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Chapter 1

Introduction

In this Chapter, we will give brief introduction of various techniques and ter-

minologies used in our proposed methods. In the PhD duration, we did work on

two important problems in biomedical signal processing namely, epileptic seizure

detection and sleep states detection. In the proposed algorithms, both the problems

are solved by using novel hybrid approaches. In the hybrid approaches the features

are extracted from time and frequency domains. Final feature vectors are classi�ed

with di�erent classi�ers. We found that our proposed algorithms are performing

better in terms sensitivity, speci�city false alarm rate and Cohen's kappa coe�cient

as compared to the state of the art algorithms. The organization of the thesis is

as follows. Thesis comprises of �ve Chapters. Chapter 1, is about the introduction

of various biomedical signals, epilepsy, sleep states, piecewise linear functions and

metrics used. Chapter 2, is about detection of seizures using EEG signals. Chapter

3 and 4 are about sleep states detection by combining di�erent biomedical signals.

Chapter 5, gives the summary about the thesis.

1.1 Epilepsy

Epilepsy is a chronic chaos of the central nervous system that in�uences individ-

ual's daily life by putting it at risk due to repeated seizures. Epilepsy a�ects more

than 2% people worldwide of which developing countries like India, China, Brazil

etc. are a�ected worse. A seizure is a transient irregularity in the brain's electrical

activity that produces disturbing physical symptoms such as a lapse in attention and
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1. Introduction

memory, a sensory illusion, etc. Approximately one out of every three patients have

frequent seizures, despite treatment with multiple anti-epileptic drugs. According to

a survey, population aged 65 or above in European Union is predicted to rise from

16.4% (2004) to 29.9% (2050) and also this tremendous increase in aged population

is also predicted for other countries by 2050. Anybody can be the victim of epilepsy.

Epilepsy in�uences the two males and females, irrespective of their ages. Seizure

side e�ects can change broadly. A few group with epilepsy basically gaze blankly for

a couple of moments during a seizure, while others more than once jerk their arms

or legs. Having a solitary seizure doesn't mean you have epilepsy. Treatment with

drugs or here and there medical procedure can handle seizures for most of individ-

uals with epilepsy. A few group require deep rooted treatment to control seizures,

yet for other people, the seizures at last disappear. Few kids with epilepsy may grow

out of the condition with age. The symptoms of the epilepsy are: confusion in mind

(sometimes), a gazing spell, uncontrollable developments of the arms and legs, loss

of cognizance or mindfulness, psychic manifestations like dread, uneasiness. An in-

dividual with epilepsy will in general have a similar sort of seizure each time, so the

side e�ects will be comparative. Experts generally classify seizures as either focal or

generalized, based on how the abnormal brain activity begins. At the point when

seizures seem to result from strange action in only one area of your brain, they are

called central focal seizures. These seizures fall into two classi�cations: focal seizures

without loss of awareness. called basic simple partial seizures, these seizures don't

cause a de�ciency of awareness. They may adjust feelings or change the manner

in which things look, smell, feel, taste or sound. They may likewise bring about

compulsory jolting of a body part, like an arm or leg, and unconstrained tangible

indications like shivering, dazedness and blazing lights. Focal seizures with impaired

awareness. called complex partial seizures, these seizures include a change or loss

of cognizance or mindfulness. During an intricate incomplete seizure, you may gaze

into space and not react ordinarily to your current circumstance or perform tedious

developments, for example, hand scouring, biting, gulping or strolling around and

around. Seizures that seem to include all regions of the brain are called generalized

seizures. Six kinds of generalized seizures exist.

Absence seizures.: recently known as petitmal seizures, frequently happen in
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1. Introduction

youngsters and are portrayed by gazing into space or inconspicuous body develop-

ments, for example, eye �ickering or lip smacking. These seizures may happen in

groups and cause a short loss of mindfulness. Tonic seizures: Tonic seizures cause

solidifying of your muscles. These seizures for the most part in�uence muscles in your

back, arms and legs and may make you tumble to the ground. Atonic seizures: Atonic

seizures, otherwise called drop seizures, cause a de�ciency of muscle control, which

may make you unexpectedly breakdown or tumble down. Clonic seizures: Clonic

seizures are related with rehashed or musical, snapping muscle developments. These

seizures typically in�uence the neck, face and arms. Myoclonic seizures: Myoclonic

seizures typically show up as unexpected brief jerks or jerks of your arms and legs.

Tonic-clonic seizures: Tonic-clonic seizures, recently known as grand mal seizures,

are the most emotional kind of epileptic seizure and can cause a sudden loss of aware-

ness, body hardening and shaking, and at times loss of bladder control or staying

quiet. In seizure signal, four states are identi�ed, namely pre-ictal, ictal, inter-ictal

and post-ictal. The portions of the signal before the �rst seizure and after the last

are called pre-ictal and post-ictal. Ictal and inter-ictal indicate intervals of seizures

and between seizures. When a seizure occurs, it might cause injuries or jeopardize

the life of the patients especially when they are driving cars or working with di�er-

ent machinery. That is why there is a need to develop an automatic seizure detector

to avoid di�erent types of harms to epileptic patients. Most of the research work is

carried out by using scalp EEG, because capturing the signal from the surface of

the brain (iEEG) is quite risky and require lots of expertise in it.

1.2 Sleep Stages and Disorders

Sleep is fundamental and plays an important role to keep human healthy. In the

recent years sleep-related issues are increasing day by day and lot of many people

who are su�ered from sleep disorder are also a�ected by their normal day-to-day life.

Sleep disorders can be the indicator of a future disease e.g. depression. That is why

sleep assessment now a days is an important part of any health checkup. Across the

globe many health care systems set up the mechanisms to prevent and detect sleep

disorders by o�ering speci�c plans in terms of education and awareness of good sleep
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1. Introduction

habits. Some traditional and new methods are available for sleep disorder detection,

but such methods still have some shortcomings like accuracy and require more time

for scoring of the entire sleep duration of the given biomedical signal. These methods

are still dependent on experts of the sleep scoring to verify their results. Therefore,

the limitations of manual sleep stage scoring stated the demand for developing an

e�cient and automatic sleep stage scoring method to improve sleep stage detection

and classi�cation accuracy. Two standards for scoring namely R&K and AASM are

available for sleep stage scoring. As per R&K rule [1], analysis of the EEG signal

is carried out by dividing each signal into periods of 30s small parts known as seg-

ments. Sleep stages identi�cation process extract features from each 30 sec segment.

Since last decade many sleep assessment techniques have been proposed with the

new technologies such as mobile apps and novel advanced hardware sensors such

as galvanic skin response measures. Simple methods can be used only to categories

awake or sleep states but we need complex methods to distinguish all the sleep

stages. A sleep detection method categories the sleep states of a patient. Most of the

sleep detection methods e.g. wrist actigraphy or mobile apps used a binary function

to classify Awake/Sleep states. Another sophisticated methods can be considered as

a ternary function to classifyAwake/NREM/REM. At last, the most advanced and

powerful methods, such as polysomnography quinquenary function considered as the

gold standard for more states like: Awake/N1/N2/N3/REM [2]. Large number of

methods are applied for sleep state detection and each one has one signi�cant advan-

tages and disadvantages. The obvious and common disadvantage of these methods is

that they used advance technology like electroencephalograms, electrocardiograms,

etc which cannot be used at home. On the other hand the merit is that these

methods are extremely precise, and can be discrete which are able to di�erentiate

di�erent sleep phases. That is why these mentioned in the literature survey can be

considered as the gold standard for sleep evaluation e.g. [3], [4] and many more.

The term polysomnogram comes with poly (Greek) means many, somnus (Latun)

which means sleep, and the gramma (Greek) which means drawing or diagram. A

PSG (Robertson, Marshall & Carno, 2014; Pandi-Perumal, Spence & BaHammam,

2014; Armon et al., 2016) is a medical procedure comprises of various independent

tests that look into the body functions while sleeping. The following tests and in-
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1. Introduction

formation can be collected while performing tests: Electroencephalogram (EEG),

which measures and records the brainwave action to recognize sleep states and iden-

tify seizure action. Electrooculogram (EOG), records eye developments or activities,

are signi�cant for recognizing the diverse sleep stages, particularly the REM stage.

Electromyogram (EMG), records muscle activity and is important necessary to dis-

tinguish REM from wakefulness. Electrocardiogram (ECG, used to records the heart

rate and rhythm. Nasal and oral air�ow sensor, used to records the air�ow and the

breathing rate. Blood pressure monitor, measures the blood pressure and its vari-

ations [2]. Sleep is a signi�cant part of person's life and individuals used to sleep

one-third of their entire life. Our research is motivated by the fact that there are

large number of disorders like insomnia, breathing disorders, wake-sleep disorder

sleep movement disorder found in human beings. Every sleep state has di�erent

group of neurological and physiological features. The correct identi�cation of these

features along with their states are important for diagnosis and the better treat-

ment for such sleep disorders [5]. Sleep classi�cation process is not a standardized

one, i.e. di�erent experts have di�erent criteria to mark a speci�c period of sleep.

Usually sleep scientists make classi�cations by using visual method to predict or

decide in which state the patient is for a speci�c time. Around 24% of the adult

population have regular sleep disorders. Ohayon and Smirne [6] shown 27.6% of the

Italian population have sleep problem. Gupta et al. [7] shown Indian population

have 10-15% insomnia and 10% delayed sleep wave phase disorder. This problem is

increasing worldwide day by day and according to Oliver et al. this problem costs

around $100 billion USD per year. Following R&K rules sleep is categorized into

six categories, REM, sleep stage1, stage2, stage3, stage4 and wake state. Later on

NRME2 and NRME3 are also combined resulted as just four main classes namely

light sleep, Deep sleep, REM and Awake state. For accurate diagnosis of sleep phases,

an expert manual scoring for sleep stages using some standards is needed for the

whole duration recordings of the selected biomedical signals. Manual scoring is time

consuming, its availability is limited, therefore there is a need for automatic sleep

phase detection to reduce cost and to increase access to diagnosis sleep stages. For

instance in case of EEG (electroencephalograph) signals six wave patterns are used

to di�erentiate wake and sleep states and classify sleep stages: (1) alpha activity, (2)
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1. Introduction

theta activity, (3) vertex sharp waves, (4) sleep spindles, (5) K complexes, and (6)

slow wave activity The main challenge to automatic sleep phase detection is hetero-

geneity. This means that individuals have di�erent cranial structures which e�ect

the patterns in the signal. For example 10 percent of the population don't produce

alpha rhythm during stage W (wake) and 10 percent create just a constrained or

limited alpha beat. This justi�es the combination of EEG with other biomedical

signals in order to improve the results.

1.3 Piecewise Linear Functions

A function is known as piecewise linear function if it is continuous and de�ned

on a (possibly unbounded) interval of real numbers, such that there is a collection

of intervals on each of which the function is an a�ne function. If the domain of the

function is compact, there needs to be a �nite collection of such intervals.

Figure 1.1: A continuous piecewise linear function

A piecewise linear function with four pieces or segments is shown in Figure 1.1.

Example: f(x) =



−x− 3 if x ≤ −3

x+ 3 if − 3 < x < 0

−2x+ 3 if 0 ≤ x < 3

0.5x− 4.5 if x ≥ 3

In proposed methods we used two piecewise linear function reduction techniques

for the signals. One in the time and other one in the frequency domain explained in

coming sections. The reason for developing two piecewise liner models in di�erent

domains is to make the signal processing fast and accurate. Models make the signal

simple and short by discarding the irrelevant information (not predominant peaks)
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1. Introduction

but retain important seizure and sleep properties in the original signal. Thus, after

applying the models on the signal we have a simple, reduced but more assertive

signal for analysis, which gives best insight into the signal. The nature of the seizure

segments is that, usually they have high spikes rate and high amplitude which gives

rise to high peaks in the signal [8], [9], [10].

1.4 Half-wave as Piecewise Linear Function

Traditionally, from mid of 20th century to end of 20th century, Half-wave was very

popular method to detect epileptic activities (seizures) form the long EEG signals

where the terms spikes and sharp waves also called SSWs [9] shown in following

Figures 1.2, 1.3, 1.4 and 1.5 are the representative or interpretations of seizure and

non seizure portions. Di�erent methods by using Half-wave have been proposed

to detect seizure and some of them are reviewed in coming sections. Traditionally

authors detect seizures by knowing the number and nature of the waves called spikes

or sharps waves and if sharp and spikes waves are found at a particular instant, they

conclude that epileptic activity is found at that instance. But traditional methods

based on spikes and sharps were not reliable and therefore, Jasper and Kershman

[11] divided focal epileptic activity into spikes i.e. 10 to 50 ms and sharp waves i.e. 50

to 500 ms. In 2005 Runarsson et al. [12] �rst time used Half-wave method in machine

learning and in our proposed algorithm we used the Half-wave method proposed by

Runarsson et al with certain modi�cations. Half-wave method works as, �rst �nd the

local minima and maxima over the entire signal and then draw an edge between each

extrema. Therefore, the original signal is converted into piecewise or segment wise

wave where each segment is an edge between two consecutive extrema. Segments are

alternate in direction i.e. if one segment is in upward direction (minima-maxima)

next alternate segment will be downward in direction (maxima-minima) shown in

Figure 1.3.
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1. Introduction

Figure 1.2: The letters a to h mark the SSWs detected by the system. Phase

reversals at electrode F8 are detected by coincidence in time for a�b and e�f, by

computation of the cross-correlation for d and h (since no SSW was found in

channel F8�T4 at the time of d or h) [12].

In The existing methods [12] the following conditions are necessary criteria to

add or reject the segment or sequence into the �nal wave and these conditions are

given below:

1. A sequence of direction X (up or down) includes a segment S in the direction X,

if the segment is larger (in duration) than either of two segments immediately

adjacent to S.

2. A sequence of direction X may not include a segment S in the direction of X

if the duration of the segment is equal to or greater than the 30 ms.

3. A sequence of direction X may not include a segment S in the direction of X

if the relative amplitude of the segment is equal to 2 or greater than 2.

this method ensure and focused that a sequence of any direction is bound to add

the segments having small duration i.e having relative amplitude less than 2 and

duration is less than 30 ms.

Relative amplitude: Relative amplitude is associated with two terms i.e.

Background activity and Background amplitude. The background activity is de�ned

as EEG activity which contains normal and abnormal patterns and these patterns

are di�erentiable from each other i.e. a spike or sharp wave is clearly distinguish

from background activity. On the another hand, background amplitude is de�ned at

every instant and is the mean amplitude of a sequence from the 5 sec directly pro-

ceeding that instant. Example, Let N and A be the number and sum of amplitudes

(extrema points) sequences in an interval of 320 ms long Half-wave. The background
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1. Introduction

amplitude is calculated by A/(N + 6), here a constant 6 achieves the desired bias

and the value of N is usually between 1 to 15. If there are 15 sequences then there

are 16 extrema or amplitude points. For 5 sec long signal there are approximately

16 segments or duration of 320 ms, which means 16 numbers (extrema points) from

16 consecutive 230 ms long duration are truly averaged. Because of the addition of

constant 6 while calculating the background amplitude, the background amplitude

is 25 percent smaller than the actual value if the activity is mostly fast and is 50 or

75 percent less if the activity is mostly delta or theta. The problem with the back-

ground amplitude is that for each and every instant it needs to be updated which

is not simple and requires lot of memory for its updation and therefore, it usually

get updated after 1/3 second [8], [9], [10].

Relative amplitude of a segment or sequence is the ratio of its absolute amplitude

to background amplitude and it is an integer value between 0 to 20.

Figure 1.3: The original EEG (dotted) broken down into Half-waves (solid) [12]

In our research we modi�ed this Half-wave method and instead of using 3 above

mentioned principles we used only one guiding principle. New Half-wave method is

iterative in nature and can be stopped after the desired reduction is achieved. The

detailed explanation about new Half-wave is given in Chapter 2 and 3.

1.5 Franklin System

The classical Franklin system, introduced by Ph. Franklin [11] in 1928, is a

complete orthonormal system of continuous, piecewise linear functions with dyadic

knots. The idea of its construction is originated from the Haar system. The Haar

system which later turned to be the simplest model for wavelets is a sequence of re-

scaled square shaped functions [13]. Although the Haar functions are not continuous
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1. Introduction

and so not di�erentiable the Haar system enjoys many nice properties which make

this system a very special one from both theoretical and practical aspects.

The Haar function ψ2n+k = ψn,k (n, k ∈ N, k = 0, . . . , 2n − 1) is de�ned as

follows

ψ0 =

 1, if t ∈ [0, 1/2)

−1, if t ∈ [1/2, 1)
,

ψ2n+k(t) = ψn,k(t) =


2n/2, if t ∈ [k2−n, (2k + 1)2−(n+1))

−2n/2, if t ∈ [(2k + 1)2−(n+1), (k + 1)2−n)

0, otherwise

.

The Haar system (ψn,k : n, k ∈ N) is a complete orthonormal basis in L2[0, 1).

Moreover the Haar series of continuous functions converge to the function at every

point, which failed to hold to any orthogonal system constructed prior to the Haar

system in 1910. On the other hand the element of the system are in the space of

continuous function.

In order to construct a basis within the space of continuous function Faber [14]

([15]) considered the system of inde�nite integrals of the Haar system supplemented

by the function that is identically equal to one. In the general case, the construction

was carried out by J. Schauder. The elements of the so called Faber-Schauder system

are de�ned as follows

s0 ≡ 1 , sn(t) =

∫ t

0

ψn−1(u)du (t ∈ [0, 1], n ∈ N, 0 ≤ k < 2n).

We note that the de�nition of the Faber�Schauder functions may di�er according

to the normalization applied. Historically, the Faber�Schauder system was the �rst

example of a basis of the space of continuous functions. These functions sn are

continuous, piecewise linear and supported on the same interval that also supports

ψn−1.

The Faber�Schauder system is a basis in C[0, 1)], but the elements are not

orthogonal to each other. An orthogonal basis is derived from the Faber�Schauder

system by applying Gram-Schmidt orthogonal procedure. The resulting system is

called Franklin system [17], [18], [19]. Clearly, the Franklin system has the same

linear span as that of Faber Schauder systems and this span is dense in C([0,1]).
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1.6 Metrics Used

The performance of the most of the techniques in di�erent domains is measured

by following quantities and the same metrics are used in our proposed methods:

1.6.1 Binary Classi�cation Problem

When there are only two classes to identify e.g. in seizure detection case, the

following metrics are used:

Sensitivity = TP

TP+FN
× 100

Speci�city = TN

TN+FP
× 100

Accuracy = TP+TN

TN + FP + TP + FN
× 100

TP , means true positive, is the number of epochs which are marked as seizure

by both algorithm and doctor.

TN, true negative, is the number of epochs which are marked as non seizure by

both algorithm and doctor.

FN, false negative, the number of seizure epochs which are misclassi�ed by the

algorithm, i.e. recognized as non seizure but actually they are seizures.

FP , false positive, the number of non seizures epochs which are misclassi�ed by

the algorithm, i.e. recognized as seizure but actually they are non seizures.

The performance of the seizure detection algorithm primarily depends on follow-

ing parameters:

Transformation technique, feature selection, classi�er used, window size, type

of window or mother wavelet, the levels of decomposition of the original signal

and optimization algorithm, etc. The literature survey will also help the readers to

become familiar with di�erent types of public and non-public epilepsy databases.
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1. Introduction

1.6.2 Multi-Class Problem

For multi-class problem, the performance evaluation is achieved by following

metrics.

Sensitivity =
TP

TP + FN
× 100 Speci�city =

TN

TN + FP
× 100 ,

Average Accuracy =
TP + TN

TN + FP + TP + FN
× 100 .

TP, stands for true positives which is the sum of the diagonal values of confusion

matrix. TN, i.e. true negative is the sum of all rows and columns excluding that

class's rows and column. FN, false negative is the sum of the values in corresponding

rows excluding TP's. FP, is the sum of values in corresponding columns excluding

TP's. TP+FN, total numbers of test examples of the considered class. Therefore

in case of multi-class problem TN, FN, TP, FP, FN here are the overall values for

all classes. The "False alarms per hour" (Fph) is the ratio of total number of false

detection and the time length of the test data in hour. For more details please follow

the link (https://towardsdatascience.com/confusion-matrix).

15



Chapter 2

Epileptic seizure detection using

piecewise linear reductions

2.1 Abstract

This Chapter is based on our paper published in Lecture Notes in Computer

Science (LNCS,Q2) Springer [20], where we proposed a hybrid approach to detect

seizure segments in a given EEG signal. In our model the discrete EEG signal is

naturally associated with a piecewise linear function. We apply two data reduction

techniques within the model space, a new Half-wave method in the time domain, and

orthogonal projection with the Franklin system in frequency domain. The later one

is a complete orthogonal system of piecewise continuous functions. As a result we

obtain two reduced piecewise linear functions with low complexity that still preserve

the main characteristics of the seizures in the signals. Then the components of the

feature vector are generated from the parameters of the two reduced functions. Our

choice for the model space, i.e. the space of piecewise continuous functions, is justi�ed

by its simplicity on the one hand, and �exibility on the other hand. Accordingly the

proposed algorithm is computationally fast and e�cient. The algorithm is tested on

23 di�erent subjects having more than 100 hours long term EEG in the CHB-MIT

database in several respects. It showed better performance compared to the state of

the art methods for seizure detection tested on the given database.

keywords: epilepsy, seizure detection, signal modeling, Half-wave method,

Franklin system.
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2. Epileptic seizure detection using piecewise linear reductions

Before doing the actual research, we wrote a survey paper namely "Various

epileptic seizure detection techniques using biomedical signals: A review" [21], pub-

lished in Brain Informatics,(Q2), Springer, where a thorough study of various exist-

ing methods and results has done.

2.2 Problem Statement and Motivation

We propose a hybrid approach to detect seizure segments in a given EEG signal.

There are a number of algorithms proposed to detect seizures and the majority

of the algorithms is based on multichannels. The problem with the multichannel

algorithms is that they require a huge amount of data to process in order to get good

results. It slows down the speed of the method. Such algorithms are not accepted

in small devices and in real time applications where response is expected in very

short time with high accuracy. On the other hand state of the art single channel

methods are fast but they are not as reliable and accurate as multichannel methods.

We propose a single channel approach to detect seizures in a given EEG signal. Our

method is a so called hybrid method, i.e. a combination of a time domain and a

frequency domain method.

2.3 Introduction and Background

Epilepsy is a neurological disorder which creates severe e�ects to human brain.

According to the latest study, more than 2% of the population worldwide is a�ected

from epilepsy where 85% of those live in developing countries and has adverse e�ects

on their daily life and productivity. Each year 2.4 million new cases are estimated to

occur globally [22], [23]. EEG signals are usually used by experts for the diagnosis

of the epilepsy. EEG signals are classi�ed into two types: (a) scalp EEG and (b)

intracranial EEG (iEEG). Scalp EEG is captured by placing the electrodes on the

surface of scalp by using international standard 10�20 system [24]. iEEG signals are

captured by placing the electrodes directly on the surface of brain to record the

brain activity from the cerebral cortex. Detecting and locating the seizure period in

EEG recordings manually is di�cult and time-consuming because EEG recordings
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2. Epileptic seizure detection using piecewise linear reductions

are usually tens or even hundreds of hours long. According to [25], [26], the seizure

detection process is classi�ed as single-channel or multichannel process. In single-

channel process, a channel or signal which is strong and close to the seizure origin is

selected based on some measures like local variance. Combining the information from

more than one channel through some data fusion techniques [27] gives better results

in seizure detection process. Another attempt to classify seizure detection as linear

and nonlinear techniques is made in [28], [29], [30]. Tzallas et al.[31] classi�ed seizure

detection methods as pattern recognition methods, morphological analysis methods,

parametric methods, decomposition methods, clustering methods and data mining

methods. Alotaiby et al. [32] classi�ed seizure detection methods based on time,

frequency wavelet and empirical mode decomposition (EMD) domains. Because of

the application of various transforms like discrete Fourier transform (DFT), discrete

wavelet transform (DWT), Hilbert transform, Gabor transform, rational transform,

etc., decomposition techniques like empirical mode decomposition, singular value

decomposition, etc., and data reduction techniques like principal component analysis

(PCA) and independent component analysis (ICA) have played an important role in

seizure detection. In the literature survey the state of the art methods are discussed

under time domain, frequency (DFT) domain, wavelet domain (time�frequency),

empirical mode decomposition (EMD) and rational transform functions. Most of

the techniques discussed here are noninvasive. we also summarize some papers which

adopted other biomedical signals like electrocardiogram (ECG), electrocorticography

(ECoG), etc., or combination of di�erent signals for seizure detection. We focused

on scalp EEG databases-based techniques and methodologies.

Time Domain or Threshold-based Methods

Time domain refers to how the value of the signals varies over time, in other

words time parameter is the independent variable of the signal. Time domain meth-

ods are usually patient-speci�c or problem-speci�c and do discrete time analysis, and

do analysis of the given epochs (time window). Thus, this is value-time analysis of a

given signal x(t). The main objective here is to demonstrate the various approaches,

interconnection among approaches and di�erent possibilities in time domain so that

we can further do improvement in seizure detection devices. To this end, we se-

lected seven di�erent latest papers with di�erent ideas. The selected papers have
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2. Epileptic seizure detection using piecewise linear reductions

high accuracy, sensitivity, speci�city and low false detection rate. It may be bene�-

cial to the researchers who are interested to develop seizure detection devices with

high speed and more accuracies. The performance in terms of accuracy, sensitivity,

speci�city and false detection rate of below mentioned algorithms depends mainly

on core ideas, selection of the features and classi�ers being used. Since these meth-

ods do not require transformations and are generally fast and are used in seizure

detection devices like smart watch, tablets, etc., proposed algorithms are tested on

CHB-MIT, Bonn database [33] and self-recorded data, whereas last two papers are

purely hardware based.

Shanir and Khan [34], proposed method for automatic seizure detection based on

mean and minimum value of energy per epoch, i.e. mean of the energy of each sam-

ple point in a epoch and sample point having minimum energy in a epoch are used

as features for classi�cation. The window size was chosen as 1 s. The classi�er used

here is linear classi�er. The algorithm was tested on CHB-MIT database on three

subjects with 60 and 40% of data used as training and test data, respectively. They

obtained an average detection accuracy of 99.81%, sensitivity 100%, and speci�city

99.81%. Alotaiby et al. [35], they proposed patient-speci�c method for channel selec-

tion and seizure detection by estimating the histograms of multichannel scalp EEG

signals.The method is tested on CHB-MIT dataset using 309.9 h of EEG including

26 seizures of �ve patients. They have shown an average sensitivity and speci�city

o� 97.14% of 98.58%, respectively.

Runarsson and Sigurdsson [12], the idea behind this paper is: �rst, �nd the

Galf-wave form of the EEG epoch at hand and then �nd the consecutive peaks and

minima in that Half-wave signal segment. The histograms are estimated for two vari-

ables: the amplitude di�erence (∆, Y-axis) and time separation (τ , X-axis) between

two consecutive peak values as well as minima. Here we have two histograms one for

minima and other for maxima. The features used for classi�cation of an epoch as

a seizure or non-seizure are these estimated values like ∆ and τ from local minima

and maxima. Actual features used are the frequencies of co- occurrences of τ and ∆

and each feature is generated from 8 s long signal with 2 s overlap 12 h self-recorded

data using 10 EEG channels with 256 sampling. Support vector machines (SVMs)

with chunking method are used as classi�ers. An average sensitivity of about 90%
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is achieved. Problem with this method is that actual processing of the signal like

extraction of the features starts only after �nding the Half-wave representation of

the original signal. Once the Half-wave is in hand this could be very fast algorithm

in time domain applications with large amount of dataset and can be used as on-

line seizure detection method. In [36] the researchers designed the seizure detector

(hardware) and implemented the algorithm (software) in the designed processor. In

[37] they have developed a improved network of seizure detection devices.

Mursalin et al. [38], present a hybrid approach where features from time and

frequency domains are analysed to detect epileptic seizure from EEG signal. Time

domain features like mean, median, mode, minimum, maximum, skewness, stan-

dard deviation, kurtosis, �rst quartile (Q1), third quartile (Q3) and interquartile

range (Qir), mobility and complexity, Hurst exponent and the detrended �uctuation

analysis with frequency domain features like maximum of the wavelet coe�cients,

minimum of the wavelet coe�cients, mean of the wavelet coe�cients, standard de-

viation of the wavelet coe�cient. Alejandro and Ramon-Lozano [39], in this paper,

authors used energy of the signal in a di�erent way. They used smaller window as

the foreground windows and larger window as the background while windowing the

signal. Energy is calculated in every foreground and background window, and the

energy ratio is calculated by dividing the foreground energy by the corresponding

background window energy resulting a series of energy ratios and can be treated

as a time series distribution where some values are more higher than average or

threshold values are part of seizure. The algorithm is tested on CHB-MIT database

and found that the number of false positives is very small, and it is 0.39 per 24 h in

average, which less than most state-of-the-art methods.

Yoo et al. [36], they designed a multichannel-based processor called system on

chip (SoC) for detecting the seizure, and energy of the signal is used as features.

They used SVM as classi�er and is trained to detect rapid-eye blink patterns as this

is similar to the generalized seizure and has more energy as compared to non-seizure

patterns. The SoC was tested on CHB-MIT scalp EEG database [40] and it showed

an accuracy of 84.4% with a total time of 2 s and 2.03 µJ/classi�cation energy. The

advantage of this processor as compared to IAS processor is that it enlarges the

EDO �ltering range 4 times better and consuming the same power of 2.5 µW.
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Frequency Domain

Time domain method does the analysis of the signal based only the time and

magnitude components of signal [magnitude (Y-axis), time (X-axis)], and there is

no information about frequency component of the signal. But if we want the deep

analyses of the signal then frequency component is also required. Frequency do-

main tells about the frequency spectrum [magnitude (Y-axis), frequency (X-axis)]

of the signal. The advantage of the transformation of signal from one domain to

another domain is that it provides insight and points out the important properties

of the signals which cannot be seen by visual inspection of the original signal and or

hidden signal in time domain. Bhople et al.[20], authors proposed epileptic seizure

detection method by using fast Fourier transform (FFT). The FFT-based features

are extracted and are fed to the neural networks. They used multi-layer perceptron

(MLP) and generalized feed-forward neural network (GFFNN) as a classi�er. The

algorithm is tested on Bonn database, and results show they are able to achieve

100% accuracy.

Hills [21], the author participated in a competition �UPenn and Mayo Clinic's

Seizure Detection Challenge� and he used fast Fourier transform (FFT) to each

one second long window and taking magnitude in the range 1�47 Hz and leaving

phase information. Then correlation coe�cients and eigenvalues are computed in

both frequency and time domains and added to the FFT data to form the feature

vector; these features are classi�ed using random forest classi�er with 3000 trees.

Rana et al. [19], they proposed a multichannel algorithm for seizure detection,

and their algorithm is based on phase slope index (PSI). The performance of the

algorithm is tested on 258-h-long recorded EEG data of �ve patients with di�erent

types of epilepsy. ECoG data of �ve patients ranges from 41 to 63-h-long and have

5�15 seizures in each case. A unique strength of this paper is that it is designed and

evaluated on long-term recordings. They also showed that their algorithm can be

used to �nd the channels among various channels having strong activity.

Khamis et al. [40], it is a single channel, patient-speci�c and with no threshold

parameter method of seizure detection. Frequency domain features like frequency

moment signatures are used to distinguish a seizure segment from non-seizure. A

sensitivity of 91% and false alarm rate of 0.02 false positives per hour is achieved
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as per this method. Acharya et al. [41], they designed a method for the detection of

three states of EEG signal, i.e. normal, pre-ictal, and ictal conditions from recorded

EEG signals. They combine the features from two domains, i.e. time domain and

frequency domain and found that this combined features method is performing good

in situations when signal has nonlinear and non-stationary nature. Four entropies

(measure of randomness), phase entropy 1 (S1), phase entropy 2 (S2), approximate

entropy (ApEn), and sample entropy (SampEn) are used as features. Results showed

that Fuzzy classi�ers are optimal, with an accuracy of 98.1%.

Observations: Frequency domain methods are good choices when recorded data

is large, i.e. for long-term data but time component of the signal is missing here. On

the other hand, combination of features from di�erent domains may produce very

promising results.

Wavelet Domain (Time�Frequency)

A wavelet can be de�ned as a waveform with certain properties: (a) e�ectively

limited duration and (b) zero average value.

Here basis functions are wavelets called mother wavelets, e.g. Har, Daubechies,

etc. The mother wavelet is a reference wavelet, whose coe�cients are evaluated for

the entire range of dilation and translation factors [42]. Next six papers investigate

the appropriate decomposition levels of the signal for e�cient seizure detection, and

last paper is hardware based. Di�erent classi�ers are discussed in all ten papers.

Polat et al.[43], proposed a new method for seizure detection by using Wavelet

and Hilbert transforms. The features like mean, maximum, minimum, standard de-

viation and average power of absolute values of wavelet and Hilbert transform co-

e�cients are extracted separately. The decomposition level 2 was chosen because

dynamics of EEG signals contain important sub-bands. Daubechies wavelet of order

4 (db4) is chosen as mother wavelet. The K-Nearest Neighbourhood (KNN) classi-

�er is applied separately on these extracted features. The performance is tested on

Bonn database [44], and they found that the results obtained by using Hilbert trans-

form are quite promising. Accuracy: for wavelet case, 100 and 96% for the A�E and

B�E datasets, and for Hilbert case, 100 and 100% for the A�E and B�E datasets,

respectively. Zainuddin et al. [45], in this paper, the authors �rst take the wavelet

transform of EEG signals to generate a set of coe�cients, and then, maximum, min-
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imum, and standard deviation of the absolute values of the wavelet coe�cients in

each sub-band are extracted as features. The extracted features are then classi�ed

by WNNs (Wavelet Neural Networks) classi�er. Niknazar et al. [46], they used recur-

rence quanti�cation analysis (RQA) a well-known and well-suited analysis technique

for nonlinear data on recorded EEG, and their alpha, beta, delta, theta, and gamma

sub-bands are extracted by a four-level Daubechies wavelet transform. The signal is

decomposed into �ve levels. After extracting the features, an error-correcting output

coding (ECOG) classi�er is used on Bonn database to classify the three states like

normal or healthy, inter-ictal, and ictal. They achieved an accuracy of 98.67%.

Zhou et al.[47], this paper used lacunarity and �uctuation index as features, and

Bayesian Linear Discriminant Analysis (BLDA) is used as classi�er.

The performance of this algorithm is evaluated and investigated on Freiburg

EEG database [48], and it is found a sensitivity and false detection rate of 96.25%

and 0.13/h, respectively.

Guangyi et al. [49], in this paper, they decompose the EEG signals up to six

wavelet scales without down-sampling. Scales 3, 4, 5, and 6 are chosen for further

processing. The fast Fourier transform on selected scales has been performed, and

magnitude of the Fourier coe�cients is chosen as features for seizure detection.

Nearest neighbor classi�er is used to classify the input EEG signal into the seizure

and non-seizure class. The performance of the proposed algorithm is tested on Bonn

database and perfect correct classi�cation rates achieved (100%) for all seven binary

classi�cation problems, and it is better than existing methods like [43], [45] in terms

of classi�cation rate.

Liu et al. [50], it is also a �ve-level decomposition technique. Three wavelet sub-

bands are selected for feature extraction and feature selection. The feature used

is relative amplitude, relative energy, coe�cient of variation, and �uctuation index

from the selected three levels. The results are tested on 509 h for 21 epilepsy patients,

and they found sensitivity, speci�city and false detection rate of 94.46, 95.26%,

and 0.58/h, respectively. This algorithm is robust as compared to above-mentioned

techniques because algorithm is performing exceptionally well on long-range data.

Abbasi and Esmaeilpour [51], the objective of this paper was improving the

precision of prediction and classifying di�erent states of EEG signals into healthy,
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convulsive, and epileptic states. In this approach, they divide the signal into 5 levels.

For further processing, they chose �rst 4 levels and last, i.e. 5th low-frequency level is

rejected. Features like maximum, minimum, average and standard deviation for each

sub-band are extracted. A Multi-Layer Perceptron (MLP) neural network was used

as classi�er. The confusion matrix was used to calculate the performance, and the

algorithm tested on Bonn database achieved an accuracy, sensitivity and speci�city

of 98.33, 100, and 97.1%, respectively. Mother wavelet used here is Daubechies-4.

Panda et al. [52], it is also a �ve-level decomposition technique for features extrac-

tion. The extracted features are energy, standard deviation, and entropy. Reference

wavelet used here is Daubechies (db-2), and SVM is used as a classi�er. They com-

pared the results of individual features and found energy feature has highest accuracy

of 91.2%. The algorithm is tested by detecting the seizure activity on 500 epochs

of EEG data (100 epochs from each activity) from �ve di�erent brain activities like

eye close, eye open, seizure, hippocampal region, and opposite of epileptogenic zone.

Khan et al.[53], authors use the same technique as Panda et al. [52], but choose

di�erent set of features like relative energy and a Normalized Coe�cient Of Variation

(NCOV). It works on wavelet coe�cients acquired in the frequency range of 0�32

Hz. The algorithm is tested on �ve patients from CHB-MIT scalp EEG database

and they found the performance of NCOV over the traditionally used COV is bet-

ter. Reference wavelet used here is Daubechies (db-4), and they achieved an overall

accuracy, sensitivity, speci�city, and precession of 83.6, 100, 91.8, and 86.7% re-

spectively. Shoaib et al. [54], they develop a processor for seizure detection that

directly uses compressively sensed electroencephalograms for embedded signal anal-

ysis. Their main aim to present this method is that it saves energy of the processor

through compressive sensing. The wavelet energy is used as features. By analyzing

the compressed signals directly, it avoids reconstruction costs, computational en-

ergy of signal analysis due to the reduced number of signal samples. Their results

showed that, because of compressive sensing there is 4% decline in sensitivity, 0.15

per hour increase in false alarm rate, and a latency of 1 s as compared to baseline

performance. The results were tested on CHB-MIT database with SVM as classi-

�er. For linear SVMs, the total processor energy lies in the range of 0.3�2.2 µJ, for

nonlinear support vector machines energy lies in the range of 12.6 to 38.5 µJ by
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using fourth-order polynomial kernel, and 18.1 to 53.3 µJ for SVMs with an RBF

kernel. After every 2 s, classi�cation results are produced, and for all SVMs kernels

the total processor power appears in the range 0.6�107 W.

Observations: Applications of wavelets in signal processing tremendously in-

creased the accuracy in signal processing techniques. We can conclude that decom-

position level up to 5 is su�cient for seizure detection. It is di�cult to recommend a

particular classi�er while dealing with wavelets but SVM, arti�cial neural network

and KNN may be good options for classi�cations. Daubechies wavelet is frequently

used, and results are quite interesting.

Hilbert Transform and Empirical Mode Decomposition

Instantaneous Frequency (IF) is a frequency of the signal at particular instant

of time t. In Fourier analysis, one complete oscillation of a sine or cosine func-

tion is needed to �nd out the local frequency [55], but it could not make sense

for non-stationary signals like EEG. There are dissimilar techniques to determine

instantaneous frequency, but the preamble of the Hilbert transform with EMD is

made easy and meaningful to discover IF.

IMF is a capacity or function with a similar number of extrema (minima and

maxima) and zero intersections or crossing points, where envelopes are symmet-

ric concerning zero. Therefore, de�nition of IMF guarantees a well-behaved Hilbert

transform of the IMF. Hilbert Spectral Analysis (HSA), i.e. examination of each

IMF's instantaneous frequency as functions of time results in a frequency-time

distribution of signal amplitude or energy, which allows the identi�cation of lo-

calized features. Eftekhar et al. [56], well-known time�frequency techniques like

spectrograms and wavelet analysis have some issues like: both require some a pri-

ori knowledge of the signal and the assumption of linearity. Eftekhar et al. ap-

ply a new time�frequency technique called Hilbert-Huang technique or empirical

time�frequency technique in seizure detection using EEG and ECG signal, and it

is a combination of two famous methodologies of signal processing like Hilbert and

Huang transform (Hilbert�Huang). Tafreshi et al. [57], in this paper, they used

means of the absolute values of the IMF's Hilbert transform as feature. They also

compared their approach with another approach where feature extraction is done

with wavelet transform. Algorithm used Self-Organizing Map (SOM) neural net-
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works and Multi-Layer Perceptron (MLP) classi�ers for classi�cation, and they

showed that MLP are better than SOM networks. Results are tested on Freiburg

database, where data is taken from 5 patients using 128 channels with 256-Hz sam-

ples. For each of the patients, there are datasets called �ictal� and seizures �inter-

ictal�. The MLP networks are superior in performance with 90.69% accuracy to the

SOM networks having 87.28% accuracy for same four empirical modes.

Other similar methods are explained in [58], [59], [60]. [61]. Alam and Bhuiyan

[62], here combined statistical and chaotic features like kurtosis, skewness, largest

Lyapunov exponent, variance, approximate entropy, and correlation dimension from

the �rst 4 IMFs components of EEG signals are used. Here an IMF is segmented

into 16 blocks using a rectangular window of length 256. For each window, three

chaotic features (LLE, CD, ApEn) and three statistical features (variance, skewness,

kurtosis) are calculated. They used Arti�cial Neural Network classi�ers (ANN) for

classi�cation. The results are tested on Bonn database and algorithm achieved a

sensitivity, speci�city, and accuracy for (D,E) set using IMF3 and IMF4 of 100, 100,

and 100%, respectively.

Bajaj and Pachori [63], they proposed an EMD-based seizure detection method

to detect focal temporal lobe epilepsy. Algorithm used Hilbert transformation of

IMFs which were obtained by an EMD process. The performance of this algorithm

was evaluated on Freiburg database. The sensitivity, speci�city and error rate are

of 90, 89.31, and 24.25%, respectively. It is a patient-speci�c algorithm.

In summary, we say that combination of EMD with Hilbert transform is per-

forming exceptionally well as compared to other time�frequency domains. Up to

four IMFs are su�cient to detect the onset seizure.

Rational Transform

This is also a time�frequency domain which is based on rational functions. It

is adaptive in nature, i.e. basis functions are not �xed unlike Fourier and wavelet

transforms. This method of feature extraction is already used in control theory and

system to control the behaviour and identi�cation of the system. The application

of rational transform in seizure detection is totally new area. The coe�cients of the

rational transform decay very fast as compared to above-mentioned time�frequency

domains.
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Samiee et al. [64], proposed a new method of feature extraction in time�frequency

domain called MT rational DSTFT which relies on rational function, and it is adap-

tive in nature. Their method proposed a sparse representation of the signal while the

components remain orthogonal. They investigated that the best window and coe�-

cients size are 256 samples (1.5 s) and �rst 32 coe�cients of the proposed transform.

Authors applied stochastic hyperbolic Particle Warm Optimization (PSO) algorithm

to �nd the optimal position of the pole of each EEG epoch which gives the com-

pact t�f representation of the proposed system. The performance of the proposed

method is evaluated on Bonn database and showed that the algorithm has more

accuracy (in terms of sensitivity keeping speci�city �xed) than other t�f transforms

like DSTFT and 13 Cohen's transforms with the same number of nonzero coe�-

cients and achieved an accuracy of 99.8 and 99.3 for the combination of E�A and

E�B datasets, respectively.

Samiee et al. [65] here, they concentrated and solved the problem of o�-line

supervised detection of epileptic seizures in long-term EEG recording. To achieve the

goal, they developed a new feature extraction method, which is based on the sparse

rational decomposition and the Local Gabor Binary Patterns (LGBP). The proposed

algorithm is tested on CHB-MIT scalp EEG database from PhysioNet using EEG

recording of 163 h. Their proposed technique performs better over dedicated and

well-known techniques (wavelet, STFT, etc.) by showing an overall sensitivity and

speci�city of 70.4 and 99.1%, respectively. Their algorithm detects commencement

of seizures with an average overall sensitivity of 91.13% and false alarms per hour

rate of 0.35.

Fridli et al.[66], used rational function system for the analysis of the ECG sig-

nals. Their technique has many advantages over the previously used generalized

techniques like wavelet transform. Their system is very speci�c for ECG signals and

shape of the individual term correspond to the natural shape of the ECG signals.

The system is �exible, i.e. the coe�cients and the system itself can be optimized even

from heartbeats to heartbeats. The system is simple and less number of calculations

are required.
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2.4 Proposed Method

The various steps of the proposed algorithm are shown in Figure 2.1. The nov-

elty of the proposed algorithm is that we apply two data reduction techniques

namely a new Half-wave method in the time domain, and orthogonal projection

with the Franklin system in frequency domain. The later one is a complete orthog-

onal system of piecewise continuous functions. As a result we obtain two reduced

piecewise linear functions with low complexity that still preserve the main charac-

teristics of the seizures in the signals. The feature vector is constructed from these

two reduced models. For classi�cation we used KNN classi�er which is best suited

to our problem as compared to the other well known classi�ers.

Figure 2.1: Framework of the proposed method

2.5 Database and Channel Selection

2.5.1 Database

For our tests we used CHB-MIT Scalp EEG Database collected by Ali Shoeb

[67] (Physionet,https://www.physionet.org/pn6/chbmit/) at the Children's Hospital

Boston. It consists of EEG recordings from paediatrics subjects with intractable

seizures. Recordings, grouped into 23 cases, were collected from 22 subjects (5 males,

ages 3�22 yrs ; and 17 females, ages 1.5�19 yrs). The start and end of each seizure is

annotated. The signals were recorded with 23 common EEG channels at a sampling

rate of 256 Hz. Signals were recorded with 23 common EEG channels.
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Table 2.1: CHB-MIT Database

Patient number Age(years) Sex Seizureduration Non− seizureduration Numberofseizures

1 11 F 499 23475 7

2 11 M 175 7983 3

3 14 F 409 24791 7

4 22 M 382 37976 4

5 7 F 563 17437 5

6 1.5 F 147 93051 9

7 14.5 F 328 32208 3

8 3.5 M 924 17076 5

9 10 F 280 34218 4

10 3 M 454 50008 7

11 12 F 809 9249 3

12 2 F 1565 44119 40

13 3 F 547 28253 12

14 9 F 117 25023 8

15 16 M 2012 8420 20

16 7 F 94 21506 10

17 12 F 296 10528 3

18 18 F 323 19951 6

19 19 F 239 10307 3

20 6 F 302 19732 8

21 13 F 203 13587 4

22 9 F 207 10593 3

23 6 F 431 31823 7

24 NR NR 527 42673 16
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2.5.2 Channel Selection

The channel selection is a challenging part in seizure detection and prediction

algorithms. Taking many channels results in slow algorithms because of the higher

computation demand. In the proposed method we use only one channel and show

that it works well for seizure detection. For channel selection we follow the method

proposed in [68]. Namely, we chose the one with least standard deviation (SD). The

idea behind it is that unwanted artifacts, like eye blink or muscular movement, may

produce sudden changes and so increase SD even in seizure free intervals in the

signal. In our study we tested di�erent channels, with di�erent SD and found that

channel having least SD gives the best result.

2.6 Methodologies Used

In our study we propose a novel EEG seizure detection hybrid method. In both

domains, time and frequency, we use signal reduction processes. Then features are

extracted from the reduced models. Our aim was to construct an e�ective but simple

and fast method. Keeping these guiding principles in mind we came to the conclusion

that the model of piecewise linear functions will be appropriate. The EEG devices

provide a discrete signal, i.e. sequence of the sample values, that can be considered as

a time series, or a piecewise constant function. A representation equivalent to them

can be obtained by linear interpolation. This way we associate the discrete signal

with a continuous piecewise linear function (pl-function), i.e. the signal is viewed

as a piecewise continuous analog signal. Throughout the whole process we stay

within this model space. This space is simple but it is rich enough for preserving the

necessary properties of the signal. In addition, using a time window with 256 samples

the point at which such functions are non-di�erentiable are all dyadic rationals. Such

functions are easy to represent, because they are completely characterized by the

endpoints of the linear segments. Moreover, all of the calculations reduce to simple

arithmetic operations. In the time domain we develop a new Half-wave method for

reducing the original function to a more simple one. The idea is to keep the relevant

tendencies but eliminate the irrelevant ones in the signal. The nature of the seizure

segments is that, usually they have high spikes rate and high amplitudes [8]. In the
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frequency domain we use orthogonal projection for reduction. We show that the

Franklin system is the proper choice for that.

2.6.1 Signal Reduction in Time Domain: Half-Wave Method

The history of the so called Half-wave method goes back to 40 years. Starting

from the 70's of the 20th century to the �rst decade of this century this method

was very popular to detect epileptic activities (seizures) form long EEG signals. It

was used to identify spikes and sharp waves [9] as representatives of seizure and non

seizure portions. Its main advantage is that normal and abnormal patterns of very

long signals can be examined and identi�ed easily. Di�erent versions of Half-wave

methods have been proposed to this order. In them several criterion were applied

for the de�nition and identi�cation of Half-wave formations within the signal. Also,

various parameters like duration of the wave, frequencies, amplitude etc. and sophis-

ticated methods based on them have been utilized for concluding whether epileptic

activity is found at that instance. Here we can not go into details. Instead we refer

the readers to the following relevant publications [69], [70], [8], [11], [71]. Our motiva-

tion di�ers from those above. Namely, we do not want to identify individual spikes.

Instead, we take a 1 sec portion of the EEG signal which consists of 256 samples.

Then we consider it as a pl-function, and we want to simplify it by eliminating ir-

relevant details. To this purpose we developed yet another Half-wave method which

is simple and fast.

Proposed Method of Half-wave Generation

The idea behind the proposed Half-wave method is to reduce the complexity

of the signal and to retain prominent peaks in the signal. First we calculate the

extremal points of the original signal, drop the other values, and take the pl-function

generated by the extremal points. Since the minimum-maximum values alternate in

the sequence of extremal points, the graph of the resulting pl-function is a kind

of wave form. We �nd that in intervals when there is a tendency of increase the

decrease in the individual maxima→minima intervals are very small. They do not

seem to contribute much in seizure detection process. Therefore, their inclusion

in the Half-wave is not necessary and can be dropped. Similar process is applied to
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opposite direction, i.e. when the signal shows a decreasing tendency. In the proposed

method we apply only one condition, which is very simple, in the reduction process.

After applying this condition the �rst time, the outcome is again a pl-wave with

less extremal points, and is called �rst level Half-wave decomposition. The process

can be repeated. It is easy to see that after some steps it will not make any further

change, i.e. the next level decomposition coincides with the previous one. Then it

is called �nal or complete Half-wave, and the previous versions are called semi-

half-wave decompositions. When we move from lower to higher levels in Half-wave

decomposition we loose more and more details. It is part of the reduction problem

to decide which level is the best suitable for seizure detection. Now we provide the

mathematical formalization of the proposed method. To this order let N ∈ N, and

let f : [0, 1] 7→ R be a continuous function that is linear on every subinterval of the

form [k/N, (k + 1)/N ] (k = 0, . . . , N − 1). In the �rst step we select the points of

local extrema. Namely those for which the following condition holds

f(k/N) > f
(
(k − 1)/N

)
and f(k/N) > f

(
(k + 1)/N

)
,

or

f(k/N) < f
(
(k − 1)/N

)
and f(k/N) < f(

(
k + 1)/N

)
.

Adding the two endpoints 0, and 1 to those satisfying the condition we obtain an

alternating sequence 0 = x0 < x1 < · · · < xN0 = 1 of maximum-minimum points

ordered in increasing way. The points of this sequence along with the values at them

de�ne the starting Half-wave function f0, which is the continuous pl-function that

is linear on the intervals [xk, xk+1] (k = 0, . . . , N0 − 2).

In the following steps we use criteria for the di�erences rather than for the

individual values of the corresponding function. Suppose that fj is a continuous

pl-function with alternating extremal points 0 = x(j) < x
(j)
1 < · · · < x

(j)
Nj−1 = 1.

Set ∆
(j)
k = x

(j)
k+1 − x

(j)
k (k = 0, . . . , Nj − 1). Then for every pair (x

(j)
k , x

(j)
k+1) (k =

1, . . . , Nj − 2) we check weather the condition

|∆(j)
k | > |∆

(j)
k−1| or |∆(j)

k | > |∆
(j)
k+1|.

holds. If this condition holds for k then we consider that the segment connecting

the values at x
(j)
k and x

(j)
k+1 represents a signi�cant change in the signal. Otherwise
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we consider that portion as an irrelevant detail and we will erase the points x
(j)
k and

x
(j)
k+1 from the sequence of extremal points. It is easy to see that if the condition

doesn't hold for a k then it does hold for k + 1. Consequently, despite of taking

overlapping pairs of consecutive points the erasure process goes pairwise. It means,

that also the remaining sequence 0 = x(j+1) < x
(j+1)
1 < · · · < x

(j+1)
Nj+1−1 = 1 is an

alternating sequence of maximum-minimum points. This sequence again de�nes a

continuous pl-function function fj+1, a reduced Half-wave function.

Then the starting pl-function is reduced from level to level. The process of course

can be stopped at any point but it terminates at some level, when no points are

dropped from the sequence of extrema. The �nal Half wave-function generated by

the original pl-function f.

2.6.2 Signal Reduction in Frequency Domain: Franklin

Transform

The frequency domain part in our hybrid classi�cation is an orthogonal pro-

jection using a proper orthogonal system. Recall that the our model space for the

EEG signals is the family of continuous piecewise continuous functions. In order to

perform an orthogonal projection, reduction in the frequency domain, that complies

with our model we need an orthogonal system that consists of continuous piecewise

continuous functions. This guarantees that the subspace spanned by the elements

of the system is a subspace of our model space. Moreover, since we take 1 sec long

segments with 256 samples linearity must hold between any dyadic rationals of the

form k2−8 (k = 0, . . . , 256). The combination of these requirements leads to the

Franklin system as a natural choice.

The importance of the role of the Haar system [13] in many applications, in-

cluding signal processing problems, is hard to exaggerate. It is, among others, the

simplest model for wavelets. Originally, in the construction of his system Alfred

Haar was motivated by the problem of Schauder basis in the space of continuous

functions C([0, 1]). At that time no orthogonal system Ψ was known such that the

Ψ-Fourier partial sums of every continuous function converge to the given function

uniformly. The Haar system was the �rst example for such an orthogonal system.

Ever since it turned out that the Haar system (H) enjoys several nice and impor-
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tant properties in mathematics as well as in applications. There was, however, one

imperfection in the construction from the point of the original motivation. Namely,

the Haar functions themselves are not continuous, ie. do not belong to the space

C([0, 1)]. In order to overcome this problem Faber [14], [15] came to the idea to take

the integral functions of the Haar functions. Then he of course received continuous

functions, and hoped that the system Φ of these functions preserve the convergence

property of H. Indeed, the system Φ now called as Faber-Schauder system turned to

be Schauder basis in C([0, 1]). Recall that hn ∈ H (n ∈ N, n = 2m +k, 0 ≤ k < 2m)

is de�ned as

hn = 2m/2χ[k/2m,(2k+1)/2m+1) − 2m/2χ[(2k+1)/2m+1),(k+1)/2m) (2.1)

where χA stands for the characteristic function of the set A ⊂ [0, 1]. Hence

we have that the nth Faber-Schauder function ϕn(x) =
∫ x

0
hn(t) dt is a roof shape

function, continuous pl-function, on [k/2m, (k+ 1)/2m]. Finally, the Franklin system

F = {fn : n ∈ N) is generated from Φ by Gram-Schmidt orthogonalization and

normalization. Then F is an orthonormal basis in C[0, 1). We note that it follows

from the construction that fn (n ∈ N, n = 2m + k, 0 ≤ k < 2m) is a continuous pl-

function, which is linear on every dyadic interval [k/2m+1, (k+1)/2m+1].We conclude

that F satis�es all of the properties we formulated above with respect to the desired

orthogonal system. We note that if f is a pl-function that corresponds to the EEG

samples in a 1 sec long record then the Franklin coe�cients [17], [18], [19].

f̂n =

∫ 1

0

f · fn (2.2)

can be accurately calculated by �nite many arithmetic operations.

2.7 Feature Extraction and Classi�cation

2.7.1 Feature Extraction

In the proposed method a hybrid feature vector is constructed from two piecewise

linear models. Rectangular windows of size 1 sec. are applied with 256 samples in
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each window. This size turned to be appropriate and that agrees with the conclusion

in [64], [65]. In the time domain features are extracted from the Half-wave reduction:

total number of extremal points, slopes of linear segments, maximum of slopes, mean

of extremal points, absolute minimum and maximum within the window. In the

frequency domain we take the �rst 16 coe�cients of the Franklin transform. The

�nal feature vector is constructed after performing tests using di�erent combinations

shown in Table 2.1. We found that the above mentioned six features from time

domain in the 4th level Half-wave reduction and the �rst 16 Franklin coe�cients

form the best combination with KNN classi�er for seizure classi�cations. In the

performance evaluation the metrics used are mentioned in section 1.6.1 of chapter

1.

2.7.2 Classi�cation

We have tested several classi�ers commonly used for seizure detection, like k-

Nearest Neighbor (KNN) algorithm, arti�cial neural network and support vector

machines. We concluded that the KNN performs the best in our case. We had to

address the problem that the database is highly imbalanced. Namely, the CHB-MIT

database has 10218 seizure seconds, which is only 1.6% of the total duration of the

EEG signal (6400086 sec). This makes the classi�er biased to detect majority (non-

seizure) class because of the unequal prior probabilities of the two classes. There are

two popular methods to handle this problem:

a) over-sampling (increasing the samples of minority class).

b) under-sampling (reducing the samples of majority class).

Most of the pattern classi�cation methods use over-sampling because there is no

loss of information. In the proposed method, we applied the well known over sam-

pling technique called Synthetic Minority Over-Sampling Technique (SMOTE) [72].

It neither exaggerates the Receiver Operating Characteristic curve of the extracted

features, nor causes any over-�tting problem [73]. We used 3 iterations of SMOTE

for each patient as recommended by Bhattacharya et al [68]. Each iteration increases

the number of minority samples by 100%. After applying the classi�er, we analyzed

the class labels. We experienced that in non-seizure time intervals some segments are

mistakenly classi�ed as seizure segments. The opposite situation occurs in seizure
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intervals. Therefore, we studied the result of the classi�cation not only for the indi-

vidual segment but for its 4 neighbors on each side. This way we could correct the

status of most of the misclassi�ed segments.

Table 2.2: Various combinations to �nd best features

Halfwave level SMOTElevel Featuresused #seizures #seizuredetected Specificity(%) Sensitivity(%) Accuracy(%)

03 03 (6time+ 16Franklin) 03 03 98.8 91 98.7

03 03 (6time+ 8Franklin) 03 03 97.4 91.6 97.3

04 03 (6time + 16Franklin) 03 03 99.9 95.2 99.8

04 03 (6time+ 8Franklin) 03 03 99.3 97 99.3

05 03 (6time+ 8Franklin) 03 03 99.3 94 99.2

05 03 (6time+ 16Franklin) 03 03 99.3 73.7 98.5

2.8 Results and Test Comparisons

Results of the proposed algorithm on CHB-MIT database are shown in Table

2.3. Table 2.4 shows the comparisons with state of the art algorithms. From Table

2.4, we can see in 2017 Bhattacharyya [68] proposed best method tested on the

same database for seizure detection. But the problem with the method is that it is

multichannel method which may slow down the speed of system and in real time

applications such heavy systems (multichannel) may not be accepted. Our method

is simple and based on only one channel which may be used in real time applications.

They achieved and average sensitivity, speci�city and accuracy of 97.91%, 99.57%,

99.41%. Whereas, our proposed method achieved an average sensitivity, speci�city,

accuracy, false alarm rate and kappa of 99.45%, 99.75%, 99.01%, 0.0039, 0.964 re-

spectively and these results are comparatively good than [68] and other state of the

art methods.

2.9 Conclusion

A novel hybrid approach has been developed to extract the features from EEG

signals. The main idea behind the piecewise linear models is to morph the signals
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in such a way that they become simple and smooth but at the same the impor-

tant characteristics of the sleep states are retained.The novelty of the proposed

algorithm is that we apply two data reduction techniques namely a new Half-wave

method in the time domain, and orthogonal projection with the Franklin system

in frequency domain. The later one is a complete orthogonal system of piecewise

continuous functions. As a result we obtain two reduced piecewise linear functions

with low complexity that still preserve the main characteristics of the seizures in

the signals. Di�erent time domain and frequency domain features are extracted and

tested, and the �nal feature vector is their best combination. The feature vectors

are classi�ed by using KNN classi�er on long data of CHB-MIT polysomnography

database. Proposed algorithm achieved an average sensitivity, speci�city, accuracy,

false alarm rate and kappa of 99.45%, 99.75%, 99.01%, 0.0039, 0.964 respectively,

which is higher than the existing state of the art methods.
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Table 2.3: Results of proposed algorithm on CHB-MIT database

Patient number TP FN Sensitivity(%) TN FP Specificity(%) Accuracy(%) Falsealarmrate/hr

1 11458 0 100 9083 25 99.7 99.9 0.0069

2 4474 0 100 2933 58 98.1 99.2 0.016

3 10503 0 100 9090 104 98.9 99.5 0.028

4 9619 0 100 14633 145 99 99.4 0.040

5 14375 0 100 9284 68 99.3 99.7 0.0188

6 2276 0 100 9744 190 98.1 98.4 0.052

7 3935 0 100 7028 26 99.6 99.8 0.007

8 11869 7 99.9 2999 110 96.5 99.2 0.030

9 3254 0 100 7515 89 98.8 99.2 0.024

10a 5940 0 100 10658 117 98.9 99.3 0.032

10b 4233 0 100 4988 102 98 98.9 0.028

11 20659 0 100 3225 49 98.5 99.8 0.013

12 0 0 0 0 0 0 0 0

13 8602 36 99.6 6677 231 96.7 98.3 0.064

14 4527 3 99.9 8119 211 97.5 98.3 0.058

15 9416 7 99.9 4174 218 95 98.4 0.060

16 2359 40 98.3 7993 118 98.5 98.5 0.032

17 7612 0 100 3991 15 99.6 99.9 0.0049

18 7396 0 100 7670 28 99.6 99.8 0.0077

19 6122 0 100 3348 123 96.5 98.7 0.0341

20 7739 0 100 7004 77 98.9 99.5 0.021

21 5198 0 100 4962 70 98.6 99.3 0.0194

22 4926 3 99.9 3821 36 99.1 99.6 0.01

23 4650 0 100 6632 48 99.3 99.6 0.0133

24 8418 12 99.9 7551 99 98.9 99.4 0.02

Average 99.92 98.38 99.3 0.027
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Table 2.4: Comparison with latest state of the art methods

Reference and year channel − patients training/testdata classifier AverageSensitivity − Specificity − Accuracy(%) Falsealarmrate

Bhattacharyya [68] [2017] multichannel − 23 10foldcrossvalidation RF 97.91−−99.57−−99.41 −−

Sina [74] [2017 ] multiple− 23 leave− one− record− out ADCD 96.00−−−− 0.12

Miaolin [75][2019] multichannel − 23 −− 98.48−−−− 8.61

Chen [76][2017] multichannel − 23 leave− one− subject− outcrossvalidation SVM 91.71−−92.89−−92.30 −−

Birjandtalab [77][2017] multichannel − 23 10foldcrossvalidation RF − t− sne,KNN −−−− 89.80 2.2

Tsiouris [78][2017] multichannel − 23 notraining rulebased 88−−−− 8.1

Samiee [64][2015] multichannel − 23 25%training SVM,Logregg,RF 71.6−−99.2 0.35

Khan [53][2012] multichannel − 5 80%training LDA 100−−83.6−−91.8 −−

Proposed work singlechannel − 23 60%training KNN 99.92−−98.38−−99.3 0.027
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Chapter 3

Sleep states detection using Halfwave

and Franklin transformation

3.1 Abstract

Sleep is a physiological phenomenon and a su�cient amount of sleep is mandatory

for a human for his/her health. In this Chapter we present results published in

[79], where we develop an e�cient algorithm to detect the various sleep states by

combining biomedical signals. The novelty of the algorithm that, we have extended

our method proposed in Chapter 2 and instead of one biomedical signal i.e. EEG, we

applied it on three biomedical signals with certain modi�cation. We use two piecewise

linear data reduction techniques namely a new Half-wave method in time domain

and Franklin transformation in frequency domain. The obtained two piecewise linear

forms of signals have low complexity that still preserve the characteristics of the

stages of the sleep in the signals. The components of the feature vector are generated

from the parameters of the two reduced piece wise linear functions. Algorithm is

tested on MIT-BIH Polysomnographic Database having more than 70 hours long

term EEG, blood Pressure and Respiratory (Nasal) signals with six di�erent sleep

classes. Proposed method shows better performance than state of the art methods.

keywords: sleep states, Half-wave, Faber Schauder, Franklin system, K-Nearest

Neighbor, ADASYN, EEG, blood pressure, nasal signal. The research presented in

this Chapter was accepted by MACS-2020, [79] Hungary and is to appear in "Annales

Universitatis Scientiarium Budapestinensis de Rolando Eötvös Nominatae. Sectio
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Computatorica and Annales Universitatis Scientiarium Budapestinensis de Rolando

Eötvös Nominatae. Sectio Mathematica".

3.2 Problem Statement and Motivation

The aim of the research is to detect the various sleep states by combining biomed-

ical signals. Our research is motivated by the fact that there are large number of

disorders like insomnia, breathing disorders, wake-sleep disorder sleep movement

disorder found in human beings. Every sleep state has di�erent group of neurologi-

cal and physiological features. The correct identi�cation of these features along with

their states are important for diagnosis and the better treatment for such sleep dis-

orders and avoid unwanted accidents (especially while driving). Sleep classi�cation

process is not a standardized one, i.e. di�erent experts have di�erent criteria to mark

a speci�c period of sleep. Around 24% of the adult population have regular sleep

disorders. Ohayon and Smirne [6] shown 27.6% of the Italian population have sleep

problem. Gupta et al.[7] shown Indian population have 10-15% insomnia and 10%

delayed sleep wave phase disorder. This problem is increasing worldwide day by day

and according to Oliver et al. [80] this problem costs around $100 billion USD per

year. Manual scoring is time consuming, its availability is limited, therefore there is

a need for automatic sleep phase detection to reduce cost and to increase access to

diagnosis sleep stages [81], [82], [83], [5], [84], [85]. The main challenge to automatic

sleep phase detection is heterogeneity. This means that individuals have di�erent

cranial structures which e�ect the patterns in the signal. For example 10 percent of

the population don't produce alpha rhythm during stage W (Wake) and 10 percent

create just a constrained or limited alpha beat. This justi�es the combination of

EEG with other biomedical signals in order to improve the results.

3.3 Introduction and Background

Sleep is an important part of person's life and individuals used to sleep one-

third of their entire life. Around 24% of the adult population have regular sleep

disorders. Ohayon and Smirne [6] shown 27.6% of the Italian population have sleep
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problem. Gupta et al.[7] shown Indian population have 10-15% insomnia and 10%

delayed sleep wave phase disorder. Sleep classi�cation process is not a standardized

one, i.e. di�erent experts have di�erent criteria to mark a speci�c period of sleep.

Usually sleep scientists make classi�cations by using visual method to predict or

decide in which state the patient is for a speci�c time [86]. Following R&K [1]

rules sleep is categorized into six categories, REM, sleep stage1, stage2, stage3,

stage4 and wake state. Later on NRME2 and NRME3 are also combined resulted

as just four main classes namely light sleep, Deep sleep REM and Awake state [87].

For accurate diagnosis of sleep phases, an expert manual scoring for sleep stages

using some standards is needed for the whole duration recordings of the selected

biomedical signals. For instance in case of EEG (electroencephalograph) signals six

wave patterns are used to di�erentiate wake and sleep states and classify sleep stages:

(1) alpha activity, (2) theta activity, (3) vertex sharp waves, (4) sleep spindles, (5)

K complexes, and (6) slow wave activity [81], [82], [83], [5], [84], [85].

In the literature survey we studied number of sleep states detection techniques

and we found that recent research is focusing on dynamic parameters like correlation

dimension, Laypunov exponent, approximate entropy, mean, energy of the signal,

slopes, etc. to extract comprehensive information from non linear signals like EEG,

blood and respiratory. Originally the Half-wave method was used in seizure detection

but the new Half-wave method proposed by us can be used with Franklin transfor-

mation (a hybrid approach) [20] to detect epileptic seizures and sleep states classi�-

cations in an e�cient way by using di�erent biomedical signals. We believe that this

method with slight modi�cation in the parameters if needed can be useful to solve

di�erent problems in biomedical �eld in an e�cient way. Dihong et al.[88] used three

biomedical signals - EEG, Electrooculogram (EOG), and Electromyography (EMG)

-, and on an average accuracy of 81.2% and a Cohen's Kappa coe�cient of 0.722 are

obtained under leave-one-subject-out cross validation. Nicola et al. [89] proposed sin-

gle channel automated detection of sleep states using EEG signals. Time domain and

frequency domain features are classi�ed for four and two sleep stages separately with

90.81%, 83.2% respectively. They achieved an overall accuracy of 86.7%. Tripathy et

al. [90] used dispersion entropy and the variance features from the di�erent bands of

EEG signal. The RR-time series features and the EEG features were fed to the Deep
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Neural Network (DNN) to carry out the classi�cation of sleep stages. They achieved

an average accuracy of 85.51%, 94.03% and 95.71% for the classi�cation of sleep vs

wake, light sleep vs deep sleep and Rapid Eye Movement (REM) vs Non-Rapid Eye

Movement (NREM) sleep stages. Over all average accuracy was 91.71%. Silverira

et al. [91] proposed a single channel method where EEG signal is decomposed by

using wavelet transform. The features such as kurtosis, skewness and variance of the

wavelet coe�cients are classi�ed using random forest classi�er. They obtained 90%

over all accuracy for 2 to 6 classes. Budak et al. [92] proposed a new method to detect

driver drowsiness. They decompose the signal using Q-factor wavelet transform in

sub-bands. The Spectrogram images of the obtained sub-bands and statistical fea-

tures like standard deviation of instantaneous frequencies are calculated. Features

are classi�ed by Long-Short Term Memory (LSTM) for classi�cation. They obtained

an over all accuracy of 94.31 for awake and drowsy (S1) states. Taran et al. [93] uti-

lized Hermite functions as basis functions. Then Hermite coe�cients are used as

features to classify alertness and drowsiness states. With ELM (Extreme Learning

Method) their detection rate for alert and drowsiness are 95.45% and 87.92%. The

over all accuracy was 92.28%. In the subject speci�c approach [94] 12 features are

extracted by three methods namely, the heart rate variability (HRV), Detrended

Fluctuation Analysis (DFA) and Windowed DFA (WDFA). They reported an aver-

age accuracy of 79.99 and kappa coe�cient 0.43. Another subject speci�c approach

is mentioned in [95], where the average accuracy using EEG is 76%, and using ECG

signals is 75%.

3.4 Proposed Method

In the proposed method the signals are modeled as piecewise linear functions in a

natural way. Then reduction methods are used both in time and frequency domains.

To this order we develop a so called Half-wave type method [8], [9], [10] in time

domain and use the Franklin system [14], [15] for orthogonal projection. Here we

extend our method [20], originally developed and successfully applied for epilepsy

seizure detection. The novelty of the algorithm is the adaptation of the Half-wave

and Franklin transformation for the actual problem and we are combining three
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3. Sleep states detection using Halfwave and Franklin transformation

biomedical signals instead of one to detect various sleep phases. Class imbalance

problem is addressed by using advance version of SMOTE called Adaptive Synthetic

Sampling Approach for Imbalanced Learning (ADASYN).

The study done by Shayan et al. [81] collected various disadvantages of the exist-

ing studies. The study motivate the researcher to do research by using some adaptive

methods. Our focus is to increase the speed as well as accuracy of sleep states detec-

tion process as compared to the existing methods. Proposed method is a so called

hybrid one, i.e. we utilize both time and frequency domains to extract components

for the feature vector. The main idea is to use the piecewise linear function model

for data reduction in time and frequency domain. Piecewise linear functions are of

low complexity that still preserve the characteristics of the signal that are relevant in

context of stages of the sleep. To this order we took the so called Half-wave method

and modi�ed it according to our need. The frequency space is generated by Franklin

transformation. The Franklin system an orthogonal system which is strongly re-

lated with the well-known Haar system, and its elements piecewise linear functions.

Then the feature vector elements are generated from the piecewise linear models in

both domains. We applied this technique for synchronized EEG, blood pressure, and

respiratory signals. Framework of proposed method is shown in Figure 3.1.
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Figure 3.1: Framework of proposed method

3.5 Database and Channel Selection

3.5.1 Database

In our research we used the standard MIT-BIH Polysomnographic database,

collected and described by Ichimaru et al. [96], [33] at Boston's Beth

Israel Hospital Sleep Laboratory. It is open source, freely available database

(https://www.physionet.org/physiobank/database/slpdb/). Data collection consists

of records from 16 individuals. The database contains over 80 hours long data of
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four (C3-O1), six (C3-A1), and seven (O2-A1) channel polysomnographic record-

ings, each with an ECG (electrocardiogram) signal annotated beat-by-beat, and

EEG and respiration signals annotated with sleep states and apnea. Each signal is

divided into 20 and 30 sec long epoch and each epoch belongs to one of the sleep

stages. The sampling rate of the measured signal is 250 Hz and 30 seconds duration

of the EEG and other signals are labeled by associated experts. Available standard

databases usually contain data of one type of signal like EEG, ECG etc. only or

combination of EEG, ECG. We used blood pressure, nasal and EEG signal in the

proposed method. This database contains all of the three signals and they are long

enough to test our method. In our research, due to some technical problem we were

not able to read 3 records out of 18 records hence, we performed our tests only on

remaining 15 records from 13 di�erent patients shown in Tables 3.2, 3.3 and 3.4.

3.5.2 Channel Selection

The channel selection is usually a challenging tasks in EEG signal processing, in

particular, in sleep state detection and prediction algorithms. Multichannel process-

ing may be computationally demanding and make signal processing slow. On the

other hand single channel methods may not be su�ciently e�ective. In this research

on the given database, however, we had no choice. Namely, only one EEG channel

is available for each patient. Moreover, that particular channel varies from patient

to patient and signal to signal. The author of the database did not provide any

background about the channel selection process. We note that in [15] we addressed

the channel selection problem for seizure detection. Our aim was the same in this

case as well but we had no options.

3.6 Methodologies Used

3.6.1 New Half-wave Method: Time Domain

In the last quarter of the 20th Half-wave was a very popular method to detect

epileptic activities (seizures) form the long EEG signals. Half-wave mechanism is

explained in details in Chapter 2. In Half-wave method, the crucial part of the
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reduction problem to decide which level is the best suitable for the problem studied,

in our case for sleep detection. In sleep states problem we found that level 2 may

be considered as best level. For seizure detection we used Half-wave having level

4. Biomedical signals in sleep states cases have not much high speed and peaky

activities as compared to the signals in seizure states. Therefore if we go higher

level of Half-wave in sleep case, in some of the selected windows we will not get

any information (extremal points). For more details about the algorithm of new

Half-wave please refer the Chapter 2.

3.6.2 Frequency Domain: Franklin Transform

The frequency domain part in our hybrid classi�cation is an orthogonal projec-

tion using a proper orthogonal system. Our model space for the EEG and other

biomedical signals is again the family of piecewise linear functions. In order to per-

form an orthogonal projection, reduction in the frequency domain, that matches with

our model we need an orthogonal system that consists of such type of functions. We

applied Franklin transformation on three selected biomedical signals instead of only

on EEG (Chapter 2) and then selected Frequency domain features from three signals

are merged with the time domain features to form the feature vector also explained

in coming sections. For more details about Franklin system system and its appli-

cations, readers are requested to refer Chapter 1, 2, [13], [14], [15] . [17], [18], [19],

[16].

3.7 Feature Extraction and Classi�cation

3.7.1 Feature Extraction

The elements of the feature vector are derived from three types of biomedical

signals. 30 seconds duration of the signals are labeled by associated experts to cat-

egorize di�erent states of the sleep. The sampling rate is 250 Hz.

Feature Extraction in Time Domain: Half-wave Method. Following the

other studies and methods cited we work window size of 30 sec including 7500

sample points. Half-wave up to level 2 only method is applied to reduce the signals.
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The reason for not going higher levels is that when we increase the level in blood

pressure, nasal and EEG signals, the signals become so simple that in some of the 30

sec long segments 1 extremal point remains. Consequently, the reduced signal does

not contain enough information anymore, we cannot extract e�ective features. In the

selected signals this type of situation occurs in very early levels. It is because the

nature of the signals in case of the sleep states. It means slow activities and results

in less peaky signals. This is quite di�erent from epileptic seizure periods [20], when

fast and peaky activities occur. One of the advantages of Half-wave method is that

we can customize the method based on the problems in hands.

The time domain features we use are: total number of extremal points, mean of

the absolute values of the extremal points, maximum of the absolute values of the

extremal points, maximum of the absolute values of the slopes, mean of absolute

values of slopes and the last feature is the sum of the squares of extremal points. The

latter one is related to the energy of the signal are extracted. The reason of choosing

these features is that these are the simple and very common statistical features.

Moreover, several studies and surveys including [20], [81], [21] concluded that these

are e�ective features in time domain for the analysis of the di�erent biomedical

signals. In fact, during our studies we extracted a number of statistical features in

time domain. Then an analysis was made on these features by using histograms [20].

We found that the selected 6 time domain features are the best discriminatory ones

and their combination with selected Franklin coe�cients gives better results than

any other combination as shown in Table 3.1.

Feature Extraction in Frequency Domain: Franklin Transformation. We

found, that in order to calculate Franklin transform 28 sample points the appropriate

one to apply. Therefore the rectangular of length 30 sec long with 7500 should be

resampled. Reduction from 7500 to 256 samples seems to be drastic, and there is

a chance that we loose some important information. At this point we only note

that comparisons with state of the art methods proves that features from Franklin

transform with this resolution is still e�ective.

After applying the Franklin transformation on the selected segment we made some

combinations (see Table 3.1), and we found that the �rst 8 coe�cients are the best
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discriminatory features.

3.7.2 Final Feature Vector Construction

From each of the three biomedical signals (EEG, blood pressure, nasal) we have

three feature vectors. Each feature vector is constructed by merging the 6 time

domain and �rst 8 frequency domain features with a total of 14 entries. If V1,

V2, V3 and are the feature vectors extracted from EEG, blood pressure and nasal

respectively. Let the �nal feature vector F is constructed by concatenation F= [V1

V2 V3]. Thus the �nal feature vector used for classi�cation here has 42 features. In

Table 1, 6T means, six best time domain features and 8F = First Eight Franklin

coe�cients. Final results with di�erent sets of classes are shown in Tables 3.2, 3.3,

3.4, 3.5 and 3.6 where training and Testing data is taken in the ratio of 60:40

respectively.

3.7.3 Classi�cation

After the feature vector construction we applied the K-Nearest Neighbor algo-

rithm (KNN) for classi�cation. We tested other classi�cation algorithms like Support

Vector Machine (SVM), Arti�cial Neural Network (ANN) and we found that KNN

performs better in this task. We note that the sets of sleep stages in the databases

are not balanced. This means that the numbers of tuples of di�erent classes are

signi�cantly di�erent. Therefore, before applying the classi�er, the class imbalance

problem needs to be addressed otherwise results would be biased. In the proposed

method we used an advanced form of Synthetic Minority Over-Sampling Technique

(SMOTE) [72] to address the issue of class imbalance. It is called Adaptive Synthetic

Sampling Approach for Imbalanced Learning [97].

3.8 Results and Comparison Tests

Tests were performed on 15 records (out of 18 records) and total duration of

selected 15 long term EEG, blood and nasal signals with six di�erent sleep classes

is more than 70 hours. First we have optimized our method then we have carried

out comparison tests. The results obtained are presented in Tables 3.1. There we

48



3. Sleep states detection using Halfwave and Franklin transformation

summarized how the various feature value combinations perform in to detect sleep

states. It shows that the best choice is the combination of the three signals - EEG,

blood pressure, nasal - using 6 time domain and 8 Franklin feature values for each

of them.

Tables 3.2, 3.3, 3.4 show how the proposed method performs in the classi�cation

problem for randomly selected 2, 4, and 6 classes respectively. For 2 classes in Table

3.2, we achieved an average accuracy of 96.96% which higher than state of the art

methods [95], [98], [94], [90], [99], [93] based on two classes. Similarly, in Table 3.4

and 3.5 for randomly selected 4 and 6 classes we achieved an average accurcies of

93.94% and 93.84% respectively which is also higher than states of the art methods

[100], [101] using same number of classes.

Tables 3.5, and Table 3.6 contain the comparison of the proposed method with state

of the art methods using the same (Table 3.5) and di�erent databases (Table 3.6)

respectively. It shows that our algorithm performed better than other state of the

art methods. Our method is patient speci�c and the state of the methods used for

comparisons are also patient speci�c, therefore it justi�es the comparisons. In the

performance evaluation the metrics used are mentioned in section 1.6.2 of Chapter

1.

3.9 Conclusion

A novel hybrid approach of two piecewise linear models have been developed to

extract the features from three biomedical signals. The main idea behind the two

piecewise linear models is to morph the signals in such a way that they become

simple and smooth but at the same the important characteristics of the sleep states

are retained. Di�erent time domain and frequency domain features are extracted

and tested, and the �nal feature vector is their best combination.The novelty of

the algorithm is the adaptation of the Half-wave and Franklin transformation for

the actual problem and we are combining three biomedical signals instead of one to

detect various sleep phases. Class imbalance problem is addressed by using advance

version of SMOTE called Adaptive Synthetic Sampling Approach for Imbalanced

Learning (ADASYN). The feature vectors are classi�ed by using KNN classi�er on
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Table 3.1: Feature selection using di�erent combinations of the signals

Signal Class− pair Features Train&Test Sensitivity(%) Specificity(%) Accuracy(%)

Blood 4 6T + 16F 60− 40 91.02 97 91

Blood 4 6T + 16F 80− 20 96.11 98.70 96.09

Blood 4 6T + 8F 60− 40 90.64 96.86 90.60

Blood 4 6T + 8F 80− 20 96.03 98.67 96.02

Resp 4 6T + 8F 60− 40 91.11 97.05 91.15

Resp 4 6T + 8F 80− 20 96.37 98.79 96.38

Resp 4 6T + 16F 60− 40 90.87 96.98 90.97

Resp 4 6T + 16F 80− 20 96.15 98.72 96.17

EEG 4 6T + 8F 60− 40 90.00 96.7 90.00

EEG 4 6T + 8F 80− 20 95.63 98.58 95.63

EEG 4 6T + 16F 80− 20 90.64 96.86 90.60

Blood Resp 4 6T + 16F 60− 40 92.37 97.45 92.37

Blood Resp 4 6T + 16F 80− 20 96.71 98.99 96.77

Blood Resp EEG 4 6T + 8F 60− 40 93.28 97.76 93.28

Blood Resp EEG 4 6T + 8F 80− 20 97.28 99.09 97.27

Blood Resp EEG 4 6T + 16F 60− 40 92.82 97.60 92.84

Blood Resp EEG 4 6T + 16F 80− 20 96.92 98.97 96.93

Blood Resp EEG 4 6T + 32F 80− 20 96.51 98.83 96.50
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Table 3.2: Results of proposed algorithm with 2 randomly selected classes

Patient number Sensitivity(%) Specificity(%) Accuracy(%) Falsealarmrate/hr

01a 100 96.30 96.61 0.037

01b 100 99.75 99.75 0.025

2a 96.53 97.69 97.21 0.023

2b 100 96.30 96.69 0.037

03 100 97.00 97.10 0.035

04 100 95.45 96.01 0.045

14 100 96.00 97.02 0.030

16 97.01 92.16 93.95 0.078

37 100 97.46 97.56 0.025

48 94.31 95.61 94.21 0.065

59 96.53 97.69 97.21 0.023

60 95.52 100 96.08 0.010

61 96.49 99.83 96.45 0.005

66 100 98.86 98.90 0.011

66x 100 99.72 99.73 0.002

Avg 98.35 97.32 96.96 0.029
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Table 3.3: Results of proposed algorithm with 4 randomly selected classes

Patient number Sensitivity(%) Specificity(%) Accuracy(%) Falsealarmrate/hr

01a 100 95.41 95.89 0.045

01b 97.15 98.31 94.45 0.017

2a 96.51 98.64 95.89 0.014

2b 100 95.41 95.89 0.041

03 97.12 97.65 94.00 0.022

04 93.71 93.85 91.00 0.060

14 95.90 97.14 93.00 0.028

16 97.10 97.64 93.64 0.023

37 98.44 98.57 94.70 0.014

48 93.81 93.95 91.00 0.061

59 96.51 98.64 95.89 0.024

60 95.62 97.07 92.23 0.029

61 96.84 98.32 94.48 0.017

66 93.55 96.87 91.53 0.013

66x 96.47 98.12 94.81 0.019

Avg 96.62 97.10 93.94 0.030
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long data of CHB-MIT polysomnography database. Proposed algorithm achieved an

average sensitivity, speci�city, accuracy and false alarm rate of 98.35% and 97.32%,

96.96%, 0.029 respectively for two randomly picked classes, 96.62% and 97.10%,

93.94%, 0.030 for randomly picked any 4 classes, 96.13% and 98.33%, 93.84%, 0.016

for all six classes, which is higher than the existing state of the art methods.
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Table 3.4: Results of proposed algorithm with 5 and 6 randomly selected classes

Patient number Sensitivity(%) Specificity(%) Accuracy(%) Falsealarmrate/hr

01a 97.09 98.77 97.09 0.012

01b 98.05 98.68 93.31 0.013

2a 93.69 98.11 98.78 0.012

2b 96.69 97.92 93.50 0.020

03 96.78 98.59 94.11 0.014

04 94.25 97.40 90.59 0.026

14 97.34 98.85 94.67 0.012

16 97.67 98.78 95.39 0.001

37 NA NA NA NA

48 94.25 97.40 90.59 0.026

59 94.79 98.58 93.10 0.019

60 NA NA NA NA

61 96.94 98.63 94.19 0.014

66 NA NA NA NA

66x NA NA NA NA

Avg 96.13 98.33 93.84 0.016
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Table 3.5: Comparison of results with previous algorithms tested on the same

database

Author and year #records Features Classesused Classifierused AverageAccuracy(%)

Redmond and Heneghan [95], 2003 17 HRV andEEG Lightsleepvsdeepsleep QDA 89

Adnane et al. [94], 2012 17 HRV,DFAandWDFA Sleepvswake SVM 79.99

Hayet and Slim [98], 2012 09 RR− timeseriesandHRV Sleepvswake ELM 83.59

Werteni et al. [99], 2015 17 HRV SleepvswakeREM SVM 56.81

R.K Tripathi et al. [90], May, 2018 17 Dispersionentropyandvariance wakevslight, sleepvsdeep, sleepvsREM Neuralnetwork 91.71

Taran et al. [93], 2018 16 Hermitecoefficients alert(w)anddrowsiness(s1) ELM 92.28

Budak et al. [92], 2019 16 Spectrogramimagesandinstaniousfrequencies alertanddrowsiness LSTM 94.31

Proposed method, 2 classes 15 TimedomainandFranklincoefficients 2randomclasses KNN 96.9

Panfeng et al. [100], 2019 06 Statisticalfeatures NREM(s1− s4), REM,Wake W − SVM 85.29

Junming at el. [101], 2020 18 HilbertHuangcoefficients REM,NREM,wake CNN 87.6

Proposed method, 4 classes 15 TimedomainandFranklincoefficients 4randomclasses KNN 93.94

Proposed method, 5 and 6 classes 15 TimedomainandFranklincoefficients Wake, Sleep(all), REM KNN 93.84

Table 3.6: Comparison with other algorithms tested on the di�erent database

Author and year features Classesused Classifierused AverageAccuracy(%)

Prucnal et al. [102] Waveletbasedfeatures F iveclass(wake, S1, S2, deepsleep,REM) NeuralNetwork 74.2

Prucnal et al. [102] EMDbasedfeatures F iveclass(wake, S1, S2, deepsleep,REM) NeuralNetwork 57.6

Hasan et al. [103] EnsembleEMDbasedfeatures Sixclasses(wake, S1, S2, S3, S4, REM) RUSBoost 71.98

Da Silveira et al. [91] DWTandstatisticalfeatures (wake, S1, S2, S3, S4, REM) Randomforest 63.51

R.K Tripathi et al. [85], May, 2018 HRV features (NREM(all), REM) DNN 73.70

Proposed method (5 and 6 classes) TimedomainandFranklincoeffi. Wake, Sleep(all), REM KNN 93.84

Proposed method (4 classes ) TimedomainandFranklincoefficients 4randomclasses KNN 93.94

Proposed method (2 classes) TimedomainandFranklincoeffi. 2randomclasses KNN 96.96
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Chapter 4

A hybrid approach for sleep states

detection using blood pressure and

EEG signals

4.1 Abstract

Sleep is fundamental to every human being and it is a physiological phenomenon.

This Chapter is about the paper accepted by ICRIC-2021 and is to appear in Lecture

Notes in Electrical Engineering [104]. The aim of the research is to develop a hybrid

approach using time and frequency domain features for automatic sleep states detec-

tion. In time domain, statistical and morphological features are extracted from the

blood pressure signal and in frequency domain, a piecewise linear reduction namely

Franklin transformation is applied on EEG signal. The Franklin coe�cients are used

as discriminatory features in frequency domain. The novelty of the proposed method

is that we considered two cases, the blood pressure signal by itself, and the combi-

nation of it with EEG signal. The motivation behind the �rst one is that in certain

cases, e.g. smart personal mobile devices, only the blood pressure signal is avail-

able. In both cases the algorithm is tested on MIT-BIH Polysomnographic database

having more than 80 hours long term EEG and Blood Pressure signals. In both

cases we performed comparison tests with relevant state-of-the-art methods, and

our algorithm showed better or equal performance in terms of sensitivity, speci�city,

accuracy and false alarm rate.
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keywords: sleep states, Faber-Schauder, Franklin system, K-Nearest Neighbor,

ADASYN, EEG, blood pressure, Systolic and Diastolic temperature, Dicrotic notch.

4.2 Problem Statement and Motivation

The aim of the research work is to develop a hybrid approach using time and

frequency domain features for automatic sleep states detection. The problem state-

ment of the research work proposed in Chapter 3 and 4 is same but their aim and

motivation are di�erent. Our motivation in this research is to use the blood pressure

signal alone and combination of it with EEG signal so that algorithm can be used

in real time systems. Blood pressure signals are well de�ned and are easily available

in handheld and smart devices devices. Most of the state of the art methods are

based on EEG signals. In real time scenario, the implementation and processing of

EEG signal is quite challenging because capturing and processing of the EEG signals

requires complex system of placing the electrodes inside or on the scalp. Most of the

cases EEG acquisition needs to be done in the supervision of the experts or doctors

and sometimes it is a bit risky too. On the other hand, blood pressure signals are

periodic, well behaved, can be used in real time scenario and are relatively easy to

measure. Blood pressure signal can be measured even by using smart devices like

wrist watch and other handheld applications. Therefore, in our proposed method,

to detect various sleep states, �rst we used only blood signal, and then the com-

bination of the blood and EEG signals. The motivation behind the combination of

blood signal with EEG is to get better results as compared to the relevant state of

the art methods. No doubts the results of the combined approach (blood and EEG)

the better than only blood, but at the same time results using only blood pressure

signals are comparatively good or equal as compared to the state of the art methods.

4.3 Introduction and Background

In the recent years sleep-related issues are increasing. The normal day-to-day

life of those many people who su�er from sleep disorders are heavily a�ected. Sleep

disorders can be the indicator of a future disease like depression and mental illness.
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Now a days sleep assessment is an important part of any health checkup. Some

traditional and new methods are available for sleep disorder detection, but such

methods still have some shortcomings like they are mainly based on EEG, and

are slow in nature which require more time for scoring the entire sleep duration

of the given biomedical signal. These methods are still dependent on experts of

the sleep scoring to verify their results. Therefore, the limitations of manual sleep

stage scoring stated the demand for developing an e�cient and automatic sleep stage

scoring method which has good classi�cation accuracy, and it is simple and fast. The

main challenge to automatic sleep phase detection is heterogeneity. This means that

individuals have di�erent cranial structures which e�ect the patterns in the signal.

For example 10 percent of the population don't produce alpha rhythm during stage

W (wake) and 10 percent create just a constrained or limited alpha beat. This

justi�es the combination of EEG with other biomedical signals in order to improve

the results. We proposed automatic sleep stage scoring algorithm by combining

blood and EEG signals. In the proposed method the EEG signal is modeled as

piecewise linear functions. We are motivated to apply Franklin system by Yash and

Fridli [20], [79] originally developed and successfully applied for epilepsy seizure and

sleep states detection. Two standards for scoring namely R&K and AASM [1] are

available for sleep stage scoring. As per R&K rule, analysis of the EEG signal is

carried out by dividing each signal into periods of 30 seconds small parts known as

segments. Following R&K rules sleep is categorized into six categories, REM, sleep

stage1, stage2, stage3, stage4 and wake state. Later on NRME2 and NRME3 are also

combined resulted as just four main classes namely Light sleep, Deep sleep, REM and

Awake state [86], [6]. Large number of methods are applied for sleep state detection

and each one has one signi�cant advantages and disadvantages. The obvious and

common disadvantage of these methods is that they used advance technology like

electroencephalograms, electrocardiograms, etc. which cannot be used at home [3],

[80]. Since manual scoring is time consuming, its availability is limited, therefore

there is a need for automatic sleep phase detection to reduce cost and to increase

access to diagnosis sleep stages, [5], [7], [80], [87], [81], [82], [83], [5], [84], [85]. More

details about the background of sleep disorders, phases and latest techniques are

explained in Chapter 3. .
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4.4 Proposed Method

The literature survey done by Shayan et al. and Santosh et al. [81], [105] collected

various advantages and disadvantages of the existing research done by using some

adaptive and hybrid methods. Our aim is to increase the overall accuracy of sleep

states detection process as compared to the existing methods. Proposed method is

a so called hybrid one, i.e. we utilize both time and frequency domains to extract

components for the feature vector. The main idea is to use the piecewise linear

function model for data reduction in frequency domain, morphological and statistical

features are used from blood signal in time domain. The novelty of the proposed

method is that we considered two cases, the blood pressure signal by itself, and

the combination of it with EEG signal. The motivation behind the �rst one is that

in certain cases, e.g. smart personal mobile devices, only the blood pressure signal

is available. Piecewise linear functions have low complexity but still preserve the

characteristics of the signal that are relevant in context of stages of the sleep. Then

the feature vector elements are generated from the piecewise linear model and the

statistical features from blood signal. Framework of the proposed system is shown

in Figure 4.1.
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Figure 4.1: Framework of proposed method

4.5 Database and Channel Selection

4.5.1 Database

In our research we used the standard MIT-BIH Polysomnographic database,

collected and described by Ichimaru et al. [96], [33] at Boston's Beth Israel Hospital

Sleep Laboratory. It is open source, freely available database explained in Chapter

3.
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4.5.2 Channel Selection

The channel selection is usually a challenging task in EEG signal processing, in

particular, in sleep state detection and prediction algorithms. In the given database,

the data is given by the database expert from only one channel. Therefore, there is

no choice left for us to work on channel selection mechanism.

4.6 Methodologies Used

4.6.1 Blood Pressure: Time Domain

We used feature detection algorithm for arterial blood pressure that is based

on derivatives and threshold [106], [107], [108] implemented by Alexandre Laurin in

Matlab [108]. After implementing the algorithm index points of diastolic and systolic

values, index points of minimum or foot of the dicrotic notch, and index points of

peaks of the dicrotic notch are identi�ed. The time domain features used are basically

the statistics from diastolic index points and values, systolic values, minimum values

of dicrotic notch, and the peaks of dicrotic notch. Since blood signal is annotated for

30 sec therefore, in time domain and frequency domain we used rectangular window

of size 30 sec.

4.6.2 EEG Signal: Frequency Domain

In the frequency domain, we applied Franklin transformation on EEG signal and

Franklin coe�cients are used as discriminatory features. For more details about the

application of Franklin system on EEG and other signals are we refer to our previous

works [20], [79].

4.7 Features Extraction and Classi�cation

4.7.1 Feature Extraction in Time Domain: Blood Signal

Before extracting the features from blood pressure signal, let us have a look at

the nature and the basic terms used for the blood pressure signal. Figure 4.2 shows

the arterial blood pressure waveform. The main terms used in the blood pressure
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waveform are diastolic blood pressure, systolic blood pressure, dicrotic notch. Due

to the rate and character of the arterial pulse, blood pressure signal is used for the

diagnosis of a wide range of disorders, like sleep disorder. Systolic blood pressure:

the highest value with in the heart beat, measures the force, your heart exerts on the

walls of your arteries each time it beats. Diastolic blood pressure: the lowest value

with in the heart beat, measures the force your heart exerts on the walls of your

arteries in between beats. From Figure 4.2 we can see that blood pressure signals

have two types of waves i.e. Systole and Diastole. Dicrotic notch is a part of diastole

wave. The dicrotic notch: designates the closure of the aortic valve. It is the foot or

minimum value of the dicrotic notch wave. All these points are shown in Figure 4.2.

After selecting the 30 sec long window we take the diastolic and systolic points along

with the foot and peak points of the dicrotic notches with in every heart beat. After

�nding these points, the actual time domain features are calculated from them. We

have calculated number of morphological and statistical features from blood signal

and we found that the selected 13 time domain features are the best discriminatory

features in sleep state detection in both the cases, i.e. when only blood signal is used

or when it is combined with EEG signal.

For a �xed 30 second long window let the number of total heartbeats included it

be N. Then we take the N dimensional vectors of the systolic values S, the diastolic

values D, the foots of dicrotic notches F, and the peaks of dicrotic notches P. Let

D∆t be the N − 1 dimensional vector that consists of the time lengths that elapsed

between the adjacent diastolic points. D∆y be the N − 1 dimensional vector that is

formed from the di�erences of the consecutive diastolic values. Using these vectors

we calculate the following feature values.

a) Averages: Avg(S), Avg(D), Avg(F), Avg(P), Avg(D∆t).

b) Variances: Var(S), Var(D), Var(F), Var(D∆y), Var(P).

c) The sum of the squares of systolic and diastolic values: Q =
∑N

k=1(D
2
k + S2

k).

d) Mean average pressure: MAP=
2Avg(D) + Avg(S)

3
.

Along with N, i.e. with the number of heartbeats in the window, these 12 quantities

form the 13 dimensional feature vector. MAP (Mean Average Pressure) is a calcu-

lation that doctors use to check whether there's enough blood �ow, resistance, and
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pressure to supply blood to all your major organs, and experts think the number

between 70 and 100 mmHg can be considered as normal value. For more details

about the features and estimations of the blood pressure signal readers are refereed

to follow [109], [110].

During sleep cycle, the blood pressure changes, and it is seen by the doctors that

change in the blood pressure has a impact on the heart rate. Therefore, the number

of heartbeats can be considered as a one of the discriminatory features. As the sleep

cycle goes from wake to NREM and REM states, it is seen that the nature of the

blood pressure wave also changes and in deep sleep states like s3, s4, REM the blood

pressure waves become very slow as compared to wake and light sleep. Slow waves

have small values (not much peaky) of systolic, diastolic, foot and peaks of dicrotic

notches as compared to the normal wave. Therefore, the nature of blood pressure

wave may impact the statistical features like variance, average and energy. The other

reason of choosing such features is that these features are very simple and commonly

used features and their combination with 8 Franklin coe�cients gives better results

so far. Various combinations to �nd best set of discriminatory features are presented

in Table 4.1.

Figure 4.2: Arterial blood pressure waveform from a normal person[Anesthesia]
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4.7.2 Feature Extraction in Frequency Domain: EEG Signal

In frequency domain we use orthogonal projections utilizing system. The prefer-

ence of the Franklin system over other orthogonal systems is based on our previous

studies and experience [20], [79]. After performing the tests shown in Table 4.1 we

can see that considering 8 or 16 coe�cients are e�ective. Theoretically, Franklin

coe�cients are the scalar product of the corresponding function and the elements

of the Franklin system. Now we have a discrete signal with 7500 samples in 30 sec.

After proper normalization we found that the numerical calculation of the Franklin

coe�cients is appropriate, i.e. provides the desired accuracy, on discretization level

of 256 samples. To this order, we used down-sampling by using resample function of

the MATLAB. The results of the proposed method are compared with state of the

art methods which shows that features from Franklin transform with this resolution

is still e�ective. To �nd the best features, various combinations are made and we

found that the �rst 8 Franklin coe�cients (EEG) are the best discriminatory fea-

tures with the thirteen time domain features (blood) when KNN classi�er is used.

Bold rows of Table 4.1 shows the best combination on sample data.

4.7.3 Final Feature Vector Construction

There are two feature vectors, one in time domain, derived from from blood

signal and other one from frequency domain derived from EEG signal. The �nal

feature vector is constructed by merging the 13 time domain and �rst 8 frequency

domain features with a total of 21 entries which are quite less than the best method

[79] (42 entries) so far in terms of accuracy. Final results with di�erent sets of classes

using blood and "blood + EEG" are shown in Tables 4.3 and 4.4 where training

and testing data is taken in the ratio of 60:40 respectively.

4.7.4 Classi�cation

After the feature vector construction we applied the K-Nearest Neighbor algo-

rithm (KNN) for classi�cation recommended by various studies [20], [21], [79]. The

reason to choose KNN for classi�cation in our approach is that it is simple and fast

as compared to popular classi�er like SVM, Arti�cial neural network. We tested the
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algorithm on SVM and KNN and the results are shown in Tables 4.1 and 4.2. We

noted that the sets of sleep stages in the databases are not balanced. This means

that the numbers of tuples of di�erent classes are signi�cantly di�erent. Therefore,

before applying the classi�er, the class imbalance problem needs to be addressed oth-

erwise results would be biased. Problem is addressed by using Adaptive Synthetic

Sampling Approach for Imbalanced Learning (ADASYN) [97].

4.8 Results and Comparison Tests

Tests were performed on all the 18 records and total duration of 18 selected long

term EEG and blood and with six di�erent sleep classes is more than 80 hours.

First we have optimized our method then we have carried out comparison tests.

The results presented in Tables 4.1 and 4.2 are made by using sample data (#61

patient, 6 hour data of the same dataset). Such combinations give us hints about

what type of classi�er and features can be used as the best set of discriminatory

features. The combinations "blood", and "blood+EEG", (bold rows) of Table 4.1

are the best combinations in case of only blood and blood+EEG signals. We used

the same combinations to produce overall results. Therefore, the best choice is the

combination of 13 time domain (blood signal) and 8 Franklin feature values (EEG

signal ) for each of them. The results of proposed algorithm using blood and the

combination of the blood with EEG are shown in Tables 4.3 and 4.4.

Table 4.2 shows the results of SVM and we can see that SVM classi�er is not

performing well in our case. In the performance evaluation the metrics used are

mentioned in section 1.6.2 of Chapter 1.

Table 4.5, contains the comparison of the proposed method with state of the art

methods using the same database. It shows that our algorithm performed better

than other state of the art methods. Our method is patient speci�c and the state

of the methods used for comparisons are also patient speci�c, therefore it justi�es

the comparisons. After comparison with state of the art methods in Table 5 we can

conclude that our proposed method using only blood signal is performing compara-

tively good as compared to the best method [79] in terms of accuracy. On the other

hand, combined signal approach using blood and EEG gives best results so far on
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Table 4.1: Results with di�erent combinations using KNN

Signal Classifier Features Train&Test Sensitivity(%) Specificity(%) Accuracy(%)

Blood KNN 13T 60− 40 98.44 99.43 97.95

Blood KNN 10T 60− 40 95.43 97.79 93.51

Blood KNN 8T 60− 40 96.44 94.43 94.70

EEG KNN 8F 60− 40 94.64 96.70 94.89

EEG KNN 16F 60− 40 92.86 96.72 93.25

Blood EEG KNN 13T + 8F 60− 40 99.33 99.65 98.47

Blood EEG KNN 13T + 16F 60− 40 95.63 98.58 95.63

Blood EEG KNN 8T + 16F 60− 40 98.92 97.82 97.93

Blood EEG KNN 8T + 8F 60− 40 98.62 99.82 98.10

Blood EEG KNN 10T + 8F 60− 40 98.88 99.68 98.20

Table 4.2: Results with di�erent combinations using SVM

Signal Classifier Features Train&Test Sensitivity(%) Specificity(%) Accuracy(%)

Blood SVM 13T 60− 40 69.52 90.48 60.33

EEG SVM 8F 60− 40 31.82 82.72 31.11

EEG SVM 16F 60− 40 31.86 80.60 30.90

Blood EEG SVM 16F 60− 40 69.33 90.30 60.21
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the selected database.

4.9 Conclusion

A novel hybrid approach has been developed to extract the features from two

biomedical signals. The novelty of the proposed method is the application of blood

signal (alone) and combination with the EEG signal for sleep states detection. The

idea behind the piecewise linear models used for EEG signal is was elaborated in

our previous paper [20]. Di�erent time domain and frequency domain features are

extracted and tested on sample data, the �nal feature vector is their best combi-

nation. The feature vectors are classi�ed by using KNN classi�er on long data of

CHB-MIT polysomnography database. From the Table 5 we can see that best state

of the art methods mentioned in [93], [92], [100], [79] that are based on EEG or

combination of EEG with other biomedical signals and their accuracies are: 92.28%,

94.31%, 85.29%, 93.84% respectively. In case of blood signal, our proposed algorithm

achieved an average sensitivity, speci�city, accuracy, false alarm rate and kappa of

95.45%, 98.27%, 93.78 %, 0.0170, 0.0224 respectively which is good or comparatively

equal to the best state of the art methods and 99.45%, 99.75%, 99.01%, 0.0039, 0.964

respectively using blood and EEG signals, which is higher than the existing state of

the art methods so far.

66



4. A hybrid approach for sleep states detection using blood pressure and

EEG signals

Table 4.3: Results of proposed algorithm with 13 time domain features using Blood

signal only

Patient_Id Total classes Sensitivity(%) Speci�city(%) Accuracy(%) False alarm rate/hr kappa

01a 1, 2, 3, 4,W,R 97.79 99.19 96.22 0.0081 0.8644

01b 1, 2,W,R 98.86 99.78 99.44 0.0020 0.985

2a 1, 2, 3, 4,W,R 99.03 99.32 96.59 0.0068 0.8773

2b 1, 2,W,R,M 96.66 98.31 95.54 0.0169 0.88

03 1, 2, , 3,W,R 96.26 98.51 93.89 0.0149 0.8090

04 1, 2, 3,W,R 98.09 98.84 94.86 0.0027 0.8390

14 1, 2, 3, 4,W,R 95.83 98.86 94.39 0.0114 0.7980

16 1, 2, 3, 4,W,R 97.36 98.87 94.52 0.0113 0.8029

32 1, 2, 3, 4,W 97.24 99.07 95.78 0.0093 0.868

37 1, 2,W,R 98.07 98.56 96.69 0.0026 0.9

41 1, 2, 3,W,R 72.43 91.19 67.31 0.088 0.0212

45 1, 2, 3, 4,W,R 98 98.90 94.18 0.0110 0.7905

48 1, 2, 3,W,R 97.37 98.57 96.36 0.0030 0.957

59 1, 2, 3, 4,W,R 98.60 99.50 98.11 0.0030 0.936

60 1, 2,W,R 99.93 99.96 99.86 0.0032 0.996

61 1, 2, 3,W,R 96.60 98.62 94.17 0.0138 0.8177

66 1, 2, 3,W 85.54 95.28 86.79 0.0472 0.6477

67x 1, 2, 3,W 94.63 97.54 93.51 0.0246 0.8268

Avg 95.45 98.27 93.78 0.0170 0.0224
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Table 4.4: Results of proposed algorithm with combined features(8F+13T) from

Blood and EEG signals

Patient_Id Total classes Sensitivity(%) Speci�city(%) Accuracy(%) False alarm rate/hr kappa

01a 1, 2, 3, 4,W,R 99.59 99.84 99.16 0.0011 0.969

01b 1, 2,W,R 98.86 99.78 99.44 0.0020 0.985

2a 1, 2, 3, 4,W,R 99.51 99.68 98.30 0.0031 0.938

2b 1, 2,W,R,M 99.35 99.71 99.35 0.0029 0.970

03 1, 2, , 3,W,R 99.42 99.73 98.89 0.0027 0.965

04 1, 2, 3,W,R 99.59 99.73 98.75 0.0027 96.09

14 1, 2, 3, 4,W,R 99.42 99.75 98.74 0.0025 0.954

16 1, 2, 3, 4,W,R 99.84 99.92 99.57 0.0015 0.984

32 1, 2, 3, 4,W 99.82 99.93 99.69 0.0014 0.990

37 1, 2,W,R 100 99.67 99.67 0.0034 0.952

41 1, 2, 3,W,R 98.43 99.44 97.95 0.0051 0.935

45 1, 2, 3, 4,W,R 99.58 99.76 98.68 0.0020 0.952

48 1, 2, 3,W,R 99.29 99.65 98.55 0.0031 0.947

59 1, 2, 3, 4,W,R 98.70 99.61 98.25 0.0030 0.937

60 1, 2,W,R 99.93 99.96 99.86 0.0032 0.996

61 1, 2, 3,W,R 99.33 99.65 98.47 0.0035 0.952

66 1, 2, 3,W 99.45 99.71 98.75 0.0029 0.960

67x 1, 2, 3,W 100 100 100 0 1.00

Avg 99.45 99.75 99.01 0.0039 0.964
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Table 4.5: Comparison of results with previous methods tested on the same

database

Author and year #records feature Classesused Classifierused AverageAccuracy(%) Cohen′skappa

Redmond and Heneghan [95], 2003 17 HRV andEEGFeatures Lightvsdeepsleep QDA 89 0.51

Adnane et al. [94], 2012 17 HRV,DFAandWDFA Sleepvswake SVM 79.99 0.43

Hayet and Slim [98], 2012 09 RR− timeseriesandHRV features Sleepvswake ELM 83.59 −−

Werteni et al. [99], 2015 17 HRV SleepvswakeREM SVM 56.81 −−

R.K Tripathi et al [90], (May, 2018) 17 Dispersionentropyandvariance DNN Neuralnetwork 85.51, 94.095.71 −−

Taran et al. [93], 2018 16 Hermitecofficents alert(w)anddrowsiness(s1) ELM 92.28 −−

Budak et al. [92], 2019 16 spectrogramimagesandInstaniousfrequencies alertanddrowsiness LSTM 94.31 −−

Panfeng at el [100], 2019 06 statisticalfeatures NREM(s1− s4), REM,Wake W − SVM 85.29 −−

Junming at el [101], 2020 18 HilbertHuangcoefficients REM,REM,wake CNN 87.6 0.81

Yash at el.[79], 2021 18 Half − waveandFranklinCoefficients Wake, Sleep(all), REM KNN 93.84 −−

Proposed method, 6 classes 18 timedomainandFranklincoefficients Wake, Sleep(all), REM KNN 99.01 0.964

Table 4.6: Comparison with other algorithms tested on the di�erent database

Author and year features Classesused Classifierused AverageAccuracy(%)

Prucnal et al. [102] Waveletbasedfeatures F iveclass(wake, S1, S2, deepsleep,REM) NeuralNetwork 74.2

Prucnal et al. [102] EMDbasedfeatures F iveclass(wake, S1, S2, deepsleep,REM) NeuralNetwork 57.6

Hasan et al. [103] EnsembleEMDbasedfeatures Sixclasses(wake, S1, S2, S3, S4, REM) RUSBoost 71.98

Da Silveira et al. [91] DWTandstatisticalfeatures (wake, S1, S2, S3, S4, REM) Randomforest 63.51

R.K Tripathi et al. [85], May, 2018 HRV features (NREM(all), REM) DNN 73.70

Proposed method(6 classes) TimedomainandFranklincoeffi. Wake, Sleep(all), REM KNN 99.01
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Chapter 5

Summary

Since couple of decades, biomedical signal processing plays an important role to

the improve the quality of human life. The recent research in the �eld of biomedical

signal processing is carried out by using important biomedical signals like EEG,

EMD, ECG, blood pressure and nasal signals. Thesis is divided into 5 chapters in-

cluding summary. Chapter 1, gives the introduction about Epilepsy, sleep states,

piecewise linear functions and metrics used for performance evaluation. In Chapter

2, we proposed a hybrid approach for seizure detection using EEG signals. We used

two piecewise linear models namely Halfwave and Franklin transformation. The rea-

son of preferring the linear models over other models is that linear models are simple,

computationally fast and e�cient. The algorithm is tested on 23 di�erent subjects

having more than 100 hours long term EEG in the CHB-MIT database in several

respects. It showed better performance compared to the state-of-the art methods

for seizure detection tested on the given database. In 2017 Bhattacharyya et al.[68]

proposed best method for seizure detection based on multichannel, which may not

be used for real time applications e�ciently, achieved average sensitivity, speci�city

and accuracy of 97.91%, 99.57%, 99.41%. Whereas, our proposed method achieved

an average sensitivity, speci�city, accuracy, false alarm rate and kappa of 99.45%,

99.75%, 99.01%, 0.0039, 0.964 respectively and these results are comparatively good

than [68] and other state of the art methods. In Chapter 3, various sleep states are

detected by using the extended version of the method proposed in Chapter 2. The

aim of the algorithm proposed in Chapter 3 is to detect the various sleep states by

combining di�erent biomedical signals like EEG, blood pressure, and nasal signals.
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Algorithm is tested on MIT-BIH Polysomnographic database having more than 70

hours long term EEG, blood pressure and respiratory (nasal) signals with six di�er-

ent sleep classes. Proposed method shows better performance than state of the art

methods. Proposed algorithm achieved an average sensitivity, speci�city, accuracy

and false alarm rate of 98.35% and 97.32%, 96.96%, 0.029 respectively for two ran-

domly picked classes, 96.62% and 97.10%, 93.94%, 0.030 for randomly picked any 4

classes, 96.13% and 98.33%, 93.84%, 0.016 for all six classes, which is higher than

the existing state of the art methods. To use the algorithm in real time scenario, and

to increase the further accuracy of the method proposed in Chapter 3 we proposed

a new approach for sleep states in Chapter 4. We used two biomedical signals i.e.

blood pressure signal, in time domain and EEG signal, in frequency domain. In time

domain, statistical and morphological features are extracted from the blood pres-

sure signal and in frequency domain, a piecewise linear reduction namely Franklin

transformation is applied on EEG signal. The Franklin coe�cients are used as dis-

criminatory features in frequency domain. The novelty of the proposed method is

that we considered two cases, the blood pressure signal by itself, and the combination

of it with EEG signal. The motivation behind the �rst one is that in certain cases,

e.g. smart personal mobile devices, only the blood pressure signal is available. In

both cases the algorithm is tested on MIT-BIH Polysomnographic database having

more than 80 hours long term EEG and blood Pressure signals. In both cases we per-

formed comparison tests with relevant state-of-the-art methods, and our algorithm

showed better or equal performance in terms of sensitivity, speci�city, accuracy and

false alarm rate. Our proposed algorithm in case of using only blood signal, achieved

an average sensitivity, speci�city, accuracy, false alarm rate and kappa of 95.45%,

98.27%, 93.78 %, 0.0170, 0.0224 respectively which is good or comparatively equal to

the state of the art methods. Where as, an average sensitivity, speci�city, accuracy,

false alarm rate and kappa of 99.45%, 99.75%, 99.01%, 0.0039, 0.964 respectively is

achieved using blood and EEG signals, which is higher than the existing state of the

art methods so far.
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