
Southern Methodist University Southern Methodist University

SMU Scholar SMU Scholar

Computer Science and Engineering Theses and
Dissertations Computer Science and Engineering

Spring 5-13-2023

Visualized Algorithm Engineering on Two Graph Partitioning Visualized Algorithm Engineering on Two Graph Partitioning

Problems Problems

Zizhen Chen
Southern Methodist University, zizhenc@smu.edu

Follow this and additional works at: https://scholar.smu.edu/engineering_compsci_etds

 Part of the Graphics and Human Computer Interfaces Commons, Numerical Analysis and Scientific

Computing Commons, Programming Languages and Compilers Commons, Software Engineering

Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Chen, Zizhen, "Visualized Algorithm Engineering on Two Graph Partitioning Problems" (2023). Computer
Science and Engineering Theses and Dissertations. 29.
https://scholar.smu.edu/engineering_compsci_etds/29

This Dissertation is brought to you for free and open access by the Computer Science and Engineering at SMU
Scholar. It has been accepted for inclusion in Computer Science and Engineering Theses and Dissertations by an
authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu.

https://scholar.smu.edu/
https://scholar.smu.edu/engineering_compsci_etds
https://scholar.smu.edu/engineering_compsci_etds
https://scholar.smu.edu/engineering_compsci
https://scholar.smu.edu/engineering_compsci_etds?utm_source=scholar.smu.edu%2Fengineering_compsci_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=scholar.smu.edu%2Fengineering_compsci_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=scholar.smu.edu%2Fengineering_compsci_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=scholar.smu.edu%2Fengineering_compsci_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=scholar.smu.edu%2Fengineering_compsci_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=scholar.smu.edu%2Fengineering_compsci_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=scholar.smu.edu%2Fengineering_compsci_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=scholar.smu.edu%2Fengineering_compsci_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/engineering_compsci_etds/29?utm_source=scholar.smu.edu%2Fengineering_compsci_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/

VISUALIZED ALGORITHM ENGINEERING

ON

TWO GRAPH PARTITIONING PROBLEMS

Approved by:

Dr. David W. Matula

Professor Emeritus of Computer Science

Dr. Ira Greenberg

Professor and Director Center of Creative

Computation

Dr. Eli Olinick

Associate Professor of Operations

Research and Engineering Management

Dr. Michael Hahsler

Clinical Associate Professor of Computer

Science

Dr. Jennifer Dworak

Associate Professor of Electrical and

Computer Engineering

Dr. Frank Coyle

Director of Software Engineering Program

VISUALIZED ALGORITHM ENGINEERING

ON

TWO GRAPH PARTITIONING PROBLEMS

A Dissertation Presented to the Graduate Faculty of the

Bobby B. Lyle School of Engineering

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Doctor of Philosophy

with a

Major in Computer Science

by

Zizhen Chen

M.S., Computer Science, Southern Methodist University
B.SE., Software Engineering, North China Electric Power University

May 13, 2023

Copyright (2023)

Zizhen Chen

All Rights Reserved

iii

ACKNOWLEDGMENTS

This work could not have been accomplished without guidance from my thesis advisor,

Prof. David W. Matula who provides key ideas and forever support. I want to thank all

faculties and students from both Computer Science and Art departments as the original idea

of this work was hatched from both environments. Special appreciation goes to Prof. Ira

Greenberg, who provided a lot of insights on visualization and also gave me opportunities

to found my teaching skills. I’m also grateful to my family for being so patient with me and

my friends for reminding me to take breaks instead of working all day.

iii

Chen, Zizhen M.S., Computer Science, Southern Methodist University
B.SE., Software Engineering, North China Electric Power University

Visualized Algorithm Engineering

on

Two Graph Partitioning Problems

Advisor: Dr. David W. Matula

Doctor of Philosophy degree conferred May 13, 2023

Dissertation completed March 24, 2023

Concepts of graph theory are frequently used by computer scientists as abstractions when

modeling a problem [21]. Partitioning a graph (or a network [28]) into smaller parts is one

of the fundamental algorithmic operations that plays a key role in classifying and clustering.

Since the early 1970s, graph partitioning rapidly expanded for applications in wide areas. It

applies in both engineering applications, as well as research [8]. Current technology generates

massive data (“Big Data”) from business interactions and social exchanges [11,66], so high-

performance algorithms of partitioning graphs are a critical need.

This dissertation presents engineering models for two graph partitioning problems aris-

ing from completely different applications, computer networks and arithmetic. The design,

analysis, implementation, optimization, and experimental evaluation of these models employ

visualization in all aspects. Visualization indicates the performance of the implementation

of each Algorithm Engineering work, and also helps to analyze and explore new algorithms

to solve the problems. We term this research method as “Visualized Algorithm Engineer-

ing (VAE)” to emphasize the contribution of the visualizations in these works.

The techniques discussed here apply to a broad area of problems: computer networks,

social networks, arithmetic, computer graphics and software engineering. Common termi-

nologies accepted across these disciplines have been used in this dissertation to guarantee

practitioners from all fields can understand the concepts we introduce.

iv

TABLE OF CONTENTS

LIST OF FIGURES . viii

LIST OF TABLES . xi

LIST OF VIDEOS . xiii

CHAPTER

1. INTRODUCTION . 1

1.1. Problem Specifications . 1

1.1.1. Backbone Determination in Wireless Sensor Networks (WSNs) 2

1.1.2. Graphical Partitioning of the Natural Number Network 2

1.2. Software Environments . 3

1.3. Outline of The Thesis . 4

1.4. Contributions . 4

1.4.1. Backbone Determination in Wireless Sensor Networks (WSNs) 4

1.4.2. Graphical Partitioning of the Natural Number Network 5

1.4.3. Visualized Algorithm Engineering (VAE) . 6

2. BACKBONE DETERMINATION IN WIRELESS SENSOR NETWORKS. 7

2.1. Introduction . 7

2.2. Background . 9

2.2.1. Network Computational Model . 9

2.2.2. Cluster-based Formation . 10

2.3. Backbone Formation . 11

2.3.1. Primary and Relay Bipartite Set . 12

2.3.2. Backbone Determination via Multi-partitioning . 14

2.4. Visualized Algorithm Engineering. 16

2.4.1. Sensor Deployment . 16

v

2.4.2. Link Determination . 21

2.4.2.1. Sweep Method . 22

2.4.2.2. Cell Method . 23

2.4.3. Backbone Partitioning . 28

2.4.3.1. Smallest-last Coloring . 31

2.4.3.2. Relay Coloring . 40

2.4.4. Backbone Refinement . 46

2.4.4.1. Performance Metrics . 49

2.4.4.2. Robustness of Backbones . 51

2.4.4.3. Other Adjustments . 56

2.5. Conclusion . 60

2.5.1. Contributions of Visualized Algorithm Engineering (VAE). 62

2.5.2. Evaluation and Future Works . 63

3. GRAPHICAL PARTITIONING OF THE NATURAL NUMBER NETWORK . . 66

3.1. Introduction . 66

3.2. Background . 67

3.3. Graphical Representation of Counts . 69

3.3.1. Font Representation System . 69

3.3.2. Multiplicative Properties of the Graphical Representation of Counts 73

3.3.3. Evaluations of the Graphical Number Representation 76

3.4. Adjacency Relation Between Natural Numbers . 77

3.4.1. Non-isomorphic trees of Matula numbers . 77

3.4.2. Specifications of Primordial Trees . 79

3.5. Visualized Algorithm Engineering. 81

3.5.1. Algorithms of Prime Functions . 81

3.5.1.1. Prime Factorization . 82

vi

3.5.1.2. Prime Counting and kth Prime . 83

3.5.2. Matula Number Generator . 85

3.5.3. Primordial Tree Generator . 88

3.5.3.1. Brute Force Method of Primordial Tree Construction 88

3.5.3.2. Integer Connectivity . 89

3.5.3.3. Primordial Tree Construction via Integer Connectivity 91

3.5.4. i · pj Matrix . 94

3.5.5. Primordial Spiral. 95

3.6. Conclusion . 100

3.6.1. Contributions of Visualized Algorithm Engineering (VAE). 101

3.6.2. Future Works . 101

4. VISUALIZATION’S ROLE IN ALGORITHM ENGINEERING. 102

4.1. Introduction to Visualized Algorithm Engineering (VAE) 102

4.2. Evaluate VAE on the Two Graph Partitioning Problems 102

4.3. Creative Coding . 103

4.4. Conclusion . 104

APPENDIX

BIBLIOGRAPHY . 105

vii

LIST OF FIGURES

Figure Page

2.1 Wireless Sensor Network . 8

2.2 Manually Placed Bipartite Lattice Grids . 13

2.3 Triangular Lattice Independent Sets . 13

2.4 Coverages of Primary Set and Relay Set . 14

2.5 Bi-regular Three and Four Lattice Grid . 14

2.6 Models of Four Geometries . 17

2.7 Random Nodes in Unit Disk . 18

2.8 Ratio of Areas and Nodes . 20

2.9 Degree Estimation of Nodes in Border Area . 20

2.10 Random Node Distribution on Four Surfaces . 21

2.11 Sweep Method on 2D Coordinate Systems . 22

2.12 Sweep Method on 3D Coordinate Systems . 23

2.13 Cell Method on 2D Coordinate Systems . 26

2.14 Cell Method on 3D Coordinate Systems . 27

2.15 Unit Sphere G(6400, 0.251) Cell Method . 28

2.16 Smallest-last Ordering . 31

2.17 Degree List . 32

2.18 Smallest-last Ordering . 33

2.19 Node-degree Plots of Smallest-last Ordering . 34

2.20 Smallest-last Coloring . 36

2.21 Color Size Plot of Smallest-last Coloring . 37

viii

2.22 Degree-3 Faces of Selected Primary Color Sets with Gabriel Rules 38

2.23 Random-paired Selected Bipartite Subgraphs . 39

2.24 Degree-3 Faces Percentage Plot . 40

2.25 Relay Degree List . 41

2.26 Maximum One-color Neighbors . 41

2.27 Color Degree List . 42

2.28 Relay Coloring Procedure . 43

2.29 Color Size Plot of Relay Coloring . 45

2.30 Degree-3 Faces of Selected Relay Color Sets with Gabriel Rules 45

2.31 Nodes after Smallest-last and Relay Coloring . 46

2.32 Degree-3 Face Percentage of Primary and Relay Color Sets . 48

2.33 Sample Paired Bipartite Subgraphs . 49

2.34 Sample Bipartites with Minor Components . 51

2.35 Domination and 3-coverage of Sample Backbones of Different Types 57

2.36 Number of Backbones of k Selected Primary Sets . 58

2.37 Surplus Nodes vs. Selected Primary Nodes . 59

2.38 Performance of k Selected Primary Colors . 59

2.39 Performances of Different Connectivities . 60

2.40 Surplus Nodes of Different Connectivities . 61

2.41 Sample Backbones of Different Connectivities . 61

2.42 Sample Backbones of Other Geometries . 62

3.1 21 Coefficients of Continued Fraction of π . 67

3.2 Graphic Representations of Natural Number 292 . 70

3.3 Comparison of Liquid-Crystal Display (LCD) Font and Grid Representa-
tions of Numbers 1˜11 . 71

3.4 Initial 21 Coefficients of Continued Fraction of π . 72

ix

3.5 The Structure of the Rooted Tree of Matula Number 20 . 77

3.6 Non-isomorphic Tree of Number Set {20, 21, 29, 34, 59} . 78

3.7 The Sieve of Eratosthenes Applied on Numbers Up to 20 . 84

3.8 Adjacency List with Edges . 86

3.9 Primordial Tree t20 . 91

3.10 Observe the Exterior from within the Primordial Constellation 93

3.11 20× 20 i · pj Matrix S20 . 94

3.12 i · pj = j · pi Cells of S20 . 96

3.13 Nodes of Primordial Tree t20 . 96

3.14 Prime Spiral . 97

3.15 Number Spiral . 98

3.16 Primordial Spiral . 98

3.17 Prime and Centrum Numbers of the Number Spiral . 99

3.18 Primordial Trees: t2, t3, t5, t7 . 99

4.1 Domination of Sample Backbones . 104

x

LIST OF TABLES

Table Page

2.1 Definitions or Formulas of Geometries . 19

2.2 Unit Square Sweep Method . 24

2.3 Unit Disk Sweep Method . 24

2.4 Unit Sphere Sweep Method . 25

2.5 Unit Torus Sweep Method . 25

2.6 Unit Square Cell Method . 28

2.7 Unit Disk Cell Method . 29

2.8 Unit Sphere Cell Method . 29

2.9 Unit Torus Cell Method . 30

2.10 Smallest-last Ordering . 34

2.11 Smallest-last Coloring Procedure . 37

2.12 Relay Coloring . 44

2.13 Nodes after Smallest-last and Relay Coloring . 47

2.14 Evenly Selected Sample Backbones . 50

2.15 Domination and 3-coverage Percentage . 52

2.16 Sample Backbones of Different Robustness . 54

3.1 Number 1˜9 in Matula Number and Grid Graphic Representation 70

3.2 Compact Grid Symbols for Numbers of Automorphism Groups 71

3.3 Compact Grid Symbols for Series of Repeating Numbers . 72

3.4 Multiplicative Operations . 74

3.4 Multiplicative Operations, continued. 75

xi

3.5 The Rooted Trees of Matula Number Set {20, 21, 29, 34, 59} 78

3.6 Examples of Primordial Trees with Repeating Numbers . 81

xii

LIST OF VIDEOS

Video Page

2.1 Sensor Deployment ... 21

2.2 Link Determination .. 30

2.3 RGG Degeneracy ... 35

2.4 Smallest-last Coloring .. 39

2.5 Relay Coloring ... 48

2.6 Backbone Refinement ... 56

3.1 Matula Number 292 ... 69

3.2 Primordial Tree t147 .. 90

3.3 Primordial Constellation .. 93

3.4 Primordial Garden ... 100

xiii

https://scholar.smu.edu/cgi/viewcontent.cgi?filename=0&article=1032&context=engineering_compsci_etds&type=additional
https://scholar.smu.edu/cgi/viewcontent.cgi?filename=1&article=1032&context=engineering_compsci_etds&type=additional
https://scholar.smu.edu/cgi/viewcontent.cgi?filename=2&article=1032&context=engineering_compsci_etds&type=additional
https://scholar.smu.edu/cgi/viewcontent.cgi?filename=3&article=1032&context=engineering_compsci_etds&type=additional
https://scholar.smu.edu/cgi/viewcontent.cgi?filename=4&article=1032&context=engineering_compsci_etds&type=additional
https://scholar.smu.edu/cgi/viewcontent.cgi?filename=5&article=1032&context=engineering_compsci_etds&type=additional
https://scholar.smu.edu/cgi/viewcontent.cgi?filename=6&article=1032&context=engineering_compsci_etds&type=additional
https://scholar.smu.edu/cgi/viewcontent.cgi?filename=7&article=1032&context=engineering_compsci_etds&type=additional
https://scholar.smu.edu/cgi/viewcontent.cgi?filename=8&article=1032&context=engineering_compsci_etds&type=additional
https://scholar.smu.edu/cgi/viewcontent.cgi?filename=9&article=1032&context=engineering_compsci_etds&type=additional

This is dedicated to my wife and son (Mengnan and Derek) who have been constant

sources of support and encouragement during the challenges of graduation.

Chapter 1

INTRODUCTION

About 1/3 of the cerebral cortex is used for visual processing in our brain [33], so hu-

mans are basically a vision-driven species. “What does it look like?” is probably the most

straightforward question popping up when we try to know about a new thing. The use

of visualization helps to answer the question and has existed for thousands of years in hu-

man history. You must have impressions of old maps appearing in many adventurous fairy

tails. An early example of using visualization in scientific research is the “seven bridges of

Königsberg” problem. In 1763, Leonhard Euler proved his conclusion of the problem by

drawing lands as nodes and bridges as edges [8]. This modeling method has been commonly

recognized as the beginning of Graph Theory.

Algorithms are a fascinating use case for visualization. Instead of merely plotting data

to charts (as what data visualization usually does), algorithm visualization is an animation

process that describes the behavior with logical rules. This facilitates the analysis and

understanding of abstract processes of algorithms via leveraging the human visual system.

This dissertation presents algorithm engineering works of two separate problems,

• Backbone Determination in Wireless Sensor Networks (WSNs);

• Graphical Partitioning of the Natural Number Network.

Although the two problems are cases across completely different areas including computer

networks and arithmetics, both of them are modeled as graph partitioning problems. The

engineering works here are all in visual forms which termed Visualized Algorithm Engineering

(VAE).

1.1. Problem Specifications

1

1.1.1. Backbone Determination in Wireless Sensor Networks (WSNs)

WSNs have been the focus of intense research during the past few years because of their

potential to facilitate data acquisition and scientific studies [73]. Lack of a fixed infrastructure

and dynamic network topology make the routing problem one of the most challenging issues

in the WSN area. Flooding is one solution in most topology-based routing protocols, but it

suffers from the notorious broadcast storm problem and is extremely resource consuming [68].

Forming a virtual backbone that forwards the packets along it is a more cost-efficient method

compared with the flooding approach.

We investigate the method of backbone determination by partitioning a WSN into a lim-

ited number of densely packed disjoint bipartite grids. The study focuses on the collection

of grids each individually having similar size and structure, and the union employing most

of the sensor nodes. The residual nodes we seek to minimize are attributed to the inherent

variations in densities of the randomly placed nodes and to any shortcomings of our greedy

algorithms. Computational visual results are rendered on WSNs of different graphic models

(unit square, unit disk, unit sphere and unit torus). Our results are documented by perfor-

mance metrics of WSNs’ such as coverage and network lifetime. The applications and future

works of our backbone formation method in both centralized and distributed approaches

are also discussed. This content is based on our former published paper [17] with extended

details on the VAE work and it also demonstrates how VAE helps improve algorithms for

solving practical problems.

1.1.2. Graphical Partitioning of the Natural Number Network

The natural number network is a fundamental structure in mathematics that provides

a framework for understanding the properties of numbers and their relationships with one

another. We discover a partitioning of the natural number network into disjoint clusters when

visualizing natural numbers as rooted trees. A graphical natural number representation is

2

introduced based on a formal logic foundation of a recursively defined function that exposes a

one-to-one mapping between natural numbers and rooted trees. According to the isomorphic

concept of graph theory, a relation between pairs of natural numbers is then revealed and

shown to partition the entire natural number network into disjoint finite tree sets (forests).

This relation encapsulates in visual form of the natural structure and distribution of primes

in a manner not previously investigated.

Theory attendant to these representations, as well as to efficient arithmetical operations

for computing necessary intermediate values and a visual structure for storing them, is pre-

sented to increase the availability of these recursively defined representations. This content

is based on our former published paper [52] with extended details on the VAE work and it

also demonstrates the procedure how VAE helps discover new theories.

1.2. Software Environments

Our empirical studies are conducted through graphic programs created based on en-

vironments of Processing Foundation which aims to combine software literacy with visual

arts. Software such as Processing and p5.js in this foundation are popular open-source and

cross-platform sketchbooks in the creative coding area [34, 62]. Creative coding is a type of

computer programming with the goal of creating something expressive instead of something

functional. In this respect, Visualized Algorithm Engineering (VAE) is a kind of creative

coding of algorithm itself which combines both aspects.

Both Processing and p5.js are used in the VAE works presented by this dissertation where

Processing (a language based on Java) is used to create standalone graphic programs and

p5.js (a JavaScript library) is used to create online graphic programs. Specifically, Processing

is used to build a standalone graphic program for Backbone Determination in Wireless Sensor

Networks (WSNs) problem which has several consecutive algorithm procedures. A Java-

based standalone program allows us to pursue better performance such as processing millions

of sensor nodes. For the Graphical Partitioning of the Natural Number Network problem,

several individual visual tools and animations are created for computational analysis which

3

is suitable to use p5.js to build light-weight online programs.

1.3. Outline of The Thesis

The work is presented in four chapters. Chapter 2 focuses on the problem of Backbone

Determination in Wireless Sensor Networks (WSNs). Chapter 3 focuses on the problem of

Graphical Partitioning of the Natural Number Network. Chapter 4 discusses how visualiza-

tion contributes in algorithm engineering. Each of the above chapters can be read separately

and is independent of the other three chapters.

1.4. Contributions

The major contributions are listed in the following sections, with each section focusing

on a specific category.

1.4.1. Backbone Determination in Wireless Sensor Networks (WSNs)

(a) An efficient method is proposed for partitioning a Random Geometric Graph (RGG)

into several disjoint bipartite subgraphs, each of which on average dominates (1− ϵ)n

nodes, based on a two-phase sequential coloring algorithm. All procedures of this

method have a linear time O(n) complexity. Additionally, this method addresses the

backbone determination in WSNs problem by modeling a WSN as an RGG with the

cluster-based routing protocol.

The two-phase sequential coloring algorithm has two procedures: smallest-last coloring

and relay coloring. The relay coloring algorithm is a new algorithm invented based on

the smallest-last coloring algorithm.

(b) A side project from the backbone determination in WSNs problem has been engineered

to create an RGG of a large amount of nodes (graphs with up to millions nodes have

been tested). This algorithm engineering work is implemented using two methods

(Sweep method and Cell method) which are originally referenced from Dhia Mahjoub’s

4

thesis work [46].

Furthermore, the two algorithms are improved and extended to be applied in 2D and

3D geometries on multiple coordinate systems, including Cartesian, Polar, Cylindrical

and Spherical. A customized Cell method algorithm has been invented to create an

RGG specifically for the sphere geometry on the spherical coordinate system. The

performances of the two algorithms have been analyzed for all mentioned coordinate

systems (the Sweep method has O(n
3
2) time complexity and the Cell method has linear

O(n) time complexity.)

1.4.2. Graphical Partitioning of the Natural Number Network

(a) A new tree structure termed “primordial tree” was discovered based on the automor-

phism of the rooted tree of Matula number.

(b) The entire natural number network can be partitioned into mutually exclusive clusters

of natural numbers. Each cluster of natural numbers are connected by a primordial

tree with nodes each labeled one number of the set. The proof of this disjoint clustering

is also provided.

(c) The primordial tree structure also reveals an adjacency relation termed ”Integer Con-

nectivity”: i · pj R j · pi (pk is the kth prime number), which applies to any pair of

integers i, j ∈ N . An algorithm for constructing a primordial tree based on the integer

connectivity relation is also described.

(d) A data structure termed “i · pj matrix” is provided to depict the relation between i · pj

(i, j ∈ N), and it can be utilized to identify the number set that is clustered by a

primordial tree.

(e) A new number spiral termed “Primordial Spiral” is constructed, which is a graphical

depiction of the set of centrum numbers (the number that labels the centrum node of

a primordial tree).

5

1.4.3. Visualized Algorithm Engineering (VAE)

(a) The terminology Visualized Algorithm Engineering (VAE) is proposed, which empha-

sizes the role of visualization in algorithm engineering. It is also a combination of

creative coding and algorithm engineering.

(b) The interactive features such as move, rotate and zoom in/out are designed and added

to the animated algorithm visualizations. The VAE works on the two graph partition-

ing problems demonstrate how visualization helps to gain insights about the algorithm,

tune heuristics for improving the performance, and finally solve the problem.

(c) A complete Graphical User Interface (GUI) has been implemented for a standalone

animation program in the VAE of the Backbone Determination in WSNs problem. This

GUI has the potential to be utilized as a Processing language library that incorporates

mouse, keyboard and touch controls. It also includes an auto-scaling feature to adapt

to any high Dots Per Inch (DPI) displays.

(d) Two visualizations, Primordial Constellation and Primordial Garden, have been cre-

ated to offer a novel and unique perspective on the entirety of the natural number

world.

6

Chapter 2

BACKBONE DETERMINATION IN WIRELESS SENSOR NETWORKS

2.1. Introduction

Wireless Sensor Networks (WSNs) are composed of low-cost, self-governing electronic

sensors spread throughout a region where the sensors communicate with each other wirelessly.

Sensors are typically thrown in an unattended and random manner across the area to be

monitored. Wireless communication allows the formation of flexible networks, which can be

deployed rapidly over wide or inaccessible areas. However, minimizing energy expenditure

without compromising the quality of essential services such as area coverage and efficient

routing remains to be a major design challenge that needs to be overcome for this technology

to gain more traction in the real world. Nowadays, WSNs emerge as an active research area in

which challenging topics involve energy consumption, routing algorithms, selection of sensor

locations, and so forth [13].

In a WSN of a given topology (as Figure 2.1 shows), the sensor information is usually

collected then forwarded to a base station known as a sink node. Collecting data from all

sensors in a network necessitates constraints on the sensor distances, making efficient routing

crucial, especially in cases where a significant number of sensors are involved. One popular

solution is to perform routing only through a connected subset of nodes (called a “virtual

backbone”) in the WSN [2,17,47]. Since only nodes of the virtual backbone (such as the blue

and red nodes depicted in Figure 2.1) are responsible for packet forwarding and performing

in-network services, other nodes can conserve energy by spending more time in a low-power

idle mode. As a result, a virtual backbone can streamline the routing process, leading to

decreased overall network energy consumption. Furthermore, it can serve other purposes

such as transmission scheduling, broadcasting, and localization [71]. For a given WSN, we

7

Figure 2.1: Wireless Sensor Network

typically wish to find a virtual backbone with a minimum number of nodes to maximize

the potential energy saving [18]. However, successful routing requires that the nodes in

the virtual backbone remain connected, and that every other node is connected to at least

one backbone node. This arouses our interests in investigating the method of backbone

determination which meets (or almost satisfies) the seemingly contradicting requirements.

Our contributions to this problem are achieved through Visualized Algorithm Engineering

(VAE), which can be summarized in the following two aspects:

• We choose to use a unique planar bipartite structure (a bi-regular three and four lattice

grid) to construct a virtual backbone. Each area of the region on which the WSN is

deployed will be covered by at least 4 backbone nodes. The k-coverage (k > 3) increases

robustness and also helps localization and synchronization [31,43,60].

• Instead of forming a single virtual backbone, we partition a WSN modeled as an

Random Geometric Graph (RGG) into a limited number of densely packed disjoint

backbones. Each backbone is a subgraph approximating the bipartite structure men-

tioned in the first bullet. The multi-partitioning also provides better scalability and

versatility.

In Section 2.2, we will introduce the background of RGG and its cluster-based formation.

8

RGG is our preferred WSN model which is the computational foundation of our algorithms

and visual programs. Cluster-based control structure provides an efficient way of routing,

which is the basis of the virtual backbone.

In Section 2.3, the strategy for backbone formation will be proposed, which utilizes a

unique bi-regular three and four lattice grid structure. This is a bipartite structure that

provides nice topological k-coverage performance metrics. Thus, we will characterize the

bipartite grid partition we seek to find in a large sparse RGG.

In Section 2.4, we will present the VAE of backbone determination with the following

four procedures: sensor deployment, link determination, backbone partitioning and backbone

refinement. A standalone 3D graphic program was created for the VAE work, which can be

downloaded from https://s2.smu.edu/~zizhenc/Project. The source code is maintained

on GitHub: https://github.com/zizhenc/WSN. Screenshots and videos are also provided.

In Section 2.5, we will conclude this work and analyze pros and cons of our backbone

determination method. Furthermore, some directions for future works are also provided.

2.2. Background

2.2.1. Network Computational Model

Topologically, at any instant in time a network can be modeled as a graph G(V,E) where

V is a set of vertices representing nodes and E is a set of edges representing links between the

nodes. Generally, the manner of sensor deployment can be either random or deterministic

[39]. Although deterministic deployment seems to require fewer nodes to achieve a given

degree of coverage and connectivity than the random deployment, it is impractical to devise

a strategy whereby each sensor is deployed precisely at some location. Besides, random

deployment has also been shown to have a low transfer delay [58]. Therefore, random

graphs are preferred in modeling Wireless Sensor Networks (WSNs). Several researchers

have contributed studies of such models [7,32,48,57,61]. The Erdö-Rényi model is one such

graph G(n, p) where each possible edge among n nodes has probability p of existing [75].

9

https://s2.smu.edu/~zizhenc/Project
https://github.com/zizhenc/WSN

Geographically, two nodes at closer distance have a higher probability of being connected,

so Random Geometric Graph (RGG) seems more realistic than the Erdö-Rényi model. RGG

denoted G(n, r) chooses random n locations of nodes uniformly and independently in a region

and two nodes are connected by an edge if they are within a Euclidian distance less than a

certain threshold r [57]. In the context of a WSN, every node in an RGG is equipped with

an omnidirectional antenna that monitors a small disc area with a radius of r. This disc

area encompasses other nodes that are connected to the node through edges in the graph,

which represent links. The radius is assumed to be sufficiently small due to the constraints

on the distance of sensors, which yields a large sparse RGG.

Realistically, the RGG model is still oversimplified due to the constant r value. The radio

signal in a WSN is disrupted by either large scale fading effects such as reflection, shadow-

ing, diffraction and scattering or small scale fading effects such as interference, heterogeneous

powers and transmission errors [69]. Therefore, each node might have inhomogeneous trans-

mission range (i.e., r should not be consistent). Having inhomogeneous transmission ranges

causes the corresponding graph to be directed which complicates routing. One solution

published in the proceedings of the ACM Mobihoc 2003 [9] is to consider the connectivity

induced only by the symmetric edges (each edge denotes the minimum transmission distance

between the two connected sensors) to avoid direct graph models. Taking this into account,

the results based on the RGG model are still applicable in practice.

2.2.2. Cluster-based Formation

Cluster-based control structure allows a more efficient use of resources especially when

a network consists of a large amount of sensors [13]. Clustering consists of partitioning a

network into a number of clusters achieved by grouping nodes inside a certain transmission

area (in the case of an RGG, it is a disc with radius r). A cluster is a locally connected

group of nodes with a leading node (known as “cluster-head”) from which each of the other

nodes (known as “slave nodes”) is one hop away. Thus, data collected by slave nodes can

be directly sent to their cluster-heads. Slave nodes can shut down some functionalities and

10

hence save power while their cluster-heads are providing a service (e.g., in-network data

processing and synchronization) [69]. Therefore, topologically, we expect more slave nodes

to save more energy in a WSN.

Routing performed via a virtual backbone consisting of cluster-heads is also called “cluster-

based routing” [67, 72]. Generally, there are two ways of cluster-based routing. One is to

route via cluster-heads directly [72], that is, the set of cluster-heads has power to be con-

nected and hence forms a virtual backbone itself. The other way is to select another group

of nodes as routing relays (or as gateways in some WSN strategies [56]) to the cluster-heads.

We call such node set a “relay set” and the set of cluster-heads is called a “primary set”

accordingly. The union of a primary set and a relay set is a connected set that forms a

virtual backbone. Although the first way has a simpler structure, it requires the selected

cluster-heads to preserve higher energy or more resources than other nodes to fulfill both in-

network processing and routing. A longer distance of transmission might also be necessary,

which causes more interference. Therefore, we choose the second way and design algorithms

based on the corresponding definition of a virtual backbone.

Definition 2.1 A virtual backbone of a WSN of cluster-based control structure is a con-

nected subset of nodes that are composed of a set of cluster-heads (primary set) and a set

of routing relays (relay set). Such a backbone network provides a path for the exchange of

information between sensor nodes and sink nodes.

In Figure 2.1, each blue node is a cluster-head that controls its adjacent green nodes as slave

nodes, and each red node is a routing relay to its adjacent blue nodes. The union of blue

and red nodes forms a virtual backbone that routes the network’s information to the base

station (sink node).

2.3. Backbone Formation

Given that the sensor network is modeled as a Random Geometric Graph (RGG), we

can use strong concepts like independence and domination to construct a virtual backbone.

In the case of cluster-based routing, a virtual backbone is composed of a set of cluster-heads

11

(i.e., primary set) and a set of routing relays (i.e., relay set). In graph theory, a Dominating

Set (DS) is a set of nodes in a graph such that any node of the graph is either an element of

the DS or has a neighbor in the DS. Hence the set of cluster-heads constitutes a DS, and a

virtual backbone by definition is a Connected Dominating Set (CDS). To minimize energy

expenditure, the CDS with smallest cardinality, called Minimum Connected Dominating

Set (MCDS), is the optimal configuration of a virtual backbone [18]. Unfortunately, finding

an MCDS in a given connected graph is known to be NP-hard [30]. Several researchers have

contributed algorithms of constructing a virtual backbone by approximating an MCDS in a

Wireless Sensor Network (WSN) [16, 70,74]. Therefore, our strategy of backbone formation

is to select a paired primary and relay set to approximate an MCDS with desired goals of

network longevity and continuous multi-coverage.

2.3.1. Primary and Relay Bipartite Set

In graph theory, an independent set is a set of nodes in a graph such that no two nodes of

the set are adjacent. A Maximal Independent Set (MIS) must also be a Minimal Dominating

Set (MDS) that can be used to constitute a set of cluster-heads with small cardinality. As

clusters are not necessarily to be disjoint, an MDS also assures minimal overlap between

clusters. Nodes belonging to multiple clusters can be selected as routing relays between the

respective cluster-heads. Routing relays should be separated far enough (not connected)

from each other in order not to cause more interference. Therefore, both the primary set

and the relay set are ideally modeled as independent sets. The union of a primary set and

its paired relay set is a connected bipartite set that forms a virtual backbone. Deployment

with the bipartite feature has the property that allows two frequency channels to route with

no co-channel interference in the backbone.

Generally, the deployment (geometry) of a virtual backbone in a WSN can be various

according to different application requirements. In our case, k-coverage of the virtual back-

bone is one of mainly considered performance metrics that is topology related. In literature,

a network is considered to have k-coverage when each point within the region is covered by

12

a minimum of k sensors [43, 58]. In our specific use cases, we are evaluating the k-coverage

of a virtual backbone for a WSN, which should be defined as every node in the WSN being

covered by at least k nodes from the virtual backbone. Requiring k-coverage will increase

accuracy of tracking, improve robustness or fault-tolerance, and provide better localization

and synchronization [31, 43, 60]. Figure 2.2 provides two regular bipartite planar grids (a

Cartesian lattice and a Hexagon lattice) where the blue nodes form a primary independent

set and the red nodes form a relay independent set. The Cartesian and Hexagon lattice grids

(a) Cartesian Lattice (b) Hexagon Lattice

Figure 2.2: Manually Placed Bipartite Lattice Grids

are 4-coverage and 6-coverage deployments respectively.

Employing idealized results from models of cellular systems, the triangular lattice grid

provides a maximum density of nodes [45]. Figure 2.3(a) shows a closest-packed primary

set of an RGG G(n, r) where each node is at distance r′ that is slightly greater than the

radius r. Accordingly, Figure 2.3(b) shows a relay set where each node is at distance r′′

r’

r’ r’

(a) Primary Triangular Lattice

r” r”

r”

(b) Relay Triangular Lattice

Figure 2.3: Triangular Lattice Independent Sets

13

that is slightly greater than r′. Figure 2.4 illustrates that this primary set deployment is a

3-coverage set and the relay set deployment is a 1-coverage set. Thus, combining the primary

(a) Primary Independent Set (b) Relay Independent Set

Figure 2.4: Coverages of Primary Set and Relay Set

and relay set, an alternative deployment termed “bi-regular three and four lattice grid” (since

it has bi-regular degree three and four) shown in Figure 2.5 forms a virtual backbone that

has 4-coverage. Any node of the WSN will be covered by k nodes of this backbone, where

4 ⩽ k ⩽ 7. If only the nodes of the primary set provide in-network services, then the virtual

Figure 2.5: Bi-regular Three and Four Lattice Grid

backbone will still have 3-coverage (3 ⩽ k ⩽ 4).

2.3.2. Backbone Determination via Multi-partitioning

The deployment of bi-regular three and four lattice grids provides a highly effective

14

backbone that satisfies the multi-coverage requirements exceptionally well. However, it’s

usually impractical to perform routing in a WSN via a manually placed backbone grid.

Moreover, a single backbone will quickly exhaust its energy reserves while serving a whole

network. Ideally, it is desirable that the grid can be offset and replicated k times to form

k backbones using all nodes of the WSN. Efficient algorithms are necessary to provide a

more robust scheme that devises a sleep/activity schedule by selecting a maximum collection

of disjoint backbone grids and sequentially rotates their activity (duty cycle) to ensure full

coverage and enlarge the whole network lifetime [76]. Therefore, our goal is to partition

a WSN modeled as an RGG into several disjoint virtual backbones each approximates an

MCDS (i.e., bi-regular three and four lattice grid), which can be mathematically stated as

below.

We model a WSN by an RGG G(n, r) with a node set V formed by choosing n locations

over a region in a uniform random manner, and an edge set E formed by introducing an

edge between every node pair whose Euclidian distance is less than r. Let {V1, V2, ..., Vk} be

a partition of V into disjoint sets. Each set Vi (1 ⩽ i ⩽ k− 1) induces a connected bipartite

subgraph of the RGG composed of a pair of primary and relay independent sets. Specifically,

we shall term {V1, V2, ..., Vk−1} a Bipartite Component Partition (BCP) denoted BCP (δ, ϵ)

of the G(n, r) if the union of Vi (1 ⩽ i ⩽ k − 1) comprises (1 − δ)n nodes of V and if the

induced subgraphs ⟨Vi⟩ (1 ⩽ i ⩽ k − 1) each on average dominates (1− ϵ)n nodes of V . Vk

is the residual node set not employed by the BCP. Our goal is to determine such a partition

BCP (δ, ϵ) with suitably small δ and ϵ.

Our method of backbone partitioning (i.e., BCP) utilizes graph coloring algorithms to

produce color classes each representing an independent set of nodes. Certain coloring algo-

rithms are shown to generate a collection of similar-sized disjoint and verifiably dominating

sets that have equally good performance in covering the network with minimal overlap [47];

hence these sets constitute good candidates for constructing duty-cycled virtual backbones.

To satisfy the requirements outlined in Definition 2.1, we adopt a two-phase sequential col-

oring algorithm to partition an RGG into separate backbone grids. In the first phase, we

15

utilize the smallest-last coloring algorithm [51] to select primary sets, while in the second

phase, we use a novel sequential coloring algorithm called the“relay coloring” algorithm to

choose paired relay sets. Previous research has demonstrated that the smallest-last coloring

algorithm is superior to other sequential coloring algorithms in generating partitions of in-

dependent sets that form nearly triangular lattices [47, 48]. Relay coloring algorithm is an

adaptive sequential coloring algorithm designed to provide relay sets paired with the primary

sets resulting from the smallest-last coloring algorithm. Details of engineering are given in

Section 2.4.3.

2.4. Visualized Algorithm Engineering

We characterize the backbone determination problem by specifying a Random Geomet-

ric Graph (RGG) and a desired Bipartite Component Partition (BCP) whose existence

is demonstrated by an algorithm engineering work that visualizes graph models and par-

titioning algorithms. A graphic program is created through Processing language, which

not only presents animated algorithmic procedures, but also allows us to move, rotate and

zoom in/out the 3D network models. Limited by the paper print media, we can only show

screenshots and links of pre-recorded videos here. The standalone program is archived at

http://s2.smu.edu/~zizhenc/Project. Our approach to backbone determination is di-

vided into four main procedures: (1) sensor deployment, (2) link determination, (3) backbone

partitioning, and (4) backbone refinement. Each following subsection presents one procedure

with algorithmic analysis and visualized results.

2.4.1. Sensor Deployment

Sensor deployment is modeled by placing nodes over a region, which determines two

properties of a network: geometry and sensor locations. We consider Wireless Sensor Net-

works (WSNs) on four surfaces (shown in Figure 2.6):

(a) Unit Square. A square has side length l = 1. Unit square is a fundamental geometry

that helps to describe, analyze and visualize algorithms. It’s a 2D planar surface that

16

http://s2.smu.edu/~zizhenc/Project

l

(a) Unit Square

r

(b) Unit Disk

r

(c) Unit Sphere

R

r

(d) Unit Torus

Figure 2.6: Models of Four Geometries

allows simulating WSNs on flat regions. However, there are small degree biases caused

by its four corners and boundary (also called “border effects”) [35].

(b) Unit Disk. A disk has radius R = 1. It has almost the same features as the unit square

except that it removes the four corner small degree biases.

(c) Unit Sphere. A sphere has radius R = 1. Unlike the unit square or disk, the unit

sphere is a 3D geometry that has no biases or border effects. In graph theory, it allows

an easy count of faces through the Euler characteristic χ [26]. In applications, the unit

sphere can also model a global sensor network for planetary explorations [19,59].

(d) Unit Torus. We term a torus which has major radius RM = 1 and minor radius

Rm = 1/2 as “uint torus”. It is a unique 3D geometry with numerous applications [1].

Similar to the unit sphere, it allows face counting directly by the Euler characteristic

χ and is commonly used to model WSNs to avoid border effects [55, 77].

Modeling a WSN as an RGG requires a uniform random distribution of nodes over the

surfaces, which could be tricky for different geometries. In the case of Cartesian coordinate

system, we need the x, y parametric definition of a geometry to calculate locations of nodes.

For a unit square which is parametrically defined by

x(u, v) = u

y(u, v) = v

u, v ∈ [−1

2
,
1

2
]

17

, we can use two uniform random number generators to compute u and v to generate uni-

formly distributed nodes. However, in the case of a unit disk, it is incorrect to use the

parametric definition

x(ρ, θ) = ρ · cosθ

y(ρ, θ) = ρ · sinθ
ρ ∈ [0, 1], θ ∈ [0, 2π)

to generate uniform random nodes. The area element is given by dA = 2πρdρ, which gives

a concentration of nodes in the center (as Figure 2.7(a) shows). Therefore, the correct

−1 1

−1

1

(a) Non-uniform

−1 1

−1

1

(b) Uniform

Figure 2.7: Random Nodes in Unit Disk

definition should be
x(ρ, θ) =

√
ρ · cosθ

y(ρ, θ) =
√
ρ · sinθ

ρ ∈ [0, 1], θ ∈ [0, 2π)

where the area element is dA = πdρ (as Figure 2.7(b) shows). The parametric definitions of

all four surfaces for generating uniformly distributed nodes are listed in Table 2.1 [41, 49].

The uniform random distribution of an RGG G(n, r) also helps us to determine the

radius r. For any planar surface, we prefer to specify the expected average degree deg for

18

Table 2.1: Definitions or Formulas of Geometries

Geometry Parametric Definition (Cartesian System) Surface Area r

Unit Square

{
x(u, v) = u

y(u, v) = v
u, v ∈ [−1

2
, 1
2
] 1

√
deg+1
nπ

Unit Disk

{
x(ρ, θ) =

√
ρ · cosθ

y(ρ, θ) =
√
ρ · sinθ

ρ ∈ [0, 1], θ ∈ [0, 2π) π

√
deg+1

n

Unit Sphere

x(u, θ) =

√
1− u2 · cosθ

y(u, θ) =
√
1− u2 · sinθ

z(u, θ) = u

θ ∈ [0, 2π), u ∈ [−1, 1] 4π 2

√
deg+1

n

Unit Torus

x(θ, ϕ)(1 + cosθ

2
) · cosϕ

y(θ, ϕ)(1 + cosθ
2
) · sinϕ

z(θ, ϕ) = sinθ
2

θ, ϕ ∈ [0, 2π) 2π2

√
2π(deg+1)

n

the given n nodes to determine an RGG, which provides a convenient density parity over

alternative surfaces for comparison of the number and quality of the virtual backbone grids

in the BCP. Because of the uniform random distribution, the relation between any area and

the contained node amount can be described by Equation (2.1) where n1 and n2 represent

the node amounts within the two areas S1 and S2, respectively.

S1

S2

=
n1

n2

(2.1)

πr2

S
=

deg + 1

n
⇒ r =

√
S · deg + 1

nπ
(2.2)

Therefore, for any node u in the middle area of a surface (no border effects), let the surface

area be S and the sensor transmission area be Su for the node u, Equation (2.2) can be

derived according to the illustration of Figure 2.8. When considering border effects, as

illustrated by Figure 2.9, we have the following observation.

Observation 2.1 It can be observed that the degree of boundary nodes on average is typically

around half of the average degree (deg) of an RGG, whereas corner nodes are subject to

greater border effects and thus exhibit a degree of approximately one-fourth of deg.

19

Su = πr2

S

u

ratio: S
Su

= n
nu

r

Figure 2.8: Ratio of Areas and Nodes

Su

2

u

(a) Boundary Node

r

Su

4

u

(b) Corner Node

Figure 2.9: Degree Estimation of Nodes in Border Area

20

Table 2.1 lists the formulas of surface areas and corresponding r values of all four geometries.

Figure 2.10 shows screenshots of sample RGGs of 6400 nodes on four surfaces with r values

computed to yield expected average degree 100 in each case. Video 2.1 demonstrates the

G(6400, 0.071)

Unit square

G(6400, 0.126)

Unit disk

G(6400, 0.251)

Unit sphere

G(6400, 0.315)

Unit Torus

Figure 2.10: Random Node Distribution on Four Surfaces

sensor deployment animation on the four surfaces listed in Figure 2.10.

Video 2.1: Sensor Deployment

2.4.2. Link Determination

Once sensors are deployed, we need to determine links to generate the network. As

Section 2.2.1 stated, an RGG G(n, r) that is used to model a WSN is assumed to be a

21

https://scholar.smu.edu/cgi/viewcontent.cgi?filename=0&article=1032&context=engineering_compsci_etds&type=additional
https://scholar.smu.edu/cgi/viewcontent.cgi?filename=0&article=1032&context=engineering_compsci_etds&type=additional

large sparse graph by having sufficiently small radius r. Therefore, we choose to use the

adjacency list data structure to store the RGG to save space. A trivial brute force algorithm

of establishing the adjacency information (i.e., determining links) is that every node u checks

every other node v of the remaining (n− 1) nodes and creates an edge (u, v) if the distance

d(u, v) ⩽ r, which has time complexity of O(n2). Although the brute force approach is

within polynomial time, it’s still not efficient if n is fairly large. We implemented the brute

force approach in our program as a verification reference to the other two more efficient

approaches “sweep method” and “cell method” respectively.

2.4.2.1. Sweep Method

In a 2D Cartesian coordinate system, the sweep method orders the nodes v1, v2, ... by

their x coordinates and then determines the neighbors of each node vi in this order by

checking the nodes vi+1, vi+2, ... whose x coordinates have distance from vi at most r. As

Figure 2.11(a) illustrates, a vertical strip formed by the nodes to be checked is moving along

the x-axis while running the sweep algorithm. To consider the time complexity, let’s assume

x

r

l

(a) Cartesian System

ρ

r

q

(b) Polar System

Figure 2.11: Sweep Method on 2D Coordinate Systems

the majority nodes of the RGG are in its inscribed rectangle. According to Equation (2.1),

if the rectangle has length l, then the expected number of nodes in the strip is nr
l
, which

provides a time complexity of O(n2r). Ignoring any border effects, nr2 is a constant value

(deduced from Equation (2.2)), then the sweep algorithm has time complexity of O(n
3
2).

22

The sweep method offers two advantages. Firstly, it works consistently in the same

manner for all higher dimensions (including those beyond three). Secondly, it can be used

with other coordinate systems as well. For example, in the polar coordinate system, each

point (ρ, ϕ) is determined by a distance ρ from the pole and an angle ϕ from the polar

axis. Then we can order the nodes by their ρ coordinates and determine the neighbors of

each node v in this order by checking the ring of nodes whose ρ coordinates have distance

from v at most r (illustrated in Figure 2.11(b)). To consider the time complexity, let’s

assume the majority nodes of the RGG are in its inscribed disk. If the disk has radius R

and the inner circle of the ring has radius q, then the expected number of nodes in the ring

checked by each node will be (2q+r)nr
R2 , which provides a time complexity of O(n

3
2) (ignoring

any border effects). Cylindrical coordinate system and spherical coordinate system will be

supported in a similar way (as Figure 2.12 shows) with the same time complexity∗. Tables 2.2

x

r

(a) Cartesian

z

r

(b) Cylindrical

ρ

r

(c) Spherical

Figure 2.12: Sweep Method on 3D Coordinate Systems

to 2.5 present screenshots of sweep algorithmic procedures applied on four distinct surfaces

in multiple coordinate systems.

∗Here the time complexity is calculated under the condition of having a majority of nodes in the inscribed
regular geometry of the coordinate system (rectangle for a 2D Cartesian system, disk for a polar system,
cuboid for a 3D Cartesian system, cylinder for a cylindrical system and ball for a spherical system). Other-
wise, the sweep method might actually be the brute force method (consider the nodes uniformly distributed
on a straight line along the y-axis in a Cartesian coordinate system).

†The sweep method applied to a unit sphere in a spherical coordinate system is actually the brute force
method.

23

Table 2.2: Unit Square Sweep Method

G(6400, 0.071) 25% 50% 75% 100%

Cartesian

System

Polar

System

Table 2.3: Unit Disk Sweep Method

G(6400, 0.126) 25% 50% 75% 100%

Cartesian

System

Polar

System

24

Table 2.4: Unit Sphere Sweep Method†

G(6400, 0.251) 25% 50% 75% 100%

Cartesian

System

Cylindrical

System

Table 2.5: Unit Torus Sweep Method

G(6400, 0.315) 25% 50% 75% 100%

Cartesian

System

Cylindrical

System

Spherical

System

25

2.4.2.2. Cell Method

In a 2D Cartesian coordinate system, the cell method divides the circumscribed rectangle

of the RGG shape into r by r square cells and each node is put in the appropriate cell as

in bucket sort. As Figure 2.13(a) illustrates, the neighbors of each node are determined

by checking the nodes of all cells the circle touches (the red cell and its surrounding eight

cells). According to Equation (2.1), each cell will contain nr2

S
nodes at most where S is the

r

(a) Cartesian System

r

2r

r r r

r

(b) Polar System

Figure 2.13: Cell Method on 2D Coordinate Systems

area covered by the RGG. This gives us a time complexity of O(n2r2). Ignoring any border

effects, nr2 is a constant value (deduced from Equation (2.2)), then the cell method is a

linear time (O(n)) algorithm.

The cell method is more efficient than the sweep method as it computes only a small

expected number of node-pair distances per edge determination. Besides, with a sequential

operation, each node in the red cell only needs to check the nodes in the blue and red cells to

determine its neighbors (as Figure 2.13(a) shows). Technically, cell method is also a multi-

threaded algorithm since the nodes of each cell (or each group of cells) can determine their

neighbors in a separate thread. However, it might require a customized cell division strategy

to achieve its expected linear time efficiency for each different geometry and each different

coordinate system.

Figure 2.13(b) shows a cell division strategy for the polar coordinate system. First, divide

26

the circumscribed disk of an RGG shape into multiple annuli each has width r (the center is

a circle of radius r). Second, evenly divide the disk into six fans, which in turn gives us six

even sectors per annulus. Each sector of the innermost annulus has an inner arc of width

r. This provides us initial cells of the disk (one central circle and the remaining annulus

sectors). It’s obvious that the further out an annulus is, the larger each of its sectors is. Once

an annulus sector cell is large enough (when the width of its inner arc equals 2r), we then

evenly split it into two sector cells where each has an inner arc of width slightly larger than

r (as the two red dash dotted segments illustrate). Similarly, with a sequential operation,

each node in the red cell only needs to check the nodes in the blue and red cells to determine

its neighbors.

Figure 2.14 shows cell division strategies for 3D coordinate systems where (a) and (b)

are directly extended from the strategies of 2D coordinate systems, which can be used to

determine edges of RGGs of any 3D geometries. However, only 3D solid geometries (we

(a) Cartesian (b) Cylindrical (c) Spherical

Figure 2.14: Cell Method on 3D Coordinate Systems

implemented a unit cube and a unit ball in the program for verification purpose) are opti-

mized for the two strategies. Either strategy (a) or (b) may waste a lot of space if applied to

our 3D surface geometries (i.e., the unit sphere and the unit torus) since most cells contain

few or none nodes (consider the inner volume of a unit sphere). Inspired by the division

strategy of the polar coordinate system, we use the same way to divide cells on the half

surface of a sphere in a spherical coordinate system (as Figure 2.14(c) shows), then the cell

method can sequentially run on the northern and southern hemispheres simultaneously from

27

the poles to the equator (as Figure 2.15 shows). This cell division strategy of a spherical

Figure 2.15: Unit Sphere G(6400, 0.251) Cell Method

coordinate system is customized only for any sized sphere geometry. Tables 2.6 to 2.9 present

the screenshots of cell algorithmic procedures applied on four distinct surfaces in multiple

coordinate systems. Video 2.2 showcases the link determination animation on these four

Table 2.6: Unit Square Cell Method

G(6400, 0.071) 25% 50% 75% 100%

Cartesian

System

Polar

System

distinct surfaces, where each animation compares the sweep method and cell method across

multiple coordinate systems.

2.4.3. Backbone Partitioning

We introduce an efficient (linear time) algorithm including a two-phase sequential coloring

procedure (smallest-last coloring and relay coloring) that employs only the topology (not the

geometry) of an RGG to provide a desired BCP. A sequential coloring algorithm in graph

28

Table 2.7: Unit Disk Cell Method

G(6400, 0.126) 25% 50% 75% 100%

Cartesian

System

Polar

System

Table 2.8: Unit Sphere Cell Method

G(6400, 0.251) 25% 50% 75% 100%

Cartesian

System

Cylindrical

System

Spherical

System

29

Table 2.9: Unit Torus Cell Method

G(6400, 0.315) 25% 50% 75% 100%

Cartesian

System

Cylindrical

System

Video 2.2: Link Determination

30

https://scholar.smu.edu/cgi/viewcontent.cgi?filename=1&article=1032&context=engineering_compsci_etds&type=additional
https://scholar.smu.edu/cgi/viewcontent.cgi?filename=1&article=1032&context=engineering_compsci_etds&type=additional

theory is an algorithm that operates in the following two stages:

• Determine a sequence of the nodes of the graph;

• Color the graph according to the sequence in a greedy manner.

The process of coloring a graph involves the assignment of colors to its nodes in a way

that ensures adjacent nodes are assigned distinct color values. Here the greedy manner

is characterized by assigning the smallest color value to a given node that hasn’t been

assigned to its neighbors. The smallest-last coloring algorithm provides candidates of primary

independent sets, while the relay coloring algorithm provides the paired relay independent

sets for the selected primary sets. In the following Section 2.4.4, we will use an RGG

G(10000, 0.057) of unit square surface as a sample to describe the VAE in details. Tables

and videos of related results on all surfaces will also be presented.

2.4.3.1. Smallest-last Coloring

The ”smallest-last coloring” algorithm employs a greedy approach to color a graph. It

utilizes a sequence generated by the“smallest-last ordering” algorithm, which sequentially

removes one node with the minimum degree from the remaining graph and then places it at

the beginning of the sequence. This removing process continues until the graph is empty, as

depicted in Figure 2.16. Algorithm 1 is a pseudocode that contains two while loops where the

A B

C D

E

3○

1○2○

D A B C E D A B

Figure 2.16: Smallest-last Ordering

first loop is the smallest-last ordering procedure and the second loop is the greedy-coloring

procedure.

31

Algorithm 1 Smallest-last Coloring

1: function SLColor(Graph G)
2: S ← new List;
3: T ← new Stack;
4: D ← new Degree-List(G);
5: while D ̸= ∅ do
6: Remove a smallest degree node u from D;
7: Update all neighbors of u in D;
8: T .push(u);

9: while T ̸= ∅ do
10: u← T .pop();
11: Greedy-color u;
12: S ← S + u;

13: return S;

A data structure that maps degree values to lists of nodes (illustrated by Figure 2.17)

termed “degree list” is introduced to achieve linear time efficiency of the smallest-last order-

ing algorithm. The degree list can be created on the fly as the adjacency information of an

Degree 0

Degree 1

... · · ·

Degree max

v1, v2, ..., vn0

u1, u2, ..., un1

w1, w2, ..., wnmax

Figure 2.17: Degree List

RGG is being created, which helps to retrieve a minimum-degree node of the graph instantly

(in O(1) time). Once a minimum-degree node is being removed, each node of its neighbors’

needs to update the position in the degree list (jumps from the current degree list to the

next lower degree list). There are two approaches to achieve a linear time implementation

of the updating process. One option is to construct the degree list through a hash map data

structure. It’s worth noting, however, that hash maps may experience reduced performance

in the presence of hash value collisions. The other option is to create a degree list by using

an array of doubly linked lists, where the index of the array indicates the degree value of

32

each list. Each element (i.e., node) in a doubly linked list contains pointers (or references

in languages like Java) to its previous and next nodes, making it possible to remove a given

node from its list and append the node to another list in constant time (O(1)). We imple-

mented the second approach in our program, and Figure 2.18 illustrates the smallest-last

ordering procedure of the sample RGG. This suggests that the ordering procedure typically

Figure 2.18: Smallest-last Ordering‡

starts at the surface boundary, gradually reducing its size until it disappears. The rationale

behind this is evident — nodes on the boundary are more likely to have smaller degrees.

Table 2.10 presents screenshots of the smallest-last ordering on four distinct surfaces.

Figure 2.19 displays several node-degree plots of the ordering procedure. The blue plot

illustrates the original degree of each node, while the green plot displays the average original

degree of all preceding nodes. The red plot represents the average degree of the remaining

graph when removing each node, and the purple plot shows the degree of each node upon

removal. The plots present that a sequence of nodes with a fairly stable number of neigh-

bors will be provided by the smallest-last ordering algorithm, which yields a large complete

subgraph (termed “terminal clique”) generally close or equal to the chromatic number [51].

Comparing the red and purple plots, the degree of each removed node is approximately

half of the average degree of the remaining graph. This observation aligns with the fact

illustrated by Figure 2.18, which shows that the graph shrinks from its boundary. Observa-

tion 2.1 further supports this finding, indicating that the degree of boundary nodes is about

half of the average degree. The degree of each node upon removal during this procedure

‡The edges of the RGG are not displayed here for cleaner presentation. Nodes with the maximum and
minimum degree are highlighted using red and green links, respectively.

33

Table 2.10: Smallest-last Ordering

Geometry 25% 50% 75% 100%

Unit Square

G(104, 0.057)

Unit Disk

G(104, 0.101)

Unit Sphere

G(104, 0.201)

Unit Torus

G(104, 0.252)

original degree

average original degree

average degree when deleted

degree when deleted

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
0

10

20

30

40

50

60

70

80

90

100

110

120

130

Node

D
eg
re
e

Figure 2.19: Node-degree Plots of Smallest-last Ordering

34

is less than or equal to the maximum value k of the purple plot, which computes a k-core

or k-degenerate graph [5, 44]. Therefore, we would love to term the smallest-last ordering

procedure as “Graph Degeneracy” procedure, as it reflects the “removing” feature of the

process. The graph degeneracy procedure will always end into a terminal clique where the

order (number of nodes) of the clique is indicated by the final (most left) heap value of the

purple plot. Video 2.3 demonstrates the animation of this degeneracy procedure on the four

different surfaces listed in Table 2.10, which also shows the node-degree plots for all the

surfaces.

Video 2.3: RGG Degeneracy

After the nodes have been ordered, the coloring procedure starts from the resulting

sequence v1, v2, ..., vn (provided by the stack in Algorithm 1), to color vi in a greedy manner.

When assigning a possible smallest color to vi by traversing its neighbors, only the neighbor

nodes preceding vi in the smallest-last order (i.e., any neighbor vk where k < i) need to be

checked. This means, only the remaining neighbors of vi require checking to assign a possible

smallest color value to vi in the degeneracy process. This corresponds to the “degree when

deleted” plot, which is the purple plot shown in Figure 2.19. In the most extreme scenario,

when all neighbors of the node “when deleted” with degree k are assigned distinct colors,

35

https://scholar.smu.edu/cgi/viewcontent.cgi?filename=2&article=1032&context=engineering_compsci_etds&type=additional
https://scholar.smu.edu/cgi/viewcontent.cgi?filename=2&article=1032&context=engineering_compsci_etds&type=additional

the number of colors used would be k + 1. Hence, the maximum value k of the purple

plot indicates the possible maximum number of colors that could be used in the smallest-

last coloring algorithm. Conceptually, the k-degenerate graph is equivalent to the coloring

number k of the graph [24,44]. Obviously the time complexity is O(|V |+|E|) where V is the

node set and E is the edge set of the graph. Figure 2.20 shows the coloring procedure of our

sample RGG and it is structurally a reverse procedure compared to Figure 2.18. Table 2.11

Figure 2.20: Smallest-last Coloring†

presents screenshots to compare the smallest-last coloring applied on four distinct surfaces.

Smallest-last coloring compares favorably to several other sequential methods (i.e., largest-

first ordering, lexicographic ordering and random ordering) in providing compact packed

independent sets of similar size and structure for over half amount of the total nodes [47,53].

Figure 2.21 shows a color-size plot that presents the number of nodes of each color set re-

sulting from the greedy coloring of our sample RGG. Each of the initial several color sets

(Color #0 ∽ #18) has roughly the same amount (around 261) of nodes and the number of

nodes in these sets occupies about half amount of the nodes (49.66%) of the RGG. The size

of each remaining color sets (i.e., Color #19 ∽ #51) starts decreasing. Furthermore, we find

out that most nodes in each initial color set are close-packed in a locally triangular lattice

and that satisfies our desired characteristics for primary sets. To prove this, Definition 2.2

is introduced for us to quantify triangular lattice.

Definition 2.2 For a planar graph drawn without edges crossing, the degree of a face is

the number of edges bordering the face.

We can apply Gabriel rules to each color set, which constructs Gabriel graphs. In graph

36

Table 2.11: Smallest-last Coloring Procedure

Geometry 25% 50% 75% 100%

Unit Square

G(104, 0.057)

Unit Disk

G(104, 0.101)

Unit Sphere

G(104, 0.201)

Unit Torus

G(104, 0.252)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
0

20

40

60

80

100

120

140

160

180

200

220

240

260

Color #

C
o
lo
r
S
iz
e

49.66%

Figure 2.21: Color Size Plot of Smallest-last Coloring

37

theory, Gabriel graph is a spanning subgraph of the Delaunay triangulation [54], so if most

nodes are packed in triangular lattice, then most faces of the Gabriel graph should have

degree three. Figure 2.22 shows the Gabriel graphs with the percentage of degree-three faces

|f(3)| generated from the evenly selected four sample initial color sets resulting from our

sample RGG. Video 2.4 demonstrates the smallest-last coloring animation with resulting

Color #0

|f(3)|: 92.45%

Color #6

|f(3)|: 92.54%

Color #12

|f(3)|: 91.09%

Color #18

|f(3)|: 91.65%

Figure 2.22: Degree-3 Faces of Selected Primary Color Sets with Gabriel Rules

color sets and color-size plots on the four different surfaces listed in Table 2.11. The initial

two color sets of each surface will be applied Gabriel rules to demonstrate the density of

triangular faces in this animation.

With these observations, we have the following definition of the primary independent

sets.

Definition 2.3 The primary sets of a WSN modeled as an RGG are the initial k color

sets resulting from the smallest-last coloring procedure that covers around half amount of

total nodes in the network.

If we randomly select the remaining color sets (e.g., Color #19 ∽ #51 in Figure 2.21) as

paired relay independent sets, then the results are unpredictable. Figure 2.23 shows the

bipartite subgraphs of four sample remaining color sets paired with Color #0 set where (a)

and (b) have few disconnected components but (c) and (d) are distorted in pieces. Besides,

the number of degree-three faces of each remaining color set will decrease as illustrated by

Figure 2.24, since the smaller the color size is, the looser-packed nodes the color set contains.

38

Video 2.4: Smallest-last Coloring

(a) #0 and #20 (b) #0 and #22 (c) #0 and #38 (d) #0 and #40

Figure 2.23: Random-paired Selected Bipartite Subgraphs

39

https://scholar.smu.edu/cgi/viewcontent.cgi?filename=3&article=1032&context=engineering_compsci_etds&type=additional
https://scholar.smu.edu/cgi/viewcontent.cgi?filename=3&article=1032&context=engineering_compsci_etds&type=additional

Therefore, the last several color sets are not close-packed in triangular lattice, which does

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
0

10

20

30

40

50

60

70

80

90

100

Color #

D
eg

re
e-
3
F
a
ce
s
%

Figure 2.24: Degree-3 Faces Percentage Plot§

not meet our expectation. This motivates us to reorganize the nodes of the remaining color

sets (termed “relay candidates”).

2.4.3.2. Relay Coloring

The relay coloring procedure uses the idea of sequential coloring algorithm to recolor

(i.e., reorganize) the relay candidates. Each neighbor of a relay candidate must belong to

one of the color sets resulting from the smallest-last coloring procedure. To describe clearly,

we separate the neighbors of a relay candidate into two groups: the neighbors that belong

to primary color sets are called “relay neighbors”; the other neighbors are called “non-relay

neighbors”. The relay candidates must be selected and ordered according to the amount of

their relay neighbors to maximize the adjacency with the nodes of primary color sets. Similar

to the degree list illustrated by Figure 2.17, we created a data structure termed “relay degree

list” that maps “relay degree” values to lists of nodes (illustrated by Figure 2.25).

§The percentage of degree-3 faces of the last four color sets oscillate dramatically since each of them has
so few nodes that the total amount of faces is really small.

40

Relay Degree 2

Relay Degree 3

Relay Degree 4

Relay Degree 5

a1, a2, ..., an2

b1, b2, ..., bn3

c1, c2, ..., cn4

d1, d2, ..., dn5

Figure 2.25: Relay Degree List

Definition 2.4 The relay degree of a relay candidate is the maximum number of its relay

neighbors that belong to a common primary color set.

With simple geometric arguments, the number of neighbors with the same color can only be

at most five in the plane (illustrated by Figure 2.26(a)). If there were six neighbors in the

r

> r

(a) Five One-color Neighbors

r

r

(b) Six One-color Neighbors

Figure 2.26: Maximum One-color Neighbors

plane with the same color, a hexagon would be formed which contradicts the independency

of the color set (as Figure 2.26(b) shows). Note that each node of a relay set should connect

to at least two nodes of the paired primary set to relay information, so the relay degree list

starts from degree 2 to 5. In order to initialize the list, each relay candidate has a data

structure termed “color degree list” that maps color degree values to lists of primary colors

(illustrated by Figure 2.27).

Definition 2.5 The color degree of a primary color for a relay candidate is the number

of the relay neighbors of the candidate node that belong to this primary color set.

The color degree list can be fulfilled by traversing the relay neighbors v1, v2, ..., vn and putting

their corresponding primary colors P1, P2, ..., Pn (where vi belongs to Pi set) in proper list

41

Color Degree 1

Color Degree 2

Color Degree 3

Color Degree 4

Color Degree 5

Px1 , Px2 , ..., Pxn1

Pa1 , Pa2 , ..., Pan2

Pb1 , Pb2 , ..., Pbn3

Pc1 , Pc2 , ..., Pcn4

Pd1 , Pd2 , ..., Pdn5

Figure 2.27: Color Degree List

as in bucket sort. In detail, when vi is traversed, if Pi is not already in the list, it should be

appened to the color degree 1 list. If Pi is already in a list, its position in the list should be

updated (jumps from its current color degree list to the next higher degree list). Based on

Definition 2.4, the relay degree of a relay candidate is determined by the largest degree value

in its color degree list that corresponds to a non-empty color list. In other words, the relay

degree of the relay candidate represents the primary colors with the maximum color degree

for the node. Thus, the relay degree list can be fulfilled by computing the relay degree of

each relay candidate. Drawing from our experience in constructing the degree list for the

smallest-last ordering algorithm, we can use either an array of doubly linked lists or a hash

map to construct both the relay degree list and the color degree list. This enables us to

achieve a time complexity of only O(1) for updating the two lists.

The greedy coloring procedure is based on a dynamic sequence resulting from the relay

degree list. For the preparation, a list of relay colors C1, C2, ..., Cn is generated by traversing

the selected primary colors P1, P2, ..., Pn where Ci is paired with Pi
¶. The coloring is an

iterative trial process illustrated by the while loop in the pseudocode of Algorithm 2. Each

iteration removes a primary color P from the corresponding color list of the node u that

has maximum relay degree, and tries to greedy-color u with the relay color C that is paired

with P . If the trial process failed, then the relay degree of u would be updated (i.e., its

position in the relay degree list might be changed) because of the removal of P . There are

¶In our program, each relay color value Ci is calculated by adding a fixed offset k to the paired primary
color value Pi where k is the number of color sets resulting from the smallest-last coloring algorithm.

42

Algorithm 2 Relay Coloring

1: function RLColor(Candidate Set VR, Primary Set P ∗)
2: S ← new List;
3: D ← new Relay-Degree-List(VR, P

∗);
4: Prepare a list of relay colors C∗ paired with P ∗;
5: while D ̸= ∅ do ▷ trial process of greedy-color u
6: Remove a largest relay degree node u from D;
7: Pick a relay color C from C∗ specified by u;
8: if C was assigned to any non-relay neighbors then
9: Update the relay degree of u;
10: if the relay degree of u ⩾ 2 then
11: Put u back to D;

12: else
13: Assign C to u;
14: S ← S + u;

15: return S;

two situations that would cause the complete removal of u from the relay degree list:

• the updated relay degree is less than 2;

• u has been successfully greedy-colored.

Once the relay degree list becomes empty, the greedy coloring procedure ends. In conclu-

sion, both the initialization of the relay degree list and the greedy coloring procedure have

time complexity of O(|VR|+|EG−R|) where VR represents the relay candidate set and EG−R

represents the set of edges between the relay candidates and the nodes of primary color sets.

Figure 2.28 shows the relay coloring procedure of our sample RGG. Table 2.12 presents

Figure 2.28: Relay Coloring Procedure†

screenshots to compare the relay coloring procedure applied on four distinct surfaces. Fig-

43

Table 2.12: Relay Coloring

Geometry 25% 50% 75% 100%

Unit Square

G(104, 0.057)

Unit Disk

G(104, 0.101)

Unit Sphere

G(104, 0.201)

Unit Torus

G(104, 0.252)

44

ure 2.29 shows the color-size plot resulting from the relay coloring procedure. The relay

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
0

20

40

60

80

100

120

140

160

180

200

220

240

260

Color #

C
ol
or

S
iz
e

primary colors

relay candidates

relay colors

52 55 58 61 64 67 70

Figure 2.29: Color Size Plot of Relay Coloring

colors (i.e., red plot) are one-to-one correspondent to the primary colors (i.e., blue plot) with

a similar size gap. Figure 2.30 shows Gabriel graphs and the percentage of degree-three faces

|f(3)| from evenly selected four sample relay color sets of our sample RGG. Most nodes of

Color #52

|f(3)|: 78.08%

Color #58

|f(3)|: 81.89%

Color #64

|f(3)|: 80.82%

Color #70

|f(3)|: 78.8%

Figure 2.30: Degree-3 Faces of Selected Relay Color Sets with Gabriel Rules

relay color sets are still close-packed in triangular lattice.

Note that not all relay candidates were colored in the relay coloring procedure. The set

of nodes who failed the greedy-coloring trial process are termed “surplus”, and Definition 2.6

45

provides a more general-purpose definition.

Definition 2.6 Surplus is the set of nodes that are not used by any resulting backbones.

There are 1544 (15.44%) surplus nodes after the relay coloring procedure of our sample RGG.

Now the RGG has been divided into three groups of nodes by the smallest-last coloring

and relay coloring procedures as shown by Figure 2.31. Table 2.13 presents screenshots to

Primary Nodes Relay Nodes Surplus Nodes

Figure 2.31: Nodes after Smallest-last and Relay Coloring

compare the resulting groups of nodes after the two-phase coloring algorithm applied on the

four distinct surfaces. Video 2.5 demonstrates the relay coloring animation with resulting

color sets and surplus nodes for these four surfaces. The initial two resulting relay color

sets of each surface will also be applied Gabriel rules to show the density of triangular faces.

The video also shows the color-size plots after relay coloring for all surfaces. Figure 2.32

presents the plots of the percentage of the degree-3 faces for both primary and relay color sets

resulting from the two-phase coloring algorithm applied on our sample RGG. All primary

sets have around 90% of faces which have degree 3, while all relay sets have around 80%

of faces which have degree 3. Therefore, as we sought for, the resulting paired primary

and relay set forms a subgraph that approximates the bi-regular three and four lattice grid.

Figure 2.33 shows the evenly selected four bipartite subgraphs from the sample RGG.

2.4.4. Backbone Refinement

46

Table 2.13: Nodes after Smallest-last and Relay Coloring

Geometry Primary Nodes Relay Nodes Surplus Nodes

Unit Square

G(104, 0.057)

Unit Disk

G(104, 0.101)

Unit Sphere

G(104, 0.201)

Unit Torus

G(104, 0.252)

47

Video 2.5: Relay Coloring

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
50

55

60

65

70

75

80

85

90

95

100

Color #

D
eg
re
e-
3
F
ac
es

%

primary sets

relay sets

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

Figure 2.32: Degree-3 Face Percentage of Primary and Relay Color Sets

48

https://scholar.smu.edu/cgi/viewcontent.cgi?filename=4&article=1032&context=engineering_compsci_etds&type=additional
https://scholar.smu.edu/cgi/viewcontent.cgi?filename=4&article=1032&context=engineering_compsci_etds&type=additional

(a) #0 and #52 (b) #6 and #58 (c) #12 and #64 (d) #18 and #70

Figure 2.33: Sample Paired Bipartite Subgraphs

By far the bipartite subgraphs given by the paired primary and relay sets resulting from

the two-phase coloring algorithm are still not fully qualified as virtual backbones, since some

of them might not be fully connected. Figure 2.33 (d) shows such an example, which has

five singletons (isolated nodes) and a component. Connected components can be easily

determined by Depth First Search (DFS) algorithm in linear time and it is preferred to keep

the largest component (termed “giant component”) as the virtual backbone by removing all

other smaller components (termed “minor components”). Therefore, we have the following

definition of virtual backbones resulting from our partitioning algorithms applied on an RGG.

Definition 2.7 For a WSN modeled as an RGG, the virtual backbones are the collection

of giant components of the bipartite subgraphs each is composed of a paired primary and relay

set resulting from the two-phase sequential coloring algorithm.

Among the 19 paired primary and relay sets given by the coloring algorithm of our sample

RGG, only three bipartite subgraphs have minor components (circled out in Figure 2.34).

According to Definition 2.6, the nodes of these minor components to be removed also belong

to the surplus set, so our sample RGG finally generates 1552 surplus nodes. In other words,

84.48% of the nodes belonging to the WSN have been used in this BCP while the remaining

15.52% do not participate in the routing or other in-network services (they only collect data

of the region as slave nodes). Table 2.14 presents screenshots to compare evenly selected

sample backbones for the four surfaces.

49

Table 2.14: Evenly Selected Sample Backbones

Backbone 1 2 3 4

Domination 100% 100% 100% 99.93%

Unit Square

G(104, 0.057)

3-coverage 95.10% 96.93% 96.65% 94.96%

Domination 100% 100% 99.99% 99.87%

Unit Disk

G(104, 0.101)

3-coverage 96.40% 97.23% 96.52% 93.83%

Domination 100% 99.99% 99.99% 100%

Unit Sphere

G(104, 0.201)

3-coverage 99.15% 98.04% 98.48% 97.78%

Domination 99.94% 99.99% 99.58% 92.17%

Unit Torus

G(104, 0.252)

3-coverage 97.27% 96.59% 94.09% 78.77%

50

#15 and #67 #17 and #69 #18 and #70

Figure 2.34: Sample Bipartites with Minor Components

2.4.4.1. Performance Metrics

We mainly consider two topological performance metrics for each virtual backbone: dom-

ination and k-coverage. Domination refers to how many nodes of the RGG are covered by

the backbone, while k-coverage means that the nodes of the RGG are covered by at least how

many (k) backbone nodes. Specifically, for the k-coverage metric, we care more about how

many nodes are covered by at least three backbone nodes (k = 3) for better localization and

synchronization [31, 60]. Therefore, both metrics can be represented by the percentage of

nodes that meet the desired property. Particularly, according to Definition 2.1, in the case

of cluster-based control structure, the nodes of the primary set are used as cluster-heads

and the nodes of the relay set are used as routing relays. In this sense, the domination

of a backbone is the domination of the primary set, so besides the domination of a whole

backbone network (Backbone Domination), we also measure the domination of its primary

set (Primary Domination). Table 2.15 shows these performance metrics in percentage for all

the 19 backbones (giant components) of our sample RGG.

2.4.4.2. Robustness of Backbones

A virtual backbone needs to be a connected network in order to successfully forward

data. Although the backbone defined by the giant component in Definition 2.7 is indeed a

connected subgraph, some concerns for the robustness may arise since sensors could fail at

51

Table 2.15: Domination and 3-coverage Percentage

Backbone Primary Domination Backbone Domination 3-Coverage

Color #15 & #67 99.95% 99.96% 95.29%

Color #17 & #69 99.51% 99.53% 93.75%

Color #18 & #70 99.43% 99.57% 91.44%

Color #11 & #63 99.98% 100% 95.58%

Color #1 & #53 100% 100% 97.20%

Color #0 & #52 100% 100% 97.35%

Color #7 & #59 99.99% 99.99% 95.24%

Color #5 & #57 100% 100% 97.14%

Color #3 & #55 99.99% 100% 97.03%

Color #10 & #62 99.95% 100% 95.90%

Color #9 & #61 99.95% 99.98% 95.99%

Color #6 & #58 99.99% 100% 96.38%

Color #14 & #66 99.97% 99.99% 94.34%

Color #4 & #56 100% 100% 96.77%

Color #8 & #60 100% 100% 96.39%

Color #2 & #54 100% 100% 96.89%

Color #13 & #65 99.98% 100% 95.13%

Color #12 & #64 99.94% 100% 94.83%

Color #16 & #68 99.97% 99.98% 94.19%

52

random times in an unattended network. Topologically, two structures (tail and cut-node)

are not preferred in a virtual backbone requiring strong fault tolerance.

• A tail is a visual structure concept, which is the tree structure part of a connected

graph. From the algorithmic point of view, tails can be obtained by continuously

removing a degree-one node from the remaining graph until all remaining nodes have

degrees larger than or equal to two. The removed nodes are the tails of the graph and

we term the remaining graph (with no tails) as “two-core”. Tail structures will lower

the reliability of a backbone network since any node failures of a tail will disconnect

the backbone. Algorithm 3 will remove tails from a graph in linear time O(|V |+|E|)

(where V is the node set and E is the edge set) by using the degree list data structure

(shown in Figure 2.17) mentioned in the smallest-last ordering algorithm.

Algorithm 3 Removing Tails from Graph

1: function two-core(Graph G)
2: Initialize a degree list D from G;
3: while degree-1 list D1 ̸= ∅ do
4: Remove a node u from D1;
5: Update all neighbors of u in D;

6: return D; ▷ D contains nodes other than trails

• In graph theory, a cut-node refers to any node that, upon its removal, leads to an

increase in the number of connected components within the graph. By this definition,

every node of a tail can be considered a cut-node. However, even if all tails were

removed from a graph, there might still exist cut-nodes (e.g., the end nodes of a

bridge). A maximal subgraph with no cut-node is called a “block” of the graph. To

make a backbone network more robust, we can keep the largest block (termed “giant

block”) by removing all other smaller blocks (termed “minor blocks”). A linear time

algorithm based on DFS to determine blocks (nonseparable components) of a graph is

provided in [27]. The algorithm relies on the order of each node in the DFS traversal

of a graph. Each node u introduces a new property termed “lowpoint” which is the

smallest order of a node v that can be reached from u by a directed path with no cycle,

53

followed by at most one back edge. It is proved that if u.order > 1 and v.lowpoint

⩾ u.order, then u is a cut-node. Algorithm 4 is a pseudo-code of determining the giant

block of a graph that has time complexity O(|E|) where E is the edge set of the graph.

Table 2.16 shows the three types (giant component, two-core and giant block) of the

backbones from the samples in Figure 2.34.

Table 2.16: Sample Backbones of Different Robustness

Backbone Giant Component Two-core Giant Block

Color

Pair

#15

#67

Color

Pair

#17

#69

Color

Pair

#18

#70

The levels of robustness provided by the three types of backbone (giant component⩽two-

core⩽giant block) is obtained by removing nodes of unreliable structure. So the more robust a

virtual backbone is, the lower coverage metrics it would have. The removal of unreliable nodes

also increases the amount of surplus nodes. The surplus nodes of the three backbone types

54

Algorithm 4 Determine Giant Block from Graph

1: i← 0; ▷ global order counter
2: T ← new Stack;

3: function Giant-Block(Graph G)
4: B ← ∅; ▷ store giant block
5: s← a start node of G;
6: for each Node u and Edge e of G do
7: u.order ← 0;
8: e.mark ← false; ▷ mark as not traversed

9: DFS(B, s, null); ▷ the predecessor of s is null
10: return B;

11: procedure DFS(Block B, Node u, Node p)
12: if u.order=0 then
13: i← i+ 1;
14: u.lowpoint ← u.order ← i;
15: T .push(u);
16: while Edge e(u, v).mark = false do
17: e.mark ← true; ▷ mark as traversed
18: if v ̸= p then
19: DFS(B, v, u);

20: if p ̸= null then
21: if u.lowpoint < p.order then
22: p.lowpoint ← min(p.lowpoint, u.lowpoint);
23: else
24: C ← new List; ▷ store a determined block
25: repeat
26: v ← T .pop();
27: C.add(v);
28: until v ̸= u
29: C.add(p); ▷ new determined block C
30: if C.size() > B.size() then
31: B ← C;

32: else
33: p.lowpoint ← min(p.lowpoint, u.order);

55

from our sample RGG are: 1552 (15.52%), 2103 (21.03%) and 2779 (27.79%) respectively.

Therefore, it is preferred to adjust the robustness of backbones according to the application

requirements of the WSN. Figure 2.35 shows the domination metrics of different type of

backbones of samples in Figure 2.34. Finally, Video 2.6 shows all the resulting bipartite

subgraphs of the four surfaces listed in Table 2.14. It demonstrates the three types (giant

Video 2.6: Backbone Refinement

component, two-core and giant block) of virtual backbones for each surface.

2.4.4.3. Other Adjustments

Number of Backbones According to Definition 2.3 and 2.7, the number of virtual back-

bones resulting from the two-phase sequential coloring algorithm is adjustable by the number

k of selected primary sets. The number of generated virtual backbones typically equals to

k, but if k is too large, there will not be enough relay candidates to form paired relay sets.

Figure 2.36 shows the number of backbones of k selected primary sets of our sample RGG.

Ideally, we expect the size s of surplus set to be as small as possible, in other words, nearly

‖The program running results may be slightly different each time caused by randomness.

56

https://scholar.smu.edu/cgi/viewcontent.cgi?filename=5&article=1032&context=engineering_compsci_etds&type=additional
https://scholar.smu.edu/cgi/viewcontent.cgi?filename=5&article=1032&context=engineering_compsci_etds&type=additional

72 76 80 84 88 92 96 100

Component

Two-core

Block

Performance (%)

Color #15 and #67

Domination of Giant Component

Domination of Two-core

Domination of Giant Block

72 76 80 84 88 92 96 100

Component

Two-core

Block

Performance (%)

Color #17 and #69

Domination of Giant Component

Domination of Two-core

Domination of Giant Block

72 76 80 84 88 92 96 100

Component

Two-core

Block

Performance (%)

Color #18 and #70

Domination of Giant Component

Domination of Two-core

Domination of Giant Block

Figure 2.35: Domination and 3-coverage of Sample Backbones of Different Types

57

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

Number of Selected Colors

V
ir
tu
al

B
a
ck
b
o
n
es

Figure 2.36: Number of Backbones of k Selected Primary Sets‖

all nodes of an RGG can be used in the BCP. Excluding the extreme cases (i.e., k ≈ 0 or

k ≈ all colors), s will reach the lowest value when k color sets contain around half amount

of the total number of nodes of the given RGG. Figure 2.37 are plots showing the quantity

of primary nodes and surplus nodes generated by selecting k primary colors of our sample

RGG. k = 22 (which contains 57.42% amount of nodes) provides the smallest surplus set

with 7.83% amount of nodes of the network (all backbones are giant components). Compared

with the surplus generated by selecting 19 primary sets (which contains 15.52% amount of

nodes), the size of surplus set drops by around 50%. However, if k keeps getting larger,

the overall quality of generated backbones will become worse. Figure 2.38 shows plots of

the average and minimum performance metrics of generated virtual backbones by selecting

k primary color sets and k = 22 has “not so excellent” minimum 3-coverage performance

(79.66%).

Connectivity The connectivity between primary and relay set can be adjusted by the

lowest relay degree value when performing the relay coloring procedure (illustrated by the

relay degree list in Figure 2.25). The former calculations use 2 as the lowest relay degree value

58

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Number of Selected Colors

N
o
d
e
A
m
ou

n
t
%

primary nodes

surplus nodes

Figure 2.37: Surplus Nodes vs. Selected Primary Nodes

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Number of Selected Colors

P
er
fo
rm

a
n
ce

%

average domination

average 3-coverage

minimum domination

minimum 3-coverage

Figure 2.38: Performance of k Selected Primary Colors

59

since each node of a relay set needs to connect to at least two nodes of the paired primary set

to relay information. If any application requires a stronger connectivity, the lowest degree

value of the relay degree list can be increased to fulfill the requirement. However, stronger

connectivity may lower the overall performance of generated backbones and also increase the

amount of surplus nodes. By selecting 19 primary color sets of our sample RGG, Figures 2.39

and 2.40 show the performance metrics and surplus nodes based on different connectivities.

2 3 4 5

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Connectivity

P
er
fo
rm

an
ce

%

average domination

average 3-coverage

minimum domination

minimum 3-coverage

Figure 2.39: Performances of Different Connectivities

It’s obvious that connectivity 5 generates less backbones of really low performance and large

size of surplus set since the maximum possible relay degree is 5 on planar surface according to

the geometric arguments (illustrated by Figure 2.26). Figure 2.41 shows sample backbones

of different connectivities.

2.5. Conclusion

A backbone formation method of partitioning a Wireless Sensor Network (WSN) modeled

as a Random Geometric Graph (RGG) based on a two-phase sequential coloring algorithm

is proposed. The concept of partitioning a WSN into a collection of disjoint backbone grids

60

1 2 3 4 5 6

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Connectivity

S
u
rp
lu
s
N
o
d
e
A
m
ou

n
t
%

19 backbones 19 backbones 19 backbones 11 backbones

Number of Generated Backbones

Figure 2.40: Surplus Nodes of Different Connectivities

Connectivity 2 Connectivity 3 Connectivity 4 Connectivity 5

Figure 2.41: Sample Backbones of Different Connectivities

61

(instead of forming a single optimal backbone) is termed Bipartite Component Partition

(BCP) whose activity can be duty-cycled/rotated/scheduled to offer better fault-tolerance,

load-balancing, and scalability. Each backbone grid is composed of a primary independent

set and a paired relay independent set to transfer collected information from sensors to sink

nodes through a cluster-based structure of the WSN. BCP also prolongs the network lifetime

and raises the possibility of catering to several quality of service requirements.

2.5.1. Contributions of Visualized Algorithm Engineering (VAE)

Visualization plays a critical role in this research which assisted us in finding patterns

of network topologies and hence inspired the new algorithm. A 3D program was built to

implement the algorithmic procedures via a programming language “Processing” that is

popular in visual arts area [62]. This chapter only presents four geometries (unit square,

unit disk, unit sphere and unit torus) as models of WSN. Other geometries such as unit

triangle and Klein bottle were also implemented (as Figure 2.42 shows), which not only

emphasizes that our algorithms are topology-based, but also demonstrates the designing

power of our 3D program. In order to implement the visualized algorithm engineering work,

Unit Triangle Klein Bottle

Figure 2.42: Sample Backbones of Other Geometries

62

two efficient algorithms (sweep method and cell method) for constructing large sparse RGGs

are introduced as byproducts of our research. The visual display of our two-phase coloring

algorithm for backbone determination is proposed as a valuable teaching tool for devising

further backbone algorithms. The full extent of the visual effects produced by our program

cannot be conveyed through this two-dimensional paper print medium, and the pre-recorded

videos can only demonstrate a portion of the effects as they are constrained by the limitations

of their format.

2.5.2. Evaluation and Future Works

Generally, the formation techniques of WSNs are classified into distributed networks and

centralized networks. In the former technique, nodes are autonomous and the communication

is only between neighboring nodes while, for the latter, the network formation is controlled by

a single device. The backbone determination method discussed in this paper is based on the

WSNs of cluster-control structure which belongs to the distributed formation techniques [13].

The main characteristics of distributed networks include the following:

(a) There are autonomous devices.

(b) Each node shares information with its neighborhood.

(c) It is suitable for distributed applications (multi-agent systems, self-organized systems,

etc.)

(d) The information is mainly forwarded to a single node.

(e) Interconnection devices (routers, bridges, etc.) are not required.

(f) Their flexibility allows targeting harsh environments.

Apart from the formation of the WSN, our backbone determination algorithms are all dis-

tributed non-localized algorithms. A distributed algorithm is called “localized” if each node

decides on its own behavior based on only the information from nodes within a limited hop

63

distance. In contrast, a distributed non-localized algorithm requires nodes to acquire global

knowledge of the network to perform correct operations [15]. Therefore, even though the

WSN itself is a distributed network, global adjacency information of all nodes is still required

to establish degree list and relay degree list for performing the smallest-last coloring and re-

lay coloring procedures to determine the BCP. If a pure autonomous distributed setting

is required, the two-phase sequential coloring algorithms need to be replaced by two-phase

localized, geometry-oblivious coloring algorithms (such as [6]), but the backbone formation

method of selecting primary sets and paired relay sets is still the same.

Although our backbone determination algorithm requires a station tower or a Global

Positioning System (GPS) to acquire global knowledge (adjacency information) of all sensor

nodes, it has the following advantages:

• Efficiency — All procedures (including the construction of an RGG to model a WSN)

have linear time efficiency.

• Robustness — Multi-partitioning method of generating a collection of backbone grids

not only prolongs the network longevity, but also enhances the robustness (any single

backbone failed, there are other backbones available in the collection). Besides, we an-

alyzed and provided several ways of adjusting the robustness to fit different application

requirements.

• Topology-base — Topology-based algorithms allow us to apply the backbone deter-

mination procedure to regions of different geometries (demonstrated by our own visual

program). Adjacency information of each node is the only required information to

perform the algorithms.

• Performance — Topologically, random deployment has a low transfer delay [58], and

our bi-regular three and four lattice structure has been shown to have great k-coverage

performance. Smallest-last coloring has been shown to generate a collection of similar

sized disjoint and verifiably dominating sets that have equally good performance in

64

covering the network [47,48]. Relay coloring ensures the paired relay sets to maintain

maximum connectivities with the selected primary sets.

Therefore, generally speaking, our BCP method is suitable for applications that require large

amount of sensors and have access to the adjacency information of global sensors (such as

planetary explorations [19, 59]).

Suggested future works include: comparison of the properties of the generated backbones

with those obtained from other backbone determination algorithms on a common network

dataset; research on characteristics of generated backbones on other 3D solid geometries

(such as the unit cube and unit ball implemented in our 3D program); discovery of proper

two-phase localized, geometry-oblivious coloring algorithms for partitioning a WSN into

backbones for applications of autonomous distributed requirements.

65

Chapter 3

GRAPHICAL PARTITIONING OF THE NATURAL NUMBER NETWORK

3.1. Introduction

The current confinement of numerical data to uninspiring chains of culturally determined

digit choices has strangled the life out of numbers and arithmetic. Until recently, this

situation was a result of the limitations of mechanical and early electronic devices. However,

advances in inputting, processing, and data visualization, along with the emerging power of

quantum computing, have now liberated us from these digital representation constraints.

The question now is, can we gain greater insight into “big data” from alternative forms of

representation such as murals or 3D printed sculptures? Will this newfound freedom extend

to arithmeticians, providing them with the inspirational capacity to realize operations in

science that are equivalent to the experiences captured and preserved by artists in carvings

and paintings across cultures over millennia?

To answer these questons, we introduce a graphical representation system of natural

numbers (or counts) based on properties of prime numbers and the prime number function

in Section 3.3. Each natural number is constructed by a rooted tree of Matula number [50]

that can grow in two dimensions. Matula number describes a one-to-one mapping between

natural numbers and rooted trees. This provides a countable alphabet of graphic symbols,

with the size and form of each symbol reflecting both the size and the multiplicative structure

of the number represented. Figure 3.1 shows the initial 21 coefficients of continued fraction of

π rendered by this representation system. This culture-free representation system is founded

on three fundamental principles of arithmetic, specifically a theorem (prime factorization),

an operation (counting), and a computational process (recursion). The intent of a graphic

system of natural numbers is to be concise, for both presentation and storage with precise

66

Figure 3.1: 21 Coefficients of Continued Fraction of π

completeness of range.

Furthermore, in Section 3.4, the adjacency relation between natural numbers is intro-

duced by identifying the roots of all isomorphic Matula numbers belonging to the same

automorphism group, drawing inspiration from the graphical representation of natural num-

bers. This also partitions the entire natural number network into finite sets, each corre-

sponding to a non-isomorphic tree (termed “primordial tree”) within the forest of all finite

trees. Properties and related theories will be illustrated in Section 3.5 with several 2D and

3D Visualized Algorithm Engineering (VAE) works. The potential for application of these

graphics now unseen is hopefully suggested by a now well-known but previously unseen

property of primes in the foundation of RSA cryptography.

3.2. Background

Primes are visually observed as those linear sequences of marks that cannot be reduced

to a rectangular layout on a plane [65]. They have been discovered and themselves counted

across cultures by those without schooling. In 1968, David W. Matula described a bijec-

tion between finite rooted trees (denoted by T) and all natural numbers (positive integers,

denoted by N) [50]. The tree numbers are termed “Matula Number” with applications of

encoding chemical structures [36]. Theorem 3.1 uses the notation pk for the prime number

of index k where k ∈ N to describe how the bijection is determined.

Theorem 3.1 Matula number provides a one-to-one mapping µ(t) = n between t ∈ T and

n ∈ N where:

(a) The root of the single node rooted tree is labeled one (n = 1);

(b) The directed edge out of each leaf is labeled with the prime p1 = 2;

67

(c) An edge out of a node directed into its parent is labeled with the prime pk where k is

the product of the primes labeling the edges directed into the node;

(d) For the root of any rooted tree having at least two nodes, the root label n is the product

of all primes on the edges directed into the root.

Given a natural number n ∈ N , the labeling can also be determined from root to leaves

yielding the inverse mapping t = µ−1(n) for t ∈ T.

Proof:

t ⇒ n: Assuming the rooted tree has depth j ⩾ 1, all edges from depth j are labeled with

p1 = 2 as described in step (b). Then the labels on all edges from depth k to depth k − 1

(1 < k < j) are recursively assigned satisfying step (c). When all edges directed into the

root have been labeled, then step (d) determines the root number n.

n ⇒ t: Determining µ−1(n) ∈ T for any natural number n, the edges from the root are

labeled with the prime factors of n by unique prime factorization. For each prime factor pk,

the edge from the root leads to the subtree µ−1(k). The procedure continues recursively as

Algorithm 5 shows until µ−1(1) denoting a single node (leaf) of the tree. □

Algorithm 5 Construction of Rooted Tree of Matula Number

1: function MatulaNumber(Number n)
2: T ← new Tree;
3: Branch(T , n);
4: return T ;

5: procedure Branch(Tree T , Number n)
6: Create a root node labeled n;
7: for each prime factor pk of n do
8: Create a branch edge labeled pk;
9: Branch(T , k);

An online animated Matula number generator has been created according to Algo-

rithm 5 (URL: https://s2.smu.edu/~zizhenc/Project/MatulaNumber), which graphi-

cally presents the animation process of a Matula number growing from root to leaves. Screen-

shots of Matula numbers created by this program are used in the following sections and more

68

https://s2.smu.edu/~zizhenc/Project/MatulaNumber

details of the implementation will be discussed in Section 3.5.2. Video 3.1 demonstrates the

procedure of constructing the Matula number 292 rendered by the program, where the di-

rected edges indicate the inverse procedure of how the root value 292 is calculated.

Video 3.1: Matula Number 292

3.3. Graphical Representation of Counts

3.3.1. Font Representation System

The Matula number provides us a precise graphical representation of each natural number

as a rooted tree form factor. A grid representation is introduced by applying some regulations

to the rooted trees of Matula number, which has the potential to be a number font system.

Figure 3.2(a) shows a 3 × 3 grid symbol of Matula number 292. In comparison to the

rooted tree of Matula number, the grid symbol undergoes a counterclockwise rotation of

approximately 90 degrees (placing the root on the left) and distinguishes the root by coloring

it black, in contrast to the other regulated white-colored nodes within a 3 × 3 grid. As a

number font system, the tree structure of Matula number (shown in Figure 3.2(b)) can be

treated as a natural form factor for human writing, while the grid representation can be

treated as a mechanical form factor for print/display devices. Table 3.1 compares the grid

symbols and the corresponding Matula numbers from 1 to 9. It is obvious that the number

3 and 4 have the same grid tree layout except different positions of the roots. This is not

hard to explain by considering the isomorphic concept of graph theory. The number sets

69

https://scholar.smu.edu/cgi/viewcontent.cgi?filename=6&article=1032&context=engineering_compsci_etds&type=additional
https://scholar.smu.edu/cgi/viewcontent.cgi?filename=6&article=1032&context=engineering_compsci_etds&type=additional

(a) Grid Symbol of 292 (b) Natural Writing of 292

Figure 3.2: Graphic Representations of Natural Number 292

Table 3.1: Number 1˜9 in Matula Number and Grid Graphic Representation

No. 1 2 3 4 5 6 7 8 9

Grid

Rep.

Matula

No.

70

{3, 4}, {5, 6}, {7, 8} and {9, 10, 11} belong to same automorphism groups of Matula numbers

respectively. The numbers of each group can be rendered in a compact way by highlighting

the roots (i.e., black-colored nodes) on the same grid tree layout as Table 3.2 shows. This

Table 3.2: Compact Grid Symbols for Numbers of Automorphism Groups∗

Number Sets {3, 4} {5, 6} {7, 8} {9, 10, 11}

3

4

5

6

7

8

11

10

9

Grid Symbols

allows the representation of 11 numbers (1 to 11) by only 6 grid symbols. Figure 3.3 compares

the 11 natural numbers written in the Liquid-Crystal Display (LCD) font and in such grid

representations. Furthermore, this compression method can also be applied to a series of

Figure 3.3: Comparison of LCD Font and Grid Representations of Numbers 1˜11

repeating numbers. Among numbers from 2 to 13, as Table 3.3 shows, a series of repeating

numbers can be rendered on the same grid tree layout by highlighting the roots on the

symmetric branches. Obviously, not all natural numbers have such compact representation

(e.g. ...). The number of possible repetition of each number on a same

tree layout is also different and limited, which can be determined by the new tree concept

(“primordial tree”) introduced in Section 3.4.

Unlike the traditional numeral system we use daily (e.g., Arabic numerals) that uses

chains of culturally selected digits, this numbering scheme based on rooted trees has more

∗The numbers marked besides the black nodes are not required in the compact grid representation. They
help readers to understand the root position of the Matula number and its corresponding natural number.

71

Table 3.3: Compact Grid Symbols for Series of Repeating Numbers

Number Series {2, 2} {3, 3} {5, 5} {6, 6} {7, 7, 7} {10, 10} {11, 11} {13, 13}

Grid Symbols

concise representation. For example, number 292 consists of three digits while, as Figure 3.2

shows, Matula number or the corresponding font representation only has one two-dimensional

tree layout symbol. This allows the representation of a series of numbers without the ne-

cessity of delimiters. Figure 3.4 compares the initial 21 partial coefficients of π written in

LCD number fonts and in the grid tree layout symbols. The LCD font shows 25 digits with

20 delimiters (a total of 45 symbols) while the grid tree layout only needs 19 symbols. The

(a) LCD Font

(b) Grid Representation

Figure 3.4: Initial 21 Coefficients of Continued Fraction of π†

large frequency of 1′s and 2′s in these coefficients is replicated in many expansions. For a

random number picked uniformly over the interval [0, 1), the frequency of small digits has

been studied [40]. In particular, 1′s occur about 41.5% of the time and 2′s about 17.0%,

both of whose representations fit in a single column. The frequency of partial coefficients in

†

π = 3 +
1

7 + 1
15+ 1

1+ 1
292+ 1

1+ 1
1+ 1

1+ 1
2+ 1

1+ 1
3+ 1

1+ 1
14+ 1

2+ 1
1+ 1

1+ 1
2+ 1

2+ 1
2+ 1

2+ 1
1+...

72

the range one to eight is over 80% in total, and all of these integers are represented requiring

no more than the 2× 2 square grid. The occurrence of the particular partial coefficient 292

occurring in π′s list has in the random over [0, 1) model a frequency of less than 0.002%.

The partial coefficient 84 which is the next (22nd) in the continued fraction for π after those

shown in Figure 3.4 has a frequency of only 0.02%. Note that a single column in our square

grid representation is sufficient for over 58% of the partial coefficients, and another 22% fit

in the 2× 2 square grid.

3.3.2. Multiplicative Properties of the Graphical Representation of Counts

Section 3.3.1 introduces a 2D graphical font system based on the rooted tree of Matula

number which is defined recursively according to prime factorization. This allows some

fundamental arithmetic operations to be visually exploited. Given the prime factorization

of two integers u = pm1
1 pm2

2 ... and v = p
m′

1
1 p

m′
2

2 ..., the following multiplicative operations,

(a) Multiplication: u · v = p
m1m′

1
1 p

m2m′
2

2 ...

(b) Division: u/v = n ∈ N , iff m1 ⩾ m′
1,m2 ⩾ m′

2, ...

(c) Greatest Common Divisor (GCD): GCD(u, v) = p
min{m1,m′

1}
1 p

min{m2,m′
2}

2 ...

(d) Least Common Multiple (LCM): LCM(u, v) = p
max{m1,m′

1}
1 p

max{m2,m′
2}

2 ...

are immediate examples that can be deducted from the visual structure of the rooted trees.

Definition 3.1 has been given here for further references.

Definition 3.1 A prime branch of a rooted tree of Matula number is a maximal subgraph

containing a single child of the root. A prime branch is by itself a rooted tree where the root

is then also a leaf.

By ordering the prime branches of the root of a Matula number, according to Theorem 3.1,

some derivative observations of the multiplicative operations mentioned above can be visually

made.

73

Observation 3.1 Given n1 = µ(t1), n2 = µ(t2) (n1, n2 ∈ N and t1, t2 ∈ T), the integer

product n1 · n2 = µ(t3) has t3 ∈ T determined by merging all prime branches of t1 and t2.

Observation 3.2 The determination of whether µ(t1) exactly divides µ(t2) (t1, t2 ∈ T), and

if so the resulting quotient µ(t3), t3 ∈ T, is readily determined from the prime branches of t1

and t2 yielding the prime branches of t3.

Observation 3.3 For a set {t1, t2, ..., ti} ∈ T, i > 2, the GCD and LCM of the set

{µ(t1), µ(t2), ..., µ(ti)} is readily determined.

The three observations indicate that the results of some multiplicative operations can be

simply “seen” from the structure of the rooted trees without calculations. Table 3.4 lists

examples of multiplication, division, GCD and LCM conducted by the rooted trees of Matula

number.

Table 3.4: Multiplicative Operations

(a) Multiplication and Division

Operations Rooted Trees of Matula Number

10× 14 merge =

390÷ 30 split =

74

Table 3.4: Multiplicative Operations, continued.

(b) GCD and LCM‡

Operations Rooted Trees of Matula Number

GCD(24, 234) GCD(,) =

LCM(18, 12) LCM(,) =

75

3.3.3. Evaluations of the Graphical Number Representation

We introduced a graphical representation of natural numbers derived from arithmetic

properties of primes. The definition of Matula number based on recursive computations

provides a natural visualization of tree form factor for each natural number. The visual

structure of each prime branch generated from the uniqueness of prime factorization has its

own computational meaning in multiplicative calculations. This graphical numeral scheme

has a real countable meaning behind it, because number zero can only be displayed as “noth-

ing” or “empty”. That’s why we would rather call it “graphical representation of counts”

than “graphical representation of natural numbers”§. Thus, this numeral representation is

arguably fundamental as it comprises three fundamental principles of arithmetic:

(a) A fundamental theorem — unique prime factorization is known as the fundamental

theorem of arithmetic;

(b) A fundamental operation — counting is a fundamental operation of arithmetic;

(c) A fundamental process — recursion is a fundamental computational procedure.

More importantly, the visual forms for the counting numbers can be extended to a unique and

concise numeric representation of the rationals by using coefficients of continued fractions

(e.g., the 21-partial coefficients of continued fraction of π as Figure 3.4 shows).

A side product of this representation is the font representation system for natural num-

bers. The grid tree layout representation is suitable for print/display media, which has

possible unseen potential applications. For example, for people who have visual impair-

ments, the nodes of the rooted tree can be printed as mixed convex and concave dots (where

convex dots represent the roots) with line slots as edges. The size of each grid symbol reveals

‡In the GCD operation, the red arrows highlight the common prime branches of number 24 and number
234, which is the result of the calculation. In the LCM operation, green arrows highlight the maximum
number of prime branches of number 3, and red arrows highlight the maximum number of prime branches
of number 2. The result is the rooted tree merging all highlighted prime branches.

§This also eliminates the ambiguity caused by the definition of natural numbers (as positive integers or
as non-negative integers [14])

76

how large the represented number is. The visual structure of this representation provides a

favor to directly obtain multiplicative computational results.

3.4. Adjacency Relation Between Natural Numbers

3.4.1. Non-isomorphic trees of Matula numbers

Considering the graph theoretic concept of the forest of all non-isomorphic trees (denoted

by T∗), a subset of natural numbers (denoted by N∗) are naturally associated with each

tree t ∈ T∗. Here is an example that starts from the Matula number 20 as Figure 3.5 (a)

shows. Figure 3.5 (b) provides the tree structure of this Matula number by excluding labels

(a) Matula Number 20

a

b

c

d

e

f

(b) The Structure of The Rooted Tree

Figure 3.5: The Structure of the Rooted Tree of Matula Number 20

and directions of edges, and replacing the labels of all nodes with alphabetic characters

(a ∼ f). Then each node of Figure 3.5 (b) can be used as a root to determine a rooted

tree of Matula number ti (i = a, b, ..., f) by following the steps in Theorem 3.1 and each

root is labeled ni = µ(ti). Obviously, for Matula number 20, the root is a and its label is

na = 20. Table 3.5 lists all Matula numbers determined by all possible roots. Thus, the

natural numbers in the set {20, 21, 29, 34, 59} are associated by a directed graph t (shown in

Figure 3.6) which is constructed based on the structure of Figure 3.5 (b) with the roots in

Table 3.5 (a, b, .., f) as nodes. The directed edge information incident to each node is carried

77

Table 3.5: The Rooted Trees of Matula Number Set {20, 21, 29, 34, 59}

Root a b|c d e f

a

b

c

d

e

f

20

29

29

21

34

59

29

2

29

2

5

7

3

17

59

2

Figure 3.6: Non-isomorphic Tree of Number Set {20, 21, 29, 34, 59}

78

over from each corresponding associated rooted tree of Matula number. Such directed graph

is a non-isomorphic tree termed “primordial tree” as Definition 3.2 states.

Definition 3.2 A primordial tree is a non-isomorphic tree t = T (V,E) representing all

rooted trees of Matula number of a same automorphism group. V consists of all roots of the

associated Matula numbers and E is composed of all directed edges incident to those roots in

their corresponding Matula numbers.

3.4.2. Specifications of Primordial Trees

According to Definition 3.2, the following two characteristics of a primordial tree can be

directly derived.

• A primordial tree is an unrooted tree. There’s no special node (such as a root) to

identify a non-isomorphic tree, but we can specify one as Definition 3.3 states.

Definition 3.3 Each primordial tree tc ∈ T∗ may be uniquely identified with the cen-

trum node which is the node (or nodes) with minimum label value c.

• A primordial tree is a tree with double directed edge information since each node carries

one edge directed into itself from its corresponding rooted tree of Matula number.

Theorem 3.2 further describes the labeling of edges and nodes indicating the structure

of a primordial tree.

Theorem 3.2 Every primordial tree t ∈ T∗ can have its nodes and edges (directed in

both directions) labeled with the labels having the following two properties:

(a) every directed edge from node u to node v is labeled with the prime corresponding

to the prime branch from u into root node v,

(b) every node is labeled with the product of the primes on the edges directed into the

node.

79

Proof: The result can be verified by considering all prime branches determined for

each root location in the primordial tree t with reference to Figure 3.6. □

Each primordial tree associates a subset of natural numbers each of which is the label of

one node of the tree. Considering all finite primordial trees, we have Theorem 3.3.

Theorem 3.3 The set of all finite primordial trees T∗ partitions the natural number set N

into mutually exclusive subsets N∗ of natural numbers.

Proof: It is evident that all primordial tree setT∗ is a partition of the entire natural number

network since each primordial tree associates a cluster of natural numbers. There’s no overlap

between any two clusters in this partition. Let N1 and N2 be two natural number sets

(N1,N2 ∈ N∗) associated by two different primordial trees t1 and t2 (t1, t2 ∈ T∗) respectively.

Assume there is one natural number n belonging to both N1 and N2 (n ∈ N1∧n ∈ N2), then

there would exist one node labeled n in t1 and one node also labeled n in t2. According to

Theorem 3.1, there exists only one rooted tree t = µ−1(n) of Matula number because of the

uniqueness of prime factorization. Considering Definition 3.2, t1 and t2 can only be the same

non-isomorphic tree, which contradicts the previous condition (t1 and t2 are two different

primordial trees). Therefore, N1 and N2 are two mutually exclusive natural number sets. □

The mapping from the associated number set N∗ of a primordial tree t = T (N,E) ∈ T∗

to the node set N is an injection function. In other words, there could be multiple nodes with

a same label value in a primordial tree. Examples of this situation are t2, t3, t5, t7, t9, t12...

as listed in Table 3.6. Section 3.3.1 mentioned a compact graphic representation of series

of repeating numbers by highlighting the root nodes on the symmetric branches of a single

tree structure, which can be determined by such primordial trees. In fact, the idea of such

compact representation (not only for series of repeating numbers) that utilizes alternative

placement of the root node in a same tree layout complies with Definition 3.2, which makes

the primordial tree become a natural generator of our graphical representation of natural

¶Nodes in red color are centrum nodes.

80

Table 3.6: Examples of Primordial Trees with Repeating Numbers¶

t2 t3 t5 t7 t9 t12

2

2

2

2

3

4

3

2

3

3

2

5

6

6

5

2

5

3

3

5

2

7

8

7 7

2

7

7

2

2

7

9

10 10

11 11

5

3

3

5

2

11

2

11

12

14

13

13

17

13

2

13

2

3

7

17

2

numbers. For example, t9 indicates that we can have compact grid representations

for number series {10, 10}, {11, 11} and {9, 10, 11} respectively.

3.5. Visualized Algorithm Engineering

The preceding discussions have relied on the bijection mapping between natural numbers

and rooted trees of Matula number. Theorem 3.1 outlines the recursive computational

processes of this mapping which depends on the prime functions, namely, prime factorization,

prime counting, and kth prime. To facilitate most of the insights and observations, we

employed the Matula number generator (URL: https://s2.smu.edu/~zizhenc/Project/

MatulaNumber), an online graphic program designed by using the p5.js library. This section

will delve into the fundamental algorithms of these prime functions. We will then expound

on the implementation details of the Matula number generator program. Moreover, other

VAE works will be explored, including primordial tree generator, primordial constellation,

primordial garden, and so forth. These VAE works will also uncover some new discoveries.

In the subsequent sections, the notation pk will denote the kth prime number, where k ∈ N .

81

https://s2.smu.edu/~zizhenc/Project/MatulaNumber
https://s2.smu.edu/~zizhenc/Project/MatulaNumber

3.5.1. Algorithms of Prime Functions

3.5.1.1. Prime Factorization

Prime factorization is the theoretical foundation of constructing a Matula number from

a given natural number. The straightforward idea of computing prime factors is to check the

divisibility of n by all prime numbers less than or equal to itself. However, it is not necessary

to determine primes among the natural numbers before checking divisibility. Instead we can

keep dividing n by natural numbers in sequence‖. If the remaining quotient is divisible by a

number, then this number must be a prime factor of n. The remaining quotient will never be

divided by a composite number evenly since the quotient must be obtained by some former

divisions of the prime factors of the composite number. Then we have a linear-time O(n)

performance algorithm of computing prime factors as Algorithm 6 shows. The performance

Algorithm 6 Prime Factorization

1: function PrimeFactor(Number n)
2: L← new List;
3: for p← 2; n ⩾ p; p← p+ 1 do
4: n← Quotient(L, n, p);

5: return L;

6: function Quotient(List L, Number n, Number p)
7: while n mod p = 0 do
8: L.add(p);
9: n← n/p;

10: return n;

is not slow, but we still have two refinements to improve it.

• It is sufficient to check the divisibility of natural numbers starting from 2 to the number

less than or equal to
√
n, as any larger number will become the remaining quotient if

it can divide n evenly. Then the time complexity of the prime factorization has been

improved to O(
√
n).

‖On hardware level, the more divisions that occur, the more time is consumed. Therefore, the second
refinement mentioned below is also worthwhile.

82

• It is not necessary to check the divisibility of all natural numbers less than or equal to
√
n, as it takes trivial effort to filter out a lot of composite numbers among them. For

example, all even numbers except 2 must be composite since they are all divisible by

2. In our implementation, a number sequence that filters out multiples of 2′s or 3′s is

used, which is defined by Equation (3.1).

Si =

5 + 3 · i, if i is even

4 + 3 · i, if i is odd

, i ⩾ 0 (3.1)

Yuri’s paper [37] of prime-counting algorithm has more details of this number sequence.

Algorithm 7 shows the refined algorithm of prime factorization.

Algorithm 7 Refined Prime Factorization

1: function PrimeFactor(Number n)
2: L← new List;
3: n← Quotient(L, n, 2);
4: n← Quotient(L, n, 3);
5: i← 0;
6: p← Sequence(i);
7: while n ⩾ p2 do ▷

√
n ⩾ p

8: n← Quotient(L, n, p);
9: i← i+ 1;
10: p← Sequence(i);

11: return L;

12: function Sequence(Number i)
13: if i mod 2 = 0 then
14: return 5 + 3× i;
15: else
16: return 4 + 3× i;

3.5.1.2. Prime Counting and kth Prime

The two following prime functions are frequently employed in our VAE works.

• kth-prime: The kth-prime function p(k) returns the kth prime number, k ∈ N .

83

• Prime-counting: The prime-counting function calculates the quantity of prime numbers

that are less than or equal to a given real number r [4]. In our specific use cases, r is

always a prime number, which makes the prime-counting function the inverse of the

kth-prime function p−1(r).

Both prime functions are, in fact, concerned with the same problem of determining prime

numbers among natural numbers. The sieve of Eratosthenes, an ancient algorithm for finding

all prime numbers up to a given limit [38], can be used to solve this problem. It works by

iteratively removing the multiples of each prime (since they are composite), starting with 2

as Algorithm 8 shows. Figure 3.7 shows the procedure of sieving numbers up to 20 and the

Algorithm 8 The Sieve of Eratosthenes

1: function sieve(Number n)
2: L← {2, 3, ..., n};
3: P ← new List;
4: while L is not empty do
5: p← L.popFirst(); ▷ return and remove first element of the list
6: P .add(p);
7: i← 2;
8: while i× p ⩽ L.getLast() do
9: L.remove(i× p);
10: i← i+ 1

11: return P ;

resulting primes are {2, 3, 5, 7, 13, 17}. After the multiples of 2 and 3 have been removed,

2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

(a) Number Sequence

2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

(b) Removal Multiples of 2’s

2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

(c) Removal Multiples of 3’s

Figure 3.7: The Sieve of Eratosthenes Applied on Numbers Up to 20

the algorithm actually terminates since the multiples of 5 and 7 have already been removed

by former operations, and multiples of 13, 17 and 19 are larger than n = 20. Therefore we

have the following two refinements of Algorithm 8.

84

• It is sufficient to traverse the numbers starting from the square of each prime (p2)

instead of 2 (Line 7: i ← p), as all the smaller multiples of p will have already been

removed at that point. Then the algorithm is allowed to terminate when p2 > n.

• Similar to Algorithm 7, instead of traversing all numbers less than or equal to n,

we can traverse numbers of the sequence of Equation (3.1) along with 2 and 3 (Line

2 : L← {i|i = 2, 3, sequence of Equation (3.1), i ⩽ n}).

The time complexity of this algorithm lies in the times of removing operations. The first

iteration removes all multiples of first prime number 2, which has about n
2
number of times;

the second iteration removes multiples of the 2nd prime number 3, which has about n
3
number

of times; then the third iterations has about n
5
numbers of times;... and so forth. The total

number times would be

n

2
+

n

3
+

n

5
+ ... = n×

∑
pk⩽

√
n

1

pk
⩾ log log (n+ 1)− log

π2

6
, k ∈ N

[25]. So the time complexity is O(n · log log n).

To solve the two prime functions, an array of marks can be created that assigns mark

1′s to the prime number locations and 0′s to the composite number locations. The prime-

counting function then calculates the sum of marks before the given number, while the kth

prime function returns the prime number corresponding to the kth 1−mark in the sequence

as shown in Algorithm 9. The time complexity of the two prime functions relies on the

time complexity of the sieve of Eratosthenes algorithm which is O(n · log log n).

3.5.2. Matula Number Generator

The data structure used for the Matula number generator program to store the rooted

trees is an adjacency list with edge information as Figure 3.8 shows. Although theoretically,

∗∗Several studies have been conducted to calculate the upper bound of pk [3, 22, 42], and the formulas
resulting from these researches will only impact the algorithm’s space complexity. In the practical imple-
mentation, the array of marks and the list of primes can be declared as global variables, thereby saving the
redundant time complexity for invoking prime functions multiple times.

85

Algorithm 9 Prime-counting and kth-prime Functions

1: function PrimeCounting(Number n)
2: P ← Mark(n);
3: return P [n];

4: function kthPrime(Number k)
5: n← some upper bound of pk;

∗∗

6: N ← Mark(n);
7: return N [k];

8: function Mark(Number n)
9: M ← new Array[n+ 1]; ▷ All values are set to 0, index starts from 0
10: P ←Seive(n);
11: for each p of P do
12: M [p]← 1;

13: for i← 1; i ⩽ n; i← i+ 1 do
14: M [i]←M [i− 1] +M [i]; ▷ M [i] stores the number of primes before number i

15: return M ;

Node1

Node2

... · · ·

Noden

Edge1, Edge2, ...

Edge1, Edge2, ...

Edge1, Edge2, ...

Edge

Nodeparent

Nodechild

Figure 3.8: Adjacency List with Edges

86

a classic adjacency list without edges is capable to describe a tree, considering visualization

purposes, it would be much easier to use a data structure with dedicated edge information

to draw directed edges. In this structure, each node has a list of edges each connecting a

parent node and a child node. Additionally, each edge also needs to store the specific prime

factor of the parent node for the connected child node, which is termed “stem factor” to

indicate the direction from child to parent.

Algorithm 5 has provided the main recursive computational procedure of constructing

a rooted tree for a given natural number. Both the prime factorization (to get pk in Line

7) and the prime-counting function (to calculate k in Line 9) are necessary, which can be

implemented according to Algorithm 7 and Algorithm 9 discussed in Section 3.5.1. One

additional adjustment of Algorithm 5 that needs to be made is to convert the recursive

procedure to an iterative procedure through a stack data structure. Since our VAE work

requires the creation of an animation that demonstrates the generation of a Matula number,

an algorithm of iterative procedure is necessary to display each state of the rooted tree

during the construction process. Algorithm 10 provides the main construction algorithm

for the Matula number generator and it returns the root of the created tree which can be

the input of either Depth First Search (DFS) or Breadth First Search (BFS) algorithm to

display the rooted tree in linear time.

Algorithm 10 Matula Number Generator

1: function MatulaNumber(Number n)
2: S ← new Stack;
3: S.push(new Node(n)); ▷ Create a new node as root labeled n
4: while S is not empty do
5: node ← S.pop();
6: F ← PrimeFactor(node.label);
7: for each p of F do
8: k ← PrimeCounting(p);
9: child ← new Node(k);
10: edge ← new Edge(node, child); ▷ add edge to edge lists of node and child
11: edge.stemFactor ← p;
12: S.push(child);

13: return root;

87

The time complexity of Algorithm 10 relies on the time used on prime factorization and

prime counting. For the prime counting part, only the first function call on the root label

value takes O(n · log log n) time, the subsequent recursive calls take only O(1) constant time

since their results can be retrieved from the array generated by the initial call. For the prime

factorization part, each node of the Matula number needs to call the prime factorization

function once. Studies on Gutman-Ivié-Matula function [10,23] provide the upper bound of

the size (number of edges) of a Matula number, which is 3
log 5
· log n, then the upper bound

of the order (number of nodes) is 3
log 5
· log n + 1. Therefore, the time complexity of prime

factorization part of Algorithm 10 can be estimated as O(
√
n · log n)†† which is less than

O(n · log log n) when n is sufficiently large. After all, the time complexity of Algorithm 10 is

still O(n · log log n).

3.5.3. Primordial Tree Generator

The Primordial Tree Generator is a web-based program that generates a primordial tree

from a given natural number, which can be accessed at https://s2.smu.edu/~zizhenc/

Project/PrimordialTree. In the upcoming sections, various implementation methods will

be presented along with observations and visualizations originated from the primordial tree

generator.

3.5.3.1. Brute Force Method of Primordial Tree Construction

From Section 3.4.2, we learned that a primordial tree is an unrooted tree with double

directed edges. To visualize the primordial tree, we can still use the data structure shown

in Figure 3.8. The “parent” and “child” concepts in the structure are suitable to describe

the visual positions of the nodes, as an unrooted tree still requires a visual “root” node

to be presented as a tree form factor. The visual “root” node is selected to be the node

labeled the natural number of the input. One slight adjustment that needs to be made to

††This is a rough estimation because prime factorization may take different amounts of time for nodes
of varying heights in the tree. The leaves require no time, and the children of the root node may take
significantly less time than the root node itself.

88

https://s2.smu.edu/~zizhenc/Project/PrimordialTree
https://s2.smu.edu/~zizhenc/Project/PrimordialTree

the adjacency list is that the prime factor information of each edge should consist of two

factors, each representing one direction. The stem factor means the specific prime factor

of the parent node for the edge, which has the direction from the child node to the parent

node. Correspondingly, the prime factor for the other direction is termed “branch factor”.

According to Definition 3.2, the straightforward method to create a primordial tree in-

volves three procedures:

(a) Create a rooted tree of Matula number from a given natural number.

(b) Determine labels of all the remaining nodes each maps a Matula number of the same

tree structure.

(c) Carry over the directed edge information of all root nodes to construct the double

directed edges.

Procedure (a) can be effectively solved by Algorithm 10. For the procedure (b), Theorem 3.1

describes the steps for bottom-to-top calculation of the root label value from leaves. Using

the DFS algorithm to traverse the nodes of the tree, we can derive Algorithm 11 to determine

the root label value of a given tree structure of Matula number. Note that Algorithm 11

makes use of the marks of nodes to traverse from the root to leaves and the marks of edges

to backtrack from leaves to root. Meanwhile, recording the label values (at Line 3) of all

root nodes and the directions of their incident edges, as well as the corresponding prime

factors (at Line 19), is necessary to successfully complete the procedure (c). In this way,

a primordial tree can be constructed from a given natural number as an input. Video 3.2

demonstrates the constructing procedure of the tree t147 that originates from node labeled

292. The centrum node is labeled 147 and highlighted in red color.

3.5.3.2. Integer Connectivity

Theorem 3.1 reveals that for any rooted tree of Matula number, each edge directed out

of a node may be labeled by a prime pk with a product k readily determined from the

appropriate labeled edges directed into that node. As a primordial tree connects a cluster

89

Algorithm 11 Root Label Determination

1: function RootValue(Node root)
2: Clean marks of nodes and edges
3: return Traverse(root);

4: function Traverse(Node node)
5: node.mark ← true; ▷ mark node as traversed
6: if node is a leaf then
7: return ComputeValue(node, 1);
8: else
9: product ← 1;
10: for each edge of node.edges do
11: neighbor ← connected node of edge;
12: if neighbor.mark=false then ▷ if neighbor hasn’t been traversed
13: product ← product × Traverse(neighbor);

14: return ComputeValue(node, product);

15: function ComputeValue(Node node, Number value)
16: if node is root then ▷ if node is root, return label value
17: return value;
18: else ▷ otherwise, return prime factor of the parent
19: edge ← unmarked edge of node; ▷ only one untraversed edge connecting parent
20: edge.mark ← true; ▷ mark edge as traversed
21: return kthPrime(value);

Video 3.2: Primordial Tree t147

90

https://scholar.smu.edu/cgi/viewcontent.cgi?filename=7&article=1032&context=engineering_compsci_etds&type=additional
https://scholar.smu.edu/cgi/viewcontent.cgi?filename=7&article=1032&context=engineering_compsci_etds&type=additional

of natural numbers each of which corresponds to a rooted tree of Matula number, with

the aid of the primordial tree generator online program, the following observation has been

discovered.

Observation 3.4 For any pair of two positive integers i and j (i, j ∈ N), there must exist

an adjacency relation between i · pj and j · pi (i · pj R j · pi) established by a primordial tree

containing two neighbor nodes labeled i · pj and j · pi respectively.

This can be more easily verified by rewriting the prime factors as the kth prime function p(k)

form factor on the directed edges of a primordial tree, as demonstrated in Figure 3.9.

prime factor: p(k)

kth prime, k ∈ N

Figure 3.9: Primordial Tree t20

It is not difficult to show the reflexive property: i ·pi R i ·pi and the symmetric property:

i · pj R j · pi ⇔ j · pi R i · pj. This adjacency relation R can readily be extended to

an equivalence relation termed “Integer Connectivity”. The resulting equivalence relation

partition of N under this integer connectivity relation is readily shown to be identical to the

tree set integer partition.

3.5.3.3. Primordial Tree Construction via Integer Connectivity

The method for constructing a primordial tree, as described in Section 3.5.3.1, involves

a significant number of redundant computations and is essentially a brute force method

that is derived from the formal definition of a primordial tree (as stated in Definition 3.2).

Section 3.5.3.2 introduced the concept of integer connectivity (i·pj R j ·pi, i, j ∈ N), and this

91

led to the development of a more efficient method (Algorithm 12) based on this relation. The

Algorithm 12 Primordial Tree Generator

1: function PrimordialTree(Number n)
2: node ← new Node(n);
3: return node;

4: procedure Branch(Node node)
5: if node is the visual root then
6: F ← PrimeFactor(node.label);
7: else
8: e← node.edges.getFirst(); ▷ node only have one edge.
9: F ← PrimeFactor(node.label/e.branchFactor);

10: for each pi of F do
11: j ← node.label/pi; ▷ node.label = j · pi
12: child ← new Node(PrimeCounting(pi) × kthPrime(j)); ▷ child.label = i · pj
13: edge ← new Edge(node, child); ▷ add edge to edge lists of node and child
14: edge.stemFactor ← pi;
15: edge.branchFactor ← pj;
16: Branch(child);

current version of the primordial tree generator online program is built on Algorithm 12, but

with modification to convert the recursive procedure into iterative procedure for visualization

purposes, similar to what was done for the Matula number generator program discussed in

Section 3.5.2.

This algorithm could also be the basis for further VAE works, such as creating an anima-

tion to demonstrate how the entire network of natural numbers is partitioned. A web-based

animation program called “Primordial Constellation” has been implemented (URL: https:

//s2.smu.edu/~zizhenc/Project/PrimordialConstellation), which randomly distributes

some amount of primordial trees on the surface of a sphere. The program accepts a number

as the input to determine the amount of trees to be distributed and each tree is identified

and originated by a centrum node. Video 3.3 showcases the process of constructing 200 pri-

mordial trees that are randomly distributed on a sphere, which is rendered by the program.

The ability to zoom in and explore the trees from the inside out, as shown in Figure 3.10, is

the reason why this visualization is named “Primordial Constellation”.

92

https://s2.smu.edu/~zizhenc/Project/PrimordialConstellation
https://s2.smu.edu/~zizhenc/Project/PrimordialConstellation

Video 3.3: Primordial Constellation

Figure 3.10: Observe the Exterior from within the Primordial Constellation

93

https://scholar.smu.edu/cgi/viewcontent.cgi?filename=8&article=1032&context=engineering_compsci_etds&type=additional
https://scholar.smu.edu/cgi/viewcontent.cgi?filename=8&article=1032&context=engineering_compsci_etds&type=additional

3.5.4. i · pj Matrix

According to Observation 3.4, a primordial tree not only groups a set of natural numbers

but also delineates the relationships between i · pj, i, j ∈ N . This observation motivated us

to devise a matrix data structure defined by Definition 3.4.

Definition 3.4 An i · pj matrix Sm is composed of the first m multiples of the first m

primes, with the entry at cell (j, i) containing the value i · pj.

Figure 3.11 displays S20, which was generated by a web-based program: https://s2.smu.

edu/~zizhenc/Project/iPjMatrix/. In growing the matrix from Sm to Sm+1, the column

Figure 3.11: 20× 20 i · pj Matrix S20

being added contains the cells each having the value (m+ 1) · pk, where 1 ⩽ k ⩽ m and the

row being added is the multiples of the new prime pm+1 up to (m+ 1) · pm+1. The following

characteristics of i · pj matrix are relevant to primordial trees.

(a) Each natural number occurs a number of times equal to its count of distinct prime fac-

tors. For instance, in S20, the number 30 appears at (3, 6), (2, 10) and (1, 15) locations,

94

https://s2.smu.edu/~zizhenc/Project/iPjMatrix/
https://s2.smu.edu/~zizhenc/Project/iPjMatrix/

corresponding to its factorizations of 6 · p3, 10 · p2 and 15 · p1, respectively.

(b) Clearly, any pair of cells in the i · pj matrix that are symmetric to the main diagonal

represent neighboring nodes in a primordial tree because of the relation i · pj R j · pi.

(c) Figure 3.11 shows that centrum nodes of primordial trees are more likely to be labeled

with values in the upper triangular area of the i · pj matrix, as highlighted in purple.

The reason behind this is that the value of kth prime function p(k) increases much

faster than the linear value k.

(d) In the relation i · pj R j · pi, if i · pj = j · pi, then there are two adjacent nodes with

the same label value i · pj (or j · pi) in a primordial tree. The i · pj matrix exhibits this

property, where all cells on the main diagonal contain values each labeling two adjacent

nodes in primordial trees since i · pi = i · pi. Furthermore, there are cells outside the

main diagonal that contain the same values as those on the main diagonal, due to the

characteristic mentioned in the bullet point (a). Figure 3.12 shows all cells that meet

i · pj = j · pi in S20.

Because of these characteristics, with a sufficient large i ·pj matrix, all numbers of the group

clustered by a primordial tree can be identified. Given a natural number n as input, all nodes

(cells) with the same label value of n can be identified from the i ·pj matrix. From there, the

neighboring nodes can be determined by examining the cells that are symmetric to the main

diagonal. Recursively searching for cells with the same values as the neighbors, all other

numbers connected by a same primordial tree can be discovered. Figure 3.13 displays the

popped-up cells corresponding to the numbers clustered by the primordial tree t20 (refers to

Figure 3.9).

3.5.5. Primordial Spiral

The prime spiral (also known as Ulam’s spiral) is a graphical depiction of the set of prime

numbers, devised by mathematician Stanislaw Ulam in 1963, who noticed that the prime

numbers tended to cluster along certain curves or spirals [29]. The prime numbers are placed

95

Figure 3.12: i · pj = j · pi Cells of S20

Figure 3.13: Nodes of Primordial Tree t20

96

on the spiral that they form a distinctive pattern that is both beautiful and mysterious as

Figure 3.14 illustrates. Building upon this inspiration, we developed a web-based program

(a) Rectangle Spiral (b) Hexagonal Spiral

Figure 3.14: Prime Spiral

that displays the number spiral as shown in Figure 3.15, which can be accessed at https://

s2.smu.edu/~zizhenc/Project/PrimordialSpiralPattern. The program features a color

scheme that highlights prime numbers in orange, composite numbers in gray, and encircles

the numbers labeling centrum nodes (termed “centrum number”) of primordial trees. It can

also display a hexagonal number spiral similar to Figure 3.14 (b).

Note that the centrum numbers also cluster along certain curves as illustrated by Fig-

ure 3.16 which shows the centrum numbers (as circles) only and we term this spiral as

“Primordial Spiral”. The spiral has yielded yet another discovery — only the centrum num-

bers 2, 3, 5, and 7 are prime. All other centrum numbers are composite, as clearly illustrated

in Figure 3.17 where displays the prime and centrum numbers only.

Proof: First, Figure 3.18 lists the primordial trees t2, t3, t5, t7, which shows that the prime

numbers 2, 3, 5, and 7 are centrum numbers. According to the i · pj matrix (illustrated in

Figure 3.11), any node labeled with a prime number greater than 7 must have an adjacent

node with a label value greater than that node. In Section 3.5.4, it was described that any

97

https://s2.smu.edu/~zizhenc/Project/PrimordialSpiralPattern
https://s2.smu.edu/~zizhenc/Project/PrimordialSpiralPattern

Figure 3.15: Number Spiral

(a) Rectangle Spiral (b) Hexagonal Spiral

Figure 3.16: Primordial Spiral

98

Figure 3.17: Prime and Centrum Numbers of the Number Spiral

t2 t3 t5 t7

Figure 3.18: Primordial Trees: t2, t3, t5, t7

99

pair of cells in the i · pj matrix symmetric to the main diagonal represent neighboring nodes

in a primordial tree. Therefore, the adjacent nodes of the nodes with prime label values (i.e.,

the cells in the first column) have label values listed in the first row of the matrix. Given

that the value of the kth prime function, p(k), increases much faster than the linear value of

k, the prime values greater than 7 (i.e., k > 4) in the first column will always be larger than

their symmetric values in the first row. Thus, the prime value greater than 7 will never be

the label value of the centrum node for any primordial tree. □

By combining the primordial tree structure with the spiral geometric form factor, we

have created an online visualization program called “Primordial Garden” (https://s2.

smu.edu/~zizhenc/Project/PrimordialGarden). This program displays natural numbers

(as flat squares) on the spiral in a 3D space, where each centrum number location grows

(originates) a primordial tree. The overall view resembles a garden that depicts the entire

number theory world as Video 3.4 shows.

Video 3.4: Primordial Garden

3.6. Conclusion

100

https://s2.smu.edu/~zizhenc/Project/PrimordialGarden
https://s2.smu.edu/~zizhenc/Project/PrimordialGarden
https://scholar.smu.edu/cgi/viewcontent.cgi?filename=9&article=1032&context=engineering_compsci_etds&type=additional
https://scholar.smu.edu/cgi/viewcontent.cgi?filename=9&article=1032&context=engineering_compsci_etds&type=additional

We have introduced a graphical partitioning of the entire natural number network into

disjoint clusters of number sets each represented by a non-isomorphic directed tree termed

“primordial tree”. Each tree is shown to encapsulate the natural numbers of the isomorphic

rooted trees of Matula number without the specification of the root. A relation “i ·pj R j ·pi”

(i, j ∈ N), a data structure “i · pj matrix” and a graphical depiction “primordial spiral” are

discovered based on the primordial tree concept. The potential for application of these

discoveries now unseen are hopefully suggested by future works.

A graphical numeral font system is created as a byproduct of the graphical representation

of natural numbers, which is also the foundation of the primordial tree.

3.6.1. Contributions of Visualized Algorithm Engineering (VAE)

This entire work is originated and explored from the visualization of natural numbers.

This chapter describes the entire journey of our discoveries guided by several VAE works.

Initially, we wanted to draw the rooted trees of Matula number as graphical fonts of nat-

ural numbers. This guided us to discover the non-isomorphic tree structure, namely the

primordial tree. Subsequently, we discovered the integer connectivity relation, the matrix

data structure, and the new number spiral.

3.6.2. Future Works

Suggested future works include two aspects: exploration of properties from the primordial

tree, i · pj matrix data structure, and the primordial spiral; establishment and proof of the

equivalence relation integer connectivity (mentioned in the end of Section 3.5.3.2).

101

Chapter 4

VISUALIZATION’S ROLE IN ALGORITHM ENGINEERING

4.1. Introduction to Visualized Algorithm Engineering (VAE)

The process of Algorithm Engineering is a multifaceted and intricate undertaking that

involves various challenges and potential obstacles, such as implementing, debugging, test-

ing, engineering, and experimentally analyzing algorithmic codes. Thanks to the current

computer graphics technology’s ability to convey a large amount of information concisely

and humans’ aptitude for processing visual information, visualization plays a crucial role in

algorithm engineering. As a result, we propose the term “Visualized Algorithm Engineer-

ing (VAE)” to underscore the significance of visualization in this domain. Related concepts

in this field include Data/Information Visualization, Algorithm Visualization, Algorithm

Animation, and Creative Coding. [12,34,63,64].

VAE refers to the process of designing and creating algorithms using visualizing tech-

niques. It involves the use of graphical tools or creative coding to model and simulate the

behavior of algorithms, making it easier for developers to design, test, and optimize their

algorithms down to the hardware level. By visualizing algorithms, one can easily identify

their strengths and weaknesses and find ways to improve them. It also enables developers

or researchers to communicate their ideas more effectively to others, which is exactly what

this thesis is about.

4.2. Evaluate VAE on the Two Graph Partitioning Problems

This thesis showcases the applicability of Visualized Algorithm Engineering (VAE) in

solving two graph partitioning problems: Backbone Determination in Wireless Sensor Net-

works (WSNs) and Graphical Partitioning of the Natural Number Network. The former

102

problem comes from a practical challenge in WSN area (i.e., backbone determination), which

is then modeled into a mathematical problem — the partitioning of an Random Geometric

Graph (RGG) into multiple disjoint bipartite subgraphs for the goal of each subgraph dom-

inating (1 − ϵ)n nodes. While the latter is originated from a data visualization for natural

numbers (into rooted tree form factor) to a discovery of a graphical partitioning of the entire

natural number network.

Visualization plays a critical role in solving both of the problems presented in this thesis.

In Chapter 2, we were initially attempting to conduct VAE for the work of Diah Mahjoub’s

[46], who proposed using the Smallest-last coloring algorithm to determine backbones in

WSNs. After using several sample RGGs to run the created animated graphical program,

we discovered that the initial multiple independent color sets resulting from the algorithm

had fairly stable sizes with close-packed nodes. This inspired us to recolor the remaining

nodes to pair with the initial color sets. The ability to directly observe the performance of

running the algorithms also motivated us to optimize and improve the algorithms to achieve

linear time efficiency.

In Chapter 3, our initial goal was to visualize the Matula number for teaching purposes.

However, we soon noticed the automorphism feature of the Matula number and created a new

non-isomorphic tree, known as a “primordial tree”, to cluster all the isomorphic rooted trees

of Matula number, each of which maps to a natural number. This allowed us to partition

the entire natural number network, leading to a better understanding of the underlying

structure.

4.3. Creative Coding

There are numerous techniques and software tools available with various visual capabil-

ities. It is important to note that the Visualized Algorithm Engineering (VAE) does not

impose any restrictions on the use of these tools or techniques. Creative coding is a type of

programming that is widely used in the field of visual arts [34]. The VAE works presented

in this thesis use creative coding techniques, with the objective of creating expressive algo-

103

rithms and data that go beyond being functional or informative. For example, to evaluate

the domination of each resulting subgraphs for the first problem, visualizing a disk to indi-

cate the area each node covers (as Figure 4.1 illustrates) would be more expressive compared

to a pure data or any plot chart.

Figure 4.1: Domination of Sample Backbones

Using any software tools to visually “plot” data, we will be limited by the rules or features

provided by the tool. In contrast, creative coding allows for embedded visualization with

programming. For example, the Processing Foundation offers several languages that are

inherently capable of visualizing data while coding, such as the Processing language used in

the VAE presented here, which is essentially a visualized version of Java.

4.4. Conclusion

In the past, the diffusion of the use of Algorithm Animation and Algorithm Visualiza-

tion in Algorithm Engineering encountered numerous obstacles from owing to the absence

of visualization/animation systems that facilitated fast prototyping mechanisms [20]. How-

ever, with the growing popularity of visualizing techniques such as creative coding, even

novice graphic programmers can now employ Algorithm Visualization/Animation for pur-

poses beyond just teaching. This thesis showcases the application of Visualized Algorithm

Engineering (VAE) on two graph partitioning problems, using it as a research method to

unearth new findings.

104

BIBLIOGRAPHY

[1] Abbena, E., Salamon, S., and Gray, A. Modern differential geometry of curves
and surfaces with Mathematica. CRC press, 2017.

[2] Al-Karaki, J. N., and Kamal, A. E. Efficient virtual-backbone routing in mobile
ad hoc networks. Computer Networks 52, 2 (2008), 327–350.

[3] Axler, C. New bounds for the prime counting function\pi (x). arXiv preprint
arXiv:1409.1780 (2014).

[4] Bach, E., and Shallit, J. Algorithmic Number theory, volume I, 1996.

[5] Bader, G. D., and Hogue, C. W. An automated method for finding molecular
complexes in large protein interaction networks. BMC bioinformatics 4, 1 (2003),
1–27.

[6] Barbeau, M., Bose, P., Carmi, P., Couture, M., and Kranakis, E.
Location-oblivious distributed unit disk graph coloring. Algorithmica 60, 2 (2011),
236–249.

[7] Bettstetter, C. On the minimum node degree and connectivity of a wireless
multihop network. In Proceedings of the 3rd ACM international symposium on Mobile
ad hoc networking & computing (2002), pp. 80–91.

[8] Biggs, N., Lloyd, E. K., and Wilson, R. J. Graph Theory, 1736-1936. Oxford
University Press, 1986.

[9] Blough, D. M., Leoncini, M., Resta, G., and Santi, P. The k-neigh protocol
for symmetric topology control in ad hoc networks. In Proceedings of the 4th ACM
international symposium on Mobile ad hoc networking & computing (2003),
pp. 141–152.

[10] Bretèche, R. D. L., and Tenenbaum, G. Sur certaines équations fonctionnelles
arithmétiques. In Annales de l’institut Fourier (2000), vol. 50, pp. 1445–1505.

[11] Bright, L. F., Kleiser, S. B., and Grau, S. L. Too much Facebook? An
exploratory examination of social media fatigue. Computers in Human Behavior 44
(2015), 148–155.

[12] Brown, M. H., and Sedgewick, R. Techniques for algorithm animation. Ieee
Software 2, 1 (1985), 28.

[13] Carlos-Mancilla, M., López-Mellado, E., and Siller, M. Wireless sensor
networks formation: approaches and techniques. Journal of Sensors 2016 (2016).

[14] Carothers, N. L. Real analysis. Cambridge University Press, 2000.

105

[15] Cartigny, J., Simplot, D., and Stojmenovic, I. Localized minimum-energy
broadcasting in ad-hoc networks. In IEEE INFOCOM 2003. Twenty-second Annual
Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat.
No. 03CH37428) (2003), vol. 3, IEEE, pp. 2210–2217.

[16] Chen, X., and Shen, J. Reducing connected dominating set size with multipoint
relays in ad hoc wireless networks. In 7th International Symposium on Parallel
Architectures, Algorithms and Networks, 2004. Proceedings. (2004), IEEE,
pp. 539–543.

[17] Chen, Z., and Matula, D. W. Bipartite Grid Partitioning of a Random Geometric
Graph. In 2017 13th International Conference on Distributed Computing in Sensor
Systems (DCOSS) (2017), IEEE, pp. 163–169.

[18] Das, B., and Bharghavan, V. Routing in ad-hoc networks using minimum
connected dominating sets. In Proceedings of ICC’97-International Conference on
Communications (1997), vol. 1, IEEE, pp. 376–380.

[19] Del Re, E., Pucci, R., and Ronga, L. S. IEEE802. 15.4 wireless sensor network
in Mars exploration scenario. In 2009 International Workshop on Satellite and Space
Communications (2009), IEEE, pp. 284–288.

[20] Demetrescu, C., Finocchi, I., Italiano, G. F., and Näher, S. Visualization
in algorithm engineering: Tools and techniques. Experimental algorithmics: from
algorithm design to robust and efficient software (2002), 24–50.

[21] Deo, N. Graph theory with applications to engineering and computer science. Courier
Dover Publications, 2017.

[22] Dusart, P. Estimates of some functions over primes without R.H. arXiv preprint
arXiv:1002.0442 (2010).

[23] Elk, S. A problem with the application of Matula’s method of prime numbers and
rooted trees for canonical nomenclatures of alkanes. Graph theory notes (New York)
18 (1989), 40–43.

[24] Erdős, P., and Hajnal, A. On chromatic number of graphs and set-systems. Acta
Math. Acad. Sci. Hungar 17, 61-99 (1966), 1.

[25] Euler, L. Variae observationes circa series infinitas. Commentarii academiae
scientiarum imperialis Petropolitanae 9, 1737 (1737), 160–188.

[26] Euler, L. Elementa doctrinae solidorum. Novi commentarii academiae scientiarum
Petropolitanae (1758), 109–140.

[27] Even, S. Graph algorithms. Cambridge University Press, 2011.

[28] Ferdinandy, B. What’s the difference between a graph and a network.

[29] Gardner, M. The remarkable lore of the prime numbers. Scientific American 210, 3
(1964), 120.

[30] Garey, M. R., and Johnson, D. S. Computers and intractability, vol. 174.
freeman San Francisco, 1979.

106

[31] Garg, V., and Jhamb, M. A review of wireless sensor network on localization
techniques. Int. J. Eng. Trends Technol 4, 4 (2013), 1049–1053.

[32] Gilbert, E. N. Random plane networks. Journal of the society for industrial and
applied mathematics 9, 4 (1961), 533–543.

[33] Grady, D. The vision thing: Mainly in the brain. Discover 14, 6 (1993), 56–66.

[34] Greenberg, I., Xu, D., and Kumar, D. Processing: Creative Coding and
Generative Art in Processing 2. Apress, 2013.

[35] Gupta, H. P., Venkatesh, T., Rao, S. V., Dutta, T., and Iyer, R. R.
Analysis of coverage under border effects in three-dimensional mobile sensor networks.
IEEE Transactions on Mobile Computing 16, 9 (2016), 2436–2449.

[36] Gutman, I., Ivic, A., and Elk, S. Matula numbers for coding chemical structures
and some of their properties. JOURNAL-SERBIAN CHEMICAL SOCIETY 58
(1993), 193–193.

[37] Heymann, Y. An algorithm for the prime-counting function of primes larger than
three. arXiv e-prints (2020), arXiv–2002.

[38] Hoche, R. G., et al. Nicomachi Geraseni Pythagorei introductionis arithmeticae
libri II. In aedibus BG Tevbneri, 1866.

[39] Kenniche, H., and Ravelomananana, V. Random geometric graphs as model of
wireless sensor networks. In 2010 The 2nd international conference on computer and
automation engineering (ICCAE) (2010), vol. 4, IEEE, pp. 103–107.

[40] Knuth, D. The Art of Computer Programming: Seminumerical Algorithms, vol. 2.
Addison-Wesley, Reading, Mass, 1981.

[41] Kopytov, N., and Mityushov, E. The method for uniform distribution of points
on surfaces in multi-dimensional Euclidean space. Intellectual Archive (2012).

[42] Kotnik, T. The prime-counting function and its analytic approximations: π (x) and
its approximations. Advances in Computational Mathematics 29, 1 (2008), 55–70.

[43] Kumar, S., Lai, T. H., and Balogh, J. On k-coverage in a mostly sleeping sensor
network. In Proceedings of the 10th annual international conference on Mobile
computing and networking (2004), pp. 144–158.

[44] Lick, D. R., and White, A. T. k-Degenerate graphs. Canadian Journal of
Mathematics 22, 5 (1970), 1082–1096.

[45] Mac Donald, V. H. Advanced mobile phone service: The cellular concept. The bell
system technical Journal 58, 1 (1979), 15–41.

[46] Mahjoub, D. Efficient redundant backbones for coverage and routing in wireless
sensor networks. PhD thesis, Southern Methodist University, 2011.

[47] Mahjoub, D., and Matula, D. W. Experimental Study of Independent and
Dominating Sets in Wireless Sensor Networks Using Graph Coloring Algorithms. In
International Conference on Wireless Algorithms, Systems, and Applications (2009),
Springer, pp. 32–42.

107

[48] Mahjoub, D., and Matula, D. W. Building (1- ε) dominating sets partition as
backbones in wireless sensor networks using distributed graph coloring. In
International Conference on Distributed Computing in Sensor Systems (2010),
Springer, pp. 144–157.

[49] Marsaglia, G., et al. Choosing a point from the surface of a sphere. The Annals
of Mathematical Statistics 43, 2 (1972), 645–646.

[50] Matula, D. W. A natural rooted tree enumeration by prime factorization. In SIAM
REVIEW (1968), vol. 10, SIAM PUBLICATIONS 3600 UNIV CITY SCIENCE
CENTER, PHILADELPHIA, PA 19104-2688, p. 273.

[51] Matula, D. W., and Beck, L. L. Smallest-last ordering and clustering and graph
coloring algorithms. Journal of the ACM (JACM) 30, 3 (1983), 417–427.

[52] Matula, D. W., and Chen, Z. Precise and Concise Graphical Representation of
the Natural Numbers. In 2019 IEEE 26th Symposium on Computer Arithmetic
(ARITH) (2019), IEEE, pp. 100–103.

[53] Matula, D. W., Marble, G., and Isaacson, J. D. Graph coloring algorithms.
In Graph theory and computing. Elsevier, 1972, pp. 109–122.

[54] Matula, D. W., and Sokal, R. R. Properties of Gabriel graphs relevant to
geographic variation research and the clustering of points in the plane. Geographical
analysis 12, 3 (1980), 205–222.

[55] Nandi, A., and Kundu, S. Optimal transmit power and energy level performance
of random WSN in Rayleigh fading channel. In 2011 2nd International Conference on
Computer and Communication Technology (ICCCT-2011) (2011), IEEE, pp. 556–561.

[56] Olascuaga-Cabrera, J. G., López-Mellado, E., Mendez-Vazquez, A., and
Ramos-Corchado, F. F. A self-organization algorithm for robust networking of
wireless devices. IEEE Sensors Journal 11, 3 (2010), 771–780.

[57] Penrose, M., et al. Random geometric graphs, vol. 5. Oxford university press,
2003.

[58] Poe, W. Y., and Schmitt, J. B. Node deployment in large wireless sensor
networks: coverage, energy consumption, and worst-case delay. In Asian internet
engineering conference (2009), pp. 77–84.

[59] Prasad, K. D., and Murty, S. Wireless Sensor Networks–A potential tool to
probe for water on Moon. Advances in Space Research 48, 3 (2011), 601–612.

[60] Ranganathan, P., and Nygard, K. Time synchronization in wireless sensor
networks: a survey. International journal of ubicomp 1, 2 (2010), 92–102.

[61] Ravelomanana, V. Extremal properties of three-dimensional sensor networks with
applications. IEEE Transactions on Mobile Computing 3, 3 (2004), 246–257.

[62] Reas, C., and Fry, B. Processing: a programming handbook for visual designers
and artists. Mit Press, 2007.

[63] Shaffer, C. A., Cooper, M. L., Alon, A. J. D., Akbar, M., Stewart, M.,
Ponce, S., and Edwards, S. H. Algorithm visualization: The state of the field.
ACM Transactions on Computing Education (TOCE) 10, 3 (2010), 1–22.

108

[64] Shewan, D. Data is Beautiful: 7 Data Visualization Tools for Digital Marketers.
Business2Community. com. Archived from the original on 12 (2016).

[65] Simson, R., et al. The elements of Euclid. Desilver, Thomas, 1838.

[66] Snijders, C., Matzat, U., and Reips, U.-D. “Big Data”: big gaps of knowledge
in the field of internet science. International journal of internet science 7, 1 (2012),
1–5.

[67] Sohraby, K., Minoli, D., and Znati, T. Wireless sensor networks: technology,
protocols, and applications. John wiley & sons, 2007.

[68] Tseng, Y.-C., Ni, S.-Y., Chen, Y.-S., and Sheu, J.-P. The broadcast storm
problem in a mobile ad hoc network. Wireless networks 8, 2 (2002), 153–167.

[69] Wagner, D., and Wattenhofer, R. Algorithms for sensor and ad hoc networks:
advanced lectures, vol. 4621. Springer, 2007.

[70] Wan, P.-J., Alzoubi, K. M., and Frieder, O. Distributed construction of
connected dominating set in wireless ad hoc networks. Mobile Networks and
Applications 9, 2 (2004), 141–149.

[71] Wang, Y., Wang, W., and Li, X.-Y. Distributed low-cost backbone formation for
wireless ad hoc networks. In Proceedings of the 6th ACM international symposium on
Mobile ad hoc networking and computing (2005), pp. 2–13.

[72] Wei, C., Yang, J., Gao, Y., and Zhang, Z. Cluster-based routing protocols in
wireless sensor networks: A survey. In Proceedings of 2011 International Conference
on Computer Science and Network Technology (2011), vol. 3, IEEE, pp. 1659–1663.

[73] Werner-Allen, G., Lorincz, K., Ruiz, M., Marcillo, O., Johnson, J.,
Lees, J., and Welsh, M. Deploying a wireless sensor network on an active volcano.
IEEE internet computing 10, 2 (2006), 18–25.

[74] Wu, J., and Li, H. On calculating connected dominating set for efficient routing in
ad hoc wireless networks. In Proceedings of the 3rd international workshop on Discrete
algorithms and methods for mobile computing and communications (1999), pp. 7–14.

[75] Ye, J. Computing exact bottleneck distance on random point sets. PhD thesis,
Virginia Tech, 2020.

[76] Zhang, H., Hou, J. C., et al. Maintaining sensing coverage and connectivity in
large sensor networks. Ad Hoc Sens. Wirel. Networks 1, 1-2 (2005), 89–124.

[77] Zhao, J., Yağan, O., and Gligor, V. Connectivity in secure wireless sensor
networks under transmission constraints. In 2014 52nd Annual Allerton Conference on
Communication, Control, and Computing (Allerton) (2014), IEEE, pp. 1294–1301.

109

	Visualized Algorithm Engineering on Two Graph Partitioning Problems
	Recommended Citation

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF VIDEOS
	1. INTRODUCTION
	1.1. Problem Specifications
	1.1.1. Backbone Determination in Wireless Sensor Networks (WSNs)
	1.1.2. Graphical Partitioning of the Natural Number Network

	1.2. Software Environments
	1.3. Outline of The Thesis
	1.4. Contributions
	1.4.1. Backbone Determination in Wireless Sensor Networks (WSNs)
	1.4.2. Graphical Partitioning of the Natural Number Network
	1.4.3. Visualized Algorithm Engineering (VAE)

	2. BACKBONE DETERMINATION IN WIRELESS SENSOR NETWORKS
	2.1. Introduction
	2.2. Background
	2.2.1. Network Computational Model
	2.2.2. Cluster-based Formation

	2.3. Backbone Formation
	2.3.1. Primary and Relay Bipartite Set
	2.3.2. Backbone Determination via Multi-partitioning

	2.4. Visualized Algorithm Engineering
	2.4.1. Sensor Deployment
	2.4.2. Link Determination
	2.4.2.1. Sweep Method
	2.4.2.2. Cell Method

	2.4.3. Backbone Partitioning
	2.4.3.1. Smallest-last Coloring
	2.4.3.2. Relay Coloring

	2.4.4. Backbone Refinement
	2.4.4.1. Performance Metrics
	2.4.4.2. Robustness of Backbones
	2.4.4.3. Other Adjustments

	2.5. Conclusion
	2.5.1. Contributions of Visualized Algorithm Engineering (VAE)
	2.5.2. Evaluation and Future Works

	3. GRAPHICAL PARTITIONING OF THE NATURAL NUMBER NETWORK
	3.1. Introduction
	3.2. Background
	3.3. Graphical Representation of Counts
	3.3.1. Font Representation System
	3.3.2. Multiplicative Properties of the Graphical Representation of Counts
	3.3.3. Evaluations of the Graphical Number Representation

	3.4. Adjacency Relation Between Natural Numbers
	3.4.1. Non-isomorphic trees of Matula numbers
	3.4.2. Specifications of Primordial Trees

	3.5. Visualized Algorithm Engineering
	3.5.1. Algorithms of Prime Functions
	3.5.1.1. Prime Factorization
	3.5.1.2. Prime Counting and k_th Prime

	3.5.2. Matula Number Generator
	3.5.3. Primordial Tree Generator
	3.5.3.1. Brute Force Method of Primordial Tree Construction
	3.5.3.2. Integer Connectivity
	3.5.3.3. Primordial Tree Construction via Integer Connectivity

	3.5.4. ip_j Matrix
	3.5.5. Primordial Spiral

	3.6. Conclusion
	3.6.1. Contributions of Visualized Algorithm Engineering (VAE)
	3.6.2. Future Works

	4. VISUALIZATION'S ROLE IN ALGORITHM ENGINEERING
	4.1. Introduction to Visualized Algorithm Engineering (VAE)
	4.2. Evaluate VAE on the Two Graph Partitioning Problems
	4.3. Creative Coding
	4.4. Conclusion

	BIBLIOGRAPHY

