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Abstract 

In recent decades, the use of renewable energy sources and the development of related technologies have been boosted due to 

the energy and environmental paradigm, with photovoltaic (PV) panels being one of the most implemented and optimised to 

date. The behaviour of panel operation is dependent on multiple parameters such as irradiance, wind speed or operating 

temperature. This paper presents a monitoring system based on IoT software focused on the study of the cell temperature (CT) 

of PV panels, highlighting the importance of this variable in the current generation and the equipment overall performance. For 

this purpose, a dashboard is implemented in Grafana to visualise the evolution of the CT and the associated variables. The 

implemented dashboard includes embedded models for the simulation of CT, in order to compare real and simulation data. 

This comparison determines the most suitable model to the real dynamics and could facilitate the development of intelligent 

control strategies for the panel. 
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1. Introduction

In recent years, the worsening of the environmental 

scenario due to the increase in pollutant emissions has 

encouraged the development and implementation of 

technologies for the use of renewable energy sources (RES) 

(Sayed et al., 2021; Tsilingiridis et al., 2011; Shakya et al., 

2022). Some of these, such as solar, wind and hydro, have 

become fully integrated into the socio-economic fabric, 

forming part of the compendium of energy sources used on a 

daily basis to satisfy the population's energy demand. In 

particular, the technologies associated with photovoltaic (PV) 

energy have prospered notably, serving as a key part of the 

energy generation system in a multitude of contexts, such as 

industrial (Catalbas et al., 2021) or residential (Panagiotidou 

et al., 2021).  

PV panels are made up of a set of interconnected cells 

with the capacity to generate electricity by means of the 

photoelectric effect of the materials of which they are 

composed. These devices are widely studied and integrated in 

applications together with other secondary generation 

systems based on RES, such as hydrogen generators 

(Gutiérrez-Martín et al., 2021), or applied for energy storage 

by means of batteries  (Mulleriyawage and Shen, 2020). To 

optimise the operation of these devices, detailed control of 

the parameters that condition their behaviour, such as voltage, 

generated current or irradiance, is required. One of these key 

parameters is cell temperature (CT), whose relationship with 

the power dissipation affects the performance of the cells. 

Due to its importance, there are models in the literature for 

estimating this variable based on conditions indicated by the 

panel manufacturer (Alonso García and Balenzategui, 2004; 

Migan, 2013), practical models (Araneo et al., 2014; Kamuyu 

et al., 2018; Ross, 1976) as well as models based on energy 

balance equations  (Appelbaum and Maor, 2020).  

To carry out the study of these models, a series of sensors 

and a system to manage the operation of the physical device 

and data acquisition are required. The current paradigm of 

IoT technologies provides users with highly versatile tools, 

such as Grafana. This software is used in many areas as a 

monitoring system (Gimeno-Sales et al., 2020; González et 

al., 2022). 

This work describes a Grafana-based monitoring system 

for PV panels. This system is dedicated to the study of the 

real temperature of the cells and its comparison with a set of 

models selected from the literature. The goal is to understand 

the effects associated with this parameter and to select the 

most suitable model for the operation of the installed panels. 
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The structure of the rest of the manuscript is as follows. 

The second section describes the operation of the PV panel 

and the selected CT models for the monitoring system. 

Section 3 deals with Grafana and the implementation of the 

system. Finally, a series of conclusions about the work 

carried out are detailed. 

2. PV panels operation and cell temperature models

The operation of PV panels can be explained as an 

interaction of two processes. Firstly, the electrical generation 

is due to the photoelectric effect of the cell materials. On the 

other hand, there is an energy dissipation effect in the form of 

heat due to this generation process. This energy loss is greater 

the higher the temperature of the cell. 

Equivalent Circuit Models (ECM) are based on an 

electrical diagram whose components are associated with 

physical effects of device operation. For the case of PV 

panels, these models are widely used, such as in (Amiry et al., 

2018; Sarikh et al., 2020; González et al., 2021). More 

specifically, the single diode model is commonly used to 

estimate the electrical generation of a PV cell. Figure 1 shows 

the diagram of the single diode ECM for a PV cell.  

Figure 1: Electrical Circuit Model of a PV cell. 

The circuit consists of a single diode connected in parallel 

with a photo-generated current source Iph, a series resistance
RS to represent voltage drops and internal losses, and a shunt

resistance RSH to consider the leakage currents. The

relationship between these electrical components defines 

Eq.(1) for the current generation I for a PV module of Ns cells

in series. 

𝐼 =  𝐼𝑝ℎ − 𝐼0 [𝑒𝑥𝑝 (
𝑉 + 𝐼𝑅𝑆

𝑛𝑁𝑠𝑉𝑇𝐻
) − 1] −

𝑉 + 𝐼𝑅𝑆

𝑅𝑆𝐻

(1) 

Where I0 is the saturation current of the diode, V is the

output voltage, n the diode ideality factor and VTH is the

thermal equivalent voltage. The last parameter is described in 

Eq.(2) and depends on the electric charge q, the Boltzmann

constant K and the cell temperature Tc.

𝑉𝑇𝐻 = 𝐾𝑇𝑐/𝑞 
(2) 

As shown in Eq.(1) and Eq.(2), the single diode model is 

dependent on the operating CT, whose variations have a 

direct impact on the current generation and overall panel 

efficiency. Therefore, it is critical to monitor the evolution of 

this variable through models that predict its value in order to 

optimise the operation of the PV panels. 

The models for determining the operating temperature Tc 

included in the monitoring system consider environmental 

parameters such as ambient temperature Ta, irradiance G or

wind speed Vw.

In (Alonso García and Balenzategui, 2004; Migan, 2013) 

the Eq.(3) called Nominal Operating Cell Temperature 

(NOCT) is used, where the nominal conditions indicated by 

the manufacturer (T = 25 oC, G = 800 W/m2) are applied as a 

reference to determine the CT. 

𝑇𝑐 =  (𝑇𝑎 + 𝑁𝑂𝐶𝑇) ×
𝐺

800
(3) 

The work described in (Ross, 1976) expresses the 

operating temperature by Eq.(4), where the irradiance is 

varied by a constant. 

𝑇𝑐 =  𝑇𝑎 + 0.035𝐺 (4) 

The model developed in (Migan, 2013) defines Eq.(5), 

where the effect associated with temperature dissipation due 

to wind is included by implementing the wind speed 

parameter. 

𝑇𝑐 =  𝑇𝑎 +
0.32

8.91 + 2𝑉𝑤
𝐺 (5) 

The models listed above have been selected for their 

simplicity and ease of implementation. Moreover, they have 

been widely applied and validated in previous literature 

These characteristics make them ideal for integration into the 

monitoring system. 

3. Grafana and implementation

Grafana is an IoT software dedicated to the monitoring of 

information through a graphical interface based on 

dashboards composed of visual elements such as graphs, 

historical data or numerical indicators. Derived from its IoT 

nature, Grafana offers an extensive catalogue of add-ons and 

plug-ins, providing the platform with versatility and 

customisation to undertake the design of interfaces that meet 

the user's needs.  

The performance of Grafana is based on its interaction 

with one or more data sources, allowing both real-time 

operation and the representation of data over a specific time 

range. Figure 2 illustrates this principle of operation.  

Figure 2: Interaction between data sources and Grafana. 

For the case of the system described in this work, a data 

acquisition system (DAQ) is used to gather measurements 

associated with the sensors installed close to the PV panels. 

The DAQ system then sends the information to a Raspberry 

Pi which stores it in a database and displays it on a dashboard 

in Grafana. The monitoring system and all the components 

involved are represented in Figure 3, as well as the 

interactions between each of them. 

Figure 3: Monitoring system and components involved. 
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Within Grafana, a dashboard is designed to represent the 

time evolution of the parameters acquired from the physical 

system and to simulate the CT models described in section 2. 

For this purpose, the interface hosts three graphs which are 

programmed by means of Search Query Language (SQL) to 

visualise the information stored in the data source. In the case 

of the models, these are embedded in the interface through 

SQL code in one of the graphs. In this way, Grafana performs 

the simulation process of the models from the data stored in 

data sources. Figure 4 depicts the process carried out by the 

monitoring system to implement the model expressions. 

.

Figure 4: Model simulation process. 

To show the potential of the designed monitoring system, 

Figure 5 represents the data evolution of the stored 

parameters and the resulting model values for a time range of 

15 hours. 

This figure shows the graphical aspect of the interface, 

consisting of a total of three graphs, each with a specific 

purpose. First, there is a comparative graph of the values 

associated with the models described in section 2 and the 

measurement obtained from the sensor placed in the panels. 

Next, an independent graph for irradiance and another for 

wind speed are presented. These last two panels allow us to 

understand the nature of the variations in the models. 

Looking more closely at the first of these graphs, four 

curves can be distinguished: the green curve refers to the 

model based on NOCT used in (Alonso García and 

Balenzategui, 2004; Migan, 2013). The orange curve 

represents the results obtained by the model of (Ross, 1976). 

The cyan curve represents the behaviour described in (Migan, 

2013). Finally, the red line describes the evolution of the 

actual temperature measured on the panels by the sensors. 

Figure 6 shows in detail the development of these curves over 

time. 

The information presented by the dashboard plots allows 

to determine the behaviour of the models in comparison with 

the real dynamics shown by the panel cells.  The results 

obtained by the model based on NOCT and (Ross, 1976) 

coincide with relative accuracy with the experimental values. 

Peculiarly, the model described in (Ross, 1976) presents 

fluctuations associated with point variations in irradiance, as 

can be seen in Figure 5. These sudden changes in irradiance 

are due to slight shading caused by to clouds. On the other 

hand, it is worth noting the behaviour of the model of (Migan, 

2013), whose constant and pronounced fluctuations are due to 

the continuous variations in wind speed, as can be seen in the 

graph of this parameter in Figure 5. 

These abrupt variations are caused by the fact that the 

selected models allow estimating the instantaneous value of 

the CT, without considering the time factor or previous 

values. Therefore, although their approximations are close to 

the real cell dynamics, a sudden variation of their input 

parameters results in an instantaneous fluctuation of the 

model. 

As a counterpart to this behaviour, experimental 

measurements show a temperature evolution without abrupt 

variations. This effect is due to the actual dynamics of the 

cells, whose operating temperature evolves more smoothly 

due to thermodynamic parameters such as resistivity or 

thermal conductivity. These parameters limit the rate at which 

the cell transports heat, thus limiting the rate of fluctuation of 

the operating temperature. 

Figure 5: Monitoring system in operation. 
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Figure 6: Comparative temperature graph. 

4. Conclusions

This paper has presented a Grafana-based monitoring 

system for PV panels, focusing on the study of the operating 

CT. For this purpose, the system has embedded models in the 

dashboard for analysis and comparison of experimental 

values and simulation results. Grafana provides a graphical 

environment for the management of the information acquired 

from the panels while providing versatility due to its 

customisation and ease of use. The most accurate CT model 

could be used to apply intelligent control strategies. 

Future work will address the implementation of new 

graphic elements that facilitate the interpretation of the data 

represented on the dashboard. At the same time, new models 

will be included to enrich the study derived from the 

comparison between experimental data and model 

simulations. 
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