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A B S T R A C T   

The complement system is recognized as a major pathogenic or contributing factor in an ever-growing number of 
diseases. In addition to inherited factors, autoantibodies to complement proteins have been detected in various 
systemic and organ-specific disorders. These include antibodies directed against complement components, reg
ulators and receptors, but also protein complexes such as autoantibodies against complement convertases. In 
some cases, the autoantibodies are relatively well characterized and a pathogenic role is incurred and their 
detection has diagnostic value. In other cases, the relevance of the autoantibodies is rather unclear. This review 
summarizes what we know of complement specific autoantibodies in diseases and identifies unresolved questions 
regarding their functional effect and relevance.   

1. Introduction 

The complement system, being an ancient component of innate im
munity and intertwined with other systems of our body, is not surpris
ingly implicated in a growing list of immune and non-immune disorders 
(Hajishengallis et al., 2017; Cedzyński et al., 2019). Genetic studies 
determined complement gene variants that are predisposing, protective 
or pathogenic factors to develop certain diseases, although in many 
cases a direct relevance to disease is not clear due to lacking charac
terization of the gene product in functional assays (Ricklin et al., 2016; 
Merle et al., 2015a). Similarly, autoantibodies to complement compo
nents as acquired factors have been described but often not character
ized (Dragon-Durey et al., 2013; Józsi et al., 2014). Complement is 
involved in the pathomechanism of a number of autoimmune diseases, 
where the autoantibody–autoantigen complexes activate the comple
ment system resulting in tissue damage that in turn contributes to 
worsening of the disease, e.g. in myasthenia gravis (reviewed in 
Howard, 2018), or becomes the driving force of the disease, e.g. in cold 
agglutinin disease (reviewed in Berentsen, 2018). This review specif
ically focuses on conditions and diseases where the targets of the 

autoantibodies are complement proteins or their complexes. 
Since complement activation can be very rapid and potentially 

deleterious, its regulation is essential to maintain complement activity at 
an optimal level, i.e. in a targeted and limited way so that the opsonic, 
inflammatory and lytic activities are focussed to the necessary targets 
and only for the required time, but unwanted and mistargeted comple
ment activation is avoided (Sjöberg et al., 2009; Merle et al., 2015a, 
2015b). Improper activation and/or regulation of the cascade may 
contribute to or cause diseases, such as certain infectious, inflammatory 
and autoimmune diseases. The detection of deficiencies, quantitative or 
functional alteration of complement proteins and the presence and level 
of activation fragments and complexes can have important diagnostic 
value, as does the presence of autoantibodies (Frazer-Abel et al., 2021). 

In contrast to genetic variations, autoantibody determination is less 
accurate, since assay specificity and cut-off values need to be estab
lished. Moreover, without functional characterization the detection of 
the presence of autoantibodies may not be informative. There are 
excellent reviews on complement autoantibodies particularly in the 
context of certain diseases (e.g., Dragon-Durey et al., 2013; Józsi et al., 
2014; Beurskens et al., 2015; Hauer et al., 2019; Defendi et al., 2020; 
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Trendelenburg, 2021). Here, we provide an overview on what we know 
about such autoantibodies in systemic and organ-specific diseases, 
highlight some recent developments in the field and point out gaps in 
our knowledge. A schematic depiction of complement activation and the 
complement-specific autoantibodies discussed in this review is shown in  
Fig. 1. 

2. Complement autoantibodies in systemic lupus erythematosus 
(SLE) 

As a systemic autoimmune disorder, SLE affects multiple organs, and 
is characterized by autoantibodies against autoantigens released by 
dying cells. The non-inflammatory removal of dead cells is essential in 
maintaining immune homeostasis. Defective clearance of apoptotic cells 
and the presence of immune complexes causing excessive complement 
activation are common phenomena in SLE (Mahajan et al., 2016; Shao 
and Cohen, 2011). Due to the heterogenous spectrum of symptoms, 
classification is often unclear and diseases with overlapping manifesta
tions, like primary antiphospholipid syndrome are misclassified as SLE 
(Signorelli et al., 2021). Autoantibodies target a wide range of 
self-structures in SLE, including anti-dsDNA (present in 70% of pa
tients), anti-histone, antinuclear, anti-C1q and antiphospholipid anti
bodies (Trendelenburg, 2021; von Mühlen and Tan, 1995; Petri et al., 
2012; Aarden et al., 1976). Low complement activity (CH50) in patients’ 
serum is a diagnostic marker as well as low C3 and C4 protein levels 
(Lloyd and Schur, 1981; Walport, 2002; Li et al., 2015). In addition, 
analysis of C3 and C4 levels is useful to set differential diagnosis of SLE 
patients with joint pain and rheumatoid arthritis (RA) patients since 
significantly lower C3 and C4 plasma levels are found in SLE (Li et al., 
2013). Complement deficiencies in the early components of the classical 
pathway (including C1q, C1s, C1r, C4, C2) represent risk factors 
(Sharma et al., 2020; Pickering and Walport, 2000) for developing SLE, 
indicating the role of the classical pathway in the safe removal of dead 
cells. 

In many SLE patients autoantibodies against C1q (17–54.6%) were 

detected, while the frequency of anti-C1q in healthy individuals 
(1.5–9.3%) is much lower (Orbai et al., 2015; Sinico et al., 2005; Bassi 
et al., 2015; Julkunen et al., 2012). C1q is important for the clearance of 
apoptotic cells and immune complexes and autoantibodies bound to C1q 
can interfere with its normal biological functions (Kouser et al., 2015). It 
was shown that autoantibodies target C1q on early apoptotic cells 
(Bigler et al., 2009) and inhibit their phagocytosis by macrophages 
(Pang et al., 2014). In addition, anti-C1q antibodies associate with 
higher circulating immune complex (CIC) levels because they inhibit 
binding of immune complexes to red blood cells (RBC) and thus their 
removal (Pang et al., 2014). Mouse models showed that anti-C1q anti
bodies may be pathogenic as they deposit in the glomeruli in association 
with C1q containing immune complexes (Trouw et al., 2004). The defect 
of „waste disposal” is not the only trigger for developing anti-C1q an
tibodies. Previous Epstein-Barr Virus (EBV) infection can lead to auto
antibody production due to the molecular mimicri of an EBV nuclear 
antigen 1-derived peptide and the antigenic site of C1q (Csorba et al., 
2019). The prevalence of anti-C1q is higher in active SLE and SLE with 
lupus glomerulonephritis (Sjöwall et al., 2018; Bassi et al., 2015; Tren
delenburg et al., 2006), thus measuring anti-C1q antibody levels may 
lead to correlations with lupus nephritis (Julkunen et al., 2012; Chi 
et al., 2015; Shang et al., 2021). 

The detection of anti-C1q antibodies encounters difficulties due to 
non-specific binding of the C1q globular heads to IgG. The developed 
ELISAs use either the purified collagen-like tail region of C1q as antigen 
or high salt concentration in the buffer with full-length C1q as antigen to 
avoid or reduce non-specific C1q-IgG interactions (Kohro-Kawata et al., 
2002). Another hindrance of wide-spread diagnostic usage is that the 
available commercial anti-C1q tests are mainly ELISA based and use 
different cutoff values for positivity, thus results are difficult to compare. 
Still none of the anti-C1q assays was approved by Food and Drug 
Administration due to the absence of comparative studies (Julkunen 
et al., 2012; Mahler et al., 2013). Further studies on the antibody epi
topes and improved assays may lead to more reliable detection and 
diagnostic values for anti-C1q autoantibodies (Kleer et al., 2022; Csorba 

Fig. 1. Simplified scheme of complement activation and targets of the autoantibodies. Activation of the three pathways, namely classical, lectin and alternative 
pathways are shown starting at the recognition molecules. Enzymatic cleavage is marked by dashed arrows, regulators are indicated with frame and convertase 
enzyme complexes have gray background. To avoid a busy figure, several details and most complement regulators have been omitted; when interested in details of 
activation and regulation mechanisms, please refer to excellent reviews on the topic (e.g., Merle et al., 2015b; Ricklin et al., 2016). FB, factor B; FD, factor D. 
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et al., 2021). 
While anti-C1q in SLE is thoroughly examined, there are still few 

data or studies on other autoantibodies targeting complement proteins 
in SLE patients. Besides C1q, mannose binding lectin (MBL) is also an 
early pattern recognition molecule of complement, participating in im
mune complex clearance (Saevarsdottir et al., 2007). Anti-MBL anti
bodies are frequently present with anti-C1q in SLE patients and can 
result in low MBL levels and may increase the occurrence of viral, 
bacterial, fungal or parasitic infections (Pradhan et al., 2013). 

C3b may also be a target of autoantibodies in SLE patients and since 
anti-C3b is more specific for lupus nephritis than anti-C1q, monitoring 
anti-C3b could also be useful to follow lupus nephritis activity (Bir
mingham et al., 2016). SLE patients’ sera with anti-C3b autoantibodies 
inhibited phagocytic clearance of apoptotic cells, suggesting that 
anti-C3b in these patients may have similar effects on „waste disposal” 
to those of anti-C1q (Kenyon et al., 2011). Anti-C3b antibodies found in 
lupus nephritis patients inhibited the binding of C3b to the regulators 
factor H (FH) and CR1 (complement receptor type 1 or CD35), uniformly 
reducing their cofactor activity; however, their effects on C3 convertase 
were complex. Some autoantibodies induced an even faster cycle of C3 
convertase assembly and decay, resulting in enhanced C3 cleavage, and 
others reduced C3 convertase formation and activation. In the same 
study, anti-C3b antibodies were shown to activate the alternative 
pathway (AP) and lead to increased C3b deposition on endothelial cells 
(Vasilev et al., 2015). These autoantibodies provide evidence for the 
involvement of the AP in the pathogenesis of SLE. Overall, the anti-C1q 
and anti-C3b autoantibodies influence the physiological functions of 
their targets, therefore, deciphering their role in SLE pathogenesis could 
help develop focussed and more effective treatments. 

Autoantibodies against FH were also described in SLE patients, with 
low frequency (~6%) and no detailed characterization (Foltyn Zadura 
et al., 2012). Another study, however, showed that anti-FH autoanti
bodies isolated from lupus nephritis patientsʼ sera could enhance C3b 
binding to FH and enhance FI-mediated C3b cleavage, which suggests a 
protective role for these autoantibodies (Li et al., 2020). 

Additionally, properdin autoantibodies were also reported in lupus 
nephritis in 16 out of 71 patients. The autoantibodies had no significant 
effect on the C3 convertase but promoted C3-fragment deposition on late 
apoptotic cells (Radanova et al., 2020). In a case report, anti-properdin 
autoantibodies in combination with factor I, C3 and factor B (FB) au
toantibodies were found, which makes it more difficult to discern the 
contribution of each autoantibody and determine their relevance (Nozal 
et al., 2015). Since properdin is a “sticky“ molecule and aggregates 
easily, especially in its purified form (Ferreira et al., 2010), specific 
interaction studies are difficult to perform and may explain our own 
experience of detecting anti-properdin IgG positivity in healthy control 
sera as well (unpublished observation). 

3. Complement autoantibodies in rheumatoid arthritis (RA) 

RA is a chronic autoimmune disorder leading to inflammation and 
destruction of cartilage and joints. The presence of autoantibodies 
against the Fc portion of IgG, termed rheumatoid factors and the so- 
called AMPAs, anti-modified protein antibodies (including ACPA – 
anti-citrullinated peptide antibodies) targeting citrullinated, carbamy
lated, acetylated and malondialdehyde acetaldehyde modified proteins 
is characteristic of RA and has diagnostic significance (Grönwall et al., 
2021; van Delft and Huizinga, 2020), but their development and role in 
the pathogenesis is not completely understood yet. In addition, com
plement proteins were also identified as targets of autoantibodies in RA 
patients. Similar to what has been reported in other autoimmune dis
eases, anti-C1q is often present in RA patients. Moreover, greater 
anti-C1q prevalence is found in patients with severe RA associated with 
extraarticular manifestations (Siegert et al., 1992; Potlukova and Kra
likova, 2008). 

Autoantibodies against MBL were also detected in a cohort of RA 

patients. Autoantibodies were present in approximately 60% of the pa
tients and their levels were negatively correlated with MBL serum levels, 
suggesting increased MBL consumption due to the binding of the auto
antibodies (Gupta et al., 2006). FH, the main regulator of the alternative 
pathway was also described as a target of autoantibodies in RA patients 
(Foltyn Zadura et al., 2012). These autoantibodies bound to several 
epitopes on FH, suggesting that both ligand binding capacity and com
plement regulatory functions may be impaired. In a cohort of 106 RA 
patients we did not find anti-FH antibodies (Matola et al., unpublished). 
As the relevance and role of MBL- and FH-specific antibodies in RA 
pathogenesis are not clear yet, further studies and analysis of additional 
patient cohorts are needed to clarify if they are relevant to the disease. 

4. Complement autoantibodies in membranoproliferative 
glomerulonephritis (MPGN) 

MPGN is a rare disorder characterized by glomerular injury, thick
ening of the glomerular basement membrane and deposition of com
plement components in the glomeruli, often leading to end-stage renal 
disease (Cook and Pickering, 2015; Kaartinen et al., 2019). Mutations in 
complement genes and/or autoantibodies against complement compo
nents cause alternative (and terminal) pathway dysregulation in the 
fluid phase, which is prominent and characteristic to MPGN (Sethi et al., 
2012; Master Sankar Raj et al., 2016). Based on the presence and 
localization of immunoglobulins and complement fragments in the 
glomeruli, MPGN can be further categorized: immune 
complex-mediated MPGN (IC-MPGN), which is characterized by stain
ing for immunoglobulins, and C3 glomerulopathy (C3G), which is a 
collective term for diseases with C3 cleavage product deposits in the 
glomeruli. C3G includes two subgroups with histological differences in 
deposit formation: C3 glomerulonephritis (C3GN) and dense deposit 
disease (DDD). If diagnosis proves MPGN, screening for mutations in 
complement genes and autoantibodies against complement proteins is 
needed and is useful to aid specific, tailored treatment, e.g. immuno
suppressive or anticomplement therapy (Caravaca-Fontán et al., 2020; 
Kaartinen et al., 2019). 

C3 nephritic factors (C3Nefs) are IgG antibodies recognizing neo
epitopes on the AP C3 convertase (as reviewed in Dragon-Durey et al., 
2013, Józsi et al., 2014, Corvillo et al., 2019). C3Nefs are frequently 
detected in renal diseases; depending on the assay used for determina
tion, approximately half of the MPGN patients tested positive for C3Nef 
(Paixão-Cavalcante et al., 2012; Ravindran et al., 2018; Marinozzi et al., 
2017a; Zhao et al., 2019). C3Nefs are a heterogeneous group of anti
bodies having the ability to stabilize and thus prolong the half-life of the 
AP C3 convertase (Spitzer et al., 1969, 1990; Daha and van Es, 1981). 
They are different regarding their binding dependence on properdin, 
stabilizing mechanism (against extrinsic vs. intrinsic decay) and their 
contribution to terminal pathway activation (Paixão-Cavalcante et al., 
2012, Jelezarova et al., 2001; Zhao et al., 2019), thus their disease 
relevance may vary. In C3G and IC-MPGN patients C3Nefs stabilized the 
C3 convertase and prolonged its activity contributing to complement 
overactivation (Donadelli et al., 2018; Michels et al., 2021). 

C4 nephritic factors (C4Nefs) are IgG antibodies directed against the 
classical/lectin pathway C3 (and/or C5) convertase (reviewed in Cor
villo et al., 2019; Hauer et al., 2019). The data on C4Nef frequency are 
scarce, it is estimated between 3% and 19% in MPGN patients (Zhang 
et al., 2017; Ohi and Yasugi, 1994; Garam et al., 2019). Similar to the 
actions of C3Nefs, C4Nefs can stabilize the C4b2b(C3b) convertase and 
protect it against extrinsic and intrinsic decay (Zhang et al., 2017). Early 
findings on C4Nefs (Halbwachs et al., 1980; Daha and van Es, 1980) 
demonstrating that convertase stabilization results in increased con
sumption of C3 and C5 were confirmed in IC-MPGN patients (Michels 
et al., 2021). 

Autoantibodies having the ability to stabilize the AP C5 convertase 
are termed C5Nefs (Marinozzi et al., 2017a). Some C3G patients have 
both C3Nefs and C5Nefs and the discrimination between the two can be 
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difficult due to the similarities in their effect on overall complement 
activation. The antibodies together initiated stronger complement acti
vation in in vitro experiments, thereby suggesting a more profound 
complement overactivation in patients positive for both types of auto
antibodies (Zhao et al., 2019). Their functional activity may be quite 
different, as C5Nefs but not necessarily C3Nefs are correlated with 
increased sC5b-9 levels (Marinozzi et al., 2017a). 

Beside C3Nefs and C5Nefs that bind the AP C3 and C5 convertase, 
respectively, autoantibodies against their components, C3b and FB were 
also described (Strobel et al., 2010a; Chen et al., 2011; Marinozzi et al., 
2017b). In contrast to Nefs, these anti-C3b and anti-FB autoantibodies 
bind to C3b and FB alone, but also if they are part of the enzyme com
plexes. The first such anti-FB antibody described in a DDD patient was 
shown to stabilize the C3 convertase, to increase C3a formation, but to 
inhibit C5 cleavage and C5a generation. Hence, the patient was 
described as C3Nef negative, but still, autoimmune process stood behind 
the enhanced C3 consumption (Strobel et al., 2010a). In another study 
with IC-MPGN and C3G patients, Marinozzi et al. (2017b) found auto
antibodies against FB and C3b with either the ability to stabilize the C3 
convertase, enhance convertase activity, activate complement in fluid 
phase or reduce C3b binding to CR1. Anti-FB and anti-C3b autoanti
bodies were found in 6–8% and 4–5% of MPGN patients, respectively 
(Marinozzi et al., 2017b; Garam et al., 2019, 2021). 

Regulators of the convertases may also be targets of autoantibodies 
leading to the same consequence, namely elevated convertase activity 
and complement consumption due to the functional impairment of the 
regulators. Anti-FH autoantibodies found in MPGN patients bind pre
dominantly to the N-terminus of FH, thus influencing its fluid-phase 
regulatory activity, but do not perturb the binding of FH to cell sur
faces (Goodship et al., 2012; Nozal et al., 2012; Józsi et al., 2014; Blanc 
et al., 2015; Li et al., 2019), however, C-terminal binding autoantibodies 
were also described (Zhang et al., 2020). Interestingly, analyses of in vivo 
formed immune complexes by Western blot revealed that the purified 
IgG fraction of a patient bound predominantly the FH alternative splice 
product factor H-like protein 1 (FHL-1), which contains the N-terminal 7 
complement control protein (CCP) domains and thus includes the 
complement regulatory domains of FH (Nozal et al., 2012). 

Autoantibodies against CR1, another regulator of the convertases, 
detected in C3G patients, exerted similar inhibitory effects on CR1 as 
anti-FH autoantibodies on FH: reduced the binding of CR1 to C3b as well 
as impaired the cofactor activity of CR1 in FI-mediated cleavage of C3b 
(Chauvet et al., 2018). 

Autoantibodies to FI were also described in C3G, but their functional 
relevance is unknown since no effect could be measured in FI-mediated 
C3b cleavage (Chauvet et al., 2018). C1q-autoantibodies were also re
ported in patients with glomerulonephritis, however, investigations 
focussed on coexistence or association of Nefs and anti-C1q antibodies, 
and the function of the antibodies was not further analyzed (Skattum 
et al., 1997; Garam et al., 2019). 

Thus, most autoantibodies in MPGN with proven pathological role 
target the complement convertases and their regulators and further 
studies are needed regarding these less characterized autoantibodies. In 
addition, detection and differentiation of nephritic factors need to be 
improved. 

5. Complement autoantibodies in atypical Hemolytical Uremic 
Syndrome (aHUS) 

HUS is a life-threatening disease characterized by hemolytic anemia, 
thrombocytopenia and renal failure (Mele et al., 2014). Several HUS 
types are distinguished; Shiga toxin initiated HUS (typical HUS) is 
caused most often by infection with Shiga toxin producing Escherichia 
coli; secondary HUS inflicted by pregnancy, transplantation, cancer and 
autoimmune diseases; and aHUS, which is associated with complement 
dysregulation (Jokiranta, 2017; Karpman et al., 2017, Yoshida et al., 
2019). Mutations and polymorphisms in complement genes are common 

in aHUS affecting particularly CFH, CFHR1, MCP, CFI, CFB, and C3 
(Valoti et al., 2019; Bernabéu-Herrero et al., 2015; Urban et al., 2018). If 
the regulation fails, complement is activated on host cells, causing tissue 
damage, contributing to the disease activity (Jokiranta, 2017). 

Anti-FH IgG autoantibodies against the main regulator of the alter
native pathway, FH, are detected in about 5–20% of patients (Drag
on-Durey et al., 2005; Józsi et al., 2008; Schaefer et al., 2018; Moore 
et al., 2010), but an even higher frequency (over 50%) was reported in 
an Indian pediatric cohort (Sinha et al., 2014). This suggests that genetic 
and environmental factors or infections are likely risk factors to develop 
FH autoantibodies. Indeed, a strong association between FH autoanti
body positivity and the lack of the CFHR1 gene and thus FHR-1 protein 
was found (Józsi et al., 2008; Dragon-Durey et al., 2009). FHR-1 defi
ciency is relatively common in aHUS due to non-allelic homologous 
recombination events in the chromosomal region harboring the CFH and 
the highly related CFHR genes, but the underlying mechanism of auto
antibody generation is not yet completely understood. The carboxy 
terminal CCPs 4–5 of FHR-1 share high sequence similarity with CCPs 
19–20 of FH and the minor differences between them result in slightly 
different conformations including that of a flexible loop in CCP20 which 
may indicate a role in aHUS pathogenesis (Bhattacharjee et al., 2015). 
The major autoantibody epitope was identified on the flexible loop re
gion in FH CCP20 (Bhattacharjee et al., 2015; Nozal et al., 2016; Trojnár 
et al., 2017) and the conformation of this loop is likely altered when FH 
is bound to certain ligands such as microbial proteins; this induced 
„FHR-1-like“ epitope could result in autoantibody generation in FHR-1 
deficient individuals (Bhattacharjee et al., 2015). 

While multiple autoantibody binding sites on FH were described in 
aHUS (Blanc et al., 2015), the C-terminus of FH is the main target of the 
autoantibodies and functional studies showed that the autoantibodies 
influence the complement regulation on surfaces by inhibiting binding 
to C3b, sialic acid and endothelial cells. Thus, FH is unable to protect 
host cells from complement mediated damage (Guo et al., 2019; Józsi 
et al., 2007; Zhang et al., 2020; Strobel et al., 2010b, 2011). A recent 
study reported on the generation and characterization of a heavy chain 
antibody fragment that recognizes the Leu1181-Leu1189 flexible loop in 
FH CCP20 and thus mimics the autoantibodies; the generated antibody 
inhibited FH function and caused hemolysis of sheep erythrocytes when 
added to human serum whereas it did not inhibit the cofactor activity of 
FH (Yokoo et al., 2022). Next to this, anti-FH may influence platelet 
aggregation in aHUS contributing to endothelial injury in the kidney 
(Fujisawa et al., 2020). Anti-FH pathogenicity may be further indicated 
by the association between autoantibody titers and disease severity 
(Strobel et al., 2010b; Puraswani et al., 2019). 

Due to the similar C termini between FH and FHR-1, most aHUS- 
associated FH autoantibodies cross-react with FHR-1 (Strobel et al., 
2010b; Moore et al., 2010; Bhattacharjee et al., 2015). In addition to IgG 
autoantibodies, anti-FH IgA autoantibodies were described that also 
cross-react with FHR-1 (Strobel et al., 2011; Guo et al., 2019). More 
recently, anti-FH IgM autoantibodies were reported in 3.8% of patients 
in an aHUS cohort and also functionally characterized. The IgM anti-FH 
autoantibodies bound to CCP 19 and inhibited FH binding to immobi
lized C3b (Cugno et al., 2021). 

In addition, factor I autoantibodies in aHUS patients were also re
ported without any detected functional effect (Kavanagh et al., 2012; 
Józsi et al., 2014); similarly, the disease relevance of C3b autoantibodies 
is unclear in aHUS (Józsi et al., 2014). Thus, while the pathogenic role of 
anti-FH autoantibodies is established in aHUS, the role of other auto
antibodies is dubious. 

6. Factor H autoantibodies in non-small cell lung cancer 

The complement system is implicated in cancer where it plays a 
context-dependent role (Roumenina et al., 2019). FH-specific autoanti
bodies were described in early-stage non-small cell lung cancer (NSCLC) 
patients as well (Amornsiripanitch et al., 2010). In contrast to the 
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previous scenarios, in these patients the autoantibodies had a protective 
role. Isolation and thorough characterization of the antibodies revealed 
that they recognize an epitope partly hidden in the native conformation 
of FH, which becomes available under the slightly reducing tumor 
microenvironment. Binding of the autoantibodies to tumor cell-bound 
FH led to complement-dependent lysis of the tumor cells (Campa 
et al., 2015). Based on these results, a therapeutic monoclonal antibody 
was cloned from a patient, characterized and shown that the antibody 
enhances complement activation and complement-dependent cytotox
icity, and inhibits tumor growth in vivo (Bushey et al., 2016). Further
more, FH was shown to be associated with extracellular vesicles derived 
from various tumor cells; FH protected the extracellular vesicles from 
destruction and they promoted metastasis, which could be inhibited by 
the anti-FH antibody (Mao et al., 2020; Bushey et al., 2021). In a recent 
study designed to evaluate the prognostic value of anti-FH autoanti
bodies in NSCLC, it was found that while disease recurrence was 
significantly lower among patients with anti-FH autoantibodies 
compared to those patients that were autoantibody negative, the change 
in antibody levels over a one-year period was not significantly different 
between the non-recurrent and recurrent patient groups (Gottlin et al., 
2022). 

7. Factor H autoantibodies in neuromyelitis optica spectrum 
disorder 

Neuromyelitis optica spectrum disorder (NMOSD) is a rare, auto
inflammatory disease of the central nervous system. NMOSD patients 
often develop autoantibodies against the astrocyte water channel 
aquaporin 4 (AQP4). Complement has a well-established pathogenic 
role in driving the disease when activated via these AQP4 autoanti
bodies in the brain and spinal cord, and complement inhibitory drugs 
are already used in NMOSD (Asavapanumas et al., 2021). In addition to 
the AQP4-IgG, autoantibodies against FH were also described in a cohort 
of NMOSD patients (Uzonyi et al., 2021). The analyzed autoantibodies 
were heterogeneous since they had characteristics similar to those 
described in aHUS and to those found in NSCLC, but they all bound 
within the C-terminus (CCPs 19–20) of FH and inhibited C3b binding to 
recombinant FH CCPs 19–20 (Uzonyi et al., 2021). 

8. Conclusion and outlook 

In summary, autoantibodies are not uncommon in complement- 
associated diseases, although their types (target antigens, isotypes) 
and frequency vary among the diseases, and the targeted epitopes can 
correlate with specific disease. Anti-complement autoantibodies devel
oped secondarily are being discovered in autoimmune diseases driven 
by complement, such as in RA or NMOSD. There has been significant 
advancement in recent years in the identification and characterization of 
complement specific autoantibodies, e.g. the more detailed studies on 
Nefs and the description of C5Nefs. Functional characterization of the 
reported antibodies would help evaluate their role in the diseases and to 
decide whether antibody screening is meaningful and necessary before 
starting treatment and for monitoring the disease course. Table 1. 
summarizes functional data on the autoantibodies and the correspond
ing references. 

Autoantibodies to the same antigen can be pathogenic, protective or 
of unknown significance in different diseases, as exemplified by FH 
autoantibodies. Pathogenic autoantibodies target primarily the FH N- 
terminal regulatory domains in C3G and the C-terminal surface recog
nition domains in aHUS, but autoantibodies to a specific epitope in the 
C-terminal CCP19 are associated with better prognosis in NSCLC. 
Similarly, C-terminally binding FH autoantibodies with yet unclear 
significance were described in NMOSD and the role of FH autoantibodies 
in RA is also uncertain. 

The varying results among different research groups and between 
study populations may be related to the lack of standardized assays for 

Table 1 
Summary of the autoantibodies affecting complement proteins and the associ
ated diseases. The table does not include all references on the antibodies, only 
those where relevant functional effect was described.  

Autoantibody Disease Functional relevance Reference 

Anti-FH aHUS impaired plasma FH 
activity 

Dragon-Durey 
et al. (2005)  

aHUS reduced FH binding to 
C3b; enhanced SRBC 
hemolysis 

Józsi et al. 
(2007)  

aHUS correlation with FHR-1 
deficiency 

Józsi et al. 
(2008)  

aHUS correlation with CFHR1 
deletion 

Dragon-Durey 
et al. (2009)  

aHUS impaired regulatory 
activity of FH on host- 
like surfaces 

Strobel et al. 
(2010b)  

aHUS autoanti-FH 
neutralization by FHR-1 

Strobel et al. 
(2011)  

aHUS reduced FH binding to 
pentraxin 3 

Kopp et al. 
(2012)  

aHUS autoantibody binding 
site overlaps with 
heparin and microbe 
binding sites 

Battacharjee 
et al., 2015  

aHUS reduced FH binding to 
C3b; enhanced SRBC 
hemolysis; reduced FH 
binding to endothelial 
cells 

Guo et al. (2019)  

aHUS enhanced platelet 
aggregation 

Fujisawa et al. 
(2020)  

DDD enhanced AP activation Meri et al. 
(1992)  

DDD inhibited FH binding to 
C3b, enhanced AP C3 
conversion 

Jokiranta et al. 
(1999)  

DDD impaired FH cofactor 
activity 

Nozal et al. 
(2012)  

C3G/MPGN reduced FH binding to 
C3(H2O), C3b, C3c, 
C3d; impaired FH 
cofactor activity 

Blanc et al. 
(2015)  

C3G with 
monoclonal 
gammopathy 

impaired FH cofactor 
activity 

Chauvet et al. 
(2018)  

C3GN reduced FH binding to 
C3b; impaired FH 
function on the 
inhibition of C3 
convertase formation 

Li et al. (2019)  

NSCLC enhanced complement- 
mediated lysis of tumor 
cells 

Campa et al. 
(2015)  

NMOSD reduced FH binding to 
C3b 

Uzonyi et al. 
(2021) 

Anti-FB DDD AP C3 convertase 
stabilization; reduced 
C5 convertase activity 

Strobel et al. 
(2010a)  

DDD AP C3 convertase 
stabilization (in 
combination with anti- 
C3b) 

Chen et al. 
(2011)  

C3G/IC-MPGN AP C3 convertase 
stabilization; enhanced 
C3 convertase activity; 
fluid phase complement 
activation 

Marinozzi et al. 
(2017b) 

Anti-C3b DDD AP C3 convertase 
stabilization (in 
combination with anti- 
FB) 

Chen et al. 
(2011)  

C3G/IC-MPGN AP C3 convertase 
stabilization; enhanced 
C3 convertase activity; 
reduced C3b binding to 
CR1 

Marinozzi et al. 
(2017b) 

(continued on next page) 
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detection, which includes the use of different cut-offs, autoantibody 
standards, as well as positive and negative controls. Sometimes negative 
control antigens are not used but healthy control samples are applied to 
the same complement protein assuming negativity for autoantibodies 
among healthy individuals. Nephritic factors are typically detected with 
hemolytic assays that are difficult to standardize, differentiation be
tween C3Nef and C5Nef is difficult and in part a terminology issue; 
functional effects could be more relevant and methods that are more 
reproducible than hemolytic assays requiring animal red blood cells 
would be desirable. 

Improved detection and further studies into the recognized epitopes, 

functional effects and correlation analyses with other biological and the 
clinical parameters in each disease will help distinguish epiphenetic and 
pathogenic autoantibodies and establish their diagnostic and prognostic 
value. 
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Pinto, S., de Córdoba, S.R., López-Trascasa, M., 2015. Case report: lupus nephritis 
with autoantibodies to complement alternative pathway proteins and C3 gene 
mutation. BMC Nephrol. 16, 40. https://doi.org/10.1186/s12882-015-0032-6. 

Nozal, P., Bernabéu-Herrero, M.E., Uzonyi, B., Szilágyi, Á., Hyvärinen, S., Prohászka, Z., 
Jokiranta, T.S., Sánchez-Corral, P., López-Trascasa, M., Józsi, M., 2016. 
Heterogeneity but individual constancy of epitopes, isotypes and avidity of factor H 
autoantibodies in atypical hemolytic uremic syndrome. Mol. Immunol. https://doi. 
org/10.1016/j.molimm.2015.12.005. 

Ohi, H., Yasugi, T., 1994. Occurrence of C3 nephritic factor and C4 nephritic factor in 
membranoproliferative glomerulonephritis (MPGN. Clin. Exp. Immunol. 95 (2), 
316–321. https://doi.org/10.1111/j.1365-2249.1994.tb06530.x. 

Ohi, H., Watanabe, S., Fujita, T., Yasugi, T., 1992. Significance of C3 nephritic factor 
(C3NeF) in non-hypocomplementaemic serum with membranoproliferative 
glomerulonephritis (MPGN. Clin. Exp. Immunol. 89 (3), 479–484. https://doi.org/ 
10.1111/j.1365-2249.1992.tb06984.x. 

Orbai, A.M., Truedsson, L., Sturfelt, G., Nived, O., Fang, H., Alarcón, G.S., Gordon, C., 
Merrill, J., Fortin, P.R., Bruce, I.N., Isenberg, D.A., Wallace, D.J., Ramsey- 
Goldman, R., Bae, S.C., Hanly, J.G., Sanchez-Guerrero, J., Clarke, A.E., Aranow, C.B., 
Manzi, S., Urowitz, M.B., Petri, M., 2015. Anti-C1q antibodies in systemic lupus 
erythematosus. Lupus 24 (1), 42–49. https://doi.org/10.1177/0961203314547791. 
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Bacchi, V., Martinez-Ara, J., Jancova, E., Picazo, M.L., Honsova, E., Tesar, V., 
Sadallah, S., Schifferli, J., 2006. High prevalence of anti-C1q antibodies in biopsy- 
proven active lupus nephritis. Nephrol. Dial. Transplant. 21 (11), 3115–3121. 
https://doi.org/10.1093/ndt/gfl436. 
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