception is us-e1 to us-e4, which

are quite close together geographically and have correspondingly low latency. Here there is

a positive skew to the distribution of our samples.

Fig. 4.2b shows aggregate throughput for 32 parallel flows. The achieved throughput

from these samples is uniformly higher than the single flow samples, but there is also more

variance.

In Fig. 4.3, we show the average reported aggregate throughput over a 120 second iPerf

test with 32 parallel flows. This chart shows the average for each 0.5 second interval of 10

tests between the us-east1 and us-west1 Google Cloud regions. The chart that we show is

very similar to ones from other region pairs. There are a few noticeable features to discuss.

The first is the large spike from less than 10 Gbps to over 60 Gbps and then back down to

around 27 Gbps. This is a common feature we see on these throughput charts. Since for these

measurements we are using BBR [88], this spike could show the initial startup and then drain

phases of BBR, followed by much steadier throughput thereafter. With a single flow there

is not nearly this much over estimation, but because this is the aggregate throughput of 32

parallel flows, these add up to a large spike in throughput that is immediately constrained.

The startup phase of most TCP variants do not reflect how the sustained throughput

looks after that phase and usually only lasts a few seconds. If we want to measure the

average throughput for a long lasting TCP flow and we are aware that this startup phase is

non-representative of a long lasting flow, then it is likely that our result will converge much

more quickly if we simply discount the first few interval measurements from our results.

Some throughput testing tools have this capability such as iPerf3.

The other noticeable feature is a small drop in throughput about every 10 seconds. This

is fairly consistent across tests. We believe this is also an artifact of multiple BBR flows,

65



Figure 4.3: Average iPerf reported 32 flow throughput from us-east1 to us-west1 over 120
seconds with 0.5 second intervals

all attempting to go through their ProbeRTT phase simultaneously [38]. We do not see the

same dips when using other TCP variants such as CUBIC.

4.2.3. Confidence Interval Calculations

For each of these tests, we looked at all 240 half second samples and calculated how many

samples it would take to achieve a 95% confidence interval with a width of ±2.5%. We also

compared average throughput value from the full 240 sample test, which we will call x̃, to

the range of the confidence interval, CI, if and when it achieves the target width to find

the percentage of samples where x̃ falls outside the range of CI, which we will call ϕ. Put

more simply, ϕ is the percentage of tests where we achieved the target width for the interval

before then end of the test, but the average throughput for the entire sample fell outside of

the interval.
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So for n total tests, ϕ is calculated as:

ϕ =

n∑
k=0

i =


1, if x̃k > CImax or x̃k < CImin

0, otherwise

n
(4.4)

Table 4.2: Calculated Confidence Interval Statistics For 32 Thread Throughput Data

min samples skip avg n WR ϕ %∆

0 0 117.67 0.74 0.05 0.009

0 5 80.128 0.79 0.15 0.014

10 0 117.86 0.74 0.05 0.009

10 5 82.30 0.79 0.13 0.013

20 0 118.85 0.74 0.04 0.008

20 5 90.41 0.79 0.10 0.011

We show the results of these confidence interval calculations combined for all region-pairs

under test in Table 4.2. For each row we calculate the confidence interval using a different

minimum number of measurements and skipping either 0 or 5 measurements at the beginning

of the test. We also show n, the average number of measurements needed to achieve the

target width, the percentage of samples where the target width was reach by the end of

the test which we will call WR, ϕ as calculated in (4.4), and the average percent difference

between the calculated mean of the confidence interval when it reaches the target width and

the average of the complete test with all 240 measurements which we will call %∆.

When we skip the first 5 measurements, the average number of samples needed to meet

the target confidence interval width is reduced by at least 23%. It also increases WR,

meaning more samples met the target width before the end of the test. Skipping initial

measurements also led to a higher ϕ values. This could simply be because x̃ includes the
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skipped measurements which, depending on how far above or below that initial spike is from

the rest of the measurements, can throw of the mean of the entire sample.

4.2.4. Experiment Setup

In order to ascertain the veracity of this method, we ran a series of tests to compare

using iPerf2 to using iPerf2 with the addition of our auto-stopping feature. We conducted

tests across a range of RTTs on Google Cloud. We picked several pairs of cloud regions

with different RTTs ranging from 1ms to 190ms. The region pairs that we selected and their

associated RTT are listed in Table 4.1

Between each pair of region we ran both iPerf2 and iPerf2 with auto-stop. iPerf2 was set

to have a test time of 120 seconds and iPerf2 with autostop was set to have a maximum test

time of 120 seconds, an interval size of 0.5 seconds, a minimum of 20 intervals, and to skip

the first 5 intervals. The confidence level was set at 95% and the target width was ±2.5%.

We tested each using both 1 flow and 32 parallel flows. The first is to find the throughput

for a single TCP flow and the second is to find the maximum aggregate throughput for the

link.

For all of these tests we used n1-standard-16 virtual machines running Ubuntu 20.04,

which have 16 vCPU cores, 60 GB of memory, and a maximum of 32 Gbits/sec of network

egress. We ran these tests once daily for 3 weeks at a different time each day for account for

any temporal variance.

4.2.5. Results

In Fig. 4.4, we show the results of all of our throughput tests for both iPerf2 and iPerf2

with autostop. Fig. 4.4a shows throughput for 1 flow and Fig. 4.4b shows throughput for 32
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(a) 1 Flow Throughput

(b) 32 Flow Throughput

Figure 4.4: Throughput Results for iPerf both with and without autostop

parallel flows. The interquartile range reported by iPerf2 running for 120 seconds and iPerf2

with autostop are similar for each region pair.

In Fig. 4.5 we show the total amount of gigabytes that were transferred to achieve each

test result. Here, in every case using the autostop feature results in a similar or lower amount

of total gigabytes transferred. This result is especially clear with 32 parallel flows show in

Fig. 4.5b. It might be obvious upon inspection that we could achieve similar throughput

results for iPerf using a shorter test time for some of these region-pairs, but using the autostop
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(a) 1 Flow Total Transfer

(b) 32 Flow Total Transfer

Figure 4.5: Total Transfer for iPerf both with and without autostop

feature removes the guesswork and also allows the test to run for the set maximum duration

if needed to achieve a good result.

In Table 4.3, we list the percentage change between the median throughput from our

measurements using iPerf and our measurements using our autostop feature (%∆) for both

1 and 32 parallel flows. We also show the average number of measurements, n, needed for

each sample to achieve the target width for the confidence interval. The regions and RTTs
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that correspond to each Region-pair key are listed in Table 4.1. Here, they are listed in order

of increasing RTT.

For 1 flow in 12 out of 15 region-pairs, the median throughput from samples with autostop

was within 5 percent of the mean of those without autostop. For 32 flows, this figure is 14 out

of 15 region-pairs. A large error here possibly means that we should increase the minimum

number of measurements for each sample.

Looking at the average number of measurements needed for each sample, there is trend

where the number of measurements needed is positively correlated with the RTT of the region

pair. This makes sense, as generally higher RTT connections will have higher throughput

variance, which can lead to the confidence interval For region-pair M with 1 flow, the av-

erage n was 235. This is the maximum length of the test (excluding the 5 initial skipped

measurements), which means that the tests for M took the maximum amount of time for

every samples. This may mean that we actually need a longer test here, as we are not ever

achieving the target width for our confidence interval.

Using autostop also reduced the test time in most cases. For 1 flow, the average time it

took to achieve the target confidence interval width (±2.5%) across all regions was 101.08

seconds. For 32 parallel flows, it took an average of 85.4 seconds to reach the target width.

Both of these are a significant reduction from the 120 second maximum test length.

Of course, these bytes transferred and time reductions were not constant across all of

the region-pairs that we tested. For example, our tests from the asia-east region to the us-

central region took the full 120 seconds every time and never met the target width, having

an average end confidence interval width of (±3.54%). This could mean that it is a high

latency link with high throughput variance. We might need to set the maximum test length

higher for this region-pair, or alternatively it might never reach the target width because of

its variance. Once we know that, we can adjust our tests accordingly.
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Table 4.3: Percentage Change Between iPerf Mean Throughput And iPerf With Autostop
Mean Throughput

Region-pair Key %∆ 1 %∆ 32 avg n 1 avg n 32

A 05.84 -01.17 43.08 20.08

B -01.96 03.80 167.71 69.62

C -06.21 -02.63 169.08 68.75

D 00.97 00.63 203.75 66.83

E -00.93 00.03 210.58 75.21

F 00.31 -01.64 201.92 67.54

G 04.26 -01.80 227.00 98.75

H -01.33 -00.70 189.58 76.00

I 06.26 02.08 207.71 75.00

J -00.65 -02.69 198.75 76.17

K -02.48 -01.92 217.79 73.57

L 00.19 01.53 226.46 95.54

M 00.56 -05.11 235.00 112.33

N 02.99 -01.94 222.15 124.12

O -00.01 -01.86 231.46 127.04

In Fig. 4.6, we have picked a random 32 flow aggregate throughput sample that was

captured using iPerf2 with autostopping. Superimposed over the 0.5 second throughput

measurements are the confidence intervals. In red is the confidence interval calculated with-

out skipping the first 5 measurements and in blue is the confidence interval calculated with

the first 5 measurements skipped. Because of how different these initial measurements are

to the later phase of sustained throughput, the confidence interval with skip converges to

the target width more quickly.

4.3. Efficiency in Benchmarking Architecture

Not that we have examined how to make a single benchmark more efficient through the

use of confidence interval calculations, we now need to discuss how to run a larger number

of benchmarks efficiently. If we have some large number of benchmarks that need to be

executed, in most situations we can not run them all simultaneously or we will run into
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Figure 4.6: Throughput with calculated confidence interval

issues such as resource exhaustion or benchmarks interfering with each other. It may also be

impractical to run the benchmarks in sequence, as we may have time constraints that this

method would exceed. In this situation, there is a need to be able to dynamically schedule

batches of benchmarks so that they stay within the resource constraints without interfering

with each other, while executing in a time efficient manner. This is the situation we have

when running benchmarks across multiple cloud providers.

Each of these cloud providers has different constraints and limits, usually on a regional

basis (which, in the terminology of most cloud providers, means per each geographically

distributed datacenter). These constraints include limits on IP addresses, virtual networks

and subnets, virtual machines, CPU cores, storage, and bandwidth. Before the proposed

solution here, we manually scheduled batches of benchmarks to run, where each batch would

not exceed any resource limits. We needed to also ensure that all of the batches were able

to run in the specified time window, which we set as 25 hours.1 The manual approach of

benchmark schedule turned out to be tedious, time consuming, and error prone. It also had to

be updated whenever there was a change in resource limits or new benchmark requirements.

1Here the extra hour is so the benchmarks start running at a different time every day, which over the
long term will hopefully average out any effect of running the same benchmark at the same time of day every
day.
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4.3.1. Batch Scheduling Optimization

In essence, our benchmarking problem can be thought of as a scheduling problem with

special constraints. The solution to these types of problems are generally approximated

by heuristics because they are considered to be NP-Hard. We will show it is NP-Hard in

subsection 4.3.2. It would be extremely time consuming to calculate every possible combi-

nation of VM allocation and benchmark schedule, so a solution that gets close to optimal is

considered good enough. One approximation method is dynamic programming, for example

M. Alsaih et. al looks at dynamic scheduling in a cloud environment and, similar to our

work, schedules jobs based on the jobs characteristics and the characteristics of the machines

that job requires [91]. This could also be solved through integer programming or constraint

optimization using one of several available solvers available, such as we demonstrate with

GNU Linear Programming Kit (GLPK) [92] in Section 4.3.10.

However, due to the nature of our problem and how it can be modelled using a graph,

we have chosen to use a graph algorithm, maximum weight matching, to approximate the

optimal schedule. This is not the first time that maximum weight matching has been used

as a scheduling solution. It has long been used as a packet scheduling algorithm for switches

and routers, where it has been shown to given the maximum possible throughput [93].

4.3.2. Batch Scheduling Problem

Our problem can also be formulated as a 0-1 integer programming problem. Given a set

of benchmarks that we need to run, N , a list of batches that we can assign each benchmark

to, 1 . . .M , and a set of Regions, R, that each have a specified capacity, with

wi = weight of benchmark i for i ∈ N

rjk = capacity of region k in batch j for k ∈ R, j ∈M
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Here, the weights represent the resources each benchmark takes up (vCPUs). For simplic-

ity, each benchmark has a single weight, where in reality each benchmark could have multiple

weights representing different sizes of VMs allocated for the benchmark. This would make

the formulation slightly more complex. M is a number of batches that is higher than what

we will need. Additionally, there are assignment restrictions, given by the sets Ak ⊆ N ,

where Ak specifies which benchmarks can be run in region k.

For our objective function, we want to minimize the number of batches in set M that

have any benchmarks in set N assigned to them. More formally, we can define this as:

minimize
M∑
j=1

yj

subject to
M∑
j=1

xij = 1, for all i ∈ N∑
i∈N

wixij ≤ rjk, for all j = [1 . . .M ], k ∈ R, i ∈ Ak

(4.5)

xij =


1, if benchmark i is assigned to batch j

0, otherwise

yj =


1, if

∑
i∈N

xij > 0

0, otherwise

, for all j ∈M

If we remove the objective function and the variable y, we end up with a 0-1 integer

program with only constraints that must be satisfied. This will return true if it is satisfiable

and false if not. That is, it will return true if we can fit the benchmarks successfully into

M batches and false otherwise. This fits the definition of the 0 − 1 integer programming

problem from Karp’s 21 problems and is NP-Hard [94] [95].
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4.3.3. Scheduling solution

To solve this problem we have implemented a solution that we are calling PKB scheduler.

It works as a layer on top of PerfKit Benchmarker, the tool we use to execute cloud based

benchmarks, which we previously discussed in Subsection 3.2. PKB scheduler takes into

account all relevant resource usage and limits, dynamically updates the resource usage if

another workload is running or any other changes have occurred, and schedules all of the

benchmarks into batches of benchmarks that can run simultaneously without interfering

with each other or exceeding resource limits. To do this, our tool organizes the benchmark

configurations into a graph data structure, which represents Virtual Machine setups as nodes

(vertices) and benchmarks as edges. This is useful as almost all of our tests are network

tests that take place between two machines.

When we have all of the virtual machines and network benchmarks represented as a undi-

rected multi-graph, we can use existing algorithms to find the maximum cardinality matching

of the graph. This matching represents the greatest set of edges that share no nodes. In

terms of our what our graph represents, this is the maximum amount of benchmarks we can

run at once, without running any two benchmarks from any of the same virtual machines at

the same time.

This is a necessary condition, as if we were to run two benchmarks simultaneously that

each used at least one of the same virtual machines, that could skew the results of both

benchmarks. For example if we ran two iPerf benchmarks to measure throughput and both

benchmarks ran from the same client VM, they might both only see half the throughput

they otherwise would. This would obviously lead to inconsistencies in the data which can

effect our analysis, prediction models, and anything else that uses the data we are gathering

with this tool. Using the maximum matching guarantees that this scenario will not occur.
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4.3.4. Architecture of PKB Scheduler

The architecture diagram in Figure 4.7 details how our testing setup functions. PKB scheduler

is a Python program that ingests configuration files of benchmarks that need to be run and

dynamically creates batches of benchmarks to run. It then runs them by calling PerfKit

Benchmarker (PKB) for each benchmark configuration [34]. This vastly cuts down on the

amount of complexity that we need to deal with and prevents us from trying to ’recreate the

wheel’ by abstracting away all the code that actually creates the cloud infrastructure and

executes the benchmarks. We can focus on batch scheduling instead.

Part of what prompted the idea of creating a batch scheduling tool for benchmarks was

that when performing benchmarks with PKB, running a single benchmark such as iPerf

would take as long as 8 minutes with default settings on Google Cloud. Of that time,

4 minutes would be used to create the virtual machines, firewall rules, and provision the

machines with the appropriate software, while only a few minutes would be used to run the

benchmark and the rest of the time was used to tear down cloud infrastructure previously

created. The amount of time dedicated to each task depends on the benchmark being

executed and the options selected for it, but in all cases there is a significant amount of time

devoted to creation, preparing, and cleaning up resources.

In order to reduce the amount of time spent on these auxiliary tasks, we devised a

method to efficiently reuse the same VMs for multiple benchmarks that share identical virtual

machine and resource specs. If benchmarks require different specifications, unique virtual

machines will be created for each unique specification. For example, a 2 CPU machine and

a 4 CPU machine both in the same region are different configurations and thus we cannot

reuse one in place of the other. This method involves representing our benchmark and VM

configurations as a graph.
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Figure 4.7: Flow diagram of PKB scheduler program logic

4.3.5. Graph Representation of Benchmarks and Virtual Machines

Benchmark configuration files are parsed and turned into a multi-graph representation,

where nodes represent virtual machines and their associated resources and edges represent

benchmarks that run between the virtual machines. Because it is a multi-graph, there can

be multiple edges between the same nodes, representing multiple different benchmarks to

run between the same pair of virtual machines. The graph can also contain self-loops,

representing benchmarks that require only a single virtual machine. We also keep track of

multi-edge sets, representing benchmarks that use more than 2 virtual machines. The tool

also keeps track of the available resources for each cloud provider and cloud region being

tested to make sure that we do not try to schedule benchmarks or stand up VMs that would

cause us to exceed the resource limitations. This gives us two problems: allocating resources

most efficiently in each cloud and cloud region and scheduling benchmarks efficiently using

the allocated resources.

Benchmarks and their associated VMs are added to the graph from a list of configurations

in a greedy manner. Any benchmarks that require resources that currently exceed those

available will be placed on a wait-list until other benchmarks finish and those resources are

freed. Resource limit tracking and wait-listing are essential for two scenarios. The first is
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when we have multiple benchmarks that need to use VMs with different specs in the same

region that has a limited quota. One benchmark and its associated VMs will be added to the

graph and the other will be added to the wait-list. After the first benchmark finishes, it will

be removed from the graph and the other will be added. If these two benchmarks had used

VMs with the same specs, they could have reused the same VM and the benchmark would

have been added as a second edge between the two original nodes. The second scenario is

when we have several benchmarks that use the same VM configurations. We could add them

to the graph as new edges between the same pair of nodes, in which case they would execute

sequentially. However, if we have the resources available, we can allocate duplicate VMs with

the same configurations, in which case they will execute in parallel. It is also possible that

a mixture of the two could happen if there are some available resources but not enough for

all benchmarks. Some benchmarks will be allocated duplicate VMs which will be added as

new nodes on the graph, and some benchmarks will be added as new edges between existing

nodes.

This problem of allocating VMs for benchmarks in regions which often have multiple

different quotas associated with them as well as cloud wide quotas could be thought of

as several connected multiple constraint bounded knapsack problems. Each region is a

knapsack, its quotas are the constraints and the VMs are the items to be placed in each

knapsack. We seek to maximize the number of VMs of the types we need in each region up

to the number of benchmarks we need to run with those VMs. However, many benchmarks

require multiple VMs in different regions, so many VMs do not stand alone and must have

associated VMs in other regions. So we could not consider any one region on its own,

we must maximize the number of VMs for all regions in use. Because of the complexity

of this problem, we have chosen to use a simple greedy approach, where benchmarks are

sorted largest first by the relative amount of each quota they take up and then the VMs for

each benchmark configuration on the list is either allocated or not depending on whether
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there is still space. This is similar to the greedy algorithm developed by George Dantzig to

approximate a solution to the knapsack problem [96].

It should also be noted that the resource limits and quotas that the tool tracks are only

the ones we can view as a user. There may be ”invisible” resources such as the bandwidth

for a host machine that could be saturated if duplicate VMs happened to be allocated on

the same host. These would be function as a type of silent interference that we are unable

to detect. Some such effects can be mitigated, however, if the cloud under test allows you

to define a placement policy that would spread out new VMs across host machines.

4.3.6. Efficient Scheduling

Now with an understanding of how benchmarks and VMs are represented in our data

structure, we can discuss the process of how benchmarks are scheduled and executed. First,

configuration files for the benchmarks are parsed in and resource constraints are gathered

from the cloud environment(s) under test. Then a graph is created from the benchmark

configurations in the manner described in subsection 4.3.5. Any benchmarks and virtual

machines that do not fit in the graph due to resource constraints are added to a wait-

list. Once the initial graph and wait-list are created, the program starts the benchmarking

process.

This process is divided into rounds. In each round, first, a maximum matching is found to

give us our set of edges/benchmarks to use. This will be further explored in subsection 4.3.7.

The benchmarks associated with the edges in the maximum matching are then executed using

PerfKit Benchmarker. Edges and their associated benchmark are removed from the graph

after they have completed. When a node has no edges left (i.e. has a degree of 0), we

remove the node from the graph and shutdown its associated virtual machine and related

resources. Then we attempt to add any benchmarks from the waitlist now that resources
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may be available from shutting down finished VMs. Finally, we attempt to redistribute the

edges in the graph. If a node has significantly more edges than nodes with equivalent virtual

machines, we can try to redistribute the edges among them. We have found that this is

essential to reducing overall execution time. After the round is finished, we start the next

round and continue until there are no more benchmarks left to run. This will be apparent

as both the graph and wait-list will be empty.

4.3.7. Maximum Matching

In this model, benchmarks are scheduled into batches by finding the maximum matching

(or maximum cardinality matching). This is a fundamental problem in graph theory and is

well solved. It can be formally defined as follows [97]:

Given a graph G = (V,E)

Definition 1 (Matching) A set of edges M ⊆ E is a matching if no V in G is incident

to more than one edge in M .

Definition 2 (Maximum Matching) M is a maximum matching if, for any other match-

ing M ′, |M |>= |M ′|, where |M | is the maximum sized matching.

Or more simply put, a matching is a set of edges where no edge shares a vertex and the

maximum matching is the matching with the largest set of edges possible.

Edges in this algorithm are benchmarks to be run next, and vertices are virtual machines

that have been spun up with specific hardware in specific regions to run the benchmarks. We

use this because it ensures that we don’t run two benchmarks from same VM at the same

time. This is an important requirement for the benchmarks to produce unbiased results.
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If there is sufficient capacity, multiple VMs can be created in the same zone to increase

the amount of tests we can run simultaneously. On a cloud with enough capacity, this would

result in a pair of nodes created for each benchmark and all benchmarks would be run in

parallel.

Figure 4.8: Maximum matching of nodes and deletion of finished nodes

In Figure 4.8, we show a step by step example of how the process of test selection and

pruning of edges and nodes works. In the first step, the maximum matching is found and

and those tests are run. The benchmarks being run are represented by the edges highlighted

in red. After they are run and results are stored, those edges are pruned from the graph.

VMs (nodes) are then also removed from the graph if they have no more benchmarks (edges)

to run. These VMs to be removed are highlighted in red. This process loops until there are

no more edges or nodes in the graph. At this point we know that we have run all of our

benchmarks.

To find the maximum matching for PKB scheduler, we are using the Blossom algorithm,

implemented in networkx’s max weight matching function [98]. This algorithm takes an
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undirected graph, and the weight of each edge, and will return the maximum matching for

the graph. There are two theories that mainly make up this method: the blossom algorithm

and the “primal-dual” method. The blossom algorithm is utilized for finding augmenting

paths where each vertex in the graph has at most one edge, and the number of edges is

maximized [99]. This algorithm is optimal for our matching because it is a maximum-size

matching algorithm that runs for polynomial computation time. The primal-dual method is

utilized to reduce weighted optimization problems to combinatorial, unweighted problems.

To allow the use of benchmarks which require more than 2 VMs, we keep a list of what

we refer to as multi-edge sets. We augment the set of benchmarks returned by the maximum

matching function by replacing benchmarks with edges that are incident with nodes in multi-

edge sets with the benchmarks for those multi-edge sets if that would result in a larger total

set of benchmarks. During this process, we also ensure that our constraint that no two

benchmarks share the same VM in a batch is not violated.

In terms of time efficiency, we have found this method to have an acceptable overhead.

It has a time complexity of O(|E||V |1/2). In Figure 4.9, we can see that for 124 nodes and

776 edges, matching takes less than 0.13 seconds.

Figure 4.9: Nodes vs completion time of maximum matching and Edges vs completion time
of maximum matching

83



4.3.8. Edge Redistribution

As mentioned in 4.3.5, initially, benchmarks and virtual machines are allocated in a

greedy manner. If there is space to allocate all virtual machines for a benchmark, they are

allocated. If we are running two benchmarks that require the exact same virtual machine

specifications, two sets of those virtual machines will be created if there is enough space. If

not, the second benchmark will reuse the same virtual machines as the first. In our graph

representation, the first scenario would be represented by two sets of nodes with each set

connected by an edge, but no edges between sets. The second scenario would be represented

by one set of nodes connected with multiple edges. If there is insufficient space and many

benchmarks that use a single VM configuration, this can lead to a situation where one node

has many edges. Due to how maximum matching works, all of the benchmarks for these

edges will have to execute in sequential rounds, leading to a possibly long execution time.

To alleviate this, we can redistribute the edges between nodes that have VMs with the

same specs or create duplicate VMs if resources have become available after each round. We

have found that this significantly improved execution time and the number of rounds that

needed to be performed. The process of edge redistribution can be seen in Algorithm 1,

equalize graph. In this algorithm, we first find the node with maximum degree in the graph.

(This is actually somewhat simplified for the sake of space. In our actual implementation,

we perform this procedure for the nodes with the top n degrees in the graph.) When then

find a list of nodes that represent equivalent VMs. Then we loop through those equivalent

nodes and attempt to redistribute the edges from the original nodes to the equivalent nodes

to make them all have similar degrees.
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Algorithm 1 equalize graph

1: procedure equalize graph(graph G)
2: max n← max degree node(G)
3: equivalent list← equivalent nodes(max n.vm)
4: sort(equivalent list) ▷ sort by degree, desc
5: equality improved← True
6: while equality improved == True do
7: equality improved← False
8: for n in equivalent list do
9: if n.degree < max n.degree− 1 then
10: transfer edges(max n, n)
11: equality improved← True
12: end if
13: end for
14: end while
15: if max n.degree > 1 then
16: new n← duplicate(max n)
17: transfer edges(max n, new n)
18: end if
19: end procedure

4.3.9. Benchmark Execution

To those familiar with PerfKit Benchmarker (PKB), you may note that this is not gener-

ally how PKB runs tests. Usually with PKB, benchmarks follow the pattern of: network/in-

frastructure setup, VM setup, benchmark execution, VM teardown, and finally network/in-

frastructure teardown. This is done for each benchmark that is run. With PKB scheduler,

we might run many benchmarks between VMs before tearing them down.

To get our architecture to work with PKB, we use a couple of existing constructs as well

as a slightly modified version of PerfKit Benchmarker. For the creation and deletion of VMs

we use a purpose built “benchmark” in PKB called vm setup that does just what its name

implies: it sets up whatever VM configuration is passed to it through a config file. PKB is

split into phases which can be one at a time and stopped between phases. So to setup a

VM we call the setup and provision phases of the “vm setup” benchmark in PKB. Then to

85



teardown a VM we call the teardown phase of the same “vm setup” benchmark, which we

can do using a unique id generated for each run of PKB.

Once we have VMs setup using the “vm setup” benchmark, we need to run actual bench-

marks between them. To do this, we use the static VM feature of PKB. This allows us to

run benchmarks on VMs that are already created given we have their IP addresses and ssh

credentials. Essentially we treat the VMs we created earlier as static VMs and run bench-

marks between them using this method. Then once a VM has no more benchmarks to run,

we call the teardown phase of “vm setup” for that VM.

Using PerfKit Benchmarker in this manner, though somewhat unconventional to its stan-

dard use case, allows us to focus on the scheduling aspect of this tool, rather than imple-

menting the benchmarks we want to run from scratch. Another way that we could have

done this is to use an infrastructure as code tool like Terraform to handle VM creation and

deletion and use PKB to run benchmarks between VMs created by Terraform. We chose

this path mainly because of our familiarity with PerfKit Benchmarker.

If you want to avoid this behavior entirely and not share VMs across multiple bench-

marks, there is an option in the tool to do that. When using this option, it will still schedule

benchmarks in the same manner, but will not share VMs across multiple rounds of bench-

marking. VMs will be created before and destroyed after each benchmark, which is the

default behavior of PerfKit Benchmarker. This option can be used if the benchmarks you

are running alter the VM in some manner without resetting it at the end. This way each

subsequent benchmark starts off with a fresh VM. Generally using this option is somewhat

slower because of the compounded setup and teardown times, but benchmarks are still ef-

ficiently scheduled and VMs allocated based on maximum weight matching and resource

limits.
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4.3.10. Experimental Results

In this section we use our tool against several sets of benchmark configurations. We will

compare those benchmarks running with our shared VM optimizations vs without. We will

also see how efficiently this greedy method works to pack benchmarks.

Table 4.4: Running time for each number of benchmarks

Number of benchmarks Reuse VMs No Reuse VMs
1 573s 520s
2 571s 541s
4 576s 530s
8 913s 1073s
16 1577s 2081s
32 2909s 4189s
64 5585 8331s

For the sake of consistency all of our benchmarks in this section will have a duration

of 5 minutes, not including setup and tear down. In Table 4.4, we can see the running

time of various numbers of benchmarks when using PKB scheduler both with reusing VMs

and without. For this experiment we ran the same benchmark with the same configuration

multiple times. The difference in execution time shown is setup and tear down of virtual

machines. For running up to 4 benchmarks, using the option to not reuse VMs is actually

quicker, but when running more benchmarks than this using the option to reuse VMs is

quicker. This is explained by the VM size we were using and the resource limit in the cloud

region under test. Only 4 machines of the specified size would fit in this region. Because

of this, up to four benchmarks could run in parallel using duplicate VMs, so the run times

for these tests are all roughly similar. Reusing VMs here takes slightly longer because there

is some overhead with how we separate VM creation from benchmark execution. When

running more than 4 benchmarks, the VMs can be reused, which we can see results in lower

execution times than not reusing VMs. This averages to a time savings of around 150 seconds

per round of reused VMs.
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For a more realistic test, we have run a network benchmark between pairs of VMs in

all regions of a cloud environment using multiple machine types. Each of these regions has

varying resource limits that must be accounted for. We ran this set of benchmarks in 3

ways: 1) using PKB scheduler with maximum matching scheduling and sharing VMs across

rounds. 2) using PKB scheduler with maximum matching scheduling, but not sharing VMs

across rounds. 3) Using just PerfKit Benchmarker and specifying a number of benchmarks

that can be run in parallel without exceeding resource limits for even the region with the

least available resources. The results are listed in Table 4.5.

Table 4.5: Running Time for different methods of benchmark scheduling

Method Completion Time
PKB scheduler Share VMs 16595s

PKB scheduler No Share VMs 22296s
PerfKit Benchmarker No optimizations 90302s

Using PKB scheduler with sharing VMs enabled was the quickest to complete. Even

without sharing VMs, our graph based scheduling was a considerable improvement over no

optimization.

From that same test with sharing VMs enabled, we also captured data detailing how

many VMs were running during each round, and how many were being used, which can be

see in Figure 4.10. Here, more than 80% of allocated VMs are used in each round and in 5

of 6 rounds, we have over 90% usage.

In Figure 4.11, we can see the quota usage for a cloud region for each round of benchmarks.

We have only included a single region, because they all looked vastly similar to this example.

For the first few founds they are efficiently packed with VMs, as demand is high. As there

are fewer benchmarks left to run, usage tappers off quickly. This shows that our method

of VM allocation works to efficiently place VMs, leaving little to no unused resources when

there is sufficient demand.
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Figure 4.10: Capture of VM usage and Allocation during each round of benchmarks

Generally, the results of this method are the best when used with a set of benchmarks

that share many repeated VM configurations, such as when performing network benchmarks

between all distinct pairs in a set. This situation allows the most reuse of the existing VMs.

On the other hand, if working with a small set of benchmarks, or benchmarks that do not

share repeated configurations, there will be little speed-up from VM reuse, but can still

benefit from efficient scheduling.

4.4. Conclusions and Future Work

This chapter we discussed how we can increase the efficiency of our benchmarks, both

on an individual level and at larger scales. For individual benchmarks, we focused on taking

accurate throughput measurements while minimizing the amount of time and data spent on

those measurements. We proposed using confidence intervals with a user specified confidence

level and width and automatically stop the network throughput test when the target width

is reached. We have shown that this can reduce the test length and data consumed in a

variety of cases and the worst case scenario in this regard is that the test runs for the full
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Figure 4.11: Quota usage for selected cloud region during each benchmarking round.

specified test time and the specified width is not reached. This would be equivalent to simply

running a network test with a static length.

We have found this technique to be most useful for high throughput links, where achiev-

able throughput may vary from sample to sample based on network conditions, such as cloud

networks. These improvements are not universal. For already short measurements or lower

capacity networks, the improvements may not be nearly as dramatic. This method is also

highly customize depending upon the performance needs of your operation. It can easily be

adjusted for lower confidence or a larger target width. We also suggest displaying through-

put as a range is a good idea, especially in environments with high throughput variance. To

continue this work, we believe that if we are able to add in additional historic data from

previous tests, or an estimate of what we think the throughput should be, we may be able

to converge to an accurate result more quickly than our current method.

For running larger numbers of benchmarks, we have created a graph based benchmark

scheduling tool. We have shown that our tool can be an effective and efficient means of run-
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ning a large number of benchmarks on a cloud environment. We tested multiple methods of

batch scheduling and found that all of our methods were better than a naive approach. From

our tests PKB scheduler creates the same number of batches as using integer programming

optimization and when using VM sharing across batches, PKB scheduler can outperform this

approach in terms of execution time by around 17%, depending on the length of benchmarks

being executed.

However, there are still several optimizations that we would like to implement. These

include tweaking the scheduling algorithm to consider benchmark time. Currently, most

of our benchmarks take around the same amount of time to complete. If you attempt

to schedule benchmarks with vastly disparate durations, VMs running benchmarks with

shorter durations would be forced to sit idle while the longer benchmarks finish. This could

be solved in several ways, the simplest of which would be to include in the configuration

files the approximate time benchmark execution takes and use them as edge weights during

maximum matching. We would also like to improve the allocation cloud resources from a

relatively simple greedy approach to a dynamic programming algorithm like those often used

to approximate the knapsack problem.
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Chapter 5

Network Analytics of Cloud Networks

5.1. Introduction

Data center and scientific computing applications are becoming increasingly distributed

across geographically separated compute and storage facilities. Computing and data nodes

may be dispersed across different sites to serve various clients, for example, to widely dis-

seminate scientific data and support web searches. Widely distributed scientific and cloud

computing applications can often face communication challenges when they need to sustain

high bandwidth data transfers between sites, such as when distributing large datasets or

media. To distribute very large datasets specialized applications such as Globus [100] are

often used, but it is also essential that the underlying network can support high bandwidths

with a low error rate.

These scenarios require efficient data transport networks, which can be readily deployed

by utilizing virtual machines (VMs) at cloud sites and connecting them using virtual IO

and virtual links. The application performance critically depends on an efficient transport of

data over the wide-area networks that connect these sites. Extensive data transport networks

are being built, connecting data center and supercomputer sites to support these scenarios.

These types of data transfers are becoming increasing common as more businesses move their

workloads and data storage to public cloud environments with sites distributed around the

world. For scenarios suited for such cloud networks, there are several advantages including

fast deployment, flexible pricing, and the infrastructure being maintained by cloud providers.
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In this chapter, we analyze the performance of a public cloud network, specifically Google

Cloud, in comparison with dedicated physical infrastructures using throughput profiles,

which show the throughput for a network across different RTTs. An example of these

profiles is shown in Figure 5.5, where the top two rows correspond to the cloud network and

bottom two to the dedicated testbed connections. In each of these scenarios, public cloud

and emulated, the goal is to maximize TCP throughput performance. This means not only

selecting the optimal network parameters such as TCP buffer sizes and TCP congestion con-

trol algorithm, but also how many parallel flows we should use to send data. The primary

motivation behind this is to better understand how the public cloud network compares to the

emulated network and to evaluate how parallel flows, congestion control algorithm selection

and loss affect the throughput profiles for these networks.

To support various network transfers, it is helpful to understand the maximum achiev-

able throughput and actual measured throughput between servers and clients over network

connections for a range of RTTs. For this objective, we study the throughput and latency

characteristics of the underlying network infrastructure and the impact of protocol parame-

ters, RTT and network losses. To accomplish this, we gather throughput measurements for

memory-to-memory transfers at RTTs from 1ms to 350ms across the Google Cloud network.

We repeat these measurements using from 1-10 parallel flows and with multiple different

TCP congestion control algorithms. We take the same set of measurements on our testbed,

where we emulate connections with the same RTTs and bandwidths as the Google Cloud

connections. Additionally, on our emulated network we test these parameters with various

rates of random packet loss, which we cannot control on the cloud network. Both of these

data sets are available upon request.

From these measurements, we can also calculate the utilization-concavity coefficient

(CUC) for each throughput profile [101]. This coefficient relates to the overall shape of

the throughput profile, how concave it is and how efficiently it is using its available band-
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width. Here, a throughput profile with a more concave shape indicates closer to optimal

performance and a throughput profile that is more concave is indicative of a connection that

is not meeting its maximum capacity. The CUC has a range of [0, 1], where closer to 0 is

convex and is most likely facing a significantly restricting bottleneck and a CUC closer to

1 is more optimal, where ∼ 0.75 represents an ideal profile with no loss under emulated

conditions. Using this metric allows us to more easily compare throughput profiles across

different networks and parameters.

Overall, our results indicate a comparable performance of cloud networks shown by the

concave-convex geometry of profiles that indicate the optimization level with smaller varia-

tions due to virtualization of hosts and connections. For practical considerations, the number

of parallel flows remains a dominant factor for throughput optimization across various con-

ditions and TCP versions, particularly at higher RTTs.

For a discussion on existing works in transport performance on different networks, refer

to Chapter 2.2. The rest of the chapter is organized as follows: In Section 5.2 we show how

we calculate the Utilization-Concavity Coefficient for the throughput profiles and how we can

use this to compare different networks Section 5.3 details our experimental setup and how

we collected our measurements. Section 5.4 presents the results of our throughput tests and

examines how each of several variables effects the throughput profile for a network. Section

5.5 summarizes our findings and discusses the future directions of our research effort.

5.2. Throughput Profiles

In this section we define the metrics we use for comparing networks and their configura-

tions. As defined by Rao et. al. [102], the throughput profile for a given set of hosts on a

network and their respective configurations and TCP parameters is defined as:
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ΘO(τ) =
1

TO

∫ TO

0

θ(τ, t) dt (5.1)

Where θ(τ, t) is the throughput of a connection at time t for an RTT τ . The throughput

profile, ΘO(τ), is the average of these observations over a period of time TO. Several examples

of throughput profiles that we will discuss more thoroughly later can be seen in Fig. 5.5.

It is well established that throughput always has an inverse relationship with RTT across a

network. In an ideal situation, we want this throughput curve to be concave, i.e. throughput

should decrease steadily and slowly as RTT increases, such as can be seen in Fig. 5.5i. The

extent of how sharply throughput drops as RTT rises depends upon several parameters

including the TCP buffers, TCP congestion control algorithm, total network bandwidth,

and other bottlenecks such as CPU performance and memory. It can also depend upon

things that are out of our control such as the amount of competing traffic and network

outages, especially in a public cloud environment.

5.2.1. Utilization-Concavity Coefficient

Here, we will be discussing the Utilization-Concavity Coefficient (CUC) [7] and how we

can use it to compare the profiles of different networks. First, we must define this coefficient.

The CUC of a throughput profile, Θ̂, is a measurement of how well utilized a network is across

a range of RTTs. Before we can define it however, we must first examine its components.

Here, let L be the maximum capacity for a connection, τL is the smallest RTT and τR is the

largest RTT on the network. With this, we can define the under utilization coefficient as:

CU(Θ̂) =

∫ τR

τL

(
L− Θ̂(τ)

)
dτ (5.2)
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(a) Convex-concave CCC (b) Utilization coefficient CU

Figure 5.1: Throughput profiles and coefficients

This summarizes how underutilized connections are on a network across its range of

RTTs. To represent the relative concavity of a throughput profile, we have the convex-

concave coefficient, which is defined as:

CCC

(
Θ̂
)

=
∫ τR
τL

(
Θ̂(τ)−

[
Θ̂(τL) +

Θ̂(τR)−Θ̂(τL)
τR−τL

τ
])

dτ (5.3)

= (τR − τL)
[
¯̂
Θ− Θ̂M

]
(5.4)

Putting these two coefficients together, we can have a more complete summary of both

the concavity and the utilization of our throughput profile, giving us the utilization concavity

coefficient, which can be defined as:

CUC

(
Θ̂
)
=

1

2

([
1− CU

(
Θ̃
)]

+

[
1

2
+ CCC

(
Θ̃
)])

(5.5)
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Here, Θ̃ is a normalized version of the throughput profile Θ̂, with values scaled by L and

[τL, τR is scaled to [0, 1]. This also bounds the CUC to [0, 1].

We can also define this more compactly as:

CUC

(
Θ̂
)
= ¯̃Θ− Θ̃M/2 + 1/4 (5.6)

where ¯̃Θ is the average throughput weighted by RTT and Θ̃M/2 is throughput at the

midpoint.

The CUC succinctly summarizes the properties of the throughput profile that we are most

interested in: total utilization, and the concavity of the curve). Using this coefficient, we can

more easily compare throughput profiles on networks that might have different capacities,

bottlenecks, and other limitations.

5.3. Measurements Collection

We have taken TCP throughput and RTT measurements from two networks to compare.

The first network is Google Cloud, a public cloud network with data centers distributed

across the world with a global network to connect them. The second is a emulated network

operating on a testbed. With this testbed network we can emulate similar connections as

we examine on the public cloud network, but under idealized scenarios with no cross traffic,

no loss or induced loss, and the same RTTs to those we see on the public cloud network.

The connections under test for Google Cloud are shown in Fig. 5.3. Here, we picked a

subset of region pairs that gave us a wide range of RTTs to examine and compare. These

connections cover most of their available data center regions. In Fig. 5.4, we can see our

emulated network setup. Fig. 5.4a shows the logical and Fig. 5.4b shows the physical setup.
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5.3.1. Measurement Tools There are several network testing tools available to measure

both throughput and latency with the ability to customize a variety of parameters that

can effect network performance. These tools include Nuttcp, Netperf, and iPerf. For our

measurements, we chose to use iPerf because of its support for multiple parallel sending

threads. To measure latency, we are using ping, which is well known and widely used. For a

more detail discussion on network performance measurement tools, refer to Chapter 2.1.1.

5.3.2. Google Cloud: Data Center Connections

Figure 5.2: Diagram of connections in Virtual Private Cloud (VPC) network on google
cloud.

For our tests on Google Cloud, we used n1-standard-4 VMs that have 4 Intel Skylake

vCPUs. They all have at minimum kernel version 5.8.0 with Ubuntu 20.04. Network pa-

rameters have been tuned to achieve the maximum possible throughput, with TCP buffer

maximums set to 250 MB. The default TCP buffer sizes remain default, and we let the

operating system adjust the actual window within that range using TCP autotuning. The
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Figure 5.3: Google Cloud with lines representing logical connections between region pairs,
with RTTs in [1-350] ms range.

MTU is set to 1500 bytes, which is the current maximum for the network. For each test,

we set up 2 VMs in different geographic regions on the same Virtual Private Cloud (VPC)

network, which uses Andromeda [103] on the Google Cloud network. This setup can be seen

in Fig. 5.2. RTTs for these region pairs under test range from 1 millisecond to just over 350

milliseconds. We executed ping tests for latency and iPerf tests with sending thread counts of

[1-10] to gather bulk throughput data. For the iPerf tests, we also collected throughput data

for each 1 second interval for the duration of the test. We repeated these throughput tests

for three different TCP congestion control algorithms: CUBIC [87], HTCP [86], BBR [104],

and the latest version of BBRv2, which is currently still in alpha. We refrained from testing

earlier TCP variants such as Tahoe and Reno, as they now represent a very small proportion

of total internet traffic [105].

Additionally, we also repeated each of these tests using both Internal (private) and Ex-

ternal (public) IP addresses. The main difference between these two addressing options is

the bandwidth cap, as they are both often routed along the same physical network path. For

internal IP addresses, there is a 10 Gbps egress limit per machine, and for external IP ad-
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dresses, there is a limit of 7 Gbps total egress from a single VM as can be seen in Fig. 5.5d-f.

We will examine each of these test scenarios separately and compare their performance and

dynamics.

5.3.3. Testbed with Hardware Network Emulators

For the testbed connections, we chose to emulate connections with RTTs that match

those that we found on the connections we testing on Google Cloud. For these tests, we are

using Redhat 7 and 8 on 32-core Supermicro workstations. Two identical hosts are connected

by 10 GigE connections emulated by IXIA hardware emulators that allow us to set the RTT

and packet drop rates for the connection.

For this setup, Ethernet packets are generated on each host in the same manner we do

on VMs on the cloud network. They packets are delayed by RTT and periodically dropped

to emulate specific loss rates by the IXIA emulator. We perform memory-to-memory TCP

transfers using iPerf (12 TCP versions in total; we show here select CUBIC, HTCP and BBR

for space). The collection of measurements is automated with each set taking 1-2 days. The

TCP buffer sizes are set to the recommended values for 200 ms RTT and the socket buffer

for iPerf is set to 2 GB. These measurements experience no cross traffic or other effects of a

multi-tenant environment that may be present in our cloud measurements.

5.4. Results

In this section we will examine the throughput profiles from both Google Cloud and

our emulated network and the effect various parameters have on throughput in each of these

distinct environments. In Fig. 5.5, we show the throughput profiles for Google Cloud and the

emulated network under several circumstances. In Fig. 5.5a-c, we show throughput profile

for Google Cloud connections using Internal IP addressing. In Fig. 5.5d-f, is throughput

for Google Cloud connections using external IP addresses. Finally, in Fig. 5.5g-i, we show

100



(a) dedicated 10GigE connection

(b) servers, switches and hardware connection emulators

Figure 5.4: Physical testbed for target measurements.

the throughput profiles for the emulated network with the same RTTs as the Google Cloud

connections with no loss. The main difference that we see here is that there is much less

variance in the emulated network. This is to be expected, as it is operating without cross

traffic and dedicated to only these network tests. If we look at the general shapes of these

throughput profiles, despite the different circumstances of each, the throughput profiles
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themselves have similar shapes. We will also confirm this when we discuss the CUC for each

of these throughput profiles.

(a) Cloud Internal IP 1 Flow (b) Cloud Internal IP 5 Flows (c) Cloud Internal IP 10 Flows

(d) Cloud External IP 1 Flow (e) Cloud External IP 5 Flows (f) Cloud External IP 10 Flows

(g) Emulated Network 1 Flow (h) Emulated Network 5 Flows (i) Emulated Network 10 Flows

Figure 5.5: Throughput profiles of public cloud network using internal and external IPs for
routing and their corresponding emulated testbed measurements for CUBIC.

5.4.1. Google Cloud Connections

In our tests on Google Cloud, we look at the throughput for two different available

addressing options for inter-VM communication, Internal (Private) and External (Public)

IP addresses. It should be noted that there is a lower bandwidth cap of 7 Gbps when using

external IPs. There is more variance with the external IPs, especially with a single flow.

There are multiple reasons why this could be the case. It could be a consequence of how

the 7 Gbps cap is applied to the VM. It could also be because traffic is being routed over a

different, more congested network path.
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(a) Google Cloud connections

(b) testbed connections

Figure 5.6: RTT measurements in milliseconds.

In Fig. 5.6, we show the RTTs for the connections we test in Google Cloud and our

testbed. The latency for both of these are very stable, and thus should not affect the results

of our throughput tests, as might be the case if a connection took a significantly longer or

shorter route during a particular test.
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5.4.1.1. Outliers and Variance

On a few of the Google Cloud connections there is also a high level of variance between

throughput measurements. One example is the Google Cloud throughput profile at a 91 ms

RTT for 1 flow shown in Fig. 5.5a. Here, this particular connection that we chose under-

performs more often than others. This could be for a number of reasons such as it being a

particularly congested link.

There are also several outliers that appear significantly below the bulk of the samples.

This again, is a consequence of operating on a shared network while trying to achieve the

maximum capacity for throughput. These profiles are the aggregation of several measure-

ments taken over the course of multiple weeks at different times of day and this shows that

the state of the network is not always the same.

5.4.2. Testbed Network Profiles

For our emulated testbed throughput measurements there was very little variance and

few outliers when using a 0% loss rate. This is to be expected because it is not a shared

environment and there is no cross traffic. These tests should represent near the maximum

achievable throughput on a 10 Gigabit network using these specific network settings. As we

can see the emulated profiles are very close to the cloud throughput profiles with Internal

IPs for 1, 5, and 10 parallel flows.

5.4.3. Parallel Flows

In Fig. 5.5, the charts on the left (a,d,g) show TCP CUBIC with a single flow, the charts

in the middle use 5 parallel flows, and the charts on the right use 10 parallel flows. In all

of our tests, using multiple parallel flows resulted in higher achieved throughput with less
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variance than using just a single flow. However, there is an upper limit on the improvement

seen, governed by the maximum available bandwidth of the link.

We can see that there is a significant different between a single flow and 5 flows, but

relatively little different in the shape of the curve between 5 flows and 10 flows. This tells

us that for these machines and connections, 5 flows is probably enough to fully saturate the

link. Using more flows than needed will cause unnecessary overhead on the host in terms

of CPU and memory usage. This is why it is imperative that we find the optimal number

of parallel flows to use (highest throughput, lowest overhead) when performing large data

transfers.

We found using multiple flows is beneficial for aggregate throughput regardless of the

congestion control algorithm being used and is especially useful on high latency links. This

is apparent in the shape of the throughput profiles when we are using a single flow vs multiple

parallel flows. The profile is more convex with a single flow and more concave with multiple

flows.

This can possibly be explained by the dynamics of TCP at high latencies and random

losses. Loss-based congestion control algorithms interpret any loss as congestion and will

decrease the congestion window accordingly. When the loss is not actually caused by con-

gestion and was instead random, this can lead to a situation where we are not achieving our

maximum throughput because the congestion window was reduced unnecessarily. For some

TCP variants, this can affect connections with large RTTs with greater severity, as some

congestion control algorithms operating on connections with large RTTs can have slower

recovery time compared to small RTT connections because they increase window based on

RTT or when ACKs are received. Unless they do something to compensate for this, like

HTCP which adjusts the increase size based on RTT, recovery times can suffer.

105



We can correct this somewhat by using multiple parallel flows. Functionally, using parallel

flows is equivalent to have a large ‘virtual’ maximum segment size (MSS) and can assist in

speeding up recovery times for congestion control algorithms and gives us greater aggregate

throughput [106] [107].

5.4.4. Congestion Control

Figure 5.7: Throughput profiles for measurements on public internal cloud network for
CUBIC, HTCP and BBR.

Figure 5.8: Throughput profiles for measurements on public external cloud network for
CUBIC, HTCP, and BBR.

Figure 5.9: Throughput profiles for measurements on testbed for CUBIC, HTCP, and BBR
with no error

As previously discussed, our tests use several different TCP congestion control algorithms

to compare their effectiveness under different real and simulated circumstances. These in-

clude CUBIC, HTCP, BBR, and BBRv2 alpha. Each of these were designed with the purpose

of improving performance for long, high bandwidth links and they all handle this task in a
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Figure 5.10: Throughput profiles for measurements on testbed for CUBIC, HTCP, and
BBR with 1/1000 Error Rate

different manner. A more thorough description of each of these algorithms can be found in

Chapter 3.1.3.

5.4.4.1. Comparison of Congestion Control Algorithms

In Fig. 5.7 we show the relative performance of these congestion control algorithms for

Google Cloud using Internal IP addresses for 1, 5, and 10 parallel flows. We can compare

these to the similar results in Fig. 5.8, Fig. 5.9, and Fig. 5.10 which show Google Cloud

throughput using external IP addresses, the emulated network with no introduced loss, and

the emulated network with 1 in 1000 error, respectively. In a production cloud environment

with competing traffic and congestion we can see that generally BBR and BBRv2 perform

better than the competition in terms of achieved throughput for a single flow with a low to

medium RTT. This difference is diminished for higher RTTs. When using parallel flows, the

TCP variants perform similarly, with the exception of BBRv2, which on some links shows

somewhat lower throughput than the others. For external IPs on the cloud network, the

BBR and BBRv2 show higher throughput than other TCP variants in most situations.

On our emulated testbed, there is almost no difference in performance between the con-

gestion control algorithms when they are operating in a network with no loss and no cross

traffic. This is the ideal situation and the curves we see here demonstrate the upper limits

of throughput under these circumstances. The single flow shows a convex curve and both 5

and 10 parallel flows show concave curves.
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When we introduce loss into the scenario as with Fig. 5.10, we can see that the curves

become much more concave. HTCP and CUBIC are most effected by loss, only achieving

close to 10 Gbps of throughput with 10 flows at 1 ms RTT. At higher latencies, throughput

quickly drops to below 1 Gbps for 10 flows and below 100 Mbps for a single flow.

The only congestion control algorithm that holds up to these random network losses is

BBR. With a single flow, the throughput profile is more concave than with no losses, but

with 10 flows throughput is only decreased by around 1 Gbps even at an RTT of 350 ms.

Again, this is largely because BBR does not base its congestion control calculations on loss.

So when HTCP and CUBIC encounter these random instances of loss and decrease their

congestion windows accordingly, BBR doesn’t change and will only have to retransmit 1 in

1000 packets.

5.4.5. Retransmissions

In Fig. 5.11, we show the ratio of the average number of retransmissions for a test

to the throughput in Mbps for that test. With 1 flow, BBR has an order of magnitude

higher retransmission rate than the other congestion control algorithms for some RTTs. In

particular, with an RTT of 5 ms, BBR experiences an average of retransmission ratio of

23 retransmissions per Mbps of throughput. For a 30 second test, this is an average of

around 200,000 retransmissions. However, if when we look at the data, most of the tests

for BBR with 5 ms RTT have 0 retransmissions, but 2 out of 10 tests have over 1,000,000

retransmissions. In these instances, throughput also drops dramatically from around 9,500

Mbps to 6,500 Mbps. This seems to be an instance of BBR overestimating the bottleneck

bandwidth available. This is a known issue that sometimes occurs. Since BBR does not

use loss/retransmissions as a control signal, an overestimation of the available bottleneck

bandwidth can result in a much higher number of retransmissions as compared to a loss-based

congestion control algorithms. This high number of retransmissions may have undesirable
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(a) TCP Retransmissions vs Latency (Internal IPs, 1 Flow)

(b) TCP Retransmissions vs Latency (Internal IPs, 10 Flow)

Figure 5.11: Public cloud network with TCP retransmissions for each TCP variant

effects and cause unnecessary congestion for shared links. On this same chart, we can see

that BBRv2 suffers from the same issue to a much reduced extent since BBRv2 uses packet

loss as part of its calculation for congestion and packet pacing.

With 10 parallel flows, we actually see fewer aggregate retransmissions for BBR and

most of the other variants are largely the same. Take note of the drastically different scales
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for Fig. 5.11a and Fig. 5.11b. Here, BBRv2 experiences its highest retransmission ratio

of 1.2 at an RTT of 350ms. Looking at the individual tests, we can see a high of 38,813

retransmissions in a test with a throughput of 7602 Mbps. This is about the same as the

average throughput that we see at this RTT for BBRv2 (7639 Mbps).

BBRv2 also has much higher retransmisions than HTCP and CUBIC in some cases,

but also has fewer than the original version of BBR in most cases. It does this while still

maintaining the high throughput values with lower variance than BBR. BBRv2 uses packet

loss as part of its calculation for congestion and packet pacing.

5.4.6. Emulated Loss

On our emulated test network, we are able to precisely test the capability of our network

configurations when exposed to network loss. We used an error generator to create instances

of loss in the transfers. We ran these tests using different error distributions and at several

different rates of errors for each distribution. We tried Gaussian, uniform, Poisson, and

periodic distributions and also having no introduced errors. Our measurements showed very

little difference in effect between different error distributions. However, the error rate has a

significant effect on throughput and this is effect is the same for similar error rates no matter

which distribution we are using.

5.4.6.1. Loss rate

The loss rates used range from 0 induced loss to every 1/100 packets. A visualization of

these results can be seen in Fig. 5.12.

Generally, higher rates of loss make the throughput profiles for a specific network config-

uration more convex. This can be seen most dramatically when using a single flow. When

the loss rate is high, 1/1000, throughput drops precipitously even at low latencies. This
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Figure 5.12: Effect of loss rate on throughput.

effect is offset somewhat by the addition of additional sending threads, which each have the

same loss rate.

The behavior under loss also depends greatly upon the congestion control algorithm

being used. Again, we see a marked improvement when using BBR. While throughput for
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HTCP and CUBIC under high loss conditions suffers at low latencies, BBR manages to

degrade more gracefully. Even with 0.01% loss, the throughput profile remains concave. If

we compare HTCP, CUBIC, and BBR with 10 parallel threads at 350 ms RTT and 0.002%

loss, the throughput for HTCP is 0.238 Gbps, CUBIC is 0.280 Gbps, and BBR is 4.283

Gbps. This is over a 1000% increase for high latency, high loss throughput.

5.4.7. Coefficients: Ideal and Loss Conditions

We calculated the utilization-concavity coefficient, CUC , described in Section 5.2.1 for

each of our throughput profiles both on Google Cloud and on our emulated network. This

will enable us to more easily compare between the throughput performance of these networks

under a wide variety of circumstances.

In Fig. 5.13, the CUC is shown for different loss rates and numbers of streams for CUBIC,

HTCP, and BBR in our emulated 10-Gigabit Ethernet (10 GigE) network. As we have seen

in the previous throughput profiles, all of these congestion control algorithms perform well

when there is little or no loss on the network and reach an optimal level around 3-4 parallel

flows. For 5 flows and beyond, we see no additional benefit for the overhead of adding

additional flows.

With CUBIC and HTCP in Fig. 5.13a and Fig. 5.13b, when there is 1 in 10,000 loss,

the CUC is low at 1 and 2 parallel flows, meaning a very convex throughput profile and low

throughput and utilization overall. This is partially alleviated by adding additional flows

and with 10 flows we see a CUC of 0.3. When the level of loss is greater than this, CUBIC

and HTCP are unable to recover even with additional flows. Throughput quickly drops to

near zero when the RTT is above 1ms and this is reflected with a CUC of less than 0.1.

In Fig. 5.13c, we show that BBR maintains a relatively high CUC despite high loss rate.

The additional of more flows also seems to help more significantly than with either CUBIC
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(a) CUC vs parallel flows in emulated network with CUBIC

(b) CUC vs parallel flows in emulated network with HTCP

(c) CUC vs parallel flows in emulated network with BBR

Figure 5.13: Emulated network CUC vs parallel flows
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or HTCP. For each of those congestion control algorithms the CUC with a loss rate of 1/500

and 10 parallel threads is less than 0.1. For BBR in the same situation, the CUC is 0.61.

Figure 5.14: Comparison of CUC of different TCP variants on emulated (with no error) and
public cloud network

In Fig. 5.14, we show the CUC for both the emulated connections with no error and the

Google Cloud connections both using external and internal IP addressing. For external IP

addressing, the CUC is calculated with a maximum bandwidth of 7 Gbps, because the lower

bandwidth cap does apply.

Interestingly, the public cloud connections actually have somewhat higher CUC values

compared to their emulated counterparts. We can confirm this in Fig. 5.5. The throughput

measurements for the public cloud connections stay closer to their 10 Gbps maximum than

the emulated networks at high RTTs. There are several reasons that this could be the case.

One is that many of the links on the cloud network are likely higher bandwidth than what

we are allocated, so we may be able to send at a faster rate for this artificial bandwidth

cap than we could for a physical bandwidth cap. It could also be because they have slightly

different kernel versions.
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5.5. Conclusions and Future Work

Cloud infrastructures support dynamic provisioning of transport networks, which are pos-

sible alternatives to dedicated networks in a broad class of scenarios. We studied throughput

performance of such networks over a public cloud environment using an emulated, dedicated

testbed network with a similar range of RTTs and endpoint settings. We found that measure-

ments and analytics of these two networks to be comparable in terms of throughput profiles

and dynamics, despite latter being dedicated and emulated. The cloud network showed more

variance in throughput values, most likely attributable to cross traffic on busy connections

and hosts, which is not experienced in the emulated network. For all these networks, we

found the most reliable way to increase throughput is to use multiple parallel flows. We

also found that generally BBR had the best performance on this type of network across all

RTTs. On the emulated network we also tested different levels of induced packet losses. We

found that a high error rate has significant effect on throughput and this is only somewhat

mitigated by using more parallel flows. Thus, the cloud networks are a more flexible, cost-

effective alternative to dedicated network infrastructures in cases where their footprint is

conducive.

In continuation of this work, we plan to use random loss distributions in the testbed

network to see if a loss distribution other than periodic will change the throughput profiles

for any TCP variant. Future research directions include a more detailed study of the cases

where cloud connections have lower throughput and higher retransmissions; the possible

causes include how VMs are orchestrated on cloud sites that typically serve as data centers,

including their migrations and overall allocation. It would be of future interest to develop

analytical models that explicitly account for the details of cloud networks, specifically, the

under-performance of some connections.

We compared the throughput performance from VM to VM connections across Google

Cloud to connections on a testbed with emulated latency and loss. We ran bulk-throughput
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benchmarks across a wide range of RTTs on both these platforms and repeated the mea-

surements using different congestion control algorithms and numbers of parallel TCP flows.

We examined the differences that these parameters had on the measured throughput of the

network and compared these configurations using their throughput profiles and their related

utilization-concavity coefficients (CUC . We found the the throughput profiles for the cloud

network and the emulated network to be overall similar in shape and reaction to parameter

changes.

They are similar enough that it could be possible to determine how a cloud network will

react to certain parameter changes and network settings by first emulating that network.

This could potentially save money as running tests on an emulated system to determine its

characteristics is cheaper than running those tests on a production network in the cloud.

Then we can use emulated to estimate physical. If we want to more closely match the

emulated network to the physical network, we can pick a similar loss rate.

Our study also shows that BBR tends to respond much better to network losses than

CUBIC or HTCP.
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Chapter 6

Performance Forecasting and Anomaly Detection in Cloud Networks

6.1. Introduction

Now that we have extensively examined how to collect accurate network measurements

in Chapter 3 and how to batch schedule a large amount of tests in Chapter 4.3, we can

use these continuous and automated measurements to help understand how our network

functions and the performance it will be capable of both now and in the future. As we have

previously discussed, cloud and cloud-connected networks are continuing to expand to meet

the growing demand as organizations offload the burden of managing physical infrastructure

to various cloud providers. As this happens, it becomes essential that these organizations

understand the network dynamics of their cloud infrastructure and are able to estimate or

forecast what type of performance they will be able to achieve at any arbitrary time point in

the future. Equally important is the ability of organizations to identify when their network

is performing outside of its usual bounds. In this chapter, we will explore how we can use

statistical and machine learning models to forecast future throughput and detect anomalous

performance.

6.1.1. Throughput Prediction

Obviously the farther into the future we can forecast the better, but here there is often

a trade-off with accuracy. The further our prediction is from the present, likely the less

accurate it will be. This being the case, here we will focus on predicting 1 time-step into the

future. For us, that on the granularity of days, as the dataset we are using has measurements

taken every day. The models and ideas can easily be extended for multi-day predictions or
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applied to a different timescale, such as minutes or seconds, provided they are retrained with

appropriate datasets.

Forecasts such as these are useful in a diverse set of scenarios including, but not limited

to, assisting with cloud orchestration of computations across highly distributed resources,

high performance file transfers, resource allocation and management, and helping diagnose

network issues such as performance bottlenecks. Accurate estimates can also help with cloud

routing decisions [108] and be used to improve the performance of applications that use a

datastream by dynamically adjusting the bitrate of the stream to better suit the current and

predicted throughput.

When operating in a cloud environment, unless you have opted to get dedicated machines

and network links which are available at a premium, the network connections and even the

physical NIC you are using will be multi-tenant and have some amount of competing traffic.

This could affect the throughput you are able to achieve across a link and can lead to lower

than expected throughput and increased variability in network measurements. There are

also situations or times where taking an active measurement of the network is not always

the best option, such as when there is very limited bandwidth. Being able to rely on past

data to estimate the throughput in the immediate future can help remedy this situation and

reduce the strain on an already stressed network.

6.1.2. Performance Anomaly Detection

Another important aspect of cloud network analytics is the ability to detect anomalies

and outliers. Both cloud providers and customers need to detect anomalies early enough

that there are not any sustained service interruptions. For this reason, real-time, robust

anomaly detection is essential. This depends upon having consistent historical data to train

from and a model that will report anomalies while limiting false positives.
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There are several different methods that can be used for anomaly detection including

clustering and classification. In both of these we essentially try to create groupings that

represent our normal data and then see how well each new data point fits into the groups.

If it does not, then it can be considered anomalous. Another method of anomaly detection

that can be applied to time series data is called predictability modeling. For this, we create a

model that uses historic data to try to predict the next result. We use the error between the

predicted result and the actual result to determine if the data point is possibly anomalous.

This relies on the assumption that normal data points are more easily predictable than

anomalies. In this way, we can easily adapt the prediction models that we create to anomaly

detection models. There are a few differences in training and data preparation that will be

discussed, but the architecture of the models stays largely the same.

6.1.3. Motivations

If we have a complete view of all aspects of a network, we could use all of the routing,

traffic, and congestion information on all the routers to determine the throughput we are

likely to be able to achieve on each specific route, such as with the control layer in a Software

Defined Network [9]. However, if we have a more limited view of the network, it can be more

difficult to predict throughput. Here, we have a scenario where we only have access to the

information that the two endpoints of a network benchmark have access to. This is the

typical situation when operating as a customer in a cloud environment.

Specifically, our dataset for these experiments consists of TCP memory transfer measure-

ments using iPerf and Netperf, corresponding latency measurements, and metadata about

the endpoints. This metadata includes the TCP window size, Maximum Transmission Unit

(MTU), congestion control algorithm or TCP variant used, the TCP stack, kernel version,

and any artificial limiters on the bandwidth enforced by the cloud provider that we know

about through their public documentation. We have the ability to change the TCP send
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and receive buffers for all endpoints as well as the congestion control algorithm. The MTU

is set to 1460 for all of these experiments for each endpoint and in the virtual network that

we have control over, however we do not know what the MTU is set at for any intermediate

hardware. We have little to no information about the state of any network infrastructure

such as gateways, switches, or routers, and we do not know and cannot control the amount

of cross traffic on the network or its behavior. We can also gather packet loss and retrans-

mission statistics, as those have an effect on throughput and can be indicative of congestion

or problems across a network link.

We use this dataset to compare different methods to accurately predict throughput for

connections in this network infrastructure that do not explicitly model the time series of

individual pair-wise connections based on past throughput and latency measurements and

associated metadata. We study classical, machine learning and neural network models to

predict TCP throughput on our dataset of which the LSTNet [71] architecture achieves

overall lowest error rate. These models, although trained specifically on these datasets,

should be able to be retrained with data from other networks, or generalized to fit a wider

scope.

In the remainder of this chapter, we first describe our data collection method and details

of datasets in Section 6.2. Next, we describe our approach to this problem and justification

for the models chosen to test in Section 6.3. Then we present the results of predictions using

several models and compare their performance in Section 6.4. Finally, we outline out future

research directions direction in Section 6.6. For a discussion on similar research in time series

analysis and forecasting, refer to Chapter 2, Sections 2.3 and 2.5.

6.2. Data Collection and Analysis

The dataset that we use for training and evaluation in this chapter and throughout

much of this thesis originates from our cloud benchmarking project with Google Cloud. As
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part of our research for that project, we run a large set of mainly network benchmarks

between virtual machines in different cloud regions and track their performance over time.

The dataset used in this chapter is a subset of those measurements consisting of inter-region

throughput an latency measurements on a specific machine type collected between June 2019

and August 2020. In addition to throughput and latency, we also included in the dataset

the OS version, kernel version, cpu specs, rmem/wmem max, TCP send/receive buffer max,

and cpu usage statistics. All of the endpoints have the same cpu spec, memory spec, and

operating system (Ubuntu 18.04). If these specs were more variable from test to test, these

parameters would likely also be included as features in our models.

Figure 6.1: Throughput measurements for randomly selected connections in our dataset
from mid February to mid August 2020.
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The scope of these measurements are inter-region measurements between all unique pairs

of cloud regions in Google Cloud as well as intra-region measurements from VMs situated in

the same region. In this context, a region usually refers to a cloud provider’s datacenter or

grouping of datacenters situated in a specific geographic region. Each provider has slightly

different terminology, but here we use ’region’ or ’cloud region’ to refer to a datacenter for

a cloud provider. These regions are further divided into ’zones’ which constitute individual

failure domains within a region. Google Cloud specifically has 28 regions at the time of

writing, representing datacenters in distributed locations from Virginia to Tokyo. A specific

zone or region is a required argument when creating virtual machines.

By creating pairs of virtual machines in different zones (or the same zone) and running

experiments between them we can benchmark the network performance of each link. Because

we are benchmarking network performance between virtual machines in many cloud zones,

we end up with 136 distinct zone pairs. For the dataset used in this chapter, we ran daily

tests between all unique pairs of regions for 17 regions, that gives us 136 region pairs that

we have data from. If we include the intra-region tests that brings it to 153 unique routes

that we took daily measurements for over the course of 6 months. One could also consider

the daily measurements for each route to represent its own time series, which gives us 153

distinct time series over the test period. Not all of these time series are of the same length,

as some virtual machine pairs were added to the test setup later than others.

6.2.1. Analysis of Data Features

The first step for us to create an accurate prediction model for network throughput was

to figure out which of our gathered metrics correlated most strongly with TCP through-

put. Here, when we mention TCP throughput, we are specifically referring to single-stream

and multi-stream throughput gathered via iPerf 2.0.13, which we discussed extensively in

subsection 2.1.1.1. We also consider multi-stream and single stream throughput separately.
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Our multi-stream throughput tests use 32 parallel sending threads to try to maximize total

throughput. The throughput profiles of multi-stream and single stream Iperf are different

enough that separate models for predicting each is helpful. The correlation of Iperf single

stream throughput 1 time step into the future to each of these variables is detailed in Table

6.1. In other words, for throughput, latency, and max TCP buffer size at time step t, we

want to find correlations with throughput at time step t+ 1.

Table 6.1: Correlation of variables at 1 time step ahead single stream Iperf throughput

Correlation with t+1 single stream Iperf throughput

Variables Correlation

Iperf throughput (1 stream) (t+1) 1.000

ping average latency -0.304

ping min latency -0.304

ping max latency -0.297

TCP max receive buffer -0.164

Iperf throughput (1 stream) 0.677

For our throughput prediction models, in addition to historical throughput, we have

chosen the following metrics: ping average latency (RTT), and the TCP max send and

receive buffer size. For time series prediction this means that the inputs to our model are

the past n time steps of throughput, latency, and TCP buffer size data.

Table 6.1 also includes ping min latency and ping max latency that are fairly well cor-

related with 1 step ahead throughput. However, we found including them brings little to

no value to our prediction models as they are much more closely correlated to ping average

latency, which is already in our models.

We found average latency to have a relatively high degree of negative correlation with

single stream throughput; higher latency means lower throughput. This is logically consistent

with our own experience with throughput testing as well as many of the formula based
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Figure 6.2: Scatter plot of throughput and latency from all points in our dataset. A second
degree polynomial line of best fit shows a slightly convex curve.

models for throughput prediction [58]. Longer latencies reduce throughput especially for

single stream workloads. The effect of latency on throughput can be reduced by employing

multiple streams. We can see both of these effects in Figure 6.2. These charts plot latency

vs single stream and latency vs 32 stream throughput. As can be seen in the first chart,

single stream throughput and latency form a convex curve, as throughput decreases with

higher latencies. Whereas 32 stream throughput vs latency forms a concave curve, as most

throughput measurements are limited by an artificial cap at 32 Gbps. In these charts you

can see that throughput also has a high variance, even at similar latencies. This is probably

due to cross traffic.

Some of our tests used a max TCP buffer size that is larger than the default, so we found

it necessary to train on this variable as well. Generally, larger TCP buffer sizes can help

achieve higher throughput especially when dealing with higher latencies [109]. Because of

this, tests on virtual machine pairs with higher latencies are run using appropriately higher

TCP send/receive buffer sizes. This also means some of our connections with very low

latencies are running with a lower (default) TCP buffer size while still achieving a greater

throughput. This could lead to a situation where a spurious correlation is found between

buffer size and throughput, in which a model learns that lower buffer sizes lead to higher
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throughput values because that is what our raw data shows. Including the max TCP receive

buffer size can help the model account for two measurements with similar latency values but

significantly different throughput values. In the future, it would help to run tests with a

wider variety of max TCP send/receive buffer sizes.

6.3. Prediction Models

In order to achieve the highest accuracy possible for our prediction, we trained and

evaluated eight different models on our dataset. The general architectures for each of these

models are listed in Table 6.2. For each model, we tried to optimize the architecture as

much as possible using a grid search for their respective hyper-parameters. We tested both

classic time series forecasting algorithms such as ARIMA, regressions, as well as multiple

neural network architectures that have been used for time series prediction. For most of our

models, we used a 10 day window size for our input to forecast 1 day ahead.

For ARIMA and VARIMAX, we modeled and evaluated each of the time series separately

and chose the optimally performing p,q for each time series. The error estimation in Table

6.3 is an average of the resulting errors for running ARIMA on each separate time series in

our dataset after have done a grid search for each time series to find its optimal parameters.

While we think that formula based methods are useful, they are largely suitable for the

prediction of throughput on very short time scales (milliseconds to seconds) and are based

on the patterns and behavior of TCP congestion control algorithms like Reno and Cubic [22].

So, overall, we have found these to be not particularly applicable to our use case of day to

day throughput prediction, but could be very informative when creating a model for short

term prediction.

We separately trained and evaluated these models for predicting both single stream

throughput and 32 stream throughput using the features we previously determined. We

also trained and evaluated these models to predict throughput based on only historical
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Table 6.2: Table Detailing the architectures of each tested model
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throughput data to serve as a comparison and see if our additional features actually helped

improve the accuracy of the models. Each of these models was trained using the first 60%

of the dataset. An additional 20% of the dataset was reserved for validation and hyper-

parameter tuning and the final 20% is used as our test dataset to evaluate the performance

of the models.

Throughput is not only limited by distance, congestion, and other real factors. On

many networks there are artificial limits on bandwidth, often depending upon the level of

service enrolled. This can lead to lower actual throughput than predicted if this limit is not

accounted for. Artificial limits were active for the cloud provider on which we ran our tests

and created our dataset. This means that our models are trained to predict throughput of

machines on this network, but likely would need to be retrained for a network with different

characteristics. Alternatively, this could be worked into the model by adding maximum

available bandwidth as a feature.

6.3.1. Error Metric To measure the performance of the models against our dataset we

have chosen to use the Mean Absolute Percentage Error (MAPE). MAPE measures how far

off predictions are from the true value on average as a percentage. It is formulated as:

MAPE =
100

n
∗
∑

(
|y − ŷ|
|y|

) (6.1)

Other common error metrics we have seen in similar work include Mean Absolute Error

(MAE), Mean squared error (MSE), and Root mean squared error (RMSE). We chose MAPE

because throughput across various paths in our dataset exhibit a very wide range of possible

values: from 10 Mbits/sec to around 32 Gbits/sec. MAPE should allow us to judge the

accuracy of the models we are testing without a small number of relatively large errors on

high throughput routes significantly affecting our overall error score, as they might with
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other error metrics. However, if we were more concerned about errors for larger throughput

links than smaller throughput links, then RMSE might be a better alternative.

6.4. Throughput Prediction Results

In this section, we share our results from the models that we used to predict on our test

dataset. The test dataset is made up of the last 20% of data from our total dataset. The

mean absolute percentage error (MAPE) as well as the Correlation Coefficient (CORR) of

each model on our test dataset is shown in Tables 6.3, 6.5, and 6.7,. This table shows both:

a) results when predicting single stream throughput and 32 stream throughput based on

multivariate historical data (throughput, latency, and TCP max send/receive buffer) as well

as: b) results for single stream throughput prediction based on only historical throughput

in order to compare between univariate and multivariate models.

The lowest error that we were able to achieve for single stream 1-step prediction was with

LSTNet, a hybrid neural network architecture, followed by a CNN + GRU architecture. For

multi-stream throughput, the results of most of the neural network architectures were much

closer.

All of the neural network architectures were shown to be able to perform better than

ARIMA for this use case. This points to there being non-linearities in our dataset that a

linear model like ARIMA cannot adequately model. ARIMA had both the lowest correlation

and highest MAPE by a significant margin for predicting both single stream throughput and

multi-stream throughput.

All of the univariate models had higher MAPEs than their multivariate counterparts,

leading us to draw the conclusion that the addition of latency and TCP max send/receive

buffer size did generally help improve the accuracy of these models.
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Table 6.3: Result Error and Correlation metrics for all models for multivariate iPerf 1
stream throughput

predicted variable ˙ multivar iPerf 1 stream throughput

Model CORR MAPE

ARIMA 0.8965 520.4332%

MLP 0.9341 34.0527%

LSTM 0.9339 32.9195%

GRU 0.9340 39.0893%

CNN 0.9239 39.9573%

CNN + GRU 0.9345 34.4534%

LSTNet 0.9267 30.6659%

Table 6.5: Result Error and Correlation metrics for all models for multivariate iPerf 32
stream throughput

predicted variable ˙ multivar iPerf 32 stream throughput

Model CORR MAPE

ARIMA 0.7894 119.1619%

MLP 0.8653 30.3297%

LSTM 0.8780 32.5345%

GRU 0.8790 31.1101%

CNN 0.8709 32.0909%

CNN + GRU 0.8750 31.9466%

LSTNet 0.8604 29.3034%
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Table 6.7: Result Error and Correlation metrics for all models for univariate iPerf 1 stream
throughput

predicted variable ˙ univariate iPerf 1 stream throughput

Model CORR MAPE

ARIMA 0.8890 550.2305%

MLP 0.9335 50.6598%

LSTM 0.9330 73.5089%

GRU 0.9341 41.8926%

CNN 0.8955 40.7733%

CNN + GRU 0.9344 36.9240%

LSTNet 0.9292 39.6644%

All models showed a lower MAPE when predicting iPerf 32 stream throughput, but also

a lower correlation. The lower MAPE values show that predicting multi-stream throughput

is more accurate. The lower correlation for multi-stream could possibly be explained by

the 32 Gbps throughput ceiling imposed by our infrastructure, as well as the relatively high

variance we see with this high bandwidth, as discussed in Section III and can be seen in

Figure 6.2.

The performance of these models shows that throughput, even at a daily level, is pre-

dictable with the right model. In Figure 6.3, we can see the 1-step predicted throughput vs

actual throughput (single stream) for each of the models we tested. The actual throughput

shows a significant amount of variance, but every model is able to approximate the overall

trend in throughput. The fact that our error decreased with more complex architectures

shows that there is potential to create or find a model that predicts this with even greater

accuracy. However, we realize that there is likely an upper limit on the accuracy we are able

to achieve given the limited view of the network we have, the time scale we are working with,

and some amount of inherent unpredictability or randomness in network throughput.
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Figure 6.3: Comparison of predicted vs actual throughput for various models on a 50 day
sample of test data

Even with an average of 30% error on the best performing models, these predictions

can still be useful for traffic engineering, scheduling large transfers, or diagnosing network

problems.

6.5. Anomaly Detection

Now that we’ve shown these models predictive capabilities, let us discuss how they can

applied to the task of anomaly detection.

Currently for our ongoing cloud benchmarking efforts, we have implemented a simple

anomaly detection based system on whether a value is significantly above or below the

moving average of the last 10 daily measurements. The moving average is calculated and

stored in a table in a nightly scheduled SQL query. A moving average kept for each unique
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connection that we run benchmarks for. So tests from region us-east-1 to region us-central-

1 will have their own moving average separate from tests between another pair of regions.

Then when we run new tests, for every new data point entered into the database, we compare

that point to the stored moving average using a Google Cloud Function. If a new data point

is outside of the threshold, an alert is generated. These alerts are quite versatile and can be

pushed to email, SMS, productivity tools such as Slack, etc. While our current system does

work well for large, single point anomalies, we would like to create a more comprehensive

system that functions for smaller deviations and increased instances of variance that we

would still consider anomalous.

Our plan for implementing an improved anomaly detection system for cloud performance

is to explore several general model architectures including both ones we have covered here

and some novel deep learning architectures that we have not seen applied to this problem.

We will take our cloud network performance data set, which tends to have a high amount of

throughput variability, and divide it into testing and training time series sets much like we

did with throughput prediction. Since it is a sizeable data set, it will primarily limit us to

using unsupervised machine learning algorithms, as the anomalies present are not currently

labeled.

6.5.1. Data Preparation

To be able to evaluate how well our anomaly detection models are performing, we must

define what an anomaly is for our dataset. This is a major challenge in developing unsuper-

vised anomaly detection algorithms that are not using a pre-labeled dataset [110]. Though

it is possible to train with unlabeled data, we are not yet at a point where we are able to

evaluate models without any labeled data. Many studies that have this issue simply apply a

threshold to their data and label everything outside of that threshold as an anomaly. This

could be based on the mean of the dataset as a whole, the mean of specific categories, or the
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rolling mean of sequential data [111] [84]. We have chosen to take a similar approach. As

previously discussed, our data is essentially many individual time series, each representing a

network path between distinct regions or data centers. To label anomalies in our test data

set, we find the mean values for each of these time series and define a threshold, t, as the

mean, µ, plus or minus a constant, c multiplied by the standard deviation, σ, for that series.

We also check these manually and added in additional points we thought were anomalous.

Fortunately, we are dealing with performance data where identifying anomalies can be more

obvious than in other types of data. If the throughput or latency are significantly higher or

lower than the other recent data points in the series, this is an anomaly.

t = µ± c ∗ σ (6.2)

Because we are using unsupervised predictive models, we do not have to label the training

data, only the testing data. For training, we rely on the fact that there is much more

normal data than abnormal data. This should result in our models being able to predict the

normal data fairly accurately and not being able to predict the abnormal data with much

accuracy [112].

For data features, we will use the same ones as for the prediction models already discussed:

historical latency, throughput, and buffer sizes. Performance for these types of models tends

to be better with low dimensional data [113]. We attempted to add additional features such

as kernel version, time and day of the test encoded with a cyclical encoding, and information

about number of errors and retransmissions. None of this improved the accuracy of the

predictions or anomaly detecting power of any of the networks, and in many cases was

actively detrimental.
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6.5.2. Training

These algorithms were all trained in the same manner as previously, attempting to max-

imize predictive performance. To detect anomalies from our prediction models, we take the

difference between the prediction and the actual measured value and compare that to our

average prediction error. If the prediction error is above mean prediction error plus some

threshold, we label this as a detected anomaly. This should allow us to compare the anomaly

detection performance of different prediction models.

6.5.3. Anomaly Detection Results

We trained several different architectures for prediction and tested their ability to also

detect anomalies. The results are listed in Table 6.9. Here, we show the precision, P , recall,

R, and the F1-score of each model. These are calculated as follows from the true positive,

false positive, and false negative rates.

P =
TP

TP + FP
(6.3)

R =
TP

TP + FN
(6.4)

F1 =
2(P ∗R)

P +R
(6.5)

The best possible F1 score is 1.0, meaning that we identified all anomalies perfectly and

had no false positives. For each of the models that we tested, we searched for the optimal

anomaly detection threshold that would result in the best F1 score.
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Table 6.9: Anomaly detection F1, Precision, and Recall scores for iPerf 32 stream
throughput anomalies

˙ iPerf 32 stream throughput anomaly

Model F1 P R

SMA 0.604 0.515 0.73

MLP 0.689 0.59 0.81

LSTM 0.680 0.58 0.82

GRU 0.664 0.55 0.83

CNN 0.698 0.61 0.82

CNN + GRU 0.675 0.57 0.82

LSTNet 0.521 0.43 0.66

Transformer 0.623 0.58 0.66

From these models, the CNN performed the best with the least false positives and false

negatives. However, the F1 score for most of the models was quite close and none of the

models had outstanding results. Most of the machine learning models performed moderately

better than a simple moving average, with a large trade off in terms of efficiency and resource

utilization. The main contributor for the relatively modest F1 scores was high rate of false

positives. This is related to the data. There are about 10 links that have a high amount

of variance between measurements. This leads to a situation where these are not marked

as anomalies, because it is normal for these links to have high variance, but for the same

reason it also makes the values difficult to predict. The large prediction error marks it as an

anomalous performance event. All of this combined yields a large amount of false positives

for a subset of the links.

6.6. Conclusions

In this chapter, we set out to predict day to day throughput between endpoints in a

cloud environment using data gathered over a 6 month period. We trained and tested

several neural network based prediction models to predict throughput based on historical
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throughput, latency, and TCP receive buffer size and compared them to the results from

a classic ARIMA model. Overall, the neural network architectures performed much better

than ARIMA and a hybrid model, LSTNet, showed the least prediction error. We also found

multi-stream throughput to be generally more predictable than single stream throughput.

We then used these neural network prediction models to perform anomaly detection. We

tested these against a simple moving average model. The neural networks outperformed the

moving average. None of the models showed an F1 score better than 0.7. This is probably

attributable to multiple factors. One such factor was a portion of our network links that

had much higher variance than others, which led to a high number of false positives.

We see our results here as a good baseline to build on. In the future, we would like

to apply these models to data on smaller time scales and compare the predictions against

the results from several formula based throughput prediction models. We would also like

to gather and analyse throughput data for network connections with a cap greater than 32

Gbps to compare them. We also plan to use our experience here to improve and develop

new models to achieve greater accuracy at this task.

136



Chapter 7

Conclusion

In the previous chapters of this thesis proposal we have discussed the work we have done

in cloud network performance analytics and benchmarking. In Chapter 2, we thoroughly

explored related work in this field. In Chapter 3, we defined best practices for network

testing and benchmarking including the use of tools such as Ping, iPerf, and Netperf. We

showed settings and configurations to use for optimal throughput and latency results for

cloud benchmarking and we discussed the use of the cloud benchmark automation tool, Per-

fKit Benchmarker (PKB), to automate the creation and provisioning of cloud infrastructure

for benchmarks. We explained how each tool can be used to measure aspects of network

performance and the advantages and disadvantages of using each tool.

The various network configuration options can be opaque in how they function, affect

performance, and interact with other configuration options. Our goal in this chapter was

to provide some clarity about how different variables affect throughput and latency. There

are usually some simple changes we can make to improve our achieved throughput, such as

increasing the maximum TCP send and receive buffers or choosing the appropriate TCP

congestion control algorithm. Latency is a function of physical distance and network conges-

tion, so if we cannot use machines that are physically closer together, we would have to try

to decrease network congestion, which can also be done by all of machines on the network

using appropriate TCP congestion control algorithms that are relatively fair in regards to

the percentage of available bandwidth they consume.

Chapter 4 covers how take measurements efficiently, both in terms of single benchmarks

as well as scheduling large numbers of benchmarks. We show how we can use relatively simple
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statistics calculations to minimize the amount of time we need to run throughput tests for

while maintaining accurate results. When running a network throughput benchmark, we

gather interim results at a specific interval. Each of these interim results shows the network

throughput in bits per second over that specific interval. If we use each of these interim

results as a measurement sample, we can use these to calculate the mean throughput value

within a confidence interval. This confidence interval will have a width (± the mean). By

specifying the desired width of the confidence interval, we can stop the measurement process

after the desired confidence interval width is achieved. This removes guesswork from our

benchmarking efforts and allows us to spend less time and money running tests and also

alerts us to instances where our test durations may not be long enough to achieve good

results due to high throughput variance. This can also be applied to other benchmarks such

as latency, packets-per-second, and none network benchmarks that have a similar structure.

We then proposed a novel scheduling solution for large numbers of cloud network bench-

marks that uses a graph representation of resources and the maximum matching for efficient

batch scheduling. This algorithm represent virtual machines are nodes on a graph and bench-

marks as edges between nodes. Multiple edges and self edges are possible when more than

one benchmark needs to be executed between two virtual machines and when a benchmark

only needs a single machine. From this graph of machines and benchmarks, we can greedily

schedule batches of benchmarks. To schedule batches, we use the maximum matching, the

largest set of edges in the graph which share no nodes. For us this means the largest set of

benchmarks where their required machines do not overlap.

Using this solution, we are able to run a large number of cloud benchmarks on a daily

basis while remaining within the various regional and cloud-wide quotas we are subject to.

It minimizes the time spent benchmarking, which also reduces costs. This batch scheduling

enables the data collection necessary for the analysis and model training we perform in

subsequent chapters.
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Then in Chapter 5, we presented a thorough analysis of cloud network dynamics and

compared them with the dynamics for an emulated dedicated network with similar host

and network configurations. For each of these networks we measured throughput across a

wide range of RTTs. We compared the throughput profiles of these networks as well as their

concavity-utilization coefficients and conclude that they are quite comparable at most RTTs,

except for a few connections where the cloud network performed significantly worse at the

same RTT as the emulated and other cloud connections. This is attributable to increased

congestion and retransmissions along these particular connections.

We also ran these test using several different TCP congestion control algorithms and on

the emulated network we used several different loss rates, from 0 loss to 1 in 500 packets

loss. From our congestion control tests, at low or zero loss CUBIC, HTCP, and BBR perform

largely similarly. Their differences become more apparent when faced with random losses

(losses not caused by congestion). When there is a high loss rate, CUBIC and HTCP are

able to achieve significantly lower throughput than BBR, due to how each algorithm handles

loss. We also saw that even with induced loss and high latency, the best way to increase

achieved throughput in those cases is to use multiple parallel data streams. This method is

more effective with high latency, and when faced with high loss, it is most effective when

using BBR.

In Chapter 6, we used the data and network knowledge we gained from the previous

chapters to attempt to forecast future throughput and detect throughput anomalies. We

trained and tested several traditional and deep learning models to forecast cloud throughput.

To do this, we used a data set of daily cloud performance data gathered over the course of

a year. This data set has measurements from all cloud regions to every other cloud region

in Google Cloud’s network taken on a daily basis. We treated each of these region-pairs as

a time series. To train and test the network we split each of these time series into a sliding

of 10 days of data aiming predict the 11th day. Because this is time series data, it makes
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it more difficult to do k-fold cross validation because ideally we don’t want to train on data

that happens after data in our test dataset. We split the dataset at a certain date and

made everything after that date the testing set, and everything before that date the training

set. We found an effective deep learning model for prediction and concluded that all of the

deep learning models we tested performed much better than the more traditional time series

prediction models we tested for this task, Here our top performing model was LST-NET, a

hybrid CNN LSTM model.

We then trained and tested these models for anomaly detection as well. This task was

more difficult, as we lacked a labeled training dataset and the variance of the throughput

for some network links was quite high. Overall we only achieved a top F1 score of 0.69 due

to a high number of false positives from the high variance links.

Overall, in this work we have presented a thorough work of how to optimize cloud network

performance, how to measure that network performance efficiently and at scale, and what

we can do with that collected data. Here, our work has results in substantial real-world

cost and time savings. These continued measurements also allow us to gain useful insights

into the performance characteristics of our network. We can use the data to forecast future

performance, allowing us to choose an optimal time to execute network intensive tasks.

We can also detect performance anomalies, alerting us to events when the network is not

performing as it should and allowing us to make necessary adjustments.

7.1. Future Work

There are several avenues to continue this work. The first is expansion of data gathering.

In this work, the public cloud provider we gathered all of our performance data from was

Google Cloud. It could be interesting to compare between the networks of multiple cloud

providers. We could also expand these comparisons to larger cloud network links, which

currently go up to 100 Gbps in capacity. Currently our long term measurements are on a
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daily time scale. Network conditions can change much more rapidly than that. It would be

interesting to collect network performance data on a much smaller time scale, such as hourly

or even every minute. This data could be used to explore how performance changes across

an hour, or day. It could help us develop models that better learn how network performance

should look during the cycles of any given hour or day.

Additionally, we would like to explore the effect of cross traffic on performance in cloud

networks. This would be difficult on a production network, because it is difficult or impossible

for a user to determine exactly where VMs will be allocated. This will also make it difficult

for us to us VMs to effect each other’s communications with competing traffic. If we are

able to get multiple VMs allocated on the same rack with a cluster-style placement policy,

which is explicitly not guaranteed, we could possibly use the traffic of multiple VMs to effect

the network performance of a target VM located in the same rack. A simple way to do this

would be to emulate everything on our own machines, taking the guesswork out of relying

on cloud VM placement.

In continuation of our work on efficient benchmarking, we believe that we could further

improve the efficiency gains of our approach. This could possibly be done by using Bayesian

credible intervals instead of confidence intervals. They are similar concepts, but Bayesian

credible intervals also take a best guess as a parameter. By passing the algorithm a likely

value for the mean, this could allow the interval to converge to the target width even more

quickly. For network throughput, this likely mean value could either be an educated guess

based off of latency, known bandwidth cap, and send/receive buffer sizes, or it could be

based off of historical mean values for the same network link.

We would also like to expand our work in performance forecasting an anomaly detection.

If we were able to take measurements on a smaller time scale, it could be very interesting

to see how these algorithms perform on a minute by minute or hour by hour time scale.

This would also allow us to train to recognize hourly and daily cycles, something we could
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only do to a very limited extent with our daily performance data. This could lead to both

better prediction and anomaly detection algorithms for network performance than what we

currently have. Additionally, there are a constantly evolving set of best practices when it

comes to time series prediction models. Though we have used state of the art models here, in

a few years time, it is likely that new models will be able to perform this task with improved

results. Additionally, there are additional avenues of anomaly detection that we would also

like to employ against this problem, such as positive unlabeled learning.

142



Appendix A

Source Code

This appendix is intended to point the reader to the source code for each major piece of

work from this thesis. We have linked to the repositories of each, all of which are hosted on

Github.com.

In Chapter 4 we discussed how to use confidence intervals to take efficient network mea-

surements. Our implementation of this can be found at: https://github.com/SMU-ATT-

Center-for-Virtualization/iperf early stopping

From Chapter 4.3, we present our implementation of our cloud benchmark batch schedul-

ing solution, pkb scheduler. https://github.com/SMU-ATT-Center-for-Virtualization/pkb scheduler.

From Chapter 5, our network analysis and comparison can be found at https://github.com/SMU-

ATT-Center-for-Virtualization/public˙private˙network˙analysis

In Chapter 6 we discussed how we can use collected network data to do throughput pre-

diction and anomaly detection. Our throughput prediction analysis and models can be found

at https://github.com/dPhanekham/throughput prediction public cloud. Our anomaly de-

tection models and analysis can be found at https://github.com/SMU-ATT-Center-for-

Virtualization/network performance anomaly detect.

If you are looking for the underlying datasets used for network analysis or model training,

these are too large to be hosted on Github.com and can be obtained from contacting Derek

Phanekham at dphanekham@gmail.com.
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Acronyms

CIDR Classless inter-domain routing. 46

FLOPS Floating Point Operations per Second. 8

FTP File Transfer Protocol. 9

ICMP Internet Control Message Protocol. 40, 146

MTU Maximum Transmission Unit. 11, 31, 99, 119

NIC Network Interface Controller. 118

UDP User Datagram Protocol. 41, 42
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GLOSSARY

Bandwidth A measurement of the maximum capacity of a network or link (bits/sec). 4

Bulk Data Transfer This refers to the process of moving a large quantity of data across a
network. Depending on the size of the data, this can use a specialized application such
as Globus, or something like FTP. Large data transfers can require scheduling and can
result in high bandwidth utilization for an extended period of time. 59

Cloud (Network) A cloud network refers the on-demand computing capability provided
by a company with a data center or group of data centers. This usually operates
on a infrastructure-as-a-service, or platform-as-a-service model. Cloud networks are
useful in their ability to abstract infrastructure management away from the user and
be incredibly scalable. 1, 32, 35, 59

GNU Linear Programming Kit (GLPK) An open source solver for large-scale linear
programming and mixed integer programming problems [92]. 74

Internet Control Message Protocol (ICMP) A protocol commonly used to communi-
cate errors and other operational information on a network. 12

iPerf A tool for measuring network performance including throughput, latency, and jitter.
It has a wide variety of options to specify tests that fit the given requirements. xv, 12,
41, 77, 98, 100, 119, 122, 129, 130, 135

Latency (Network) A measurement of the amount of time it takes to send a message or
packet and have it be received on the other end of the connection. This can refer to
one-way latency or round-trip latency. One-way latency measures the amount of time
it takes for a message to travel from sender to receiver. Round-trip latency measures
the amount of time it takes for a message to travel from sender to receiver plus the
amount of time it takes for a response to travel from receiver back to the sender. 3

Mean Absolute Error (MAE) The mean of the the absolute value of the residuals.

MAE =
1

n

∑n
i=1|yi − ŷi|. 127

Mean Absolute Percentage Error (MAPE) MAPE measures how far off predictions
are from the true value on average as a percentage.

MAPE =
100

n
∗
∑n

i=1(
|y−ŷ|
|y| ) . 127, 128
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Mean squared error (MSE) The mean of the the absolute value of the residuals.

MSE =
1

n

∑n
i=1(yi − ŷi)

2. 127

Netperf A very versatile tool for measuring network performance including throughput,
latency, and jitter. It has a wide variety of options to specify tests that fit the given
requirements. 12, 30, 41, 98, 119

PerfKit Benchmarker (PKB) An open source framework for running benchmarks on
cloud infrastructure. 15, 36, 77, 137

Ping A standard utility used to measure network RTT latency with ICMP. This is also
sometimes referred to as a ping-pong test because it measures to amount of times it
takes to send a packet to a host (ping) and to receive a reply packet from that host
(pong). 12, 30, 98

Root mean squared error (RMSE) The square root of the mean squared error

RMSE =

√
1

n

∑n
i=1(yi − ŷi)2. 127

Round Trip Time (RTT) The duration it takes for a packet to go from point A to point
B, be acknowledged, and return to point A. 8, 12, 93, 97, 99, 108, 123, 139, 146

Service Level Agreement (SLA) A contract between a customer and a service provider
(cloud, network, software, etc.) that details the services provided and the level of
standards the provider is required to meet. 3, 59

Software Defined Networking (SDN) Software defined networking is a network archi-
tectural paradigm where the control plane of the network is separated from the data
plane. This allows for more centralized orchestration of flows across the network. 2, 9

Throughput (Network) Sometimes also referred to as achievable throughput. This is the
amount of data that can be transferred between two endpoints on a network in a given
timeframe (bits/sec). 2–6, 9–12, 14, 17, 18, 21–24, 27, 31, 32, 40, 58–60, 62–65, 68–72,
74, 76, 89, 90, 93, 97, 117–125, 127, 128, 130, 132, 135, 137, 139

Time series Any series of data organized by time. 18

Time series forecasting prediction of future time series. 18

Transmission Control Protocol (TCP) One of the most widely used protocols for net-
work communications. It is also commonly referenced as part of the TCP/IP protocol
suite. TCP is connection oriented and uses a congestion avoidance algorithm to control
its traffic. There are many different variants of TCP with different congestion avoid-
ance algorithms such as CUBIC, RENO, and BBR. 4, 9–12, 15–17, 22, 24, 31–33, 41,
65, 68, 93, 97, 119, 121–125, 128, 136
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Virtual Machine (VM) A virtual machine is essentially an emulated instance of a com-
puter. They rely on virtualized layer or hypervisor running on a physical server. This
allows a server to run multiple isolated ’guest’ operating systems on a single physical
system. There are several types of virtual machines and levels of virtualization from
full virtualization to process virtualization. 2, 16, 37, 74, 77, 78, 80, 84, 85, 87, 91, 98,
99, 141

Virtual Private Cloud (VPC) A Virtual Private Cloud is a type of overlay network sim-
ilar to a VPN. A VPC allows us to operate on a private network connecting multiple
virtual machines possibly across multiple data centers. To the user it acts and appears
very similarly to as if they were operating on a private LAN. 99

Virtual Private Network (VPN) A Virtual Private Network is an encrypted tunnel over
a public network connecting two private networks (or a host to a network, or a host
to another host). It makes the endpoint logically act as if they are sharing the same
private network. 14
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[65] K. Cho, B. van Merriënboer, D. Bahdanau and Y. Bengio, On the properties of neural
machine translation: Encoder–decoder approaches, in Proceedings of SSST-8, Eighth
Workshop on Syntax, Semantics and Structure in Statistical Translation, (Doha,
Qatar), pp. 103–111, Association for Computational Linguistics, Oct., 2014. DOI. 25

[66] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput. 9 (Nov.,
1997) 1735–1780. 25

152

http://dx.doi.org/10.1109/ACCESS.2019.2946527
http://dx.doi.org/10.1109/ACCESS.2019.2946527
http://dx.doi.org/10.1109/HPCC/SmartCity/DSS.2018.00088
http://dx.doi.org/https://doi.org/10.1016/j.comcom.2010.08.008
http://dx.doi.org/https://doi.org/10.1016/j.comcom.2010.08.008
http://dx.doi.org/10.1109/JCN.2017.000083
http://dx.doi.org/10.1109/TNET.2009.2037812
http://dx.doi.org/10.1145/285243.285291
http://dx.doi.org/10.1145/285243.285291
http://dx.doi.org/10.1109/LCOMM.2010.04.092309
http://dx.doi.org/10.1109/ISM.2017.74
http://dx.doi.org/10.1109/GCCE.2018.8574877
http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.3115/v1/W14-4012
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
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[82] F. Lüer, D. Mautz and C. Böhm, Anomaly detection in time series using generative
adversarial networks, in 2019 International Conference on Data Mining Workshops
(ICDMW), pp. 1047–1048, 2019. DOI. 27

[83] Y. Choi, H. Lim, H. Choi and I.-J. Kim, GAN-based anomaly detection and localization
of multivariate time series data for power plant, in 2020 IEEE International
Conference on Big Data and Smart Computing (BigComp), pp. 71–74, 2020. DOI. 27

[84] G. Qin, Y. Chen and Y.-X. Lin, Anomaly detection using LSTM in IP networks, in 2018
Sixth International Conference on Advanced Cloud and Big Data (CBD),
pp. 334–337, 2018. DOI. 27, 133

[85] P. Gaikwad, A. Mandal, P. Ruth, G. Juve, D. Król and E. Deelman, Anomaly detection
for scientific workflow applications on networked clouds, in 2016 International
Conference on High Performance Computing Simulation (HPCS), pp. 645–652, 2016.
DOI. 28

[86] D. Leith and R. Shorten, H-TCP: TCP for high-speed and long-distance networks,
PFLDnet (2004) 16. 34, 99

[87] S. Ha, I. Rhee and L. Xu, CUBIC: a new TCP-friendly high-speed TCP variant, ACM
SIGOPS Operating Systems Review 42 (2008) 64–74. 34, 99

[88] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh and V. Jacobson, BBR:
Congestion-based congestion control: Measuring bottleneck bandwidth and round-trip
propagation time, Queue 14 (2013) 20–53. 35, 65

[89] M. Hock, R. Bless and M. Zitterbart, Experimental evaluation of BBR congestion control,
in 2017 IEEE 25th International Conference on Network Protocols (ICNP), pp. 1–10.
DOI. 35

[90] M. Dekking, ed., A Modern Introduction to Probability and Statistics: Understanding
Why and How. Springer texts in statistics. Springer, 2005. 60

[91] M. A. Alsaih, R. Latip, A. Abdullah, S. K. Subramaniam and K. Ali Alezabi, Dynamic
job scheduling strategy using jobs characteristics in cloud computing, Symmetry 12
(2020) 1638. 74

[92] A. Makhorin, “Glpk (gnu linear programming kit).”
http://www.gnu.org/software/glpk/glpk.html. 74, 145

[93] D. Shah, Maximal matching scheduling is good enough, in GLOBECOM ’03. IEEE Global
Telecommunications Conference (IEEE Cat. No.03CH37489), vol. 6, pp. 3009–3013
vol.6, 2003. DOI. 74

154

http://dx.doi.org/10.1109/PHM-Jinan48558.2020.00066
http://dx.doi.org/10.1109/WTS.2018.8363930
http://dx.doi.org/10.1109/ICDMW.2019.00152
http://dx.doi.org/10.1109/BigComp48618.2020.00-97
http://dx.doi.org/10.1109/CBD.2018.00066
http://dx.doi.org/10.1109/HPCSim.2016.7568396
http://dx.doi.org/10.1145/1400097.1400105
http://dx.doi.org/10.1145/1400097.1400105
http://dx.doi.org/10.1145/3012426.3022184
http://dx.doi.org/10.1109/ICNP.2017.8117540
http://dx.doi.org/10.3390/sym12101638
http://dx.doi.org/10.3390/sym12101638
http://dx.doi.org/10.1109/GLOCOM.2003.1258788


[94] R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer
Computations: Proceedings of a symposium on the Complexity of Computer
Computations (R. E. Miller, J. W. Thatcher and J. D. Bohlinger, eds.), pp. 85–103,
Springer US, 1972. DOI. 75

[95] H. W. Lenstra, Integer programming with a fixed number of variables, Mathematics of
Operations Research 8 (1983) 538–548. 75

[96] G. B. Dantzig, Discrete-Variable Extremum Problems, INFORMS: Operations Research 5
(1957) 266–277. 80

[97] C. Berge, Two theorems in graph theory, Proceedings of the National Academy of
Sciences of the United States of America 43 (1957) 842–844. 81

[98] A. A. Hagberg, D. A. Schult and P. J. Swart, Exploring network structure, dynamics, and
function using networkx, in Proceedings of the 7th Python in Science Conference
(G. Varoquaux, T. Vaught and J. Millman, eds.), (Pasadena, CA USA), pp. 11 – 15,
2008. 82

[99] Z. Galil, Efficient algorithms for finding maximum matching in graphs, ACM Computing
Surveys 18 (1986) 23–38. 83

[100] I. Foster and C. Kesselman, Globus: A metacomputing infrastructure toolkit,
International Journal for Supercomputer Applications 11 (1997) 115–128. 92

[101] N. S. V. Rao, Q. Liu, S. Sen, Z. Liu and R. Kettimuthu, Measurements and analytics of
wide-area file transfers over dedicated connections, in International Conference on
Distributed Computing and Networking, 2019. 93

[102] N. S. Rao, Q. Liu, S. Sen, D. Towlsey, G. Vardoyan, R. Kettimuthu et al., TCP
throughput profiles using measurements over dedicated connections, in Proceedings of
the 26th International Symposium on High-Performance Parallel and Distributed
Computing, pp. 193–204, ACM. DOI. 94

[103] M. Dalton, D. Schultz, J. Adriaens, A. Arefin, A. Gupta, B. Fahs et al., Andromeda:
Performance, isolation, and velocity at scale in cloud network virtualization, 15th
USENIX Symposium on Networked Systems Design and Implementation (NSDI ’18)
(2018) 16. 99

[104] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh and V. Jacobson, BBR: Congestion
based congestion control, ACM Queue 14 (Dec., 2016) . 99

[105] A. Mishra, X. Sun, A. Jain, S. Pande, R. Joshi and B. Leong, The great internet TCP
congestion control census, Proceedings of the ACM on Measurement and Analysis of
Computing Systems 3 (2019) 45:1–45:24. 99

[106] T. Hacker, B. Athey and B. Noble, The end-to-end performance effects of parallel tcp
sockets on a lossy wide-area network, in Proceedings 16th International Parallel and
Distributed Processing Symposium, pp. 10 pp–, 2002. DOI. 106

[107] J. Lee, D. Gunter, B. Tierney, B. Allcock, J. Bester, J. Bresnahan et al., Applied
techniques for high bandwidth data transfers across wide area networks, Lawrence
Berkeley National Laboratory (2001) . 106

155

http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1145/6462.6502
http://dx.doi.org/10.1145/6462.6502
http://dx.doi.org/10.1145/3078597.3078615
http://dx.doi.org/10.1145/3366693
http://dx.doi.org/10.1145/3366693
http://dx.doi.org/10.1109/IPDPS.2002.1015527


[108] Q. He, C. Dovrolis and M. Ammar, On the predictability of large transfer tcp throughput,
SIGCOMM Comput. Commun. Rev. 35 (Aug., 2005) 145–156. 118

[109] C. Villamizar and C. Song, High performance tcp in ansnet, SIGCOMM Comput.
Commun. Rev. 24 (Oct., 1994) 45–60. 124

[110] N. Moustafa, J. Hu and J. Slay, A holistic review of network anomaly detection systems:
A comprehensive survey, Journal of Network and Computer Applications 128 (2019)
33–55. 132

[111] E. H. Budiarto, A. Erna Permanasari and S. Fauziati, Unsupervised anomaly detection
using k-means, local outlier factor and one class SVM, in 2019 5th International
Conference on Science and Technology (ICST), vol. 1, pp. 1–5, 2019. DOI. 133

[112] G. Pang, C. Shen, L. Cao and A. V. D. Hengel, Deep learning for anomaly detection: A
review, ACM Computing Surveys 54 (2021) 1–38. 133

[113] W. Lu, Y. Cheng, C. Xiao, S. Chang, S. Huang, B. Liang et al., Unsupervised sequential
outlier detection with deep architectures, IEEE Transactions on Image Processing 26
(2017) 4321–4330. 133

156

http://dx.doi.org/10.1145/1090191.1080110
http://dx.doi.org/10.1145/205511.205520
http://dx.doi.org/10.1145/205511.205520
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2018.12.006
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2018.12.006
http://dx.doi.org/10.1109/ICST47872.2019.9166366
http://dx.doi.org/10.1145/3439950
http://dx.doi.org/10.1109/TIP.2017.2713048
http://dx.doi.org/10.1109/TIP.2017.2713048

	Performance Analytics of Cloud Networks
	Recommended Citation

	 ACKNOWLEDGMENTS
	 LIST OF FIGURES
	 LIST OF TABLES
	1 Introduction
	1.1. Motivation
	1.2. Objectives and Contributions
	1.3. Organization

	2 Related Work
	2.1. Network Performance Benchmarking
	2.1.1. Performance Measurements and Benchmarking Tools
	2.1.1.1. Network Throughput Measurements
	2.1.1.2. Network Latency Measurements
	2.1.1.3. Benchmark Suites

	2.1.2. Cloud Benchmarking

	2.2. Network Performance Analytics
	2.3. Network Performance Forecasting
	2.4. Time Series Analysis
	2.4.1. Time series statistics
	2.4.1.1. Stationarity, Seasonality, and Trends

	2.4.2. Moving Average
	2.4.3. ARIMA
	2.4.4. Support Vector Regression

	2.5. Throughput Prediction
	2.5.1. Formula-based TCP Throughput Prediction Methods
	2.5.2. History-based TCP Throughput Prediction Methods
	2.5.3. Neural Networks Applied to Time Series Prediction

	2.6. Anomaly Detection Techniques

	3 Network Measurements and Performance Benchmarking
	3.1. Accurate Network Measurements
	3.1.1. RTT latency
	3.1.2. TCP Throughput
	3.1.2.1. Maximum Transmission Unit
	3.1.2.2. TCP Buffer Size
	3.1.2.3. Hardware Limitations

	3.1.3. TCP Congestion Control
	3.1.3.1. HTCP
	3.1.3.2. TCP CUBIC
	3.1.3.3. BBR
	3.1.3.4. BBRv2 Alpha


	3.2. Executing Cloud Benchmarks
	3.3. PerfKit Benchmarker
	3.3.1. PerfKit Benchmarker Basic Example
	3.3.2. PerfKit Benchmarker Example with config file
	3.3.3. PerfKit Benchmarker Configurations
	3.3.3.1. Latency ping and TCP_RR
	3.3.3.2. Throughput with iPerf and Netperf
	3.3.3.3. Packets per Second
	3.3.3.4. On-Premise to Cloud Benchmarks
	3.3.3.5. Cross-cloud Benchmarks
	3.3.3.6. VPN Benchmarks
	3.3.3.7. Kubernetes Benchmarks
	3.3.3.8. Intra-zone Benchmarks
	3.3.3.9. Inter-zone Benchmarks
	3.3.3.10. Inter-Region Benchmarks

	3.3.4. Inter-Region Latency Example and Results
	3.3.5. Viewing and Analyzing Results
	3.3.5.1. Visualizing Results with BigQuery and Data Studio



	4 Architecture and Execution Efficiency of Benchmarks
	4.1. Introduction
	4.2. Efficiency in Benchmark Execution
	4.2.1. Statistical Confidence
	4.2.2. Data Observations
	4.2.3. Confidence Interval Calculations
	4.2.4. Experiment Setup
	4.2.5. Results

	4.3. Efficiency in Benchmarking Architecture
	4.3.1. Batch Scheduling Optimization
	4.3.2. Batch Scheduling Problem
	4.3.3. Scheduling solution
	4.3.4. Architecture of PKB_Scheduler
	4.3.5. Graph Representation of Benchmarks and Virtual Machines
	4.3.6. Efficient Scheduling
	4.3.7. Maximum Matching
	4.3.8. Edge Redistribution
	4.3.9. Benchmark Execution
	4.3.10. Experimental Results

	4.4. Conclusions and Future Work

	5 Network Analytics of Cloud Networks
	5.1. Introduction
	5.2. Throughput Profiles
	5.2.1. Utilization-Concavity Coefficient

	5.3. Measurements Collection
	5.3.1. Measurement Tools
	5.3.2. Google Cloud: Data Center Connections
	5.3.3. Testbed with Hardware Network Emulators

	5.4. Results
	5.4.1. Google Cloud Connections
	5.4.1.1. Outliers and Variance

	5.4.2. Testbed Network Profiles
	5.4.3. Parallel Flows
	5.4.4. Congestion Control
	5.4.4.1. Comparison of Congestion Control Algorithms

	5.4.5. Retransmissions
	5.4.6. Emulated Loss
	5.4.6.1. Loss rate

	5.4.7. Coefficients: Ideal and Loss Conditions

	5.5. Conclusions and Future Work

	6 Performance Forecasting and Anomaly Detection in Cloud Networks
	6.1. Introduction
	6.1.1. Throughput Prediction
	6.1.2. Performance Anomaly Detection
	6.1.3. Motivations

	6.2. Data Collection and Analysis
	6.2.1. Analysis of Data Features

	6.3. Prediction Models
	6.3.1. Error Metric

	6.4. Throughput Prediction Results
	6.5. Anomaly Detection
	6.5.1. Data Preparation
	6.5.2. Training
	6.5.3. Anomaly Detection Results

	6.6. Conclusions

	7 Conclusion
	7.1. Future Work

	A Source Code
	Acronyms
	GLOSSARY
	BIBLIOGRAPHY

