
Southern Methodist University Southern Methodist University 

SMU Scholar SMU Scholar 

Civil and Environmental Engineering Theses and 
Dissertations 

Civil Engineering and Environmental 
Engineering 

Fall 12-17-2022 

Leveraging Crowdsourced Navigation Data In Roadway Pluvial Leveraging Crowdsourced Navigation Data In Roadway Pluvial 

Flash Flood Prediction Flash Flood Prediction 

Arefeh Safaei-Moghadam 
asafaeimoghadam@smu.edu 

Follow this and additional works at: https://scholar.smu.edu/engineering_civil_etds 

 Part of the Civil and Environmental Engineering Commons 

Recommended Citation Recommended Citation 
Safaei-Moghadam, Arefeh, "Leveraging Crowdsourced Navigation Data In Roadway Pluvial Flash Flood 
Prediction" (2022). Civil and Environmental Engineering Theses and Dissertations. 24. 
https://scholar.smu.edu/engineering_civil_etds/24 

This Thesis is brought to you for free and open access by the Civil Engineering and Environmental Engineering at 
SMU Scholar. It has been accepted for inclusion in Civil and Environmental Engineering Theses and Dissertations 
by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu. 

https://scholar.smu.edu/
https://scholar.smu.edu/engineering_civil_etds
https://scholar.smu.edu/engineering_civil_etds
https://scholar.smu.edu/engineering_civil
https://scholar.smu.edu/engineering_civil
https://scholar.smu.edu/engineering_civil_etds?utm_source=scholar.smu.edu%2Fengineering_civil_etds%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/251?utm_source=scholar.smu.edu%2Fengineering_civil_etds%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/engineering_civil_etds/24?utm_source=scholar.smu.edu%2Fengineering_civil_etds%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/


 

LEVERAGING CROWDSOURCED NAVIGATION DATA IN ROADWAY PLUVIAL 

FLASH FLOOD PREDICTION 

 

 

 

Approved by:                                                 

 
_______________________________________ 

Prof. Barbara Minsker                                    

Civil and Environmental Engineering            
 

___________________________________ 

Prof. Khaled Abdelghany                              

Civil and Environmental Engineering           

 

___________________________________ 

Prof. Janille Smith-Colin                              

Civil and Environmental Engineering          

 

___________________________________ 

Prof. Eric Larson                                           

Computer Science                                         

 

___________________________________ 

 Prof. David Tarboton                                      

Civil and Environmental Engineering           

Utah State University                                    

 

___________________________________ 

Prof. Brenda Philips                                      

Electrical and Computer Engineering           

University of Massachusetts Amherst           

 



 

LEVERAGING CROWDSOURCED NAVIGATION DATA IN ROADWAY PLUVIAL 

FLASH FLOOD PREDICTION 

 

A Dissertation Presented to the Graduate Faculty of the 

Lyle School of Engineering 

Southern Methodist University 

in 

Partial Fulfillment of the Requirements 

for the degree of 

Doctor of Philosophy 

with a 

Major in Civil and Environmental Engineering 

by 

 

Arefeh Safaei Moghadam 

B.S., Civil Engineering, Shahid Chamran University, Ahvaz, Iran 

M.S., Water Resources Management, Amirkabir University of Technology, Tehran, Iran  

 

December 17, 2022 

 

  



 

 

Copyright (2022) 

Arefeh Safaei Moghadam 

All Rights Reserved 

 

 



iv 

ACKNOWLEDGMENTS 

I would like to express my deepest appreciation to my advisor, Dr. Barbara Minsker, for her 

unconditional support and understanding throughout my education. Without her guidance this 

journey would not have been feasible. 

I would like to thank my committee members, Dr. Khaled Abdelghany, Dr. Janille Smith-

Colin, Dr. Eric Larson, Brenda Philips, and Dr. David Tarboton, for their guidance, insight, and 

support throughout the course of this research. Thanks also to my friends and colleagues and the 

department faculty and staff for making my time at SMU a great experience. 

My heartfelt gratitude also goes to my husband, Dr. Soheil Sohrabi, for his love, support, 

and being by my side through the ups and downs of my personal and professional growth. While 

living thousands of miles away from home, I enjoyed a wonderful graduate student life thanks to 

my husband and wonderful Ashire friends, too many to name here. 

Although far from home, I am grateful for having the unconditional love and unfailing 

encouragements of my parents and brothers. 



v 

TABLE OF CONTENTS 

1. Introduction ..................................................................................................................................................... 1 

1.1 Background ..................................................................................................................................................... 2 

2. Estimating The Vulnerability Of Roadway Pluvial Flood Based On Crowdsourced Traffic Data And 

 Depression-Based Dem Analysis .................................................................................................................... 9 

2.1 Introduction ..................................................................................................................................................... 9 

2.2 Methodology ................................................................................................................................................. 10 

2.2.1 Step I: Preprocessing ..................................................................................................................................... 10 

2.2.2 Step II: Modeling .......................................................................................................................................... 19 

2.2.3 Step III: Flood Probability Estimation .......................................................................................................... 25 

2.3 Case Study Background and Datasets ........................................................................................................... 26 

2.4 Case Study Data Pre-Processing ................................................................................................................... 29 

2.4.1 Depression Extraction ................................................................................................................................... 29 

2.4.2 Storm Event Definition ................................................................................................................................. 29 

2.4.3 Waze Data Preprocessing .............................................................................................................................. 31 

2.5 Results ........................................................................................................................................................... 32 

2.5.1 Model Parameters and Performance .............................................................................................................. 33 

2.5.2 Flood Vulnerability Estimation ..................................................................................................................... 37 

2.6 Discussion ..................................................................................................................................................... 38 

2.7 Conclusion ..................................................................................................................................................... 41 

3. Graph-based Rapid Flood Spreading Model for Real-Time Estimation of Hyper-Local Roadway Flooding 

 Vulnerability.................................................................................................................................................. 44 

3.1 Introduction ................................................................................................................................................... 44 

3.2 Methodology ................................................................................................................................................. 48 

3.2.1 Step I: DEM To Depressions Hierarchy Preprocessing ................................................................................ 48 

3.2.2 Step II: GB-RFSM ........................................................................................................................................ 51 

3.2.3 DEM-Graph Components and Attributes .............................................................................................. 533.2.4

 Inundation Map ............................................................................................................................................. 57 



vi 

3.2.5 Model Comparison ........................................................................................................................................ 58 

3.3 Case Study and Datasets................................................................................................................................ 60 

3.4 Results ........................................................................................................................................................... 62 

3.4.1 Ground Truth Assessment ............................................................................................................................. 68 

3.5 Discussion and Conclusions .......................................................................................................................... 70 

4. Predicting roadway pluvial flood risk; A Hybrid Machine learning model coupling GB-RFSM and 

 historical vulnerabilities based on Waze data ................................................................................................ 72 

4.1 Introduction ................................................................................................................................................... 72 

4.2 Methodology ................................................................................................................................................. 73 

4.2.1 Hazard ........................................................................................................................................................... 74 

4.2.2 Vulnerability.................................................................................................................................................. 75 

4.2.3 Exposure ........................................................................................................................................................ 77 

4.2.4 Modeling ....................................................................................................................................................... 77 

4.2.5 Model Evaluation .......................................................................................................................................... 80 

4.3 Case Study and Dataset ................................................................................................................................. 83 

4.4 Results ........................................................................................................................................................... 84 

4.4.1 Data Preparation ............................................................................................................................................ 85 

4.4.2 Modeling ....................................................................................................................................................... 85 

4.5 Conclusions ................................................................................................................................................... 93 

5. Summary, limitations, and future work ......................................................................................................... 96 

5.1 Summary and Findings .................................................................................................................................. 96 

5.2 Limitations .................................................................................................................................................... 99 

5.2.1 Data Limitations .......................................................................................................................................... 100 

5.2.2 Modeling Limitations .................................................................................................................................. 100 

5.3 Implications ................................................................................................................................................. 101 

5.4 Future Work ................................................................................................................................................ 102 

6. References ................................................................................................................................................... 104 



vii 

LIST OF FIGURES 

Figure 2-1 Methodology framework (basemap from ESRI-2021) .............................................................................. 10 

Figure 2-2 Hierarchical filling of surface depressions (basemap from ESRI-2021) .................................................... 14 

Figure 2-3 Schematic of HALE and depth features ..................................................................................................... 14 

Figure 2-4 Alert assignment ........................................................................................................................................ 18 

Figure 2-5 Study area and datasets .............................................................................................................................. 26 

Figure 2-6 a: Flood alerts over NFHL flood zones b: Distribution of NFHL flood zone over the study area ............. 27 

Figure 2-7 Cumulative density of alert distances to closest high-water mark and low-water crossing ....................... 29 

Figure 2-8Autocorrelation of rain pulses ..................................................................................................................... 30 

Figure 2-9 Tree-based dendrogram of agglomerative clustering ................................................................................. 31 

Figure 2-10 Distribution of delay in alert posting from storm end .............................................................................. 32 

Figure 2-11 Total number of flood alerts per storm..................................................................................................... 33 

Figure 2-12 Prediction of number of roadway PFF events .......................................................................................... 36 

Figure 2-13 Prediction of number of PFF using benchmark models and EB .............................................................. 37 

Figure 2-14 Distribution of flood likelihoods in reported versus non-reported floods ................................................ 38 

Figure 2-15 PFF probability map versus flood alerts and traffic jams at 1:00 PM to 5:00 PM on September 22, 2018, 

during the severe storm, b. Friday, September 29, 2018, under dry conditions, and c.. Friday, September 15th, 2018, 

also dry ........................................................................................................................................................................ 41 

Figure 3-1 Framework of the GB-RFSM .................................................................................................................... 49 

Figure 3-2 Primary components of the graph data structure used to represent the DEM ............................................ 52 

Figure 3-3 Depression components of a DEM ............................................................................................................ 53 

Figure 3-4 Synthetic terrain and DEM-graph analysis ................................................................................................ 56 

Figure 3-5 Flowchart of updating the DEM-graph at each timestep ........................................................................... 58 

Figure 3-6 Case study area .......................................................................................................................................... 62 

Figure 3-7 Subbasins and merged depression catchments upstream of the underpass ................................................ 63 

Figure 3-8 Distribution of catchment areas in different hierarchy levels of depressions ............................................. 63 

Figure 3-9 Distribution of volume capacity of depressions in different hierarchy levels ............................................ 64 



viii 

Figure 3-10 Cumulative hyetograph versus cumulative overflow at identified failed inlets calculated by the SWMM 

model ........................................................................................................................................................................... 65 

Figure 3-11 Inundation maps derived from GB-RFSM and SWMM results ............................................................... 66 

Figure 3-12 Distribution of catchment areas that are consistently and inconsistently filled in SWMM and GB-RFSM

 ..................................................................................................................................................................................... 68 

Figure 3-13 Jaccard score versus overflow over time.................................................................................................. 68 

Figure 3-14 Map of inundations, Waze flood alerts, and locations covered in media, (a) video clips at locations 1, 2, 

and 3 during the flood event (b) and after (c). ............................................................................................................. 69 

Figure 4-1 Methodology flowchart .............................................................................................................................. 74 

Figure 4-2 Case study intersections and Waze flood alerts ......................................................................................... 84 

Figure 4-3 Inundation extent on four road segments at the end of a severe storm on September 9, 2021 ................... 86 

Figure 4-4 Distribution of risk observations in training and testing datasets ............................................................... 87 

Figure 4-5 Precision-recall curves of ML models ....................................................................................................... 89 

Figure 4-6 ROC curve of ML models .......................................................................................................................... 89 

Figure 4-7 Features distributions in confusion matrix of test predictions, a: True negative (tn) predictions, b: False 

positive (fp) predictions, c: False negative (fn) predictions, and d: True positive (tp) predictions – XGBoost .......... 91 

Figure 4-8 Features distributions in confusion matrix of test predictions, a: True negative (tn) predictions, b: False 

positive (fp) predictions, c: False negative predictions (fn), and d: True positive (tp) predictions -RFC .................... 92 

Figure 4-9 Features distributions in confusion matrix of test predictions, a: True negative (tn) predictions, b: False 

positive (fp) predictions, c: False negative (fn) predictions, and d: True positive (tp) predictions – SVM classifier.. 93 

 

  



ix 

LIST OF TABLES 

Table 2-1 Physical depression/catchment descriptors ................................................................................................. 15 

Table 2-2 Count dataset of PFF events ........................................................................................................................ 20 

Table 2-3 Summary statistics of storm clusters ........................................................................................................... 31 

Table 2-4 NB model estimation results ....................................................................................................................... 33 

Table 2-5 Summary performance of the EB approach, NB regression, benchmark and RF models ........................... 36 

Table 3-1 Pseudocode of the iterative depression delineation process ........................................................................ 51 

Table 3-2 Types of nodes in a DEM-graph ................................................................................................................. 53 

Table 3-3 Information stored in an edge ...................................................................................................................... 54 

Table 4-1 Features representing the hazard ................................................................................................................. 75 

Table 4-2 Features representing vulnerability ............................................................................................................. 76 

Table 4-3- Features representing exposure .................................................................................................................. 77 

Table 4-4 Configuration of tuned ML models ............................................................................................................. 87 

Table 4-5 ML models performance after tuning thresholds......................................................................................... 89 

 

 



1 

Chapter 1 

INTRODUCTION 

This dissertation develops and tests a new data-driven framework for short-term roadway pluvial 

flash flood (PFF) risk estimation at the scale of road segments using crowdsourced navigation 

data and a simplified physics-based PFF model. Flash flooding is considered one of the most 

hazardous natural disasters that affect people worldwide (Kousky, 2018). Analysis of flash 

floods over the contiguous United States shows that flash flood frequency and property damage 

have increased in the past two decades (Ahmadalipour and Moradkhani, 2019). Pluvial flash 

flooding (PFF) is defined as localized floods caused by an overwhelmed natural or engineered 

drainage system (Carter et al., 2015; Rosenzweig et al., 2018). PFF can reduce the reliability of 

roadway networks by decreasing capacity, increasing travel time, reducing safe speed, and 

increasing accident risks and deaths through lane submersion (Agarwal et al., 2005; Smith et al., 

2004; Suarez et al., 2005). According to the National Weather Services (2022), 30 cm of 

standing water can be sufficient to float most cars. 

Most urban flood studies have focused on fluvial (river) and coastal flooding rather than 

PFF. Rosenzweig et al. (2018) identified three reasons for pluvial flooding being less studied: 1—

It is assumed that stormwater infrastructure, such as sewers, culverts, and pumps, are sufficient 

to prevent pluvial flooding, 2—Pluvial flooding is believed to be a nuisance with minimal 

impacts, and 3—Lack of monitoring data to capture short-duration precipitation over small urban 

watersheds. 
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In the past, stormwater minor systems (curbs, gutters, inlets, pipes, and channels) have 

been designed to minimize nuisance hazards associated with a 10-year or less recurrence interval 

rainfall (U.S. Department of Transportation FHWA, 1979). More recent roadway facilities are 

designed and evaluated for 50-year and 100-year events (Mark and Marek, 2011), but in older 

urban areas, undersized conveyance systems remain (Jack et al. 2021). With climate change, 

growing urbanization, and increasing imperviousness, the frequencies of extreme rainfall events 

and nuisance flooding are increasing (Hemmati et al., 2021, 2020; United Nations, 2018), 

leading to increased risks of pluvial flooding and water logging. Risk of a natural disaster is 

defined as a combination of hazard, vulnerability, and exposure. According to Gouldby et al. 

(2005), hazard is a potentially destructive phenomenon; vulnerability refers to the characteristics 

of a system that describe its potential to be harmed by the hazard; and finally, exposure is the 

number of receptors that harm may influence. In interpreting the risk of roadway PFF on a road 

segment, the hazard of the system is precipitation; vulnerability is any local characteristic of a 

road segment that contributes to PFF, such as stormwater drainage system and hydrologic 

characteristics, and exposure is the traffic volume that navigates on flooded road segments. 

1.1 Background  

Mobility disruption is a noticeable consequence of storm events and PFF on roadways (Coles 

and Hirschboeck, 2020; Coles et al., 2017; Douglas et al., 2010; Li et al., 2018; Yin et al., 2016). 

Some studies have evaluated precipitation impacts on either vehicle speeds or traffic delays. For 

example, Smith et al. found a correlation between rainfall intensity and free-flow traffic speed 

(Smith et al. 2004). Hooper et al. analyzed historical traffic data and precipitation radar data on 

two specific roadway corridors to establish the relationship between rainfall characteristics and 

traffic speed (Hooper et al., 2014). They showed a single global relationship cannot describe the 
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relationship between precipitation and traffic speed: Instead, local characteristics of road 

segments should be taken into account. Some studies have focused on relationships between 

traffic congestion and precipitation. Chung (2012) used weather and traffic data and to estimate 

rainfall-related non-recurrent traffic congestion; they proposed a function that relates rainfall 

conditions and time with average non-recurrent congestion. Zhang quantified the impact of 

rainfall on congestion and reliability of the transportation system, taking into account the time of 

the day and traffic condition on a specific corridor and assuming a homogenous speed profile. 

Praharaj et al.(2021) looked at the historical hydrological and traffic data to quantify the impacts 

of recurrent flooding on the transportation system. Accordingly, they compared Vehicle-hour 

traveled (VHT) of rainy days with non-rainy days. They showed that impacts are temporally and 

spatially heterogeneous, meaning that disruption level may vary by road characteristics and time 

of the day. 

A significant undesirable effect of rainfall on traffic is through lane submersion caused 

by PFF, a highly localized phenomenon that occurs in low-lying areas. While precipitation is 

assumed uniform in the study area of the above-mentioned studies, water accumulations and 

pluvial flooding depth is indeed non-uniform and depends on highly localized characteristics of 

road segments. Hence, instead of precipitation, some researchers evaluated the correlation 

between water depth and traffic flow. Pregnolato et al. (2017) used multiple data sources, 

including experimental, simulation, and observational data, to develop a function that relates the 

depth of flooding to vehicle speed reduction. They estimated that a driver facing 10 cm of 

standing water must not drive faster than 40 km/hr to maintain safe driving, stopping, and 

steering without loss of control.  
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To warn drivers about rapidly changing flash flood conditions, high-resolution predictive 

models are needed at navigational scale (road segment and intersection). Simplified terrain 

models, such as rapid flood spreading model (RFSM) (Lhomme et al., 2008b), height above 

nearest drainage model (HAND) (Nobre et al., 2011), and hierarchical filling and spilling models 

(Chu et al., 2013; Samela et al., 2020; Wu et al., 2019a; Zhang and Pan, 2014) can estimate 

inundation extent in less complex terrains where the dynamics of flow, velocity, and momentum 

are negligible (Teng et al., 2017). Statistical methods are also able to predict flooding by 

analyzing historical observations, however, since they learn from the past, updating procedures 

are required to make them adaptive to accelerated future changes as they are built upon the 

assumption that similar conditions in the future will cause flooding. A notable advantage of 

statistical PFF models is their ability to capture impacts of unobserved variables and 

uncertainties from historical observations, as well as the ability to rapidly update the models as 

new data become available and system dynamics change. Haghighatafshar et al. (2020) 

suggested that designing stormwater infrastructure based on storm recurrence intervals is 

ambiguous while statistical models can provide the basis of a more resilient system by taking 

uncertainties of vulnerability and hazard of pluvial flooding into account. Many studies have 

investigated statistical flood modeling to predict flooding by applying statistical and machine 

learning methods such as classification models, Bayesian frameworks, and Random Forest 

models (Solomatine and Ostfeld, 2008; Tehrany et al., 2013; Tien Bui and Hoang, 2017; Zahura 

et al., 2020). Other studies have combined deterministic physics-based models with statistical 

models for forecasting applications (Li and Willems, 2019; Zhao et al., 2018). 

Empirical and data-driven models require flooding observation data with high spatio-

temporal resolution. The average duration of flash flooding events in the United States has been 
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3.5 hours during the last two decades (Ahmadalipour and Moradkhani, 2019), limiting the 

applicability of aerial imagery to obtain sufficiently frequent flash flooding observations. To fill 

this data gap, there is increasing interest in the application of newer "crowdsourced" data into 

flood modeling, monitoring, and impact assessment (Assumpção et al., 2018; Gaitan et al., 2015; 

Helmrich et al., 2021; Liu et al., 2015; Molinari et al., 2019; Praharaj et al., 2021; Schnebele et 

al., 2014; Zhu et al., 2022). Previous crowdsourced flood data studies have involved engaging 

citizens in collecting four types of data: streamflow or rain gauge readings, videos, text 

messages, and image postings (Assumpção et al., 2018; Cervone et al., 2016; le Coz et al., 2016; 

Li et al., 2018; Li and Willems, 2019; Moy De Vitry et al., 2019; Zhu et al., 2022). Also, Zhu et 

al. (2022) and Liu et al. (2015) applied artificial intelligence techniques to extract flooding 

waterlogging from microblog information shared in crowdsourcing apps. A big challenge in 

using crowdsourced data is identifying the accurate location and flood extent from posted 

pictures, videos, and texts. However, even with the challenges mentioned above, researchers 

have concluded that integrating crowdsourced data into flood models improves the overall 

performance and timeliness of forecasts, hence increasing flood hazard awareness (Assumpção et 

al., 2018; Goodrich et al., 2020). 

The majority of studies have implemented crowdsourced data into physics-based models 

as complementary data for model setup, calibration, validation, and data assimilation 

(Assumpção et al., 2018; Smith et al., 2017; Zahura et al., 2020). Physics-based pluvial flood 

simulation models can be classified into four categories: (1) 1-D sewer flow models that 

represent spatially averaged characteristics of overland flow and simulate flow in the stormwater 

drainage system (Rossman 2010); (2) 1-D or 2-D overland flow simulation models that do not 

consider runoff interactions with stormwater drainage systems (van der Knijff, Younis, and de 



6 

Roo 2010; E. Mignot, Paquier, and Haider 2006); (3) coupled sewer-surface models such as 1-D-

surface/1-D-sewer or 2-D-surface/1-D-sewer models that take surface-sewer interactions into 

account (Noh et al. 2018); and (4) rapid flood spreading models (RFSM) that simplify the 

physics of flood spreading and use conservation of mass to route floodwater (Bulti and Abebe, 

2020; Mignot et al., 2019; Paquier et al., 2015).  

Review of the literature indicates that coupled 2D-1D models produce the most accurate 

flood inundation extent on a hyper-local scale and in an urban environment with complex flow 

paths. However, their application in real-time flood prediction at road segment scales is limited 

due to their high data requirements and computational burden (Bulti and Abebe 2020), as well as   

the highly complex and interconnected variables that contribute to flooding in urban 

environments (Coles et al., 2017; Rafieeinasab et al., 2015). 

Micro topographic features, steep slopes, and varying surface materials can generate 

different types of flow regimes at small spatial scales. Dual-drainage hydrodynamic models that 

couple equations for the underground sewer system and surface flow, require detailed layouts of 

urban drainage systems that can be of varying quality, particularly in older urban areas where 

PFF is most prevalent (Berndtsson et al., 2019; Haghighatafshar et al., 2020; Sadler et al., 2018; 

Smith et al., 2017). Finally, catchments that drain into roadways are often very small and 

ungauged, leading to further uncertainties in estimating road inundation (Versini et al., 2010). 

Hence accurate high-resolution real-time physics-based hydrodynamic modeling in urban areas 

is computationally extensive and rarely considered feasible (Mignot et al., 2019). 

With recent advances in technology, crowdsourced data is now widely available at a low 

cost and can supplement high-fidelity datasets. However, by definition, crowdsourced data are 

collected by heterogeneous volunteer individuals of varying knowledge, experience, perceptions, 
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and number. (Estellés-Arolas and González-Ladrón-de-Guevara, 2012). Social Media 

Geographic Information (SMGI) is a specific type of Volunteered Geographic Information (VGI) 

crowdsourced data that, in addition to geographic coordinates, contains time, user information, 

and multimedia content (Campagna, 2016). Therefore, to analyze and assess the quality of SMGI 

data, in addition to the spatial analysis, time, user, and multimedia content should also be studied 

in an integrated framework. This dissertation focuses on SMGI from alerts posted to the Waze 

navigation App, which are geotagged points posted by Waze users, called Wazers, that express 

drivers' experience of the road condition. Waze alerts, in addition to multimedia content 

describing road surface conditions, contain geographic coordinates, time, and user characteristics 

such as reputation and feedback from other users on the user's postings. From the context of 

roadway flooding, the focus of this dissertation, Waze alerts are not specifically designed for 

flood situational awareness, and Wazers may not be aware that their shared experience will be 

interpreted as flooding data. Craglia et al. divided citizen science and VGI into implicitly versus 

explicitly volunteered information. Implicitly volunteered information means users did not share 

the information with the specific purpose that the data is being used for (Craglia et al., 2012). 

Accordingly, Waze alerts are classified as implicitly SMGI crowdsourced data. Hence, to assure 

the flood-wise value of a Waze alert, other than intentional and unintentional manipulation in the 

crowdsourced data, conceptual misjudgment and misperception should be taken into account. 

To address these issues, this study develops a data curation and computational framework 

for data collection, preprocessing, and modeling to estimate the risk of roadway pluvial flash 

flooding (PFF) at road-segment scales. A hybrid approach is also developed that couples a 

statistical model and a simplified physics-based simulation model in a machine learning (ML) 

model to rapidly predict the risk of roadway PFF using Waze alerts in real-time. 



8 

In the next chapter, data gaps are addressed by incorporating crowdsourced navigation 

data from the Waze navigation app as highly localized flood observations into high-resolution 

data-driven models that can capture the impact of unobserved variables and estimate the 

vulnerability of road segments to PFF. The third chapter presents an efficient physics-based 

RFSM model that uses graph-based calculations to estimate roadway PFF potential in the event 

of stormwater drainage failure. The fourth chapter presents a hybrid ML model that estimates 

road segment PFF vulnerabilities, computed in the second and third chapters, with hazard and 

exposure components of risk to predict the risk of roadway PFF based on Waze flood alerts.   

  



9 

Chapter 2 

ESTIMATING THE VULNERABILITY OF ROADWAY PLUVIAL FLOOD BASED ON 

CROWDSOURCED TRAFFIC DATA AND DEPRESSION-BASED DEM ANALYSIS 

2.1 Introduction 

In this chapter, we address gaps and limitations of PFF probability estimation on roadways by 

incorporating crowdsourced navigation data from the Waze navigation app as highly localized 

flood observations into high-resolution data-driven PFF vulnerabilities that can capture the 

impact of unobserved variables and estimate the vulnerability of road segments to PFF. The 

proposed approach can be updated and implemented rapidly to provide near-real-time 

navigational warnings. The initial framework developed in this chapter has three steps. In the 

first step, road surface depressions and their upstream catchments are delineated from a high-

resolution digital elevation model using simplified flow-routing and hierarchical fill spill 

approaches. In the second step, two statistical and machine learning models—Empirical Bayes 

(EB) and random forest (RF)—are developed and tested to predict PFF frequency using roadway, 

catchment, depression, and rainfall characteristics. In the third step, roadway flooding 

likelihoods (i.e., vulnerability) and flood maps are generated that could be disseminated to 

navigation software. To our knowledge, this study is the first to develop real-time PFF 

vulnerability maps at road segment scales using data-driven models and crowdsourced traffic 

data. With the widespread use of smartphones and crowdsourced applications, this study shows 

the benefits of integrating crowdsourced data and statistical modeling approaches into roadway 

flood awareness and management systems. 
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2.2 Methodology 

The three steps of the framework developed are shown in Figure 2-1. The first step involves data 

preprocessing to create the dataset needed for modeling. The second step fits statistical and 

machine learning models to the historical dataset, and the third step performs the roadway 

flooding likelihood estimation for future storms. These steps are described in more detail in 

sections below. 

 

Figure 2-1 Methodology framework (basemap from ESRI-2021) 

2.2.1 Step I: Preprocessing 

The dataset preprocessing in Step I includes three primary components that are described in 

detail in the sub-sections below and depicted in Figure 2-1. First, road surface depressions and 

their upstream catchments are delineated. Second, storm events and their characteristics are 

determined from continuous rain gauge observations; third and last, flood alerts are assigned to 

corresponding depressions and storm events. 
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2.2.1.1 Depression Extraction 

The first step of data preprocessing is to find road surface depressions that are prone to PFF. 

Generally, surface depressions are defined as the difference between the hydrologically-

conditioned digital elevation model (DEM) (Lindsay and Dhun, 2015) and the raw DEM. In 

hydrologically-connected DEM elevations of internally draining sinks are raised to form a flat 

area that can drain to downstream. Locating surface depressions in a highly urbanized terrain is 

challenging due to micro-topographic and underground features (such as curbs, stormwater 

inlets, etc.) that determine the actual flow path. In addition, using a high-resolution DEM (1-

meter) introduces hierarchical depressions with different orders of magnitude in spatial scale, 

from highly localized (minor pits) to surface depressions that cover more than one neighborhood 

(residual depressions). Therefore, a nested hierarchy of depressions must be considered to extract 

depressions compatible with urban features.  

In this paper, the "sink evaluation" tool of the ArcHydro toolbox (Djokic et al., 2011) is 

utilized to extract a nested hierarchy of surface depressions. The sink evaluation tool scans the 

bare earth DEM (BE-DEM) and characterizes low-lying cells. The process of local depression 

extraction is an iterative process that examines each sink, raises the elevation of low-lying cells 

to fill the sink, and then reapplies the process on the resulting DEM. This procedure is depicted 

in Figure 2-2. In the first sink evaluation step, Level-1 depressions are delineated and raised 

(Figure 2-2-a). In the second step, the DEM resulting from the first level fill (Figure 2-2-e, red 

areas) is evaluated and Level-2 depressions are delineated. This process can be repeated until the 

area is fully hydrologically-conditioned and no higher-level depressions remain. The number of 

steps required in this process is dependent on the resolution of the DEM and the complexity of 

the depressions in the landscape. 
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Due to the complexity of urban terrain, the spatial scale of depressions at each hierarchy 

level is quite variable and depressions at the same level can be as large as a neighborhood or as 

small as a pothole. Initially, depressions at all hierarchical levels are extracted. Because 6-inches 

of standing water has minimal impact on most cars (National Weather Service, 2022) 

depressions with maximum depth smaller than 6-inches are removed from further analysis. Next, 

those depressions that coincide with urban topographic features that affect flow, such as roadway 

curbs and gutters, are manually selected as flood-prone depressions. Flood-prone depressions are 

then selected by examining overlays of the depressions and Waze flood reports, as well as the 

areas of depressions and road surfaces that the depression covers. Heuristics for this procedure 

are presented in detail in Section 2.2.1.5. Figure 2-2-e shows 10 depressions (L1-1 to L1-7, L2-1, 

L2-2, and L3-1) extracted on a road segment with three depression levels. Level-1 depressions 

and L2-2 appear as small potholes or single-cell pits that could be DEM errors, but regardless are 

too small on the road surface to cause traffic disruptions. However, L2-1 aligns with road curbs 

and gutters and could cause traffic disruptions by covering a large area and all lanes of the 

roadway. Therefore, L2-1 is manually selected as the smallest depression that is prone to PFF 

and could affect traffic flow on this road segment. (Note that L3-1 includes L2-1, hence it will be 

filled only after L2-1 has filled and disrupted traffic flow already. Hence, L3-1 does not need to 

be included in the model for traffic navigation purposes.) 

2.2.1.2 Physical Catchment and Depression Descriptors 

After delineating road surface depressions, physical descriptors of depressions and their 

upstream catchments are computed as follows. Two sets of characteristics, summarized in Table 

2-1, are defined for every depression that is selected in the previous extraction step: physical 

depression descriptors (PDD) and physical catchment descriptors (PCD) (Kalantari et al., 2017, 
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2014). PDD features describe the depression topography that is likely to affect water 

accumulation. These features are area, average depth assuming the depression is filled, and the 

height of road DEM cell elevations above the lowest elevation of the depression (hereafter called 

Height Above Lowest Elevation, or HALE). The HALE feature indicates which terrain cells 

would be inundated first and the accumulated depth required for flood water to reach that grid 

cell. Figure 2-3 shows a schematic of the HALE and depth features. The PCD features are 

derived from the upstream catchment that drains into each depression. The extracted features are 

average slope, fractions of the upstream catchment with a steep slope (defined as steeper than 

8%), percentage of imperviousness, and the net log-transformed drainage area, hereafter called 

net drainage area (𝑁𝑒𝑡𝐷𝐴) which is computed using Equation 2-1. 

Equation 2-1 

𝑁𝑒𝑡𝐷𝐴 = 𝐿𝑜𝑔(𝐶𝐴) × 𝐼 

where: 𝐶𝐴 is the catchment area in 𝑚2 , and 𝐼 is the percentage imperviousness of the 

catchment based on the National Land Cover Dataset (NLCD).𝐿𝑜𝑔(𝐶𝐴) represents the nonlinear 

relationship between catchment area and flood likelihood. This can happen because the larger the 

drainage area, the higher the impacts of infiltration loss and stormwater drainage that were not 

considered in this analysis.  
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Figure 2-2 Hierarchical filling of surface depressions (basemap from ESRI-2021) 

 

Figure 2-3 Schematic of HALE and depth features 

2.2.1.3 Traffic Exposure 

Crowdsourced data are generated by volunteer contributions, which results in more data 

availability on roads with higher traffic volumes. Therefore, including a feature in the model that 

captures roadway traffic exposure to flooded areas is necessary to consider the likelihood of 

reporting a flooded depression. For this purpose, two additional variables are included in the 

framework (Table 2-1): (1) the natural logarithm of Annual Daily Traffic (ADT) and (2) the road 

function as defined by the Texas Department of Transportation (TX-DOT). 
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2.2.1.4 Storm Event Definition and Storm Clustering 

Raw precipitation data are obtained from Automated Surface Observing Systems (ASOS) 

stations in continuous 5-minute interval rain pulse observations. To predict the probability of 

depression flooding during a storm of particular severity, independent storm events must be 

derived from the continuous data. In this study, the Minimum Inter-event Time (MIT) method is 

used to define independent storm events. The MIT approach defines a storm event as rainfall that 

follows and is followed by a minimum dry (rainless) period called the Minimum Inter-event 

Time. 

Table 2-1 Physical depression/catchment descriptors 
 

Depression descriptor Definition Unit Source 

PDD 

Depression area The area of the road surface that the 

depression covers 

Square meters DEM processing  

Average depth The average depth assuming that the 

depression is filled 

Meters DEM processing 

Maximum depth The maximum depth assuming that the 

depression is filled 

Meter DEM processing 

Depression volume The volume that fills the depression Cubic meters DEM processing 

Minimum depression 

volume 

The volume that generated 6-in depth on the 

road 

Cubic meters DEM processing 

Height above the lowest 

elevation (HALE) 

The average height of the road above the 

lowest elevation of the depression 

Meters DEM processing 

PCD 

Net drainage area Proxy to the runoff generated from the 

upstream catchment  

N/A DEM processing 

Upstream imperviousness Average imperviousness fraction of the 

upstream catchment 

Percentage National Land 

Cover Dataset  

Upstream steep slope  The fraction of the catchment area that has a 

slope steeper than 8 percent 

Percentage  DEM processing 

Average upstream slope The average slope of upstream catchment Degree  DEM processing 

Road 

Log ADT Natural logarithm of the ADT Vehicles per day TX-DOT 

Inventory* 

Road function  The function of the road as  

1: interstate,  

2: Freeway and Expressway,  

3: Principal Arterial,  

4: Minor Arterial,  

5: Major Collector 

N/A TX-DOT 

Inventory* 

*- https://www.txdot.gov/data-maps/roadway-inventory.html 
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The MIT value can be calculated using different approaches. A reasonable estimate of the 

MIT value is the lag-time at which the serial autocorrelation between rain pulses reaches a pre-

set low threshold and remains steady (Asquith et al., 2005). In this study, the MIT value is 

diagnosed using the correlogram method to visualize the autocorrelation of a rain pulse 

timeseries to find the lag time that makes a rain pulse independent of its preceding rain pulses. 

After defining independent storm events, storm characteristics, including accumulated 

precipitation, duration, average intensity, and maximum 15-minute, 30-minute, and hourly 

intensities, are calculated.  

For storm events with similar characteristics, similar depression PFFs are likely to occur. 

To capture this phenomenon, storms are clustered into classes with similar severity (light, 

moderate, severe) using the following storm characteristics: rainfall intensity, rainfall depth, and 

storm duration. For storm clustering, agglomerative hierarchical clustering is applied using a 

bottom-up approach that forms a single cluster for each storm event and successively merges 

clusters based on Ward’s linkage method. Ward linkage method minimizes the total increase in 

within-cluster variance (Edelbrock, 1979) caused by merging clusters. The benefit of using 

agglomerative clustering is that this algorithm is less sensitive to outliers compared with other 

commonly used clustering algorithms and avoids creating a large number of small clusters for 

extreme storm events (Edelbrock, 1979). 

2.2.1.5 Waze Data Preprocessing 

Waze is a GPS-based traffic navigation app that collects crowdsourced information about road 

conditions. The Waze app aggregates traffic incidents reported by its users as traffic alerts. 

Traffic alerts are geotagged points with two attributes that specify their lifetime: ‘publish date’ 

and ‘last seen’. Waze alerts are a type of implicit Social Media Geographic Information (SMGI) 
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for which, other than intentional and unintentional manipulation, can also be subject to 

conceptual misjudgment. To distinguish between Waze flood alerts that are reliable as flood 

observations and the non-flood related Waze alerts, their content, location, and publish time are 

investigated. The Waze app has no pre-qualification for users to post a report, consequently not 

all of the flood-labeled alerts are reliable to be used as flood observations. Praharaj et al (2021) 

showed that 71% of Waze flood alerts are reliable in Norfolk, Virginia. To investigate Waze 

alerts’ authenticity, flood-related alerts are matched to the most recent rainfall event and 

computed the delay between alerts’ publishing and rainfall end-time. A temporal threshold is 

found by analyzing the cumulative distribution of delays that determines whether a flood report 

is related to a storm event.  

In addition to alert timing, the locations of Waze alerts are compared to publicly available 

datasets of high-flood-risk locations, including the National Flood Hazard Layer (NFHL), high 

watermarks and low water crossings data inventories from the North Central Texas Council of 

Government (NCTCOG), and the road surface depressions computed as described in the 

methodology section. The NFHL is a spatial dataset that uses river flood hazard information 

provided by the Federal Emergency Management Agency (FEMA) to generate flood hazard 

maps showing areas at high risk of flooding. The proximity of Waze alerts to the high flood risk 

locations were investigated to find the spatial accordance of flood alerts to these locations. 
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Figure 2-4 Alert assignment 

One challenge in adopting Waze flood-related alerts as roadway PFF observations is 

assigning the alerts to the appropriate flooded location because the coordinates of alert points do 

not perfectly align with flooded location coordinates. The distance between the flooded location 

and alerts depends on many unknown factors such as drivers’ reaction times, direction, and sight 

distance. Posting a flood alert requires Waze users to complete three steps (three selections) in 

the app while driving or riding and users can post a flood alert before or after passing the flooded 

road segment. Hence assigning flood alerts to the proper depression must be done carefully. 

Waze data do not provide the direction of travel. Thus, no constraints regarding the travel 

direction have been used for assigning flood alerts to flooded depressions, since depressions can 

cross both sides of the road.  

In this study, three independent individuals were asked to separately visually assess a 

map of historical flood alerts laid over surface depressions and assign alerts to depressions using 
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the following criteria: a cluster of more than two flood alerts should be available near the 

depression and the depression must be distinct from other nearby surface depressions. Flood 

alerts posted from bridges and elevated highways are excluded since BE-DEM does not 

represent bridge surfaces. Figure 2-4 shows a schematic example of alerts that can be assigned to 

the depicted depression and some that should remain unassigned because they are isolated and 

too far from a depression. 

2.2.2 Step II: Modeling 

Pluvial flooding on any given surface depression can be modeled as a Bernoulli trial (i.e., a 

random binary function such as a coin flip) of flood failure (i.e., non-flooded) or success (i.e., 

flooded). If a depression has one or more Waze flood alerts linked to it, the depression is labeled 

as flooded (success). Assuming that the probability of being flooded is smaller than the non-

flooded situation and that the likelihood of flooding in a particular storm event for each 

depression only relies on its characteristics and the storm magnitude (i.e., is independent of the 

probability of flooding on other depressions), a random variable 𝑦𝑖,𝑗will define the count of 

successes (flooding) out of the 𝑁 trials (𝑁 storm events of cluster 𝑗) on depression 𝑖. The purpose 

of this study is to estimate the random variable 𝑦𝑖,𝑗 using extracted topographic features, road 

function, and storm severity. Both statistical and machine learning models are implemented to 

estimate 𝑦𝑖,𝑗, namely Empirical Bayes and Random Forest. Table 2-2 summarizes the categories 

of pre-processed independent variables used in the modeling. 
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Table 2-2 Count dataset of PFF events 

 

2.2.2.1 Empirical Bayes Model 

In a highly urbanized area there are numerous uncertain and unobserved site-specific features 

that affect localized PFF vulnerability, such as nearby storm drain inlets’ locations, age, capacity, 

and condition. For example, consider two road surface depressions (A and B) with similar PDD, 

PCD, road type, and ADT that experience the same storm. Suppose Depression A is located in a 

neighborhood with lower infrastructure maintenance services and its drainage system clogs more 

often. Then, despite similar descriptive features, higher flood frequency should be expected at 

depression A.  

 The Empirical Bayes (EB) algorithm, a simplified and faster version of Bayes theory, 

takes advantage of the historical count of reported flood events from the Waze data to better 

reflect the impacts of these types of uncertain and unobserved variables. The EB approach has 

previously been implemented in many fields to address the impacts of unobserved variables in 

estimating rare events, including hydrology (Fill and Stedinger, 1998; Hauer et al., 2002; 

Kuczera, 1982; Lord et al., 2005; Smith et al., 2014; Strupczewski et al., 2001). The EB method 

uses the joint global prior and site-specific counts and produces the posterior probability 𝑦𝑖 by 

employing a weighted average as shown in Equation 2-2  (Fill and Stedinger, 1998; Hauer et al., 

2002; Kuczera, 1982; Smith et al., 2014). 

Equation 2-2 

𝐸𝐵(𝑦) = 𝑤 ×  𝜇 + (1 − 𝑤) × 𝑦 

 PDD & PCD 
Road function 

(categorical) 

Storm clusters Count of Flooding1 (count) 

𝑫
𝒆

𝒑
𝒓

𝒆
𝒔

𝒔
𝒊𝒐

𝒏
 𝒊

𝒕𝒉
 

Topographic 

Features  

Interstate 

Freeway-

Expressway 

Principal 

Arterial 

Minor Arterial 

Major Collector 

Light 𝑦(𝑖 , 𝑗 =  𝑙𝑖𝑔ℎ𝑡) 

Moderate 𝑦(𝑖 , 𝑗 = 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒) 

Severe 𝑦(𝑖 , 𝑗 =  𝑠𝑒𝑣𝑒𝑟𝑒) 
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where 𝑤 is the EB weight factor, 𝜇 is the expected flood frequency on depressions similar to a 

given depression, and 𝑦  is the number of flood events on a given depression. The expected flood 

frequency for similar depressions (𝜇) is the global prior probability distribution from a fitted 

regression model, which in this study is a Negative Binomial regression model. The number of 

flood events (𝑦) is the historical site-specific flood event observation from the Waze data.  

2.2.2.2 Negative Binomial Distribution 

Based on Waze flood observations, the variance of flood frequencies on depressions with similar 

PDD, PCD, road type, and ADT is assumed to be greater than the average of flood frequencies 

(i.e. 𝐸(𝑦) < 𝑉𝑎𝑟(𝑦)). This assumption is appropriate given the importance of unobserved 

variables on the PFF formation on roads such as storm inlet conditions. In other words, among 𝑛 

similar surface depressions, 𝑘 depressions, where 𝑘 ≪ 𝑛 experience flooding significantly more 

than average. This fact leads to an over-dispersed dataset where 𝐸(𝑦) < 𝑉𝑎𝑟(𝑦).  

Studies have shown that in the case of over-dispersed data, 𝑦𝑖 follows a Poisson distribution 

with the rate parameter 𝜆𝑖, where 𝜆𝑖 follows a Gamma distribution with the dispersion parameter 

𝜙 and the rate parameter 𝜙/𝜇𝑖. The resulting distribution is Poisson-gamma, also called the 

Negative Binomial (NB) distribution (Zou et al., 2018). The probability mass function of the NB 

distribution is given in Equations 2-3 and 2-4. Therefore, in this study, the expected flood 

frequency on similar depressions in the EB equation (Equation 2-2), is derived from a Negative 

Binomial (NB) regression model that is fit to the count dataset shown in Table 2-2. NB parameters 

(𝜙 and 𝛽𝑖) are estimated using the Maximum Likelihood Estimation method. 

Equation 2-3 

𝑃(𝑦) =
Г(𝑦 + 𝜙)

Г(𝑦 + 1)Г(𝜙)
(

𝜙

𝜙 + 𝜇
)

𝜙

(
𝜇

𝜇 + 𝜙
)

𝑦
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Equation 2-4 

𝜇 =  𝑒𝑥𝑝(∑𝛽𝑘𝑥𝑘) 

where 𝜙 is the dispersion parameter of the NB distribution, 𝑦  is number of flood events on 

depression 𝑖, and 𝜇 is the expected flood frequency on a given depression based on similar 

depressions (Equation 2-4). 𝛽𝑘 is the coefficient of 𝑘𝑡ℎ regressor variable in fitted regression 

model, and 𝑥𝑘 is the value of 𝑘𝑡ℎ regressor on a given depression. 

Model selection for the NB regression model is implemented using the Bayesian 

Information Criterion (BIC). In model selection, minimizing the BIC to the simplest model with 

the least number of exploratory variables is reasonable. Reducing the BIC by adding more 

explanatory variables increases the risk of overfitting and loss of generality. Equation 2-5 shows 

the calculation of BIC.  

Equation 2-5 

𝐵𝐼𝐶 = −2 𝑙𝑜𝑔(𝐿) + 𝐾. 𝐿𝑛(𝑛) 

where 𝐿 is the maximum likelihood of the model representing the overall fit of the model, 𝐾 is 

the number of model parameters, and 𝑛 is the sample size.  

It can be shown that the weight in the EB equation based on the NB regression is 

calculated as 
𝜙

𝜇+𝜙
, hence we can rewrite Equation 2-2 as Equation 2-6. For more information 

regarding the mathematics of  deriving the weight factor of EB, refer to Zou et al. (2018). 

Equation 2-6 

𝐸𝐵(𝑦) =
𝜙

𝜇 +  𝜙
𝜇 +  

𝜇

𝜇 + 𝜙
 𝑦 

where 𝜙 is the dispersion parameter of NB distribution, 𝑦  is number of flood events on a given 

depression, and 𝜇 is the expected flood frequency on a given depression based on similar 

depressions (Equation 2-4). 
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The EB model's predictive power is estimated using the mean absolute error (MAE). The 

MAE shows the average error of the fitted values across the observations. The lower the MAE, 

the better the EB estimates fit the observations. The MAE is calculated using Equation 2-7:  

Equation 2-7 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖

𝑛

𝑖=1

| 

where 𝑛 is the sample size, 𝑦𝑖  is number of flood events on depression 𝑖, and �̂�𝑖 is the EB 

predicted number of flood events on depression 𝑖 

2.2.2.3 Random Forest 

Random Forest (RF) is a supervised ensemble machine learning algorithm that uses multiple 

decision tree learners to increase predictive performance (Breiman, 2001). A decision tree 

consists of a hierarchy of nodes, each of which represents a conditional decision rule that splits 

the data into different decision paths. The final prediction of RF is the average prediction of all 

decision trees; each tree is built from a bootstrap sample (i.e., sampling without replacement 

from the full dataset) of observations and a subset of features. The RF has been widely used for 

data-driven modeling in the field of water resources (Sadler et al., 2018). This algorithm can 

handle large and imbalanced datasets and is well known to be easy to train. An important 

strength of the RF is that its convergence rate is independent of noise and sparsity in the 

descriptive variables. RF models are useful for estimating the contribution of features in the 

target variable (in this case, flood frequency). The node impurity in each node of the RF is an 

important performance metric for decision trees because it measures the heterogeneity of the 

target values (predicted count of observed flooding events) at that node, which is the variance of 

the target values in this regression problem. The count of observed flooding events. The 

normalized reduction in the node impurity achieved by adding a specific feature to a tree defines 
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the importance of that feature. In RF, the average of importance of a feature in all trees weighted 

by the number of samples involved in each split is the overall feature importance. 

In this study, RF regression is executed using the Scikit-Learn library in the Python 

environment (Breiman, 2001; Fabian Pedregosa et al., 2011). The number of decision tree 

learners in the RF regression is optimized by the algorithm. For hyperparameter tuning and 

model selection, a randomized cross-validated grid search is applied on a wide range of model 

parameters and MAE is used to measure parameter performance and select the best-performing 

parameter set. The resulting parameters are then used to estimate the frequency of PFF at every 

depression for each storm class using Equation 2-8. 

Equation 2-8 

𝑅𝐹(𝑦) = 𝑅𝐹(𝑃𝐷𝐷, 𝑃𝐶𝐷, 𝑟𝑜𝑎𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑠𝑡𝑜𝑟𝑚 𝑡𝑦𝑝𝑒) 

where 𝑅𝐹(𝑦) is the random forest prediction of number of flood events on a given depression. 

2.2.2.4 Model Evaluation 

To evaluate the performance of the proposed model, the following approaches are used. First, 

80% of the historical data, randomly selected, are used in model training. Model testing is then 

implemented using the remaining 20% of the data held out from the training process. The 

performance of the models is then assessed using the MAE of the predictions. In order to ensure 

that the models are stable and their performance does not change with different train-test sets, the 

models are trained and evaluated for several randomly chosen training sets and the variation in 

their performance is considered in selecting the best models for the final step of the framework. 

Then, to further assess the improvements in PFF event estimation using topographic and 

historical Waze observations, the EB and RF models are compared with three simple benchmark 

models. First, the average model (Equation 2-9) assumes that the average PFF counts from 

historical Waze observations apply to all depressions and all storms without considering storm 



25 

type and topographic feature. Second, the storm-based average model uses the average of the 

PFF count in each storm cluster without considering topographic features (Equation 2-10). 

Finally, a regression model is used that predicts PFF based on topographic, road type, and storm 

features but without implementing EB to update the prior probability (Equation 2-4). 

Equation 2-9 

𝑝(𝑖) =
∑ 𝑦𝑖

𝑛
1

𝑁𝑡
 

where 𝑝(𝑖) is the likelihood of flooding on depression 𝑖, 𝑦𝑖 is the number of reported floodings 

on depression 𝑖, 𝑛 is total number of depressions, and 𝑁𝑡 is number of total storm events. 

Equation 2-10 

𝑝(𝑖, 𝑗) =
∑ 𝑦𝑖,𝑗

𝑛
1

𝑁𝑗
 

where 𝑝(𝑖, 𝑗) is the likelihood of flooding on depression 𝑖 and storm type 𝑗, 𝑦𝑖,𝑗 is the number of 

reported floodings on depression 𝑖 and storm type 𝑗, and 𝑁𝑗 number of total storms of type 𝑗. 

2.2.3 Step III: Flood Probability Estimation 

Finally, in Step III, the most accurate model from Step II is used to produce flood probability 

maps for every storm cluster across the region of interest. The probability of flooding is 

calculated using Equation 2-11.  

Equation 2-11 

𝑝(𝑖, 𝑗) =  
�̂�𝑖,𝑗  

𝑁𝑗
 

where 𝑝(𝑖,𝑗) is the likelihood of flooding on depression 𝑖 in a storm of type 𝑗, �̂�𝑖,𝑗 is the predicted 

number of floodings on depression 𝑖 and storm type of 𝑗, and 𝑁𝑗 is the number of storms of 

cluster 𝑗. 
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Figure 2-5 Study area and datasets 

2.3 Case Study Background and Datasets 

The described methodology was evaluated in the city of Dallas, Texas, USA (Figure 2-5), which 

is the third-largest city in Texas with a population of more than 1 million. Dallas elevation 

ranges from 137 to 168 meters (450 to 550 feet), and it is mostly flat. According to the Texas 

Department of Transportation (TXDOT), almost 20 percent of crashes, equal to 248 vehicle 

crashes in the City of Dallas in 2018, happened on either standing water or wet road surface 

conditions. According to an analysis conducted by the First Street Foundation, flooding can 

expose 1841 miles of Dallas roadways (out of 6064 miles) to the risk of becoming impassable 

(Risk Factor, 2021). However, currently available fire-rescue dispatch software, including that 

used by the Dallas Fire-Rescue Department (DFRD), assumes empty and dry roads for routing 

rescue vehicles. This has resulted in rescue delays and occasional loss of life on flooded 

roadways, which provided the motivation for this study.  
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Figure 2-6 a: Flood alerts over NFHL flood zones b: Distribution of NFHL flood zone over the study area 

For this case study, several datasets were used. First, a 1-meter resolution Bare Earth 

Digital Elevation Model (BE-DEM) was obtained from the North Central Texas Council of 

Government (NCTCOG), which was derived from a Quality Level 2 Lidar survey performed by 

Digital Aerial Solutions, LLC, in 2018, under contract with the Unites States Geological Survey 

(USGS)/ National Resources Conservation Services (NRCS). The BE-DEM dataset's name is TX 

Pecos Dallas 2018 D19, with horizontal accuracy of +/-0.682 meters at a 95% confidence level 

and non-vegetated vertical accuracy (NVA) of 0.196 meters.  

For rainfall, 15-minute precipitation observations were obtained from the USGS ASOS 

station at Dallas Love Field Airport (DAL) (Figure 2-5). Precipitation observations from January 

1, 2017, to March 1, 2020 were used. Next, the US Department of Agriculture's (USDA) 

National Land Cover Database (2016) (Homer and Fry, 2012) is used to extract catchment 

imperviousness. The imperviousness raster over Dallas has a 30-meter resolution and ranges 

from 0 to 100%, with a mean of 33.87% and standard deviation of 32.98%. 

Waze alerts were obtained from the NCTCOG, which is a Waze partner in the Waze 

Connected Citizen Program (CCP). The NCTCOG granted us access to the Waze data for the 
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period of 2018-04-21 (the start of NCTCOG's Waze partnership) to 2020-03-20. Waze alerts are 

classified into seven main categories: accident, jam, construction, miscellaneous, hazard or 

weather (hazard-weather), road-closure, and others. The "hazard-weather" data itself is divided 

into several subcategories. Alerts in the "flood" subcategory and ones which have any form of 

the word "flood" in their report description, such as "right lane flooded," are potentially flood-

related and were included in this study, resulting in 5652 Waze alerts. 

The locations of these Waze alerts were shown in Figure 2-5, along with the NFHL river 

flood zones. Figure 2-6-a shows that the majority (around 70%) of alerts during the study period 

were posted in areas with minimal river flood hazard, which comprise approximately 76% of the 

study area (Figure 2-6-b). Another 18% of the alerts were posted in areas of reduced river flood 

risk due to levees, which were not breached during the study period. This indicates that PFF is 

likely the cause of most Waze alerts. 

To further investigate the potential causes of Waze flood alerts, the high-water marks 

inventory and low-water crossing dataset were obtained from the Texas Natural Resources 

Information System (TNRIS). The high-water marks inventory contains historic high water level 

reports from flooded water bodies or structures at 334 locations across the city of Dallas (Figure 

2-5). The low-water crossing dataset includes 175 locations where surface water has crossed 

roads during high-flow conditions (Figure 2-5). Analyzing Waze alert distances to the nearest 

high-water mark and low-water crossing shows that the vast majority of alerts are more than 200 

meters from both low-water crossings and high-water marks (Figure 2-7).  



29 

 

Figure 2-7 Cumulative density of alert distances to closest high-water mark and low-water crossing 

These findings show how complementary flood observations such as Waze data are 

needed to assess roadway conditions more comprehensively than available official datasets. 

Thus, in order to predict local roadway PFF, it is necessary to consider local surface depressions 

as low-lying areas where surface runoff can accumulate during storms.  

2.4 Case Study Data Pre-Processing 

2.4.1 Depression Extraction 

Almost 380,000 surface depressions were extracted over the city of Dallas in three steps of 

hierarchical filling (described in the methodology).  Only 315 depressions are located on roads 

and deeper than 6-inches. Among these 315 depressions, 191 depressions were proximal to 

reliable Waze flood alerts more than twice. To consider only chronically flooding areas, the rest 

of this analysis is focused only on these 191 surface depressions.  

2.4.2 Storm Event Definition  

As described in the methodology section, the autocorrelation of rain pulses defines the 

optimal MIT for independent storm events. Figure 2-8 shows that the autocorrelation coefficient 
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first reaches a low value and remains steady at a lag time of 9 hours; accordingly, MIT = 9 hours 

is chosen to convert the continuous precipitation data into independent storm events. 

 

Figure 2-8Autocorrelation of rain pulses 

Using MIT=9 hrs, 236 independent storm events are extracted from January 1, 2017 to 

March 1st  2020. For each storm event, duration; total accumulated precipitation; average hourly 

intensity; and maximum 15-minute, 30-minute, and one-hour interval intensities were computed. 

Once storms were defined, they were clustered using the agglomerative clustering algorithm 

discussed in Section 2.2.1.4. The maximum 15-minute interval intensity and the total 

accumulated precipitation were found to have the most significance in separating storms into the 

clusters. To define the optimum number of clusters, Ward linkage method was used to minimize 

the total within-cluster variance (Edelbrock, 1979). Figure 2-9 shows a dendrogram that 

illustrates how clustering the storms into three groups captures acceptable dissimilarity between 

storms, which are defined as light, moderate, and severe storms. The vertical axis of the 

dendrogram depicts the dissimilarity (Ward distance) between storms, and the horizontal axis 

represents storms. The position of each split on the vertical axis shows the dissimilarity of the 

two clusters on each side of the split. Table 2-3 shows summary statistics for the three storm 

clusters. 
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Figure 2-9 Tree-based dendrogram of agglomerative clustering 

Table 2-3 Summary statistics of storm clusters 

 

 

 

 

 

2.4.3 Waze Data Preprocessing  

Potential flood-related alerts posted in the timespan of 2018-04-21 to 2020-03-20 were 

matched to their most recent preceding storm, and the delay between the time of each alert's 

posting and the end of rainfall was calculated.  Figure 2-10 gives the distribution of delays 

between alert's published time and storm end. Figure 2-10 shows that more than 90% of Waze 

flood alerts are posted within 5 hours of storms. Therefore, potential flood-related alerts posted 

later than 5 hours after storms were considered outliers (noise) and removed from the analysis. 

This processing left 4,996 flood-related alerts out of the initial 5,652 alerts. The number of flood 

alerts posted per storm event ranged from 0 to 375, with the distribution depicted in the Figure 2-
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11. During the study period, 150 storms occurred, but only 98 storms were associated with Waze 

flood alerts. On average, each storm event had ten flood alerts.  

The process of flood alert assignment, explained in Section 2.2.1.5 of the methodology 

section, was performed for the 4,996 flood alerts in the Dallas case study by three independent 

annotators. When more than four alerts were clustered around a depression, 100% agreement 

between the annotators was observed in the assignment of alerts to depressions. Disagreement 

between annotators was observed in locations where fewer than four alerts are clustered around a 

depression. The author reviewed alerts that indicated disagreement, and if the specified criteria 

for making the assignment were not met, alerts were removed from the analysis. Among the 

4,996 flood alerts that were filtered, 2,665 alerts were assigned to 191 independent surface 

depressions using the approach described in the methodology section. 

 

Figure 2-10 Distribution of delay in alert posting from storm end 

2.5 Results 

The performance of the proposed framework in estimating flood frequency is evaluated using 

both the Empirical Bayes (EB) and Random Forest (RF) models and compared to the baseline 
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models. Results from the best-performing model, EB, are then examined in more detail in the 

following sections. 

 

Figure 2-11 Total number of flood alerts per storm 

2.5.1 Model Parameters and Performance 

A random 80%-20% train/test split is implemented to evaluate models. Models are fit using a 

randomly-selected training dataset that represents 80% of the processed flood alert dataset, with 

the remaining 20% of the dataset (the testing dataset) used for assessing the predictive power of 

the models. Parameters for the fitted NB model (Equation 2-4) are presented in Table 2-4.  

Table 2-4 NB model estimation results 

Variable Coefficient Standard 

Error 

Z value P-value 

Constant -9.3e+1 3.17e-1 -295.3 0.000*** 

Moderate storm 5.1e+1 2.1e-2 3.1 0.000*** 

Severe storm 7.6e+1 2.4e-4 3.3 0.000*** 

Net DA 8.1e-3 1.2e-1 445.9 0.001** 

Average slope 6.3e-2 1.1e-1 686.2 0.003** 

Log ADT 8.2e-2 2.7e-2 3.0 0.003** 

 Goodness of fit 

BIC 1836.31 

MAE 1.74 

*** significant with more than 99% confidence 

** significant with more than  95% confidence 
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The dispersion parameter of the fitted NB regression model (𝜙 of Equation 2-3) is 2.943. 

A value of 𝜙 > 1 demonstrates that the over dispersion assumption is valid, whereas 𝜙 < 1 

shows an under-dispersed dataset. The MAE value achieved from fitting the NB distribution is 

1.74, which shows that the flood frequencies fit to the prior probability distribution have an 

average error equal to 1.74 flood events out of 150 storms. The EB estimate of the fitted NB 

regression model, computed based on Equation 2-6, reduces the MAE on the training set to 0.88 

flood events. 

For the RF model, hyperparameter tuning is implemented using a 3-fold cross-validated 

randomized search in the Scikit-Learn library in Python programming environment. The best-

performing model is found to have ten trees. The features with the highest importance (based on 

impurity-based feature importance calculated by the Scikit-Learn library) in the RF model are 

severe storms, maximum depth, average upstream slope, log ADT, and the net drainage area. 

The MAE of RF estimates on the training set is 0.73.  

The predictive power of both models is evaluated on the held-out test dataset. The EB 

approach predicts the number of flood events for unseen situations with MAE=0.92, while the 

RF models’ evaluation MAE is considerably higher, with MAE=2.1. To minimize the impact of 

particular train-test datasets on the models performance, the dataset is randomly split 50 times 

and the model performance statistics are re-evaluated for each split. Across these splits, the EB 

model has an average MAE of 0.89, as opposed to the average MAE of 1.92 attained by the RF 

model. EBs predictive capability is also more stable across the 50 runs than the RF model, with 

MAE standard deviations of 0.11 and 0.18, respectively. Figure 2-12 shows the prediction power 

of the models on the train and test datasets. 
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It can be seen that the RF model is a better fit on the training dataset but its lower 

performance on the test set shows that it is overfitting on the training set while the EB approach 

has more consistent performance on both datasets. The superiority of the EB model shows that 

the unobserved features play a significant role in PFF formation on road segments and a 

Bayesian approach is more successful in capturing the effects of these features by incorporating 

site-specific historical observations. 

Next, the EB model that is found superior to the RF model is compared with the simple 

benchmark models given in the methodology section (2.2.2.4). Figure 2-13 demonstrates how the 

flood counts will be predicted on the test dataset using each benchmark model, NB regression, 

and EB model. Table 2-6 summarizes the performance of the EB approach, NB regression, and 

benchmark models. It can be seen that the MAE for both training and testing sets improves by 

adding storm clusters to the average model. This increase is more noticeable in light storms 

(almost 50% improvement for both training and testing datasets). 

However, adding topographic and observed flooding variables, as in the EB model, 

increases the accuracy of PFF count estimation for severe storms more than moderate and light 

storms. This shows that topographic features are more important in the formation of PFF when 

storms are more severe. Also, if PFF is observed at a particular location, then it is more likely to 

be observed at that depression again. 
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Figure 2-12 Prediction of number of roadway PFF events 

Table 2-5 Summary performance of the EB approach, NB regression, benchmark and RF models 

 MAE of train set MAE of test set 

  Light Moderate Severe Total Light Moderate Severe Total 

Total average  1.88 2.01 2.53 2.14 2.19 1.93 3.04 2.37 

Storm cluster based 

average 

0.95 1.97 2.52 1.82 1.16 1.86 2.72 1.89 

NB regression 0.94 1.91 2.37 1.74 1.16 1.65 2.75 1.82 

Empirical Bayes 0.69 1.01 0.93 0.88 0.84 0.85 1.09 0.92 

Random Forest 0.68 0.98 0.91 0.86 1.34 1.66 2.76 1.92 



37 

  

  

Figure 2-13 Prediction of number of PFF using benchmark models and EB 

2.5.2 Flood Vulnerability Estimation 

The EB approach is superior in predicting the total number of flood events; hence, this approach 

is used to estimate flood likelihoods (i.e., vulnerabilities) from the frequency of PFF events 

(Equation 2-11). Figure 2-14 shows a higher PFF likelihood during severe storms compared to 

light and moderate storms. Generally, we can see that flood likelihoods are higher when flooding 

has been posted. However, as discussed in the methodology section, true negative situations 

cannot be identified with voluntary crowdsourced data (i.e., there could be flooding that no Waze 

user has reported). Figure 2-15-a shows an example of a flood probability map for severe storms, 

along with historical flood-related alerts and traffic jams reported by Waze during one severe 
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storm that occurred on September 22nd, 2018. Figures 2-15-b and 2-15-c show the same 

information during the same time and day of the week for the following and preceding weeks. 

Waze traffic jam reports include severity and congestion levels ranging from 1 (lowest) 

to 5 (highest), which denote the level of traffic slow down or complete shutdown. Negligible, 

low, moderate, and high flood probabilities are defined as less than %10, less than %25, less than 

%50, and higher than %50, respectively. In Figure 2-15, high traffic levels (Waze jam levels of 

5) can be seen near a depression with high PFF probability (more than %50). Figure 2-15 

indicates that traffic jams during this severe storm are noticeably higher than at similar time 

intervals before and after the storm. These maps suggest that the traffic jam on the storm date, 

which agrees with the flood likelihood, is likely to be an anomaly due to flooding. This finding is 

consistent with the flood alerts and predictions of severe flooding at this location during the 

storm. 

 

Figure 2-14 Distribution of flood likelihoods in reported versus non-reported floods 

2.6 Discussion 

The EB model is superior compared to the RF and benchmark models in predicting the number 

of flood events; hence this model is used to estimate flood probabilities for storm clusters. The 
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distribution of estimated flood probabilities (Figure 2-14, and Table 2-5) are plausible given the 

magnitude of the storms. For example, light storms have an average duration of 4 hours, and 

average total precipitation of 0.1 inches, which is quite low and flooding would not be expected 

during these storms. Flood-related alerts that are posted during these rainfall events can be 

assumed to be noise and disregarded for future studies. Based on the NB regression line that is 

fitted to the count of observed flood events, we expect to see 7.6 and 5.2 times more flood events 

in moderate and severe storms, respectively, compared to light storms. The NB model also 

shows that increases in the upstream net drainage area and average slope increase the 

probability of flooding, as would be expected. Furthermore, log ADT has a direct relationship 

with the probability of observing a PFF event because frequently-traveled roads are more likely 

to have Waze postings. This finding shows the limitations of estimating flood events from 

crowdsourced Waze datasets that tend to neglect flood events on less-traveled roads. The 

superior performance of the EB approach shows the significant impact of unobserved site-

specific features such as stormwater inlet conditions in predicting the likelihood of PFFs on 

roadways. By using historical observations, the EB approach better identified frequently-flooded 

locations (road surface depressions), perhaps due to site-specific features such as under-sized 

stormwater inlets. Data were not available on these features for this study. In highly urbanized 

areas, these types of uncertainties in engineered structures, particularly in older areas of the city 

where record keeping can be poor, add to temporal uncertainties such as changing climate and 

land use that can affect flood formation. Despite these limitations, this study showed that 

localized traffic-related flood alerts are helpful in estimating PFF probabilities over a three-year 

period. For longer periods, periodically retraining the model to account for changes in 

infrastructure and climate is recommended. 
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To make effective use of crowdsourced traffic data, extensive preprocessing is needed to 

evaluate the reliability of the data and map flood alerts, which are not necessarily posted at the 

exact location of the flooding, to plausible nearby depressions. This process, which was done 

manually in this study, can introduce errors and bias to the analysis. With more data and 

integration of other data sources (e.g., flood sensors and stormwater inlets), an automated 

mapping process could be developed that could potentially reduce these errors. 

Furthermore, the approach taken in this study only considers flood-prone locations 

reported by Waze users. Numerous parameters affect human exposure to flooded locations, and 

the number of Waze users that pass a road segment, such as road type, road function, day of 

week, and time of day. Hence, a similar flood extent on the road can cause significantly different 

magnitudes of traffic disruption at different times and locations, and, therefore, different flood 

reports. Data-driven models also have limitations due to the previously discussed dataset 

constraints. The EB model accounts for heterogeneity by utilizing historical frequencies. 

However, because of the bias and uncertainty in the Waze data, as discussed in Section 2.2.1.5, 

the EB model estimates will be less accurate for depressions situated on local and less-traveled 

routes. While major routes are more important than minor routes for minimizing exposure and 

risk, these limitations must be acknowledged. It is possible that, with more data, an approach to 

extrapolating findings on major roads to minor roads could be developed. To develop a more 

unbiased flood prediction model, we suggest that crowdsourced data be used as complementary 

data in conjunction with other data sources and models to account for less frequently traveled 

areas and times (e.g., during the Covid-19 pandemic, which was not included in this study when 

traffic was significantly reduced). 
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Figure 2-15 PFF probability map versus flood alerts and traffic jams from 1:00 PM to 5:00 PM on September 22, 2018, during 

the severe storm, b. Friday, September 29, 2018, under dry conditions, and c.. Friday, September 15th, 2018, also dry 

2.7 Conclusion 

This analysis is a first step in exploring approaches to implement crowdsourced data from 

the Waze app into flash-flood prediction. For this case study, Waze flood alerts were primarily 

posted in areas outside of mapped river flood hazards and low water crossings, suggesting the 

need for and importance of modeling rainfall-induced or pluvial flash flooding (PFF). The 

statistical and ML models implemented in this study demonstrated the feasibility of modeling 

PFF in terrain depressions based on storm, catchment, and road properties. The EB approach is 

found to be superior in terms of predictive power compared to RF, which shows the importance 

of unobserved site-specific features on roadway PFF, which the EB approach captures by 

incorporating historical site-specific PFF observations into the posterior probability. Both 

statistical and machine learning models achieve smaller MAEs for severe storms compared with 

moderate and light storms. This shows that the modeled depression and catchment descriptors 

are more explanatory in severe storms when infiltration is reduced and drainage systems are 
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more likely to be overwhelmed. The low MAE of the proposed methodology in the Dallas case 

study shows that crowdsourced traffic data has value for high spatio-temporal resolution flash 

flood prediction. Stakeholders and decisionmakers could benefit from the developed model for 

identifying locations that require stormwater utility maintenance or capital investment. Further 

research is needed to further explore the benefits of crowdsourced data as a complementary data 

source with more authoritative data and physics-based models 
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Chapter 3 

GRAPH-BASED RAPID FLOOD SPREADING MODEL FOR REAL-TIME ESTIMATION 

OF HYPER-LOCAL ROADWAY FLOODING VULNERABILITY 

This study develops and tests a simplified pluvial flash flooding (PFF) simulation model that can 

estimate inundation on roadways caused by direct rainfall. Localized floods generated by water 

accumulation in low-lying areas and overwhelmed natural or manmade drainage systems can 

degrade roadway network resilience by reducing road capacity, increasing travel time, limiting 

safe speeds, and raising road safety concerns and casualties through lane submersion 

(Rosenzweig et al., 2018; Smith et al., 2004; Suarez et al., 2005).  

3.1 Introduction 

To alert drivers about rapidly changing flash flood conditions on roadways, an efficient 

simulation model is needed that can be used in real-time and at hyper-local scales where data 

scarcity and sparsity can be a problem. To simulate interaction between surface water and 

underground stormwater drainage system in an urbanized area, coupled sewer-surface models 

such as 2-dimentional surface runoff models coupled with 1-dimentional sewer model (aka 2D-

1D models) are found to have the highest accuracy (Noh et al., 2018), however their application 

is limited due to computational tie and high data requirements (Bulti and Abebe, 2020). 

Although researchers have progressed in the mitigation of computational time and cost by 

incorporating techniques such as current Graphical Processing Units (GPU)/ Central Processing 

Units (CPU), Cloud computing, and dynamic grids and time-steps, data scarcity continues to be a 

challenge for hyper-resolution navigational scale urban flood modeling(Noh et al., 2018; Smith 

et al., 2015). 
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Given the challenges associated with 1D/2D flood inundation models in an urban 

environment and the growing access to high-resolution Light Detection and Ranging (LiDAR) 

derived DEMs, researchers are actively investigating alternatives that can simulate flood 

inundation without a large amount of input data or solving computationally extensive equations 

(Manfreda and Samela, 2019; Zheng et al., 2018). Rapid Flood Spreading Models (RFSM) are 

common approaches in this category that route the water over the terrain to generate a fast flood 

depth estimation in the event of storm drainage failure (Lhomme et al., 2008a).  

Instead of grid cells, RFSM, also known as Hierarchical Filling and Spilling Models 

(HFSM), treat DEM depressions and their catchments as hydrologic units. Surface depressions in 

DEMs cause inward flow and hydrologically isolate flow pathways; hence they are frequently 

removed during DEM preprocessing (pit-filling or breaching). However, in urban PFF modeling, 

surface depressions have a substantial influence on the response of the urban catchment to 

rainfall due to runoff retention. Hence, the number of studies that employ depressions as 

hydrologic units rather than grid cells are increasing (Guidolin et al., 2016; Lhomme et al., 

2008b; Manfreda and Samela, 2019; Samela et al., 2020; Shen et al., 2016; Yong-He et al., 

2015). Surface depressions, as hydrologic units, spill and merge into other surface depressions in 

a sequence that depends on the terrain. The sequence of depressions spilling into each other can 

be described as the horizontal hierarchy, while the merging process and forming higher-level 

depressions is the vertical hierarchy (Balstrøm and Crawford, 2018; Chu et al., 2013; Le and 

Kumar, 2014; Manfreda and Samela, 2019; Samela et al., 2020; Wu et al., 2019b). 

In RFSM models, surface depressions and their nested hierarchy are first delineated, then 

the flood volume is distributed across them. Different methods for extracting surface depressions 

and identifying their nested hierarchy have been proposed in the literature. Le and Kumar (2014) 
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used the D8 algorithm to find local minima, then applied a search algorithm to find overflowing 

elevations where water spills out of a depression. Wu and Lane (2017) modeled the hierarchy of 

hydrologic connections between depressions by establishing one horizontal and one vertical tree 

based on graph theory. Wu et al. (2019b) developed the level-set approach as an effective raster-

based method for identifying surface depressions and their hierarchy. In the level-set approach, a 

hypothetical sliding plane descends from the pour-point to the lowest cell of depression and 

scans the depressions' nested complexity as a graph with vertical and horizontal hierarchy. While 

this procedure is effective and fast, it does not identify the contributing catchment of depressions. 

Following the delineation of depressions, frameworks are developed to disperse flood 

volume amongst them based on mass conservation. Lhomme et al. (2008a) created an RFSM to 

route excess water from a failed defense (e.g., overwhelmed drainage or dam failure) amongst 

depressions by filling and spilling process. Zhang and Pan (2014) developed an algorithm for 

rapid urban flood inundation called the urban storm inundation simulation method (USISM), 

which considers filling and spilling regardless of merged depressions and vertical hierarchy. 

Balstrøm and Crawford (2018) created a GIS-based toolbox that depicts the overland surface as a 

one-dimensional geometric network. In which nodes indicate depressions, while edges represent 

streamlines through which spillovers flow to the downstream depression. However, they did not 

address merging depressions or the vertical hierarchy of depressions in their methodology. 

Samela et al. (2020) developed an HFSM to identify pluvial flood hazards across large urban 

areas called Safer-RAIN. Safer-RAIN considers the vertical hierarchy of depressions that the 

other approaches ignore.  

Despite the mentioned advantages of simplified RFSM, one of the significant limitations 

of approaches discussed thus far is that they only estimate the maximum inundation extent from 
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total net rainfall at the end of the storm. However, for real-time flood vulnerability estimation, 

the temporal flood accumulation process must be modeled. To address this limitation, Chu et al. 

(2013) proposed an approach called P2P filling-spilling-merging-splitting model that simulates 

the temporal inundation evolution by updating water level in depressions at each timestep. 

However, their approach is employed on a laboratory basin with constant rainfall and loss rate. 

Thrysøe et al. (2021) developed an approach denoted FloodStroem where they coupled a one-

dimensional (1D) drainage network model (MIKE URBAN) with the filling and spilling process. 

They used the time series of drainage system surcharges simulated by the 1D model to generate 

flood maps by routing surcharges across the downstream terrain using a filling-spilling process. 

Given that precise information about the layout and features of stormwater drainage 

systems is often lacking, as well as the complex and interconnected flow paths of real-time 

hyper-local scale applications(Chegini and Li, 2022), RFSM models can be useful for estimating 

roadway flooding potential in the event of stormwater drainage failure. This study addresses the 

limitations of the previously introduced RFSM approaches and proposes a new model for local-

scale flooding prediction that accounts for merging depressions as well as taking catchment size 

and land cover into account. Neglecting the impacts of the momentum of flow in roadway 

flooding, a simplified graph-based RFSM (GB-RFSM) is developed to simulate the vulnerability 

of road surface depressions to water accumulation based on real-time rainfall and, topography. 

The developed approach divides terrain into small hydrologic units and has the capability to 

account for averaged infiltration and drainage from each unit. By converting the nested hierarchy 

of depressions and their catchments as a directed graph that represents spilling and merging 

hierarchy, GB-RFSM benefits from simple graph-based calculations to account for the temporal 

evolution of inundation.  
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The performance of GB-RFSM is evaluated for a severe storm event in the City of Dallas 

when a noticeable traffic disruption has been reported. The estimated vulnerabilities are 

compared with overflows achieved from a commonly used model (SWMM) as the benchmark. 

The proposed tool can easily be used by decision-makers to generate flood warnings and seek 

proactive actions to mitigate their consequences. 

3.2 Methodology 

The proposed methodology consists of two distinct steps: (1) preprocessing a DEM to establish 

the nested hierarchy of depressions and the sequence of filling-spilling-merging and (2) 

generating the DEM-graph and executing the GB-RFSM. In this study, an ArcGIS Python toolkit 

is developed to perform the first step, and a Python program is presented for the GB-RFSM 

implementation. The suggested framework and the connection between the two processes are 

depicted in Figure 3-1. A significant advantage of the GB-RFSM is that the DEM preprocessing 

is a one-time process for every study area, at least until the DEM is updated. After preprocessing, 

the outputs of the first stage (GIS Python toolbox) are utilized as input for flood inundation 

simulation in the second step. Each step is explained in the subsequent sections. 

3.2.1 Step I: DEM To Depressions Hierarchy Preprocessing 

In a DEM, depressions can be of different levels, with smaller pits nested within bigger 

depressions that construct a hierarchy. Figure 3-2 depicts DEM components that determine 

depressions and their hierarchy, including sinks, pour-points, depressions, and their drainage 

area. Sinks, also known as blue-spots in the literature, are low-lying cells on the DEM with no 

outward flow direction in the D8 flow direction method (Balstrøm and Crawford, 2018; Samela 

et al., 2020). The catchment is the drainage area that drains into a sink, and the pour-point is the 

lowest elevation on the catchment's perimeter. Depressions are the areas of a catchment where 
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water collects owing to an elevation below the pour-point. A filled depression drains into a 

downstream catchment through its pour-point. As depicted in Figures 3-2-b,c, and d, depressions 

on terrain can merge into each other to form larger-scale depressions. The sequence of 

depressions spilling into each other can be described as the horizontal hierarchy, while the 

merging process and forming higher-level depressions is the vertical hierarchy (Balstrøm and 

Crawford, 2018; Chu et al., 2013; Le and Kumar, 2014; Manfreda and Samela, 2019; Samela et 

al., 2020; Wu et al., 2019b). 

 

GB-RFSM scripts can be found at https://github.com/EISALab/GB-RFSM 

Figure 3-1 Framework of the GB-RFSM 

The GB-RFSM requires a preprocessing phase to identify the nested hierarchy of 

depressions, their upstream catchment, and the filling-spilling-merging process sequence. For 

this purpose, an ArcGIS Python toolbox is developed in this study. The D8 flow routing 

technique introduced by Greenlee (1987) is used to extract the depressions, sinks, and 

catchments (Greenlee, 1987). In the DEM Preprocessing toolbox developed in ArcGIS, 

extraction of the depression hierarchy is achieved in an iterative process consisting of identifying 

https://github.com/EISALab/GB-RFSM
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sinks, delineating catchments, and raising elevations of depressions to their catchment pour-point 

(Table 3-1). (Balstrøm & Crawford, 2018; Samela et al., 2020) 

The first step in the toolbox involves determining the sink points on the raw DEM, 

catchments, and pour-points that will produce the first level of depressions. Next, elevations of 

depression cells are raised to their pour-point level, and a new DEM is achieved that delineates 

the next level of depression (Figure 3-2-d). This cycle goes on until no depression remains in the 

study area (Figure 3-2-b and Figure 3-2-c). In each step of the cycle, the sequence of filling and 

spilling is extracted by locating the downstream cell of each pour-point (Figure 3-2-d). When the 

lowest depression nested inside a higher level of depression is filled, the depressions merge. In 

the example shown in Figure 3-2, the depression L1-1 is the lowest depression nested within L2-

1; hence once it is filled depressions L1-1, L1-2 and L1-3 merge into L2-1. 

3.2.1.1 Preprocessing Outputs, GB-RFSM Inputs 

In addition to the filling-spilling-merging sequence, depression characteristics that impact the 

excess runoff volume and inundation formation are required for the GB-RFSM. Physical 

Catchment Descriptors (PCDs) include area, Curve Number (CN), i.e., a combination of 

hydrologic soil group and imperviousness, and stormwater drainage rate to culverts. To project 

the inundation extent of the collected runoff volume in each depression, the depth-volume 

relations for all the depressions must also be obtained. This procedure is carried out using the 

level-set approach presented by Wu et al. (Wu et al., 2019c). This approach generates a 

hypothetical horizontal stepwise plane with elevations equal to the sinks in each catchment. The 

volume of collected water for each depression is derived by sliding this plane upward from the 

bottom to the pour-point of catchments in pre-defined increments (15 centimeters in this study).  
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The ArcGIS Python toolkit that executes this DEM preprocessing outputs a Network 

Common Data Form (NetCDF) and depression descriptor tables that contain the resulting 

information needed in the GB-RFSM. The NetCDF has three dimensions: latitude, longitude, 

and hierarchy level, and it holds a raster of depression depths and catchment identifiers. Table 

outputs include the hierarchy of depressions as well as the properties of each depression, such as 

the CN, storage volume, and depth-volume relationships. The application of the generated 

information in Step 2 of the proposed framework is presented in the following section.  

Table 3-1 Pseudocode of the iterative depression delineation process 

 

3.2.2 Step II: GB-RFSM 

The GB-RFSM step converts a DEM to a directed graph dataset (DEM-graph). The graph is a 

data structure in which nodes represent data objects (in this case rain, subbasins, and 

depressions) and edges reflect relationships between nodes. A schematic of graph components is 

depicted in Figure 3-2. Nodes in a graph dataset can have attributes that represent each nodes 

characteristics and edges connecting nodes to each other can control the relation between nodes 

attributes. In this study, depending on the node type, attributes and edge weights can vary 

according to Tables Table 3-2 and 3-3. The sequence of filling-spilling-merging is shown by 



52 

edges that are weighted according to their water volume retention capabilities in the DEM-graph. 

The GB-RFSM applies runoff volume to the DEM-graph and calculates the filled volume of 

depressions by routing runoff through the nodes and calculating the water mass balance until all 

rainfall is captured. 

 

Figure 3-2 Primary components of the graph data structure used to represent the DEM 

The graph representation of a DEM in this study has four types of nodes (Table 3-2), 

including Rain, Subbasins, Level-1 depressions, and Merged depressions (depressions of Level-2 

or higher). Uni-directional edges connect nodes to their downstream depression, hereafter called 

child depression which has a weight equal to the capacity of the parent node to capture runoff 

volume. A detailed description of DEM-graph components is presented in the next section.  

In the nested hierarchy of depressions, Level-1 depressions are always the direct receivers of 

surface runoff (Figure 3-3-a). That is, a higher level (level>1) never gets inundated unless all of 

the lower-level depressions nested within it spill over and merge to form a higher-level 

depression. To model this process, only Level-1 depressions and their upstream catchment 

interact with runoff contributors. Runoff contributors accounted for in this model are 

precipitation and direct abstractions, including infiltration and stormwater drainage. Merged 

depressions, however, do not interact directly with runoff contributors and only receive spillover 

from Level-1 depressions. Therefore, the drainage area of Level-1 depressions is used as 
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subbasins that divide DEM into smaller units receiving rainfall. For example, Level-1 

catchments boundaries (blue polygons) depicted in Figure 3-3-a are employed as subbasins. With 

this approach, each subbasin only contains one Level-1 depression that can spill or merge with 

other depressions through its pour-point (Figure 3-3-d). 

 

Figure 3-3 Depression components of a DEM 

3.2.3 DEM-Graph Components and Attributes 

The DEM-graph developed as noted above has components that carry information about the 

DEM's topographic properties in the format of attributes and weights in nodes and edges, 

respectively. Edge weights of a DEM-graph represent the capacity of their parent node to hold 

runoff water volume. In the proposed approach, a DEM-graph has different node types to model 

the physical process of inundation formation. Based on the node type, edges have different 

attributes. Tables 3-2 and 3-3 summarize the information that is stored in the nodes and edges of 

a DEM-graph.  

Table 3-2 Types of nodes in a DEM-graph 

Nodes  Attributes 

Rain N/A 

Subbasins Subbasin Area, CN, and stormwater drainage rate (Volume/time) 

Level-1 depressions Volume-depth relation, pour-point elevation  

Merged depressions Volume-depth relation, pour-point elevation 
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Except for the rainfall volume, other edge weights and node attributes presented in Tables 3-2 

and 3-3 are outputs of preprocessing ArcGIS Python toolkit. Rainfall data for every time interval 

is gathered from the Next Generation Radar (NEXRAD) data made available by the National 

Center for Environmental Information (NCEI). NEXRAD system is a network of 160 high-

resolution weather radars managed by the National Weather Service (NWS), the Federal 

Aviation Administration (FAA), and the United States Air Force (’Nelson, 2017).  Net rainfall 

from NEXRAD data is assigned to subbasin nodes at the start of each timestep and directed 

downstream the graph by updating edge weights, including rainfall volume, subbasin capabilities 

to absorb runoff water, and depression storage capacity, as part of the GB-RFSM framework. 

Detailed calculations of implementing rainfall and updating edges is presented through a 

synthetic DEM example, as presented in Figure 3-4. 

Table 3-3 Information stored in an edge 

Edges 

Parent node type Child node type Edge weight 

Rain Subbasins Rainfall volume (0 in the rainless condition) (𝑚3)  

Subbasin Depression Level-1 Subbasin capacity to abstract water (𝑚3)  

Depressions Depressions Storage capacity of parent depression (𝑚3) 

The landscape of the synthetic DEM presented in Figure 3-4-b is made of four Subbasins, 

four Level-1 depressions, two Level-2 depressions, and one Level-3 depression. The conversion 

of the DEM (Figure 3-4-b) into a rainless DEM-graph is demonstrated in Figure 3-4-a. To 

implement rainfall to the DEM-graph and update edges, at each timestep a node is added to the 

DEM-graph reflecting the rainfall source as shown in Figure 3-4-c. This node is then connected 

to subbasin nodes through new edges. 

At the end of each timestep, a DEM-graph with updated weights is derived that shows the 

remaining capacity of each depression (Figures 3-4-d and 3-4-e). The framework and 

calculations of the filling, spilling and merging is presented in Figure 3-5. At every timestep, 
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rainfall at the centroid of each catchment is retrieved from NEXRAD products, and weights of 

the DEM-graph (𝑊(𝑝𝑎𝑟𝑒𝑛𝑡,𝑐ℎ𝑖𝑙𝑑),𝑡 ) are calculated as presented in Equations 3-1 to 3-6 and Figure 

3-5.  

Equation 3-1 

𝑊(𝑟𝑎𝑖𝑛,𝑠𝑢𝑏𝑛),𝑡 =  −(𝑃(𝑙𝑎𝑡𝑛,𝑙𝑜𝑛𝑛,𝑡) ∗ 𝐴𝑛) 

where 𝑊(𝑟𝑎𝑖𝑛,𝑠𝑢𝑏𝑛),𝑡 is the weight of the edge connecting 𝑛𝑡ℎ subbasin to the 𝑅𝑎𝑖𝑛 node at 

timestep 𝑡, 𝑃(𝑙𝑎𝑡𝑛,𝑙𝑜𝑛𝑛,𝑡) is the accumulated rainfall during timestep 𝑡 at the centroid latitude and 

longitude of the 𝑛𝑡ℎ subbasin, and 𝐴𝑛 is the area of the 𝑛𝑡ℎ subbasin. The depth of rainfall that is 

drained by the stormwater drainage system and infiltration (𝐻𝑛,𝑡) can be calculated as shown in 

Equation 3-2.  

Equation 3-2 

𝐻𝑛,𝑡 = (1 − 𝑅(𝑛,𝑡))𝑃(𝑙𝑎𝑡𝑛,𝑙𝑜𝑛𝑛,𝑡) + 𝐷𝑛 

where 𝑃(𝑙𝑎𝑡𝑛,𝑙𝑜𝑛𝑛,𝑡) is the rainfall to subbasin 𝑛 at timestep 𝑡 in 
𝑚

∆𝑡
, 𝐷𝑛 is the rate of stormwater 

drainage at subbasin 𝑛 in 
𝑚

∆𝑡
 , and, 𝑅(𝑛,𝑡) is the ratio of the accumulated runoff to total rainfall 

since the beginning of storm according to Equation 3-3. The rate of stormwater drainage can be 

calculated using the hydraulics of the drainage system. However, for the case study considered in 

this work, the drainage system is neglected due to lack of data.  

Equation 3-3 

𝑅(𝑛,𝑡) =
𝑄

𝑃
 

where 𝑃 is the accumulated precipitation from the beginning of the storm event (𝑚), 𝑄 is the 

surface runoff corresponding to 𝑃 based on the CN method (𝑚). 𝑄 may be determined using 

Equation 3-4 according to the SCS CN approach.  
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Equation 3-4 

𝑄 =  {

0                       𝑓𝑜𝑟 𝑃 < 0.2𝑆

(𝑃 − 0.2𝑆)2

𝑃 + 0.8𝑆
    𝑓𝑜𝑟 𝑃 > 0.2𝑆

 

where, 𝑆 is the potential maximum retention after runoff begins, estimated using the hydrologic 

soil group and land cover/land use of the basin by using the CN according to Equation 3-5 

(Homer et al., 2012). 

Equation 3-5 

𝑆 =
25400

𝐶𝑁
− 254 (𝑚𝑚) 

 

Figure 3-4 Synthetic terrain and DEM-graph analysis 

The CNs of subbasins are calculated using the USGS Land Cover Land Use and Global 

Hydrologic Soil Groups (HYSOGs250m) datasets (Ross et al., 2018) using Table 2-2a presented 
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in Urban Hydrology for Small Watersheds, Technical Release 55 (TR 55)  (United States 

Department of Agriculture, 1986).  

For example, in the synthetic example presented in Figure 3-4-d, 𝑊(𝑅𝑎𝑖𝑛,𝑠𝑢𝑏1),𝑡=1 =

−0.00695 ∗ 100 = 0.7 𝑚3 is the generated runoff in Subbasin-1. With no abstraction from 

Subbasin-1 (assuming CN=100 and no stormwater drainage), 0.7 𝑚3 water is captured by 

depression L1-1, and the weight connecting L1-1 to L1-2 is reduced from 2 (Figure 3-4-c) to 2 −

0.7 = 1.3 (Figure 3-4-d). The same calculation is performed for all the edges at every timestep 

according to the framework presented in Figure 3-5. 

3.2.4 Inundation Map 

Finally, the depth of water in each depression is retrieved from the depth-volume relations 

extracted in the preprocessing stage. This is represented in the DEM-graph as inundation extent 

maps at each timestep. Inundated grid cells are those with elevations lower than the water surface 

elevation in each catchment, based on the level of standing water. 
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Figure 3-5 Flowchart of updating the DEM-graph at each timestep 

3.2.5 Model Comparison 

To compare the GB-RFSM approach to previously accepted models, inundation vulnerabilities 

during a historic rainstorm event, assuming the overflow of the drainage system, are estimated. 

The findings are then compared with simulation results of a SWMM model, which is a widely 

accepted model for urban stormwater management (Rossman, 2010). To do so, overflow 
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volumes of sewer inlets computed by the SWMM model are imposed to the subbasins where 

inlets are located in. This is done by connecting an overflow source node to the DEM-graph and 

connecting it to subbasins by unidirectional edges. The edge weight connecting the source to 

overflowing subbasins at every time interval is the overflow simulated by SWMM model. The 

overflow volume at each timestep is routed through the DEM-graph according to the framework 

presented in Section 3.2.1 (Figure 3-5). Even though overflow spills to the adjacent subbasins, it 

is assumed that no other inlet exists that can abstract spilled overflow from adjacent depressions; 

hence overflow fills, spills, and merges depressions that are hydrologically connected to the 

inlet’s subbasin. Overflows are routed on the DEM using the GB-RFSM approach, and the 

resulting inundation maps are compared with the inundation extents computed by the GB-RFSM. 

The Jaccard similarity score is used to compare the inundation maps resulting from both 

models (Deng et al., 2014). The Jaccard similarity score is defined as the intersection between 

two rasters divided by the union of the two rasters as presented in Equation 3-6 where 𝐴 and 𝐵 

are inundation extents computed from GB-RFSM and SWMM, respectively. In this study, the 

intersection is the number of grid cells that GB-RFSM and SWMM inundations have in common 

(i.e., the number of overlapping flooded cells). The union is the total number of flooded cells 

(belonging to either the GB-RFSM flooded cells or the SWMM flooded cells). The Jaccard 

similarity score can range between 0 when there is no intersection between the two inundations 

and 1 when the inundation extents are accurately similar. 

Equation 3-6 

𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 

To compare inundation extents, inundation levels are categorized into very shallow (i.e., 

less than 15 cm or roughly 6 in), less than 1 foot (15 to 30 cm), less than 2 feet (30 to 60 cm), 

and deeper than 2 feet. Then, inundation categories of the two inundation maps are compared 
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respectively. Inundation of less than 15-cm (half a foot) has little hazard for vehicles (Ford et al., 

2017); therefore, it is not included in the evaluation. This inundation classification makes 

inundation extents more interpretable in terms of roadway navigation. 

3.3 Case Study and Datasets 

In this study, an underpass in downtown Dallas, Texas, U.S., which has previously been 

identified as highly likely to flood in moderate and severe storms (Safaei-Moghadam et al., 

2022), was chosen to analyze the GB-RFSM roadway flooding vulnerability during an historical 

storm event (Figure 3-6). Dallas is relatively flat and has an elevation range of 137 to 168 meters 

(450 to 550 feet). According to research conducted by the First Street Foundation, floods may 

cause 1841 miles (out of 6064 miles) of Dallas roadways to become impassable. (Risk factor, 

2021).  

For this case study, the North Central Texas Council of Government (NCTCOG) 

provided a 1-meter resolution Bare Earth Digital Elevation Model (BE-DEM) derived from a 

Quality Level 2 Lidar survey conducted by Digital Aerial Solutions, LLC, in 2018 under contract 

with the United States Geological Survey (USGS) National Resources Conservation Services 

(NRCS). TX Pecos Dallas 2018 D19 is the name of the BE-DEM dataset, which has a horizontal 

accuracy of +/-0.682 meters at a 95% confidence level and a Non-vegetated Vertical Accuracy 

(NVA) of 0.196 meters. 

The high-resolution national hydrography dataset (NHD) provided by the U.S Geological 

Survey (USGS) (Buto et al., 2020) is used to find the contributing area to the intersection of 

interest. Two catchments are chosen as the maximum boundary that will drain into the 

intersection, as depicted in Figure 3-6.The national land cover dataset (NLCD) and the Global 

Hydrologic Soil Groups (HYSOGs250m) datasets were utilized in the curve number grid 
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computation (Homer et al., 2012; Ross et al., 2018). Landcover of this study area is mainly 

developed with medium to high intensity, and the hydrologic soil group belongs to moderately 

high runoff potential (i.e., 50 percent sand and 20-40 percent clay). Hence, the CN of more than 

95 percent of study area is higher than 93. The NEXRAD product used in this case study is the 

digital precipitation rate (DPR) that displays the 2-minute interval precipitation rate using the 

dual-polarization QPE algorithm provided by NCEI (Branch, 2012). Since the drainage system’s 

layout and characteristics are not publicly available in the City of Dallas and could not be 

obtained for this study, and roadway pluvial flash floodings are not measured and recorded, the 

runoff abstraction by sewer drainage system (𝐷𝑛,𝑡 in Equation 3-2) is neglected in this analysis. 

To compare the GB-RFSM results to SWMM, a previously-developed SWMM model is 

used. Texas A&M AgriLife developed the model for the Nature Conservancy (TNC) in 

collaboration with the city of Dallas to identify overflowing drainage inlets and potential 

candidate areas for Green Stormwater Infrastructure (GSI) implementation to mitigate the 

overflows. The stormwater drainage network features were modeled based on the maps and 

engineering plots provided by the city of Dallas (Jack et al., 2021). The simulation outputs from 

the model include the location and time-series of overflow volume at stormwater inlets showing 

overflow during the rainfall of interest (Figure 3-6). (Note that the locations of the stormwater 

inlets used in SWMM were from a previous project and could not be shared with this study.) The 

GB-RFSM and SWMM models are used to simulate flood inundation during a record storm 

event on September 21, 2018. The storm duration was 24 hours and resulted in the third largest 

24-hour rainfall event in Dallas history. According to NCEI data, the total precipitation for this 

storm event over Dallas was 155 millimeters, which is consistent with a 50-year storm prediction 

(Perica et al., 2018).  



62 

 

Figure 3-6 Case study area 

3.4 Results 

The GB-RFSM and the SWMM model are used to simulate the inundation with 12 minutes 

timesteps and stormwater overflows in the case study's historical storm event, respectively, and 

their results are compared. The nested hierarchy of depressions and depth-volume relationships 

by implementing the developed preprocessing ArcGIS python toolbox (Step1, preprocessing). 

The study area gets hydrologically connected (hydro-conditioned) after five levels of filling 

depressions and raising elevations as described in the Section 3.2.1 (Figure 3-7). Subbasins and 

catchments of merged depressions of Level-2 to Level-5 are illustrated in Figure 3-7. The 

preprocessing step resulted in 1659 subbasins and Level-1 depressions, as well as 221, 48, 10, 

and one merged depressions in Level-2 to Level-5, respectively. The distribution of the 

catchment area and depression volume depths for each level are presented in Figures 3-9 and 3-

10, respectively. After conducting the preprocessing step, the DEM-graph is created according to 
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the framework presented in the methodology section using the Python toolbox developed in this 

study (Step2, GB-RFSM). 

 

Figure 3-7 Subbasins and merged depression catchments upstream of the underpass 

 

Figure 3-8 Distribution of catchment areas in different hierarchy levels of depressions 
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Figure 3-9 Distribution of volume capacity of depressions in different hierarchy levels 

As described in Section 3.3, the QPE precipitation data from the NEXRAD radars are 

used to run the SWMM and GB-RFSM models for the time duration of the case study rainstorm 

event in 5-minute interval timesteps. The SWMM model simulation found three stormwater inlet 

failures due to insufficient capacity in the study period. The overflowing stormwater inlets are 

TRN-N-2911, TRN-N-2914, and TRN-N-3126 (Figure 3-6). The cumulative hyetograph of 

precipitation over the study area and the cumulative overflow for the three failed inlets are 

presented in Figure 3-10. Figure 3-10 shows that the three stormwater inlets all start overflowing 

approximately when the rainfall accumulation reaches 50 mm. Also, Figure 3-10 depicts that 

TRN-N-2914 and TRN-N-2911, which are almost 60 meters apart (Figure 3-5), have very 

similar overflow patterns with two sharp and stepwise increases in the overflows at 3:30 AM and 

6:00 AM, 2018, September 22. According to the DEM-graph, overflow of TRN-N-2914 spills 

into the subbasin of TRN-N-2911.  
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Figure 3-10 Cumulative hyetograph versus cumulative overflow at identified failed inlets calculated by the SWMM model 
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Figure 3-11 Inundation maps derived from GB-RFSM and SWMM results 

Water accumulation volumes obtained by GB-RFSM and SWMM are transformed into 

inundation maps using depth-volume relations of the depressions determined during the 

preprocessing stage. Inundation maps for three timesteps are depicted in Figure 3-11, including 

2018-9-22 at 3:35 when inlets just start to overflow, 2018-9-22 at 6:00, just before the second 

spike of overflow, and 2018-9-22 at 14:00 when overflows reach their maximum stage.  

With GB-RFSM, however, all stormwater inlets are assumed to fail from the beginning 

of the storm event; hence from the early stages of the storm, GB-RFSM assigns flood 
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vulnerability to depressions while the SWMM model simulates no overflow and therefore no 

inundation. However, at 3:35 AM, after overflow starts, the SWMM model begins estimating 

inundation. The contingency matrices in the last column of Figure 3-11 show the basic 

interrelations and interactions between the two estimated maps. As the matrices are always 

upper-triangular, it shows that the GB-RFSM always estimates higher inundation compared to 

the SWMM model. The upper non-diagonal elements of the contingency matrix show the 

frequency of higher vulnerability estimates from the GB-RFSM.  

Given the stormwater inlet assumption in the GB-RFSM approach, it is expected that as 

catchment areas grow, the GB-RFSM will have greater differences from SWMM due to the 

higher number of engineered and natural drainage inlets being modeled by SWMM. As 

predicted, Figure 3-12 shows that the catchment areas of depressions with different inundations 

between SWMM and GB-RFSM are larger. Conversely, the agreement between the GB-RFSM 

and SWMM predictions are higher in smaller catchments. Comparing the inundation volumes 

predicted by the SWMM model and the GB-RFSM, the SWMM model, on average, had 0.71 

𝑚𝑚

𝑚2  higher runoff abstraction in every 12-minute time interval. 

Figure 3-13 illustrates how the three categories of inundation explained in the 

methodology (15 to 30 cm, 30 to 60 cm, and deeper than 60 cm), are similar in the two models 

based on the Jaccard similarity score. Figure 3-13 shows that at depths less than 60 cm, the 

Jaccard score increases rapidly, shortly after overflow begins; however, Jaccard similarity score 

for grid cells deeper than 60 cm increase more slowly. After the sharp increase in the stormwater 

inlet overflows at 09-22 3:35 (Figure 3-10), the Jaccard scores starts raising from no similarity. 

Figure 3-13 shows that when the cumulative overflow becomes steady in TRN-N-2911 and 

TRN-N-2914, between 9-22 3:35 to 9:22 6:00 in Figure 3-10, which resembles that stormwater 
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inlets drain additional rainfall, Jaccard score decreases, but has another jump after the next spike 

in overflow at 09-22 6:00.  

 

Figure 3-12 Distribution of catchment areas that are consistently and inconsistently filled in SWMM and GB-RFSM 

 

Figure 3-13 Jaccard score versus overflow over time 

3.4.1 Ground Truth Assessment 

Given that the SWMM model is a simplified model itself, without having the actual ground truth 

observations, it appears to be inaccurate to assume the SWMM inundations are closer to the 

actual roadway flooding situations. To further assess the differences between the models in terms 

of actual flooding at the Dallas underpass during the case storm event, I obtained flooding 
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information from several data sources: Twitter postings, a video from a local news outlet, flood 

alerts posted to the Waze crowdsourced navigation app, and flood-related city service requests 

(i.e., City of Dallas 311 service requests available at https://www.dallasopendata.com/browse). 

Keywords used to search for flood observations include ‘flood’, ‘water logging’, ‘high water’, 

‘ponding’, ‘deep water’, ‘pooling’, and ‘turn around don’t drown’. No Twitter posting or city 

service requests through the 311-reporting system were found for this area but Waze flood alerts 

and media outlets proved flooding in the case study situation. Figure 3-14 shows the gathered 

data at the case study intersection. Locations tagged as 1, 2, and 3 were reported in the news, and 

the flood extent captured from the videos in Figure 3-14-b appears to be comparable with the 

GB-RFSM outputs shown in Figure 3-14-a.  

 

Figure 3-14 Map of inundations, Waze flood alerts, and locations covered in media, (a) video clips at locations 1, 2, and 3 during 

the flood event (b) and after (c). 

The Waze flood alerts posted during the storm (shown as red points in Figure 3-14-a) 

also show acceptable agreement with the flooded locations. However, the alerts on the highway 
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ramp (marked with a black flag in Figure 3-14-a) is modeled as flooded by the GB-RFSM but 

not the SWMM model.The superiority of the GB-RFSM in capturing flooding at the flagged 

point could have various causes. For example, in SWMM model development, to maintain 

hydrologic connectivity of every DEM cell to stormwater inlets, depressions upstream of inlets 

must be filled; this simplification, as well as rare events of clogged stormwater inlets are possible 

reasons behind GB-RFSM's better performance at the flagged point. 

3.5 Discussion and Conclusions  

This study develops a new approach to addressing the computational complexities and data 

requirements of common hydraulic models for local scale flooding prediction. An efficient, 

simplified physics-based model is developed that can be used to estimate the pluvial flood 

vulnerability on a highly localized scale. The resulting GB-RFSM estimates the extent of 

potential roadway flooding in the event of stormwater system failure without relying on the 

stormwater drainage system characteristics and layout. The graph-based structure of the GB-

RFSM makes it suitable for capturing the temporal formation of flooding by updating the graph 

at every timestep.  

Although the GB-RFSM considered in this study accounts for infiltration based on the 

CN and neglects the stormwater drainage rate due to lack of data availability, the methodology 

could be modified to include averaged runoff drainage over subbasins. The flood estimated by 

GB-RFSM in an historic 50-year storm event with 24-hour duration showed general agreement 

with the inundations produced from SWMM when overflowing occurred and roadway flooding 

is likely to be most acute. One significant difference between the two inundation extents appears 

to be a consequence of ignoring drainage to the stormwater system at the beginning of rainfall, 

prior to the start of SWMM’s predicted overflow. As depicted in Figure 3-11, failed inlets all 
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start to overflow just after accumulated precipitation reaches 50 millimeters; this suggests the 

possibility of making meaningful conjecture to account for a defeat point that can mirror when 

drainage system reaches its capacity and overflow starts to occur, when implementing GB-

RFSM. Moreover, it is possible to find the optimum runoff abstraction by the sewer drainage 

system at every subbasin and time interval (𝐷𝑛,𝑡 in Equation 3-2) by calibrating the GB-RFSM 

parameters according to ground truth inundations; however, the records of flood observations on 

a road segment scale are scarce.  

While these findings are promising, this study has certain limitations. In addition to 

neglecting the dynamics of flow, runoff abstraction by drainage systems, and other possible 

losses such as retention and evaporation, the natural drainages and building footprints are not 

modified on the DEM. DEM modifications to account for building footprints, natural rivers and 

streams, walls, and sinks at major stormwater defense structures such as tunnels can help to 

define more precise subbasins and would likely improve model performance. In addition, the 

preprocessing steps require periodic updates to account for changes in land cover and topography 

due to construction.  

Overall, this study showed that GB-RFSM could detect areas with high flooding 

inundation when drainage systems have failed, particularly as shown by the media and crowd-

sourced flood observations A hybrid model that combines GB-RFSM with a data-driven model 

using the types of crowdsourced data examined in this paper could improve the model’s 

performance by considering unmodeled factors such as those outlined above.  Such a rapid 

approach that can forecast real-time hyper-local flooding on roadways would be a valuable tool 

for drivers, first responders, and decision-makers to monitor flood conditions more effectively 

and take proactive actions to minimize risks and losses.   
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Chapter 4 

PREDICTING ROADWAY PLUVIAL FLOOD RISK; A HYBRID MACHINE LEARNING 

MODEL COUPLING GB-RFSM AND HISTORICAL VULNERABILITIES BASED ON 

WAZE DATA 

Using Waze flood alerts and the Digital Elevation Model (DEM), in previous chapters data-

driven and simplified physics-based model were developed to represent the vulnerability of a 

road segment to PFF. In this chapter, however, hazard, vulnerability, and exposure are merged to 

forecast the overall risk of roadway PFF. Predicting PFF risk is essential to facilitate road safety 

management, increase travelers' awareness, and empower decision-makers to take proactive 

actions. 

4.1 Introduction 

The framework developed in this chapter adopts the risk definition proposed by Gouldby et al. 

(2005): Risk is as a combination of hazard, vulnerability, and exposure. According to this 

definition, the hazard is a phenomenon that has the potential to be destructive; vulnerability 

specifies how likely the system is to be damaged by the hazard; and exposure is the total number 

of receptors that the destruction may affect. 

In interpreting the risk of roadway flooding, the hazard of the system is the precipitation; 

vulnerability is the potential of a road segment to accumulate water and form PFF in the worst-

case event of stormwater drainage system failure, which depends on the topographic and 

hydrologic characteristics of the roadway and catchments; and exposure is the traffic volume that 

confronts flooded road segments. In a highly urbanized area, flood formation is a highly complex 

and uncertain process due to the lack of information about underground and overland flow 

interaction. The impacts of flooding on roadway mobility also depend on various temporal and 
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spatial variables. Moreover, the rapid onset and short lifetime of roadway PFF lead to a lack of 

observational data to quantify the historical PFF risk at a local scale. Hence, a comprehensive 

approach is needed that reflects the topographic and hydrologic specifications of road segments 

as well as temporal traffic levels to capture the heterogeneity of risk. 

On this basis, this research proposes to address the shortcomings of previous PFF models 

(reviewed in Section 3.1) by incorporating multiple data sources into an end-to-end real-time 

prediction of the risk of roadway PFF on low-lying road segments. To achieve this, 

computationally efficient hybrid machine learning (ML) models are developed that combine a 

statistical model based on historical PFF observations and hydrologic characteristics (developed 

in Chapter 2) with GB-RFSM (developed in Chapter 3). Crowdsourced flood alerts posted to 

Waze are used as a risk proxy to train the ML models.  

4.2 Methodology 

 For Waze flood alerts to be a reasonable proxy to the risk of roadway PFF, the alerts need to be 

associated with the hazard, vulnerability, and exposure. In Chapter 2 (Safaei-Moghadam et al., 

2022, in review), we demonstrated that the total number of flood alerts correlates with the 

rainfall's duration and maximum intensity. Compared to moderate and light storm clusters, 

rainfall events that were part of the severe storm cluster had a higher incidence of alerts related 

to flooding, as expected. Regarding the vulnerability, Chapters 2 and 3 showed that Waze flood 

alerts are clustered around low-lying areas and depressions that can accumulate a large volume 

of excess runoff and are more prone to flooding in the future. Concerning exposure, our 

preliminary analysis in Chapter 2 showed that Waze flood alerts are primarily posted from 

frequently traveled roads. The findings showed a clear correlation between Waze flood alerts and 

exposure to road PFF, with increased traffic volume increasing the likelihood of observing a 
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Waze roadway flooding alert under similar circumstances. Hence, it is reasonable to assume that 

the existence of Waze flood alerts is a function of hazard, vulnerability, and exposure and can be 

used as a proxy to the risk of roadway PFF. Figure 4-1 shows the risk components and their 

relationship with Waze flood alerts and roadway PFF risk. More details on the approach taken 

for each of the three risk components, as well as the hybrid model and model evaluation criteria, 

are given in Sections 4.2.1 to 4.2.5. 

 

Figure 4-1 Methodology flowchart 

4.2.1 Hazard 

High spatiotemporal precipitation data are required due to the roadway PFF phenomenon's rapid 

onset, brief lifespan duration, and high spatial resolution. The precipitation time series from the 

start of the storm event until the study time interval is utilized to extract descriptive features that 

can characterize the storm event in order to estimate the probability of PFF at each time interval. 

In addition to total rainfall, temporal patterns of storms play a significant role in PFF formation. 

When modeling PFF, it is important to take into account the consistency, peaks, minimums, 

variations, zeros, and immediately preceding rain pulses of precipitation timeseries. As a result, 

features that may capture these qualities are calculated. Table 4-1 displays these features, where 
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𝑝𝑡 is the precipitation timeseries from the storm start until time 𝑡, and 𝜇 is the average 

precipitation intensity since the storm started. 

Table 4-1 Features representing the hazard 

Feature Equation Definition 

Precipitation 𝑃𝑇 Precipitation at time T (mm) 

Maximum preceding 

rain pulse  

𝑀𝑎𝑥(𝑝𝑡) 𝑡 𝑖𝑛 [0, 𝑇] Maximum precipitation per timestep since the 

beginning of storm 

Total accumulation 

∑ 𝑝𝑡

𝑇

0

 
Total accumulated precipitation since the 

beginning of storm 

n-hours preceding 

accumulation ∑ 𝑝𝑡

𝑡

𝑡−𝑛

 
Total accumulated precipitation in last 𝑛 timesteps 

Count of rain pulses 

above h mm 

𝐶𝑜𝑢𝑛𝑡(𝑝𝑡 ≥ ℎ) Count of timesteps with precipitation higher than 

ℎ millimeter 

Count of rain pulses 

above mean 

𝐶𝑜𝑢𝑛𝑡(𝑝𝑡 ≥ 𝜇) Count of timesteps with precipitation higher than 

average precipitation (𝜇) since the beginning of 

storm event 

Time to the last 

maximum rain pulse 

𝑡 − 𝑡𝑝=max (𝑝)_ Time interval between timestep of study and the 

last timestep with maximum precipitation 

Time to the last 

minimum rain pulse  

𝑡 − 𝑡𝑝=0 Time interval between timestep of study and the 

last timestep with 0 precipitation 

Count of rainless 

intervals 

𝐶𝑜𝑢𝑛𝑡(𝑝𝑡 = 0) Count of rainless timesteps since the beginning of 

storm 

4.2.2 Vulnerability 

The vulnerability of a road segment to roadway flooding is a function of its topographic and 

hydrologic characteristics that contribute to the excess runoff accumulation as well as the 

performance of the stormwater drainage system. While high-resolution hydrodynamic models of 

surface runoff and drainage systems may be used for this, their application for real-time 

prediction at this scale can be computationally prohibitive and required data may not be 

available. Therefore, in this work, we employ the PFF likelihoods produced from the Empirical 

Bayes (EB) model developed in Chapter 2 with GB-RFSM, the simplified DEM-based 

Hierarchical Filling and Spilling Algorithm (HFSA) described in Chapter 3, to characterize the 

vulnerability of a road segment to PFF. The GB-RFSM estimates the potential inundation depth 

and inundation area in the worst-case event when the stormwater drainage system fails, and the 
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EB-derived PFF likelihoods represent the contribution of site-specific unobserved variables, such 

as chronic debris generation in a location, in the roadway PFF vulnerability.  

The GB-RFSM requires a DEM-preprocessing phase to identify the nested hierarchy of 

depressions in the DEM of the watershed upstream of a road segment. The ArcGIS Python 

toolbox developed in Section 3.2.1 is used for this purpose. The toolbox outputs a Network 

Common Data Form (NetCDF) and depression descriptor tables that contain the resulting 

information needed in the GB-RFSM step. The GB-RFSM step then converts the DEM to a 

directed graph dataset (DEM-graph) and applies rainfall to the DEM-graph by routing runoff 

through nodes and calculating the water mass balance until all rainfall is captured. Once the 

runoff is routed, the model computes the filled volume of the depressions. Finally, water depth in 

each depression is retrieved from the depth-volume relationships extracted in the preprocessing 

stage and inundation maps are generated. In addition to the preprocessing outputs, a binary zone 

raster indicating road surface grid cells is used to extract statistics of the flooded road segment 

and features that represent the vulnerability. The list of attributes that reflect vulnerability is 

shown in Table 4-2, where 𝑑𝑡 is the flood depth raster on road surface determined with the GB-

RFSM, 𝑥 is the resolution of the road surface grid cells, 𝑝(𝑖,𝑗) is the likelihood of flooding on 

depression 𝑖 during storm type 𝑗, �̂�𝑖,𝑗 is the predicted number of floodings on depression 𝑖 and 

storm type of 𝑗 using the EB model (Section 2.2.2.1) and 𝑁𝑗 is the number of storms in cluster 𝑗.  

Table 4-2 Features representing vulnerability 

Feature Equation Definition 

Maximum depth 𝑀𝑎𝑥(𝑑𝑡) Maximum estimated depth on road surface  

Area 𝐶𝑜𝑢𝑛𝑡(𝑑𝑡 > 0) × 𝑥2 Inundation area on road surface 

Percentage of road 

segment inundated  

𝐶𝑜𝑢𝑛𝑡(𝑑𝑡 > 0)

𝐶𝑜𝑢𝑛𝑡(𝑑𝑡)
 

Volume of standing water on road surface 

PFF likelihood-

moderate storms 𝑝(𝑖, j) =  
�̂�𝑖,𝑗 

𝑁𝑗
 , 𝑗 = 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 

PFF likelihoods achieved from Empirical 

Bayes regression for moderate storms 

PFF likelihood- severe 

storms 
𝑝(𝑖, 𝑗) =  

�̂�𝑖,𝑗  

𝑁𝑗
 , 𝑗 = 𝑠𝑒𝑣𝑒𝑟𝑒 

PFF likelihoods achieved from Empirical 

Bayes regression for severe storms 
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4.2.3 Exposure  

Next, the exposure attributes are established, which define the number of drivers affected by a 

flooded road segment assuming typical prevailing traffic conditions and count of vehicles 

passing the road segment. Since access to historical traffic data is not publicly available at low 

cost, public data sources that are a proxy to the traffic volume on a road segment are 

implemented in this study. Road classification, average annual daily traffic (AADT), time of day 

(TOD), and weekdays are characteristics used in this work (Table 4-3). 

Table 4-3- Features representing exposure 

Feature Definition Values 

Average annual daily 

traffic (AADT)* 

Commonly used measure showing 

the traffic load calculated by 

dividing the total annual volume of 

vehicle traffic by 365  

Integer between 0 to 999999 

Functional system 

classification 

(F_system)* 

Categories of roadways and 

highways based on the service they 

provide, such as volume of traffic 

and trip types 

1:Interstate 

2: Other freeway and expressway 

3: Other principal arterial 

4: Minor arterial 

5: Major collector 

6: Minor collector 

7: Local road 

Weekday Whether the timestep is during 

weekends or weekdays 

1: Weekends 

2: Weekdays 

Time of day (TOD) The time of timestep  1: After midnight (00:00 to 4:00 AM) 

2: Early morning (4:00 to 7:00 AM) 

3: Morning (7:00 AM to 12:00 noon) 

4: Afternoon (12:00 to 4:00 PM) 

5: Evening (4:00 to 8:00 PM) 

6: Night (8:00 PM to midnight) 

*. Texas Department of Transportation (TxDOT) Roadway Inventory, 2020-Current  

4.2.4 Modeling  

Three Machine Learning (ML) classification algorithms are employed in the PFF risk prediction 

(i.e., the existence of flood-related alerts): Random Forest Classifier (RFC), Extreme Gradient 

Boosting Decision Tree (XGBoost), and Support Vector Machine Classifier (SVM).  

RFC and XGBoost are decision tree-based algorithms consisting of decision nodes that 

employ if-else rules to split data into different decision paths. As noted in Chapter 2, one 
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advantage of tree-based algorithms is their ability to determine feature importance in model 

prediction power based on node impurities. Node impurity is a measure of heterogeneity in the 

target values, PFF observations in this application, at each splitting node. The normalized 

decrease in node impurity estimates the significance of a given feature when it is added to a tree 

(Breiman, 2001).  

Random Forest (RF) is a supervised ensemble machine learning algorithm that uses 

multiple decision tree learners to increase predictive performance (Pedregosa et al. 2011). The 

final prediction of RF is the average prediction of all decision trees; each tree is built from a 

bootstrap sample of observations and a subset of features. Bootstrap sampling involves random 

sampling with replacement, meaning that a particular observation may not be picked for 

sampling while it is allowed to appear once or more than once in training samples. RF has been 

widely used for data-driven modeling in the field of water resources (Sadler et al. 2018; Tyralis, 

Papacharalampous, and Langousis 2019). This algorithm can handle large and imbalanced 

datasets by combining bootstrap sampling and ensemble learning to train each tree on a more 

balanced subsample as well as its capability of being cost-sensitive by assigning class weights in 

node impurity calculations. The aggregation of several trees and the binning process in decision 

trees makes RF resilient to bias and overfitting.  In RFC, the overall feature importance is 

calculated as the average of the importance of a feature over all trees, weighted by the number of 

samples used in each split across all trees. Tuned RFC hyperparameters in this study are number 

of trees in forest, maximum depth of trees (maximum number of allowed splits), maximum 

number of features allowed to be used in each tree, and class weights used in favor of the 

minority class when calculating the impurity score of a split. 
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XGBoost is one of the most preferred ensemble tree boosting ML models because it has 

been shown to give state-of-the-art results in different fields (Chen and Guestrin 2016), including 

water resources (Huang et al., 2021; Janizadeh et al., 2021; Sanders et al., 2022). In the Gradient 

Boosting approach, the model's loss function is minimized by adding weak learners trained on 

the remaining residuals of existing learners. The tuned hyperparameters include maximum depth 

of decision trees, number of trees, and class weights. In XGBoost, the contribution of each 

decision tree to the final prediction is calculated by minimizing the prediction error of the 

training dataset (called the training loss).  

The SVM classifier is an optimization-based learning technique that divides classes by 

locating an optimum hyperplane with the greatest marginal distance between the two classes 

(Vapnik, 1999). While SVM classifier was originally limited to linearly separable datasets, 

application of a kernel function transforms the data from a nonlinear input space into a linear 

representation to make the data separable. Standard kernel functions commonly used in SVM 

include linear, polynomial, radial basis function (rbf), and sigmoid function. The choice of kernel 

function is determined during the random search process of model selection. Details of SVM and 

kernel functions are provided by Kecman (2001). Application of SVM in water resources 

systems, flood prediction, and flood susceptibility mapping has been extensive (Han et al., 2007; 

Ke et al., 2020; Liu et al., 2022; Saha et al., 2021; Xiong et al., 2019) 

In this study, the RF and SVM classifiers are executed using the Scikit-Learn library 

(Pedregosa et al., 2011) and XGBoost is implemented using the XGBoost package (Chen and 

Guestrin, 2016) in the Python environment. Recursive feature elimination is used to pick the 

most important attributes for modeling in order to keep the model simple. This is a repetitive 

process in which the model is trained, and the least significant feature is dropped in every trial 
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until affect performance significantly. A randomized grid search on a variety of model 

parameters is utilized for hyperparameter tuning and 5-fold cross validation is performed to 

choose the optimal model and parameter combination. 

4.2.5 Model Evaluation 

A total of 15 historical storm events are used to train the models and 5 storm events are used to 

test the models. The trained models predict PFF risks during test storms; the predicted risks are 

then compared with flood-related Waze alerts to evaluate the models’ performance.  

Given that flood risks and posting Waze flood alerts are rare binary events according to 

the Waze data, the classification model to predict the risk of roadway PFF deals with a highly 

imbalanced dataset (i.e., numerous negative examples of no flood alerts). To make models more 

sensitive to class imbalance and give higher importance to predicting instances when PFF risk 

has been observed (positive class), two steps are taken. First, the model is trained in a cost-

sensitive approach by weighting loss values for minority (PFF risk observed)  and majority (no 

PFF risk) classes. This method applies different weights to the loss computed for samples that 

are in the minority class when calculating the loss function. In this study, a higher weight is 

given to the misclassification of timesteps where PFF risk is observed than it is to the 

misclassification of timesteps where no flood alert was posted. In the model evaluation phase, 

frequently used performance metrics like accuracy might produce misleading assessments since 

they are insensitive to skewed data and give minority and majority classes the same priority. 

Therefore, metrics that are sensitive to class imbalance are used instead: 𝐹𝛽score, area under the 

precision-recall curve (PRC-AUC), and area under the Receiver Operating Characteristic curve 

(ROC-AUC) (Buckland and Gey, 1994; Saito and Rehmsmeier, 2015a). 
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Fβscore is an abstraction of F1score in which recall’s importance can be adjusted by a 

coefficient named β (Buckland and Gey, 1994). F1score, the harmonic mean of recall 

(completion of retrievals, i.e., the probability of predicting PFF given its existence) and precision 

(purity of retrievals, i.e., the probability that PFF occurs given a predicted PFF), is a commonly 

used metric for imbalanced classification. However, utilizing the F1score assumes that recall and 

precision are equally significant, suggesting that stakeholders consider both false positive and 

false negative predictions similarly undesirable. Due to the ambiguity surrounding the 

crowdsourced proxy variable (Waze flood alerts), we cannot properly define the negative class. 

That is, the lack of a flood alert could indicate either no flooding or no driver posting an alert. As 

a result, prioritizing the positive class and reducing false negatives with the cost of increased 

false positive predictions can give us a higher confidence level overall. Consequently, higher 

importance should be assigned to recall that focuses on the completion of minority class 

prediction. 

To address this concern, precision, recall, and Fβscore are computed as shown in 

Equations 4-1 through 4-3. 

Equation 4-1 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

Equation 4-2 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

where 𝑡𝑝 represent the number of observations in positive instances retrieved correctly, 𝑓𝑝 

represents the number of negative observations retrieved incorrectly, and 𝑓𝑛 is the number of 

positive instances retrieved incorrectly. Fβscore is a metric that balances the recall and precision 

between 0 for the worst score and 1 for the perfect score (Equation 4-3). 
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Equation 4-3 

𝐹𝛽𝑠𝑐𝑜𝑟𝑒 = (1 + 𝛽2)
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝛽2𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

where 𝛽 is a coefficient that controls the balance between precision and recall, with 𝛽 < 1 when 

minimizing false positives and 𝛽 > 1 when minimizing false negatives is the priority. In this 

study, 𝛽 = 2 is to emphasize predicting observed risk incidents by making recall the priority. 

Given its benefits, Fβscore, with 𝛽 = 2 (hereafter called F2score)is utilized in cross-validated 

random search to rank models and find optimum hyper-parameters. 

Precision, recall, and F2score are single threshold measures and dependent on a cutoff 

threshold for the classifier to separate positive and negative classes, while the appropriate cutoff 

may vary depending on the application and dataset (Saito and Rehmsmeier, 2015b). Model-wide 

threshold-free measurements are therefore needed to comprehensively assess the model's 

performance on an unknown test dataset. The Precision-Recall Curve (PRC) and Receiver 

Operating Characteristic (ROC) plots are model-wide measures that compare a model with a 

baseline no-skill performance benchmark, The ROC curve depicts the false positive rate versus 

the true positive rate over a range of thresholds. Although ROC is not biased by either the 

minority or the majority class, it might be deceptively optimistic when there are few positive 

samples focusing only on the positive class. the PRC curve is a more accurate measurement for 

unbalanced binary classification. The baseline performance of a model in the PRC curve can be 

calculated as Equation 4-4, where P and N represent the number of positive and negative 

samples, respectively. Since the baseline no-skill performance in the PRC curve is proportional 

to the number of the minority class, it is a better metric for imbalanced binary classification 

(Buckland and Gey, 1994; Saito and Rehmsmeier, 2015a).  
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Equation 4-4 

𝑦 =
𝑃

𝑃 + 𝑁
 

4.3  Case Study and Dataset 

The methods described above are evaluated at intersections in the City of Dallas, Texas. The 

intersections are randomly selected from road segments prone to PFF, as identified in Chapter 2. 

Figure 4-2 shows the locations of the selected case study road segments. The Texas Department 

of Transportation's (TX-DOT) highway inventory and asset dataset contains features that 

describe traffic volume and road segment characteristics. The 15 road segments include arterials, 

major collectors, freeways, and interstates. (Figure 4-2). The AADT of road segments ranges 

between 3,723 and 240,182 vehicles per day. 

Since merged depressions and delineated catchments extracted by ArcGIS Python 

toolbox (Section 3.2.1) from 1-, 2-, and 3-meter resolution DEMs were identical, to simplify the 

simulation process 2.3 a 3-meter resolution DEM is employed in the GB-RFSM model. Other 

data required in the GB-RFSM model, including landcover, land use, road network, and high-

resolution catchments, are collected as described in Section 3.3. The roadway dataset provided 

by Open Street Map (Mooney and Minghini, 2017) is used to generate road surface grid cells 

required for calculating water depth statistics. The buffer width around the road centerline is 

calculated according to the number of lanes, assuming that each lane has a width of 12 feet on 

average (RD Manual, 2004). The NEXRAD precipitation data are obtained from NCEI (Section 

3.3) for every 12-minute time interval and case study road segment. Twenty storm occurrences in 

total are selected from August 2018 to April 2022, although the Covid-19 shutdown period 

(March 1, 2020, to February 1, 2021) is not included in the research because of the anticipated 
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anomaly in traffic levels impacting the crowdsourced data at that time (Bureau of Transportation 

Statistics, 2021). 

 

Figure 4-2 Case study intersections and Waze flood alerts 

4.4 Results 

In accordance with the methodology (Section4.2), the RFC, SVM classifier, and XGBoost 

models are trained on the training dataset and their performance is evaluated on the unseen test 

dataset generated using storm events different from the training storms.  

 



85 

4.4.1 Data Preparation 

Fifteen of the storm events are used to train the models and five storm events are held out for 

testing the models. After retrieving precipitation data from NEXRAD, the optimum value of 

parameters 𝑛 and ℎ from Table 4-1 should be determined to generate hazard attributes. The 

correlation between the risk observation (target feature) and the accumulated rainfall during the 

previous 𝑛 hours is used to determine the optimal n, testing several 𝑛 values of 5, 4, 3, 2, and 

1Table 4-1. the correlation is found to be greatest at 𝑛 = 2 hours. In a similar process, the 

optimum ℎ in Table 4-1 is found to be ℎ = 4 mm with a correlation of 0.085. Hence the dataset 

is created using these thresholds.  

Raw precipitation timeseries are used in the GB-RFSM model to estimate vulnerability 

features, including inundation area and the maximum depth on the accumulated road surface for 

12-minute intervals (Table 4-2). Figure 4-3 shows the GB-RFSM inundation maps on four 

sample road segments at the end of a severe storm that happened on September 21, 2021.  

4.4.2 Modeling 

Distributions of observed roadway PFF risk in the training and testing datasets are depicted in 

Figure 4-4. As can be observed, both datasets have an uneven distribution of positive and 

negative classes, with negative classes being almost ten times more prevalent than positive 

classes, showing the imbalance in the datasets. Random grid search found the best model 

configuration for each algorithm. The most important features are identified from models 

following the procedure described in Section4.2.4. Table 4-4 shows the best model configuration 

and the six most important attributes for each algorithm. XGBoost and SVM classifier have at 

least one feature from hazard, vulnerability, and exposure, while no exposure attribute is 

significantly important for RFC. The important features also show that the most significant 
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exposure attribute is whether the flood event occurred in the afternoon TOD or not. It appears 

that Waze users are more likely to post flood alerts between 12:00 and 4:00 PM.  

 

Figure 4-3 Inundation extent on four road segments at the end of a severe storm on September 9, 2021 

Among the historical vulnerability attributes, PFF likelihood in a moderate storm and 

PFF likelihood in a severe storm, all three models found EB estimations in a moderate storm 

class more significant than EB estimations in severe storms in predicting the risk. This may be 

due to the larger number of moderate storms used in calculating PFF likelihoods compared to 
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severe storms. The larger sample size may cause the estimated likelihoods in the moderate 

cluster to be closer to reality. 

 

Figure 4-4 Distribution of risk observations in training and testing datasets 

Table 4-4 Configuration of tuned ML models 

Model PRC-AUC Six most important features Model configuration 

X
G

B
o

o
st

 

0.68 2-hours preceding accumulation1 

Maximum inundation depth2 

PFF likelihood in moderate storms2 

Afternoon3 

Time to the last maximum rain pulse1 

Maximum preceding rain pulse1 

Maximum depth: 3 

Number of trees: 1711 

Positive class weight = 0.9 

R
F

C
 

0.60 2-hours preceding accumulation1 

Time to the last maximum rain pulse1 

Maximum preceding rain pulse 1 

Maximum inundation depth2 

PFF likelihood in moderate storms2 

Count of rainless intervals1 

Maximum depth: 4 

Number of features allowed: 6 

Number of trees: 741 

Positive class weight: 0.93 

S
V

M
 c

la
ss

if
ie

r
 0.43 Maximum inundation depth2 

Afternoon3 

PFF likelihood in moderate storms2 

Time to the last maximum rain pulse1 

2-hours preceding accumulation1 

Maximum preceding rain pulse 1 

Kernel=rbf 

gamma = 0.1  

class weight=0.90 

1 – Hazard features 

2 – Vulnerability features 

3 – Exposure features 
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Figure 4-5 and Figure 4-6 show PRC and ROC curves for three tuned ML models 

compared with a no-skill model. According to both the ROC and PRC curves, XGBoost 

performs better than RFC and SVM classifier on testing dataset, as shown by the larger area 

under the curve (AUC) (Table 4-4 and Table 4-5). As mentioned in Section 4.2.5, the desired 

classification threshold (used to map predicted risk probabilities into risk classes) may vary 

depending on the data and application. Given the substantial uncertainty in the negative class due 

to the characteristics of crowdsourced data described in Section 1.1 (smaller confidence in the 

negative class), forecasting the positive class is most important, since it has more confidence. 

Therefore, to evaluate misclassification of each model when 90% of risk instances are correctly 

predicted, the classification threshold is adjusted to map the projected probabilities to PFF risk 

and no risk classes by setting the minimum required recall score to be 0.9. Using the adjusted 

threshold, the RFC, XGBoost and SVM classifier predict 73%, 69% and 63% of risk 

observations in the test storm events respectively, suggesting the superiority of the RFC model. 

Table 4-5 shows the model performances and the adjusted threshold. XGBoost performs 

better on the testing and training dataset for the F2score. However, the recall score on the testing 

dataset is the highest for the RFC model. This conforms with the PRCs depicted in Figure 4-5, 

which shows that the superiority of XGBoost to RFC in terms of PRC-AUC is due to higher 

performance on smaller recalls. However, in recalls higher than 0.2 their performance is almost 

identical on the test dataset.  

The variability of important attributes representing hazard, vulnerability, and exposure 

(namely, last 2-hours precipitation, maximum inundation depth, and TOD) in true and false 

positive and negative predictions of the test dataset (𝑡𝑝, 𝑓𝑝, 𝑡𝑛, 𝑓𝑛 in Equation 4-2 and 4-3) are 

shown in Figures 4-7 to 4-9 for XGBoost, RFC, and SVM classifier. The marginal histograms 
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shown on these figures show the distributions of maximum depth estimated by GB-RFSM and 

last 2-hours precipitation in each set of predictions, respectively.  

 

 
Figure 4-5 Precision-recall curves of ML models 

 

 

Figure 4-6 ROC curve of ML models 

Table 4-5 ML models performance after tuning thresholds 

Model PRC-AUC ROC-AUC Threshold F2score Precision  Recall  

XGBoost 
Train = 0.68 

Test = 0.40 

Train = 0.94 

Test 0.83 
0.48 

Train: 0.70 

Test: 0.54 

Train: 0.37 

Test: 0.29 

Train:0.89 

Test: 0.69 

RFC 
Train = 0.60 

Test = 0.35 

Train=0.91 

Test=0.83 
0.62 

Train: 0.65 

Test: 0.52 

Train: 0.32 

Test: 0.25 

Train: 0.89 

Test: 0.73 

SVM 

classifier 

Train = 0.38 

Test = 0.18 

Train = 0.85 

Test = 0.74 
0.08 

Train: 0.47 

Test: 0.29 

Train: 0.17 

Test: 0.16 

Train: 0.89 

Test: 0.63 
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The distribution of features in XGBoost and RFC are fairly similar; for example, both 

predict minimal risks in instances where the accumulated precipitation in the last 2 hours is less 

than 10 mm (Figures 4-7-b, 4-7-d, 4-8-b, 4-8-d). Also, they cover a wide range of maximum 

inundation depths in the 𝑡𝑛 category (Figures 4-7-a, 4-8-a),which shows they successfully 

captured attributes other than maximum depth that impact PFF risk. These figures also suggest 

that XGBoost is not superior to RFC in predicting the positive class, given that it has fewer 𝑡𝑝 

and more 𝑓𝑛. Rather, its dominance over RFC comes from its ability to distinguish negative 

classes better, which are uncertain anyway (comparing Figures 4-7-a, 4-8-a).  

Unlike XGBoost and RFC, SVM classifier does not show a wide range of maximum 

depths in the 𝑡𝑛 group (Figure 4-9-a) suggesting that it has a wider range of maximum depth in 

the 𝑓𝑝 group (Figure 4-9. Figure 4-9-b and 4-9-d show that although SVM classifier predicts low 

PFF risk in instances with the last 2-hours rainfall less than 10 mm, correctly retrieving 90% of 

risk instances causes misclassification of low probabilities.  

Looking closely at Figures 4-7-a and 4-8-a, it can be seen that instances with large 

maximum depths in the 𝑡𝑛 groups mostly occur after midnight and in the morning, when fewer 

vehicles are on the roads and preceding rainfall is not as high. This implies that these no risk 

observations have been due to low exposure and low hazard, while vulnerability is still high at 

locations that could cause roadway PFF.  

In addition, the 𝑓𝑛 group of model predictions (Figures 4-7-c, 4-8-c, 4-9-c) all have low 

maximum depth and recent 2 hours of precipitation, which suggests low vulnerability and 

hazard, respectively. The range of recent precipitation between 30 and 40 mm is identical for the 

three models in the 𝑓𝑝 group (Figures 4-7-b, 4-8-b, and 4-9-b). Even though all models indicate 

a high risk of PFF for these datapoints, there are no risk (Waze) observations available. All of 
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these timesteps occur at night (8 pm to midnight) and after midnight, when there is less traffic 

and presumably fewer Waze users reporting risk observations.  

 

Figure 4-7 Features distributions in confusion matrix of test predictions, a: True negative (tn) predictions, b: False positive (fp) 

predictions, c: False negative (fn) predictions, and d: True positive (tp) predictions – XGBoost 
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Figure 4-8 Features distributions in confusion matrix of test predictions, a: True negative (tn) predictions, b: False positive (fp) 

predictions, c: False negative predictions (fn), and d: True positive (tp) predictions -RFC 
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Figure 4-9 Features distributions in confusion matrix of test predictions, a: True negative (tn) predictions, b: False positive (fp) 

predictions, c: False negative (fn) predictions, and d: True positive (tp) predictions – SVM classifier 

4.5 Conclusions 

This chapter shows that crowdsourced traffic flood alerts, specifically Waze flood alerts, may be 

leveraged as a proxy to roadway PFF risk, which is a combination of hazard, vulnerability, and 

exposure. Findings of previous chapters, including likelihoods of PFF in storm clusters (light, 

moderate, and severe) calculated by the EB regression model developed in Chapter 2 and 

maximum inundations calculated by GB-RFSM (Chapter 3), represent site-specific 

vulnerabilities of road segments to PFF. Hazard of a road segment to PFF is estimated based on 

NEXRAD precipitation and time, AADT, and road classifications are used to estimate exposure.  
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Three ML models (XGBoost, RFC, and SVM classifier) are trained using the curated 

dataset to predict the risk of roadway PFF. The three models consider the features maximum 

inundation depth, 2 hours of preceding precipitation, PFF likelihoods during moderate storms, 

and time to the most recent maximum rain pulse to be representative of significant hazards and 

vulnerabilities. While AADT and road classification were not significant in either model, time of 

day is the most important factor among those that indicate exposure. Several strategies are 

employed to train the models in a way appropriate for imbalanced data and uncertainty in the 

negative class (no flood risk); First, cost-sensitive training is carried out, which assigns a higher 

weight to the minority (positive) class’ mispredictions. Second, in order to emphasize recall over 

precision when adjusting model hyperparameters, F2score is utilized in the model selection and 

cross-validation process. Finally, the classification threshold is modified to extract a training 

recall score of 0.9 in order to compare models in the high recall area of the PRC and select the 

model that is more effective at predicting positive risk cases, which represent more risk to 

motorists. F2score is then used to compare the models after mapping probabilities using the 

updated threshold.  

The modeling results showed that the presented approach could predict reported flood 

events, but with the cost of a large number of false positive predictions. Further analysis is 

required to estimate the cost of misclassifications and compare it with costs associated with 

driving incidents related to roadway flooding. XGBoost and RFC both performed superior to the 

SVM classifier model by having higher PRC-AUC and ROC-AUC. Even though the XGBoost 

and RFC models both had greater AUCs, the threshold change showed that by setting the 

required training recall to 0.9, the XGBoost model outperforms the RFC model in terms of test 

precision while the RFC model outperforms the XGBoost model in terms of test recall.  
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Therefore, deciding between the two models depends on the level of uncertainty in the 

negative class and the cost of false positive predictions. In vehicle routing applications, 

depending on changes in travel costs and times when rerouting vehicles, higher recall or higher 

precision may be preferred. Generally, if rerouting does not significantly increase travel costs 

and times, predicting false positives is justified to minimize the probability of exposure to a 

flooded road, hence a higher recall is preferred. However, if false positives significantly raise 

travel costs or turnaround times, it will be more reasonable to avoid predicting risk when there is 

no risk (𝑓𝑝), even if doing so results in missing certain risk instances with low probabilities. As a 

result, the model would favor higher precision. Overall, the RFC model predicts 73% of risk 

observations in the test storm events. The presented modeling approach is informative to 

roadway PFF awareness that could increase travel safety. Mispredictions with high hazard and 

vulnerability mostly occur at night when exposure is lower and fewer Waze alerts are available.  

In terms of limitations, the vulnerability features, maximum inundation depth, and EB-

derived PFF likelihoods are simplified attributes. For instance, the GP-RFSM assumes that there 

is no subsurface drainage system for excess runoff (due to lack of data) and therefore 

accumulates all excess runoff into low-lying regions. Additionally, developing the site-specific 

PFF likelihoods involves manual preprocessing and judgment, adding additional uncertainty to 

the data. Using reliable, high-fidelity records of historical flood depth measurements and storm 

drainage system configurations and performance in the models could aid in overcoming these 

limitations. Finally, employing more complex calibrated hydraulic and hydrologic models that 

account for more PFF mechanisms may improve predictive performance, at the cost of 

significantly more detailed data requirements and higher computational effort. 
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Chapter 5 

SUMMARY, LIMITATIONS, AND FUTURE WORK 

5.1 Summary and Findings  

Water ponding and pluvial flash flooding (PFF) on roadways can pose a significant risk to 

drivers. PFF can reduce roadway networks’ reliability by decreasing capacity, increasing travel 

time, reducing safe speed, and increasing accident risks and deaths through lane submersion 

(Agarwal et al., 2005; Smith et al., 2004; Suarez et al., 2005). According to the National Weather 

Service, 30 cm of standing water is sufficient to float most cars (National Weather Service, 

2022). 

PFF occurrences have become more frequent as a result of climate change, expanding 

urbanization, growing imperviousness, and inadequate stormwater infrastructure. Physics-based 

hydraulic and hydrologic models need precise data, which is frequently unavailable at fine 

scales, to estimate PFF at the scale of a road segment suitable for navigation purposes. 

Simplifications are frequently employed in hydraulics and hydrologic modeling to address data 

shortages and computational limitations. This introduces uncertainty into the results, particularly 

in densely urbanized areas where micro-topographic characteristics generally govern flow 

dynamics. 

Statistical and data-driven methods are alternative techniques to predict PFF based on 

historical observations. A notable advantage of statistical models is their ability to account for 

possible effects of uncertainties and unobserved variables and rapidly update as new data 

become available and system dynamics change. However, they rely on historical PFF 

observations with high spatio-temporal resolution, which often is not readily available. In 

general, deploying widespread sensors to monitor and record PFF on road segments is 
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uncommon. Research indicates that stakeholders are more concerned about fluvial and ocean 

flooding than pluvial flooding (Rosenzweig et al., 2018), which has led to pluvial flooding being 

a data scarce phenomenon. 

With recent advances in technology and the widespread availability of smartphones, 

social media geographic information and crowdsourced data are now widely available at low 

cost and can supplement high-fidelity datasets. However, by definition, “crowdsourced data are 

collected by heterogeneous volunteer individuals of varying knowledge, experience, and 

perceptions.” (Estellés-Arolas and González-Ladrón-de-Guevara, 2012). Therefore, employing 

these data to supplement PFF observations is challenging since it is dispersed over the research 

region and time periods and is provided by non-experts (including Waze flood alerts). 

To identify the inherent value and applicability of Waze flood alerts as PFF data, a 

preliminary analysis was performed that found a significant spatial correlation between alerts and 

road surface depressions. Findings showed that almost 90% of flood alerts are located less than 

200 meters away from road surface depressions deeper than 15 cm. Furthermore, no significant 

correlation exists between Waze flood alerts and National Flood Hazard Layer (NFHL) regions, 

which implies that Waze flood alerts are consequences of PFF in low-lying areas rather than 

fluvial flooding (Section 2.4).  

Accordingly, Waze flood alerts were utilized to estimate vulnerabilities of low-lying 

areas to PFF in Chapter 2. Surface depressions and their catchments were delineated from 

DEMs, along with their physical, hydrologic, and topographic descriptors. These data were used 

to construct a machine learning model called Random Forest (RF) and a statistical regression 

model based on Bayes theory called Empirical Bayes (EB) to estimate PFF likelihoods for 

various storm types. The superiority of EB over RF demonstrated the importance of site-specific 
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unobserved variables in determining the likelihood of PFF. EB successfully captured the 

potential effects of such unobserved variables indirectly by updating prior probabilities to 

posterior probabilities in accordance with historically observed frequency of PFF. 

However, this approach is limited by assuming that the process of filling depressions with 

excess runoff is independent of rainfall, which ignores the hydrologic processes involved. As 

depressions fill, the flow directions change and merged depressions form with a larger 

catchment. To address this issue, a new approach was adopted in Chapter 3 to tackle the hurdles 

and data needs of common hydraulic and hydrologic models for local scale flood simulation 

while also addressing the limitations of Chapter 2.  

An efficient, simplified physics-based rapid flood spreading model (RFSM) is developed 

based on the hierarchical filling and spilling process in PFF formation called graph-based RFSM 

(GB-RFSM). GB-RFSM simulates water accumulation on road surface depressions in the case of 

drainage system failure without relying on the stormwater drainage system’s characteristics and 

layout, disregarding the effects of flow momentum. GB-RFSM-derived inundation represents the 

vulnerability of a road segment to PFF at a given time, considering rainfall and merging 

depressions as accumulations increase. By updating the DEM graph at each timestep, the graph-

based structure allows GB-RFSM to capture the temporal evolution of floods. To test the model, 

a comparison was made with the Storm Water Management Model (SWMM) simulated 

overflows and the projected inundation extent of the GB-RFSM model exhibited satisfactory 

agreement on a storm event case study in the City of Dallas. 

The vulnerability of road segments to PFF was the emphasis of Chapters 2 and 3, but the 

entire risk that PFF poses to drivers goes beyond vulnerability and depends on hazard and 

exposure as well. Chapter 4 showed how Waze flood alerts can be utilized to train a model that 
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considers hazard, vulnerability, and exposure features to estimate the risks of PFF on a roadway 

in real time. Assuming that the developed GB-RFSM model and EB-derived PFF likelihoods are 

reasonable indicators of vulnerability, the overall risk is estimated by integrating them with 

hazard and exposure. Accordingly, a pipeline is developed with data process and a hybrid 

machine learning model. The hybrid model uses ML classifiers that are trained on Waze flood 

alerts to combine GB-RFSM and EB results with significant hazard and exposure variables 

(maximum inundation depth, PFF likelihood in moderate storms, last 2 hours rainfall, maximum 

preceding rain pulse, and afternoon TOD).  

The results showed that the RFC and XGBoost models performed better than SVM 

classifier and predicted approximately 70% of the observed PFF risk instances (Waze alerts) 

during 5 unseen storm events. Compared to what Waze users have reported, however, the overall 

number of timesteps with PFF risk is roughly three times higher (precision around 0.3).  

Overall, this dissertation contributes to advances in PFF understanding and modeling by: 

1. introducing and evaluating a novel data source to this data-poor phenomenon and 2. 

developing statistical and simplified physics-based models to employ this novel data source in 

PFF situational awareness. The conclusions of this dissertation demonstrate that, despite the 

substantial uncertainty and complexity of localized PFF formation, historical data can advance 

our understanding and contribute to mitigating the losses caused by this recurrent hazardous 

phenomenon. This may incentivize cities and transportation administrations to invest in 

generating more high-fidelity datasets using crowdsourcing approaches or monitoring sensors. 

5.2 Limitations 

This dissertation has two primary limitations: the first is limits related to Waze and stormwater 

drainage data, and the second is methods and modeling limitations. 
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5.2.1 Data Limitations  

It takes significant preprocessing to assess the Waze data's credibility and map flood alerts—

which are not always posted at the exact location of flooding—to plausible neighboring flood-

prone surface depressions and use crowdsourced traffic data efficiently. This manual 

preprocessing is subjective and could introduce errors and bias to the analysis. Additionally, the 

method used in this study only considers flood-prone areas that Waze users have reported. 

Wazers' exposure to flooded areas is influenced by a variety of factors, including road type, 

function, and traffic conditions. As a result, a flood with a comparable extent on the road might 

result in traffic disruptions of dramatically varying sizes and Waze flood reports at various times 

and places. The approach taken in this study is less credible for less traveled local roads, which 

generally have far fewer Waze reports. 

The lack of data to model the stormwater drainage system is another important limitation 

of this study, as well as many other studies because cities often do not have complete knowledge 

of their drainage systems. The approach taken by Chegini and Li (2022) to estimate urban 

stormwater topology from surface features could be promising for addressing this limitation in 

future work.  

5.2.2 Modeling Limitations 

Despite incorporating data-driven site-specific variables estimated by EB to capture the impact 

of unobserved factors, which may include the functionality of the storm drainage system, the 

drainage system's temporal variation is still missing. In other words, when calculating the 

vulnerability of road segments, it is assumed that all drainage inlets are overwhelmed from the 

start of a storm, although their capacity actually varies spatially and over the storm duration. 
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Another modeling consideration is the following: Although DEM processing is a one-

time step in the GB-RFSM graph extraction procedure, it should be repeated on a regular basis to 

accommodate for updated DEMs and landscape changes. The vulnerabilities derived from the 

EB model also require frequent retraining in order to account for changes in infrastructure 

condition (e.g., aging, damage, or upgrades of stormwater drainage inlets), climate change, and 

emerging unobserved variables, such as ongoing nearby construction that may increase the 

possibility of debris and blockages. In addition, the hybrid ML risk prediction model developed 

in this dissertation is limited by inconsistencies in the negative class (no flooding) of volunteered 

crowdsourced data. Furthermore, Wazers and other drivers may not have reported roadway 

flooding, despite being impacted by it., although significant traffic slowdowns could be captured 

by current navigation apps and result in rerouting around flooded areas. The case study showed 

that anomalous Waze traffic jams could be helpful for identifying potentially flooded areas that 

were not reported. Although allowing the trained model to make false-positive risk predictions 

reduces this bias, it requires assessing the confidence in false positive predictions by comparing 

them with ground truth data. 

5.3 Implications 

Crowdsourcing is becoming more popular due to improvements in smartphone accessibility and 

the extensive availability of the wireless internet. As benefits of citizen observation become 

widely acknowledged, more citizens are eager to participate, which brings us closer to securing 

traffic safety during storm events. The outcomes of this dissertation could be used in safe route 

finding to enhance navigation systems and identify the safest route for vehicles by considering 

PFF risk in routing algorithms (Sohrabi and Lord, 2022). However, the hybrid models developed 

in Chapter 4 are conservatively skewed towards reducing false negatives (i.e., predicting no risk 



102 

when flooding has actually occurred), which could cause unnecessary rerouting of drivers. The 

models would need to be adjusted to balance these risks in practice. Asking drivers to provide 

feedback when predictive errors occur could help with this process. 

In addition to routing, communities and stakeholders may utilize the developed risk 

prediction framework to take preventative measures in the event of a high risk of PFF, such as 

issuing notices and advisories, deploying first responders, and using infrastructure to drain flood 

waters. Furthermore, detecting road segments that have high vulnerability to PFF allows cities to 

monitor infrastructure conditions efficiently and make better infrastructure investment plans. 

5.4 Future Work 

As explained earlier, roadway PFF formation is a highly localized and data-poor phenomenon 

with numerous unpredictable and unobserved contributors. Therefore, utilizing more data would 

likely significantly increase the accuracy of this approach. On the other hand, scarcity of data 

raises the need to continue identifying and integrating novel data sources and retrieving implicit 

information from readily available data (such as extracting flood levels from images and videos). 

Better assessment of cases of false positive PFF risk predictions could also be achieved using 

additional ground truth data sources such as flood surveys, news, and social media postings (e.g., 

Twitter). This would provide the opportunity to retrain the models and quantify the level of 

confidence in the predictions. 

In addition, even though the GB-RFSM algorithm can account for stormwater drainage 

through runoff abstraction, the lack of stormwater drainage system data has been challenging and 

imposed notable limitations on this dissertation. In a case study where the necessary data are 

available, considering the layout of the drainage system and the characteristics of the stormwater 

inlet can allow removal of the assumption that the drainage system was overloaded before a 
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storm event started. Barring the availability of such data, as in many cities, an alternative 

approach would be to infer drainage system locations and characteristics from other data sources, 

such as aerial imagery, Google Streetview images, and mapped street locations where 

stormwater pipes are routed (Chegini and Li, 2022). 

Furthermore, increasing the resolution of precipitation data used in this study could also 

improve accuracy. Precipitation data were retrieved from NEXRAD products and the Dallas 

Love Field ASOS rain gauge station. Using high-resolution network radars such as Collaborative 

Adaptive Sensing of the Atmosphere (CASA) data, (Chen and Chandrasekar, 2015) can improve  

results through more accurate precipitation data at the intersection scale.  

Another future research avenue would be to incorporate higher resolution land cover and 

zoning data in vulnerability assessments. The Curve Number used in this study is designed to 

capture the impact of land use. However, the CN datasets have large resolution compared to road 

segment scales and higher resolution data could improve vulnerability estimations. For instance, 

it can be hypothesized that a crowded business area can generate more debris compared to a 

region with similar land cover and soil type but less busy, which leads to higher site-specific 

vulnerability for blocked stormwater inlets.  
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