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1. Introduction

A blocking set in a projective plane is a set of points which intersects every line. 
The smallest blocking sets are lines. Blocking sets not containing a line will be called 
non-trivial. A point P of a blocking set B is said to be essential if there is a line that 
intersects B in P only. Geometrically, this means that there exists a tangent line to B
at the point P . A blocking set is minimal when no proper subset of it is a blocking set. 
In other words, it is minimal if the points of the blocking set are all essential. Note that 
a minimal blocking set in a projective plane is either a line or does not contain a line. 
For a survey of blocking sets, see [10], [11] and [8].

Throughout this paper, we will work on the Desarguesian affine and projective planes 
AG(2, q) and PG(2, q); for their properties, see [10]. Hence q = ph is a prime power, the 
letter p denotes the characteristic. Note that we will work in planes of square order, so 
after the Introduction, we will use AG(2, q2) and PG(2, q2).

One of the most interesting questions on blocking sets is to determine the possible 
sizes of non-trivial minimal ones. The first result in this direction is due to Bruen [5], 
who proved that a non-trivial minimal blocking set has size at least q + √

q + 1. When 
q is a square, minimal blocking sets of that size exist; these are exactly the point sets of 
Baer-subplanes. A blocking set is small if it has size less than 3(q+1)/2. There has been 
lot of attention paid on characterizing small minimal blocking sets. Blokhuis [3] showed 
that when q is a prime then there are no small minimal non-trivial blocking sets at all. 
In [14], Szőnyi proved that the possible sizes of small minimal blocking sets lie in certain 
intervals. This was further extended by Sziklai [13].

There are much less results concerning the other end of the spectrum. Bruen and Thas 
[6] showed that the largest minimal blocking sets have size at most q√q + 1. When q is 
a square, equality holds and the minimal blocking sets attaining the bound have to be 
unitals. A unital is a point set with a unique tangent at each point and the secant lines 
intersect it in 

√
q+1 points. When q is a square, unitals do exist, since the Hermitian curve 

is always a (Hermitian) unital. The upper bound by Bruen and Thas was generalized 
to tangency sets, that is sets having a tangent at each of their point (actually, for sets 
having at least as many tangent lines as the number of points), see [12]. When q is 
not a square, the upper bound can be (slightly) improved, see [7]. Similar results were 
obtained by Bishnoi, Mattheus, Schillewaert [2], who also gave different algebraic and 
combinatorial proofs for their results.

For q square, the next interesting question is to determine the size of the second 
largest minimal blocking set. Blokhuis and Metsch [4] proved that in PG(2, q) there are 
no minimal blocking sets with cardinality q

√
q, when q ≥ 49. Hence there is a gap of size 

at least 1 between the size of the second largest and the largest minimal blocking set. If 
we wish to add a point P outside the unital U , then we have to delete the points of U on 
the tangent lines passing through P . If they are collinear, then one of the points could 
be added back to get a blocking set. For every unital, there are 

√
q+1 tangents through 

P , and in case of Hermitian curves the common points of the tangents through P with 
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the unital are collinear. Hence there are minimal blocking sets of size q
√
q + 2 −√

q in 
PG(2, q) if q is a square. We may note that there are non-Hermitian unitals, hence there 
are also minimal blocking sets of size q

√
q + 1 −√

q.
A set U of points in the projective plane of order q is called a partial unital, if (1) 

every point of U lies on at least one tangent line, (2) no line contains more than 
√
q + 1

points of U , and (3) there is at least one line meeting U in 
√
q+1 points. Ball [1] showed 

that if a partial unital in PG(2, q) has more than q
√
q + 1 −√

q points, then it must be 
a subset of a unital; so it cannot be a minimal blocking set. Hence if we only consider 
minimal blocking sets that are partial unitals as well, then the above mentioned gap is 
at least √q. Another proof of this fact was given in [9].

In this paper, we will investigate in detail the case when the order of the plane is a 
square. Therefore the order of the plane will be denoted by q2, the characteristic of the 
plane will be p throughout the paper, so q = ph, h ≥ 1. This implies that the Bruen, 
Thas upper bound is q3 + 1 and the second largest known minimal blocking sets have 
size q3 +2 − q. Earlier results used q for the order of the plane, as we did in the first part 
of the Introduction. We will cite them in their original form but mention the necessary 
changes for planes of order q2. In the particular case when q = p, we could show that 
there is indeed a gap of size roughly q/2, if q = p ≥ 67. (For the prime square case 
see Theorem 4.1, for the general square case see Theorem 5.4.) Since there are minimal 
blocking sets of size q3 +2 − q, this result gives the correct order of magnitude for q = p. 
As in the case of the Bruen, Thas upper bound we will only assume that the set has 
a tangent at each point (the property of being a blocking set is not used). This is also 
motivated by the result above by Ball for partial unitals.

Our proof uses the stability results for k mod p multisets given by Szőnyi and Weiner 
[15]. The size of a multiset is the sum of multiplicities of the points. The intersection size 
of a line and a multiset is defined similarly for the points of the line. Since we consider 
the intersection size of a line and a multiset mod p, we can choose the multiplicity of a 
point mod p; hence instead of multiplicity p − 3 we can also say that the multiplicity is 
−3. More precisely, we will choose the multiplicities to be between −p−1

2 and p−1
2 , see 

Definition 3.5.

2. Combinatorial properties of sets of size close to q3 + 1

Let B be a set of points in PG(2, q2). Furthermore, let �1, �2, . . . , �q4+q2+1 be the lines 
of PG(2, q2) and let ni = |�i ∩B|, i = 1, 2, . . . , q4 + q2 + 1, be their intersection numbers 
with B. The standard double counting arguments give the following equations for the 
integers ni:

(1)
∑

i ni = |B|(q2 + 1),
(2)

∑
i ni(ni − 1) = |B|(|B| − 1).



4 T. Szőnyi, Zs. Weiner / Finite Fields and Their Applications 87 (2023) 102152
The next equality follows easily from the equations above, when the size of B is 
q3 + 1 − ε.

Lemma 2.1. Let B be a set of q3 + 1 − ε points in PG(2, q2). Then
∑
i

(ni − (q + 1))2 = q5 + (ε + 1)q2 + 2εq + ε2. � (1)

Now we will pose an extra condition on B.

Definition 2.2. The point set B is a tangency set, if through each point P of B there 
exists at least one line (a tangent) intersecting B in exactly P . If we choose precisely 
one tangent line at each point of B then we call them the guaranteed tangents.

Lemma 2.3. Let B be a set of q3 +1 −ε points in PG(2, q2). Assume that B is a tangency 
set and suppose also that �1, �2, . . . , �|B| are the 1-secants guaranteed by Definition 2.2. 
Then

∑
|B|<i

(ni − (q + 1))2 = 2εq2 + 2εq + ε2. (2)

Proof. Note that the q3 + 1 − ε 1-secants gives (q3 + 1 − ε)q2 in the sum in equation 
(2.1) and so the result follows from Lemma 2.1. �

When ε is not too large, this means that except the “compulsory” 1-secants, most of 
the lines contain exactly (q + 1) points from B.

3. Embedding in 1 mod p set

3.1. Earlier stability results

In this section, we collect some earlier results which we will use later on. Note that 
we will use them in PG(2, q2), but we will state them in their original form.

Result 3.1 ([15]). Let M be a multiset in PG(2, q), 17 < q, so that the number of lines 
intersecting it in not k mod p points is δ, where δ < (�√q� + 1)(q + 1 −�√q�). Then the 
number of not k mod p secants through any point is at most √q + 1 or at least q −√

q.

Our general aim is to show that if there are not too many lines intersecting M in not 
k mod p points then we can modify the multiplicity of the points through which there 
are at least q − √

q lines intersecting M in not k mod p points so that the resulting 
multiset intersects every line in k mod p points. This was given in Property 3.5 in [15], 
but instead of just restating it we try to explain it in more detail. To do this, we will 
introduce Property (T ) for certain points of PG(2, q) with respect to a multiset M
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intersecting almost all lines in k mod p points. Intuitively, this property will assure that 
there are enough lines, which intersect M in the same number of points mod p through 
such a point. Property (T ) is assumed in Result 3.3 and we will show that it holds 
automatically under the condition of Proposition 3.4.

Property 3.2 ([15], Property (T ) with respect to a k and M). Let M be a multiset in 
PG(2, q), q = ph, where p is prime. Assume that there are δ lines that intersect M in 
not k mod p points. Let Q be an arbitrary point of PG(2, q), so that there are more than 
q/2 lines intersecting M in not k mod p points.

We say that Q has Property (T ) with respect to k and M if there exists a value r �≡ k

(mod p) such that more than 2 δ
q+1 +5 of the lines through Q meet M in r mod p points.

Result 3.3 ([15]). Let M be a multiset in PG(2, q), 17 < q, q = ph, where p is prime. 
Assume that the number of lines intersecting M in not k mod p points is δ, where 
δ < (�√q� + 1)(q + 1 − �√q�). Assume furthermore, that if a point Q is incident with 
more than q/2 lines meeting M in not k mod p points then Q has property (T ). Then 
there exists a multiset M′ with the property that it intersects every line in k mod p points 
and the number of different points whose mod p multiplicity is different in M and in M′

is exactly 	 δ
q+1
.

In [15], the above result was phrased in a little bit different manner. The number of 
points we have to modify in order to obtain the multiset M′ from M was given by the 
number of points in (M ∪M′) \(M ∩M′), which is a bit confusing when we speak about 
multisets.

Since in our paper the order of the plane is denoted by q2, in Property 3.2, we have 
to replace q by q2 everywhere. Similarly, in Result 3.1 and Result 3.3, the bound on δ is 
q3 +1. The number of not k mod p secants through any point is at most q+1 or at least 
q2 − q (Result 3.1) and the number of modified points in Result 3.3 is 	 δ

q2+1
. Remark 
that we can use the results above when q > 4 (in PG(2, q2)).

In the rest of the paper, we will work with multisets and so all set operations are 
considered with multiplicity. Also, we will use these results when k = 1.

3.2. Embedding

From now on, we will assume that q = ph, p ≥ 67 if h = 1 and q > 4 otherwise.
Also, B will always be a tangency set in PG(2, q2) of size close to q3 + 1. Then 

Lemma 2.3 and Result 3.3 yield the following proposition.

Proposition 3.4. Let B be a point set of size q3 + 1 − ε in PG(2, q2), q = ph. Assume 
that p ≥ 67 if h = 1 and q > 4 otherwise. Suppose that 2εq2 +2εq+ ε2 < q3 +1. Assume 
also that B is a tangency set. Then there exists a multiset N containing at most 2ε + 2
different points, so that adding it to B, we get a multiset B∗ intersecting every line in 1
mod p points.
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Proof. Note that 2ε < q. By Lemma 2.3, the number δ of not 1 mod p secants of B is 
at most 2εq2 + 2εq + ε2, which is less than q3 + 1.

If Property (T ) holds with respect to k and M then from Result 3.3, N exists and 
the number of different points in N is 	 δ

q2+1
 and hence the result follows.
We show that for h �= 1, Property (T ) holds with respect to k and M automatically. 

By Result 3.1, if there is a point through which there pass at least q2/2 lines intersecting 
B in not 1 mod p points, then there are indeed at least q2 − q such lines. By the pigeon 
hole principle, at least q

2−q
p lines intersect B in the same number of points modulo p. 

This is larger than 2q + 5 ≥ 2 δ
q2+1 + 5, when q > 4.

Now assume h = 1 and, on the contrary, that Property (T ) does not hold with respect 
to k and M. Let P be a point with at least p2/2 lines on it so that they intersect B in 
not 1 mod p points. Again, by Result 3.1, this means that there must be at least p2 − p

such lines through P . We will show that the contribution of these (at least) p2 − p lines 
(the sum of (ni − (q + 1))2 for these lines) in the sum (2) of Lemma 2.3 is already too 
large and hence the proof follows. To see this, note that a not 1 mod p secant gives the 
least contribution in (2), if it is a 0 or 2 mod p secant. Their contribution is 1. The −1
or 3 mod p secants contribute 22, and so on. Hence if n = �2 δ

p2+1 + 5�, it follows that

L := 2n
(

12 + 22 + 32 + · · · +
⌊
p2 − p

2n

⌋2)
=

2n

(⌊
p2−p
2n

⌋)(⌊
p2−p
2n

⌋
+ 1

)(
2
⌊
p2−p
2n

⌋
+ 1

)
6 (3)

is a lower bound for the sum (2) in Lemma 2.3. Using that �p2−p
2n � > p2−p

2n − 1, we get 
that

L >
(p

2−p
2n − 1)(p2 − p)(2p2−p

2n − 1)
6 . (4)

Note that 2n < 4p + 16 when ε < p/2 and so p
2−p
2n > p

4 − 1.25 and hence

L >
(p4 − 2.25)(p2 − p)(p2 − 3.5)

6 . (5)

We show that L is larger than p3 + p > 2εp2 + 2εp + ε2 and so it is a contradiction by 
Lemma 2.3.

(p2 − 5.5)(p− 1)(p− 10)
6 > p2 + 1, (6)

which is equivalent to

p3

8 − 65p
2

8 + 79p8 − 111
8 > 0 (7)

and this is true when p ≥ 67. �
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For p = 2 and h > 1, in the proposition above we had to exclude q = 4. For larger 
values of p, there is no q to be excluded, when h > 1.

Definition 3.5. The points in N will be called modified points. The multiplicity mP

of a point in N is the multiplicity mentioned in Proposition 3.4. Hence B ∪ N with 
multiplicities is the multiset B∗. From now on, we will assume that for the multiplicity 
mP of a point P in N , we have −p−1

2 ≤ mP ≤ p−1
2 .

By Proposition 3.4, all lines intersecting B in not 1 mod p points must contain a point 
from N and so the next corollary is straightforward.

Corollary 3.6. Through a point P ∈ N , there pass at least q2 − 2ε lines, which are not 1
mod p secants of B. Also, through a point Q /∈ N , there pass at most 2ε + 2 lines, which 
are not 1 mod p secants of B. �
Lemma 3.7. Assume that ε < p/2. For the multiplicities mPi

of the points Pi in N , we 
have

∑
Pi∈N

m2
Pi

≤ 2ε + 3.

Hence 
∑

Pi∈N |mPi
| ≤ 2ε + 3.

Proof. For a line �i through exactly one point Pi ∈ N , the corresponding term in the 
sum in Lemma 2.3 gives at least m2

Pi
. By Corollary 3.6, there are at least q2 − 2ε such 

lines through Pi. So, by Lemma 2.3, we get (q2 − 2ε) 
∑

Pi∈N m2
Pi

≤ 2εq2 + 2εq + ε2 and 
hence the result follows. �

From now on, assume that 2ε + 5 ≤ p.
By Lemma 3.7, this means that the absolute value of the multiplicity of any point in 

N is less than 
√
p. The set B∗ intersects every line in 1 mod p points (with multiplicity). 

Since the number of points in N with multiplicity is less than p, we get the following 
two lemmas.

Lemma 3.8. A tangent line to B must be tangent to B∗. �
Since B∗ intersects every line in 1 mod p points (with multiplicity), its size must also 

be 1 mod p (with multiplicity). The next lemma follows immediately from Lemma 3.7
and from |B| = q3 + 1 − ε.

Lemma 3.9. The size of B∗ is either q3 + 1 or q3 + 1 − p. �
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4. The prime square case

In this section we will assume that q = p (i.e. h = 1) and so p ≥ 67. Our aim is to 
prove the following theorem.

Theorem 4.1. Let B be a tangency set of size p3 + 1 − ε in PG(2, p2), p ≥ 67 and 
2ε + 5 ≤ p. Then B is contained in a unital.

A unital is a minimal blocking set and so the next corollary is a straightforward 
consequence of Theorem 4.1.

Corollary 4.2. The largest minimal blocking set in PG(2, p2), p ≥ 67, which is not a 
unital, has size at most p3 + 1 − (p − 3)/2. �

In order to prove Theorem 4.1, we will show that B∗ (from the previous section) is a 
unital.

Lemma 4.3. There is no point in B∗ with multiplicity less than 0.

Proof. Assume to the contrary that P has multiplicity mP < 0 in B∗. Note that by 
Lemma 3.7 and since every line intersects B∗ in 1 mod p points, the smallest intersection 
multiplicity of lines with B∗ is 1. If each line through P intersected B∗ in at least p + 1
points, then B∗ would have at least (p2+1)(p +1 −mP ) +mP points. But B∗ has at most 
p3 +1 points, so there must pass at least (−mP +1)p +1 lines through P which intersect 
B∗ in exactly 1 point. By Lemma 3.7 and using that P must be a modified point, there are 
at least −p ·mP +3 lines through P which are tangents to B∗ and P is the only modified 
point on it. These lines were either (−mP + 2)- or (−mP + 1)-secants of B, depending 
on P was in B or not. Hence they were not 1-secants, so they are counted in Lemma 2.3. 
Their contribution to the sum in Lemma 2.3 is at least (−p · mP + 3)(p − 1 + mP )2, 
which is at least p3 − p2 − 8p + 12 (since mP ≤ −1). This contradicts Lemma 2.3, when 
2ε ≤ p − 5. �
Lemma 4.4. The points of B are in B∗.

Proof. To the contrary, assume that P ∈ B, but P /∈ B∗ (so the multiplicity of P in 
N was −1). Since all lines intersect B∗ in 1 mod p points and there are no points with 
negative multiplicity (Lemma 4.3), there pass at least p + 1 tangent lines of B∗ through 
P . One of them is the guaranteed tangent at P , the other at least p are tangents to B∗

at Pi(�= P ) ∈ B∗; these should be counted in the sum (2) of Lemma 2.3. These at least 
p tangent lines may contain points which are in B, but not in B∗. So assume that the 
tangent line li at Pi ∈ B∗ contains ki points from B which are not in B∗, by Lemma 3.7
ki < p. Hence |li ∩ B| = 1 + ki or ki depending on Pi ∈ B or not. This implies that 
(|li ∩ B| − (p + 1))2 ≥ (ki − p)2. So, the contribution of these lines to the sum (2) of 
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Lemma 2.3 is at least 
∑p

i=1(ki − p)2 = p3 − 2p 
∑p

i=1 ki +
∑p

i=1 k
2
i . By Lemma 3.7, this 

is at least p3 − 2p2. This is a contradiction to Lemma 2.3, when 2ε ≤ p − 5. �
Lemma 4.5. The size of B∗ is p3 + 1. �
Lemma 4.6. The points of B∗ have multiplicity 1.

Proof. We only have to show that there are no points with multiplicity at least 2. Assume 
to the contrary that there is a point P ∈ B∗ with multiplicity at least 2. This means that 
there is a line � through P containing at least 2p +1 points from B∗. By Proposition 3.4, 
we modify at most 2ε + 2 ≤ p − 3 points besides P . This also means that on this line 
there are at least p + 3 points from B \ {P}, say P1, P2, . . . , Ps, s ≥ p + 3 so that their 
multiplicity in B∗ is one. By counting, a point Pi is on at least 2 tangent lines to B∗. 
By Lemma 4.3 and Lemma 4.4, such a tangent is a tangent to B as well. In the sum of 
Lemma 2.3, only one tangent through each point was excluded, so through these points 
of B, we see tangent lines contributing to the sum in Lemma 2.3 by at least (p + 3)p2, 
which is a contradiction. �
Proof of Theorem 4.1. Construct the point set B∗ obtained by Proposition 3.4. By 
Lemma 4.6 and Lemma 4.5, B∗ is a unital. �
5. The case q = ph, h > 1

Now we are going to extend Theorem 4.1 to non prime squares. In this section we will 
work in PG(2, q2), q = ph and we will assume h > 1 and p > 7.

We start from a set B of size q3 +1 − ε, which has at least one tangent line at each of 
its points. Let us choose precisely one tangent at each point and denote the set of these 
guaranteed tangents by L. Let us recall that, by Lemma 3.9, B∗ is a multiset of size 
q3 +1 +b, b ∈ {0, −p}, intersecting every line in 1 mod p points. It is obtained from B by 
modifying the multiplicities of some points. The multiset N contains the modified points 
with multiplicity so that B∗ is the union of B and N as multisets (see Definition 3.5).

Our aim is to show that every point in N has multiplicity 1 and they were not in B. 
We will see that if there was a point P in N which has multiplicity not 1 or which were 
in B, then calculating the sum (2) of Lemma 2.3, we get a contradiction. Actually, it 
will be enough to calculate this sum only for some lines on P . In order to do this, the 
next lemma will be crucial.

Lemma 5.1. Let P be a point with multiplicity mP in N and denote the lines through P
by ei, i = 1, . . . , q2 +1. Lines intersect B∗ in 1 mod p points, hence |ei∩B∗| = q+1 +rip

for some integer ri. Assume that for the index set J ⊂ {1, . . . , q2 + 1}, 
∑

j∈J |rj | = A. 
If A ≥ |J |, then

(1)
∑

j∈J (q + 1 − |B ∩ ej |)2 ≥ A(p − |mP |)2 − 2(p − |mP |)(p − 2 − |mP |),
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(2)
∑

j∈J (q + 1 − |B ∩ ej |)2 ≥ (A − n)(p − |mP |)2, where n is the number of lines ei
containing at least one point from N \ {P}.

Proof. We define I ⊆ J so that for every l ∈ I the line el intersects N \{P}, and assume 
that there are kl points of N \ {P} on el counted with their multiplicities in N . Note 
that |I| = n (see (2)). Hence

∑
j∈J

(q + 1 − |B ∩ ej |)2 ≥
∑
l∈I

(rlp− (mP + kl))2 +
∑

j∈J\I
(rjp−mP )2.

The right-hand side can be further lower bounded by

∑
l∈I

(|rl|p− |mP + kl|)2 +
∑

j∈J\I
(|rj |p− |mP |)2.

By Lemma 3.7, 0 < |mP | + |kl| < p and as rl is an integer, it is not difficult to show 
that (|rl|p − |mP + kl|)2 is at least (|rl| − 1)p2 + (p − |mP + kl|)2, which is at least 
(|rl| −1)p2 +(p −|mP | −|kl|)2. Hence 

∑
l∈I(|rl|p −|mP +kl|)2 +

∑
j∈J\I(|rj |p −|mP |)2 ≥

(A − |J |)p2 +
∑

l∈I(p − |mP | − |kl|)2 +
∑

j∈J\I(p − |mP |)2. As A ≥ |J |, this can be lower 
bounded by (A − |J |)(p − |mP |)2 +

∑
l∈I(p − |mP | − |kl|)2 +

∑
j∈J\I(p − |mP |)2. To 

deduce (2), we neglect the second term. To prove (1), let us rewrite the second term as ∑
l∈I(p −|mP |)2 −2(p −|mP |) 

∑
l∈I |kl| +

∑
l∈I k

2
l . By Lemma 3.7 and since P ∈ N and ∑

l∈I |kl| ≤ (p − 2 − |mP |), we are done. �
Lemma 5.2. Let P be a point with multiplicity mP in N and denote the lines through P
by ei, i = 1, . . . , q2 +1. Lines intersect B∗ in 1 mod p points, hence |ei∩B∗| = q+1 +rip

for some integer ri. Let aP be 1 if P ∈ B and 0 otherwise, and let L be the set of tangent 
lines which was guaranteed by Definition 2.2. Then

(1)
∑

i:ri<0,ei /∈L |ri| ≥ |mP |q2

p , when mP ≤ −1,
(2)

∑
i:ri>0,ei /∈L |ri| ≥ (mP +aP−1)q2−q−p

p , when mP + aP ≥ 2.

Proof. Let us count the number of points with multiplicity in B∗ on the lines through 
the point P . We get

|B∗| = (mP + aP ) +
∑
i

(q + 1 + rip− (mP + aP )).

By Lemma 3.9, |B∗| = q3 + 1 + b, where b ∈ {0, −p}. Hence

∑
ri = q2(−1 + mP + aP ) − q + b

p
. (8)
i
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First assume that mP ≤ −1. Then the right-hand side of (8) is negative and so if we 
only consider those lines through P for which ri < 0, then we get (by omitting the term 
−b, since it is positive)

∑
i:ri<0

|ri| ≥
∣∣∣∣q2(−1 + mP + aP ) − q + b

p

∣∣∣∣ ≥ q2 · | − 1 + mP + aP | + q

p
.

If P ∈ B (aP = 1), then there is exactly one line in L through P , say ek. By 

Lemma 3.8, the corresponding rk value is −q/p and so 
∑

i:ri<0,ei /∈L |ri| ≥ q2·|−1+mP +1|
p . 

When P /∈ B (aP = 0), then there can be more than one (tangent) line of L through P . 
Note that, by Lemma 3.8, such a line is tangent to B∗ as well. Hence it must contain a 
point from N different from P and hence (by Lemma 3.7) there can be at most p − 3
such lines. Also for these lines the corresponding ri value is −q/p and so we have

∑
i:ri<0,ei /∈L

|ri| ≥ q2 · | − 1 + mP | + q − (p− 3)q
p

= q2|mP | + q2 + q − (p− 3)q
p

>
q2|mP |

p
,

whence we proved (1).
Now assume that mP + aP ≥ 2. Then the right-hand side of (8) is positive and so if 

we only consider those lines through P for which ri > 0, then we get

∑
i:ri>0

|ri| ≥
∣∣∣∣q2(−1 + mP + aP ) − q + b

p

∣∣∣∣ ≥ q2(−1 + mP + aP ) − q − p

p
.

By Lemma 3.8, all lines in L must be tangent to B∗ and hence for ri > 0, ei is not 
tangent to B∗, proving (2). �
Proposition 5.3. The points in N have multiplicity 1 and N ∩ B = ∅.

Proof. If the statement is not true then there must be a point in N so that its multiplicity 
mP is at most −1 or mP +aP ≥ 2, where aP is 1 or 0 depending on P is in B or not. As 
before, let ei be the lines through P and assume that on a line ei there are q + 1 + rip

points of B∗ counted with multiplicity. Let L be the set of tangent lines which was 
guaranteed by Definition 2.2.

If mP ≤ −1, then let J be the set of indices so that for every j ∈ J , rj < 0 and 
ej is not in L. Clearly, 

∑
j∈J |rj | ≥ |J |. Hence it follows from Lemma 5.2 (1) and from 

Lemma 5.1 (2) that

∑
(q + 1 − |B ∩ ej |)2 ≥

(
|mP |q2

p
− (p− 3)

)
(p− |mP |)2 := f(|mP |).
j∈J
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Here we used that N contains at most p − 3 points different from P . Let x := |mP |
and define f(x) by

f(x) =
(
q2x

p
− (p− 3)

)
(p−x)2 = q2

p
x3− (2q2 +p−3)x2 +(q2p+2p2−6p)x−p3 +3p2.

Note that x = p is a root of f(x) with multiplicity 2 and so it is a root of f ′(x) too. 
The other root of f ′(x) is p3 + 2p2

3q2 − 2p
q2 . Also f ′(x) is a parabola opening upward and so 

f ′ is positive in the interval [1, p3 ], which means that f(x) is strictly increasing on this 
interval. Note that now 1 ≤ |mP | and |mP | <

√
p by Lemma 3.7. For p > 7, √p < p/3

and so

∑
j∈J

(q + 1 − |B ∩ ej |)2 ≥ f(1) = q2

p
− (2q2 + p− 3) + (q2p + 2p2 − 6p) − p3 + 3p2.

By Lemma 2.3 and 2ε ≤ p −5, this cannot be larger than (p −5)q2 +(p −5)q+ (p−5)2
4 . 

As p3 < q2, we have a contradiction.
Now assume that mP +aP ≥ 2 and let J ′ be the set of indices so that for every j′ ∈ J ′, 

rj′ > 0 and ej′ is not in L. Again, 
∑

j′∈J ′ |rj′ | ≥ |J ′|. Hence it follows from Lemma 5.2
(2) and from Lemma 5.1 (2) that

∑
j′∈J ′

(q + 1 − |B ∩ ej′ |)2 ≥
(

(mP + aP − 1)q2 − q − p

p
− (p− 3)

)
(p− |mP |)2.

Therefore,

∑
j′∈J ′

(q+1−|B∩ej′ |)2 ≥
(

(mP )q2

p
− (p− 3)

)
(p−mP )2+ (aP − 1)q2 − q − p

p
(p−mP )2.

When aP = 1, then mP ≥ 1 and so the right-hand side is at least f(1) + −q−p
p (p −

mP )2 > f(1) − (q + p)p. When aP = 0, then mP ≥ 2 and so the right-hand side is at 
least f(2) + −q2−q−p

p (p −mP )2 > f(2) − (q2 + q + p)p. As before, in both cases we get a 
contradiction by Lemma 2.3 and 2ε ≤ p − 5. �
Theorem 5.4. Let B be a tangency set of size q3 + 1 − ε, in PG(2, q2), 0 ≤ ε, q = ph, 
p > 7, h > 1 and 2ε + 5 ≤ p. Then B is contained in a unital.

Proof. For ε = 0, this well-known (see [12]). Otherwise, construct the point set B∗

obtained by Proposition 3.4. By Proposition 5.3 and by Lemma 3.9, B∗ is a unital. �
Of course, similarly to Corollary 4.2, this theorem gives an upper bound on the size 

of the second largest minimal blocking set.
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Corollary 5.5. The largest minimal blocking set in PG(2, q2), q = ph, p > 7, h > 1, which 
is not a unital, has size at most q3 + 1 − (p − 3)/2. �
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