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Abstract Dynamics of suspended cables with 
active vibration control is studied. The control device 
is an electrical vibration absorber that is driven by 
a motor and that may be fixed at any position along 
the cable. The absorber applies a control force that 
reduces vibration amplitude at the position where it 
is placed. The methodology is efficient for attenuat-
ing high-frequency, low-amplitude vibration due to 
periodic excitation that may consider wind effect. The 
dynamic behavior is described by a mechanical model 
of the absorber and the cable at the location where the 
absorber is attached. The model takes into account 
such practical problems as time delay and backlash at 
the driving, which lead to limitation in the applica-
bility of control. Time delay occurs in digital control, 
because samples of data are taken at discrete time 
intervals and response is provided after the sampling 
delay. Backlash influences control when the direction 
of control force changes, since the control force is not 
transmitted in the small domain of backlash. The pre-
sent research examines the effects of time delay and 
backlash on the local control of cable vibration, and 
assesses the range of time delay and backlash when 
the control can be applied successfully. Moreover, the 
presence of time delay and backlash together results 

in a motion with some irregularity what justifies the 
detailed study of the dynamic behavior in order to 
evaluate the types of motion that may arise in such 
systems.

Keywords Backlash · Cable · Control · Time delay · 
Vibration

1 Introduction

Natural phenomena involve the risk of undesired 
cable vibration on such cable structures as power 
transmission lines or cable-stayed bridges. The type 
of vibration depends on the phenomenon that causes 
the dynamic load. Wind may cause aeolian vibra-
tion when the periodic shedding of vortices results in 
high-frequency and low-amplitude vibration. Wind 
acting on a transmission line conductor with asym-
metric cross section may lead to galloping that is 
characterized by high amplitude and low frequency. 
High-amplitude vibration may also develop after 
ice shedding from a conductor, although only the 
first few cycles involve risk of damage in this case, 
because the vibration decays due to structural damp-
ing. High-amplitude vibrations are associated with 
great dynamic forces, which may damage the ele-
ments of the structure in a relatively short time. 
High-frequency, low-amplitude vibrations are not so 
destructive in general, but their repeated occurrence 
may be harmful due to fatigue of the cable. These 
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issues justify the effort made in order to develop 
methods to attenuate cable vibration in relevant engi-
neering structures.

Viscous dampers and torsional dampers help 
reduce the amplitude of high-frequency vibrations 
in bridges and in transmission lines [1]. One of the 
first devices that was applied on power transmission 
lines to attenuate aeolian vibration is the Stockbridge 
damper. This device was designed to dissipate vibra-
tion energy by moving two end-masses with multi-
ple resonant frequencies [2]. The magnetorheologi-
cal damper is another conventional vibration control 
technique that was implemented on stay cables of 
bridges [3]. High-amplitude vibrations of transmis-
sion line conductors may be mitigated by forming 
bundles of several conductors with spacer dampers 
or by connecting phases with interphase spacers [4, 
5]. The effects of spacer dampers on conductor vibra-
tion following sudden ice shedding were examined in 
[6]. Conductor vibration due to ice shedding propaga-
tion was simulated in [7], where authors also revealed 
the diminishing effects of interphase spacers on the 
vibration. The limitations of passive dampers moti-
vated the research to develop semi-active and active 
control methods, as the semi-active control method 
in [8] or the voice coil motor-based active vibration 
absorber in [9].

The vibration system is controlled digitally by a 
computer when active control is applied. Samples are 
taken in discrete time intervals in such systems, and 
the corresponding control force acts after processing 
the measured data. Time delay due to sampling and 
processing tends to destabilize dynamical systems, 
and above a critical value of time delay, success-
ful control becomes impossible [10–13]. The effects 
of time delay on vibration control of a suspended 
cable at a specific location was studied in the author’s 
recent research [14]. Results revealed that the limita-
tion in the control due to time delay concerned the 
case of highest excitation frequencies that may con-
sider wind effect, because successful control required 
very quick sampling in that case. When the control 
force is provided by a motor via mechanical driving, 
then backlash occurs at the driving of the motor. The 
control force is not transmitted in the domain of back-
lash each time when the motor changes the direction 
of rotation, as it is the case e.g. for gear pairs [15]. 
Backlash may lead to the fact that the equilibrium of 
the vibration system cannot be stable, but a periodic 

motion appears around this equilibrium. When a sus-
pended cable is exposed to wind, then a periodic exci-
tation acts on the corresponding vibration system, and 
a periodic motion develops around the equilibrium. 
The aim of the control in this case is to reduce the 
amplitude of that periodic motion. The influence of 
backlash in such vibration control was investigated 
in [16], where conclusions warned that successful 
control with backlash might require a driving system 
that can produce frequent changes in the direction of 
rotation.

Both of time delay and backlash influence the sta-
bility of vibration systems and result in limitation of 
the vibration control. Considering them together is a 
challenging problem in the modelling and in provid-
ing successful control as well. Apart from the com-
bined limitations due to time delay and backlash, an 
irregular motion arises that was observed in delayed 
piecewise linear systems [17, 18]. The main goals 
in the present paper are (i) constructing a simplified 
mechanical model for the controlled vibration of a 
suspended cable considering time delay due to sam-
pling and backlash at the driving; (ii) providing the 
conditions for control that successfully reduces vibra-
tion amplitude when periodic excitation acts in such 
systems; and (iii) characterize the resulting motions. 
Accordingly, this paper first explains the mechanical 
model. Then, a parameter set-up is chosen according 
to a validated procedure and that describes a specific 
position of a transmission line conductor with wind 
effect. This is followed by the stability analysis that 
provides the control parameters required for success-
ful vibration attenuation, and their dependence on the 
sampling delay. Then, results that are obtained by the 
application of the model are discussed. They concern 
the conditions of successful control and the dynamics 
of resulting motions. Finally, conclusions are drawn 
from these results.

2  Mathematical model of controlled cable 
vibration

This section presents the details of the mathemati-
cal model that describes controlled cable vibration 
with time delay and backlash. Vibration control is 
achieved by the application of an electrical vibration 
absorber on the cable or conductor. Construction of 
the model and the related parameters are based on 
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transmission line conductors, but the model can be 
adapted for other applications, e.g. for cables that sup-
port bridges. The model is simplified so that it con-
sists of the conductor at the position where the vibra-
tion absorber is attached and the vibration absorber 
itself. The electrical vibration absorber implements 
active vibration control that determines the control 
force from sampled data and applies this force after 
a short time delay following the data measurement. 
In a possible design, the origin of control force is a 
DC motor and the force is transmitted via a teeth belt 
where backlash occurs.

2.1  Forced vibration of conductor with vibration 
absorber

The mathematical model of the conductor with vibra-
tion absorber is a two-degree-of-freedom (2DOF) 
system that considers the vibration absorber and the 
conductor reduced to the position where the absorber 
is attached. Such simplified model for the conductor 
was proposed in [19] that studied the effects of ice 
shedding on a spacer damper fixed at mid-span in a 
conductor bundle. This model was further developed 
in [14] and [16] in order to become applicable to 
consider the conductor at any position. The present 
model is based on that of [14], which is improved in 
three aspects: (i) the location of the absorber is con-
sidered when the natural frequencies are prescribed 
for the calculation of the mass of reduced conductor 
and the spring stiffness of the absorber; (ii) the damp-
ing of the absorber is not neglected; (iii) backlash at 
the driving is taken into account. The 2DOF model 
applied in the present research is shown in Fig.  1. 
Vibration occurs mainly in the vertical direction that 
is indicated by z. The model involves mass, spring 
and damping that are denoted by m, k and c, respec-
tively. Index 1 refers to the conductor, whereas index 
2 refers to the vibration absorber. Force excitation 
F(t) is applied on mass m1, which may consider wind 
effect. The control force u(t) acts between masses m1 
and m2.

The parameters of the vibration system m1, k1, c1, 
m2, k2 and c2 are determined from the geometrical and 
material properties of the conductor and absorber. 
The calculation of the spring stiffness of the conduc-
tor k1 is based on the statics of suspended cables [20]. 
The vertical displacement of the conductor wp can be 
determined at any position 0 ⩽ x ⩽ L , where L is the 

span length, when a vertical point load Pz is applied 
at a specified position 0 ⩽ xp ⩽ L as follows

In Eq. (1), µ denotes the mass per unit length of the 
conductor, g is the gravitational acceleration, H is the 
initial horizontal tension in the conductor, and h is the 
additional horizontal tension due to the application 
of the force Pz. The additional horizontal tension can 
be obtained as the solution of a cubic equation that 
includes further parameters, the Young’s modulus E 
and the cross section A of the conductor, and the sag 
f. In the present model, the force Pz acts at the posi-
tion of the absorber, and the vertical displacement 
wp should be known at the same position; therefore, 
x = xp should be substituted in Eq.  (1). The relation-
ship between the force Pz and the displacement wp 
is approximately linear for small displacements that 
characterizes the high-frequency, small-amplitude 
vibrations of transmission line conductors. The spring 
stiffness of the conductor k1 is obtained from the lin-
ear approximation of the force-displacement relation-
ship when the vertical force is varied in the proximity 
of the weight of absorber

(1)wp(x) =

⎧
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⎪

⎨

⎪

⎪
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Fig. 1  2DOF model of 
conductor with vibration 
absorber



28 Meccanica (2023) 58:25–42

1 3
Vol:. (1234567890)

The mass of the absorber m2 is based on its 
design. Once the spring stiffness of the conductor 
k1 is determined, and the mass of the absorber m2 is 
known, then the mass of the conductor m1 and the 
spring stiffness of the absorber k2 can be calculated 
together from the dynamics of suspended cables 
[21]. These parameters are obtained from the con-
dition that the natural frequencies of the 2DOF sys-
tem are equal to two of the natural frequencies at 
dominant vertical vibration modes of the conduc-
tor. One of them is the first vertical mode, and the 
second one is a mode that has local maximum close 
to the position where the absorber is installed.

The damping coefficient of conductor c1 is cal-
culated from the formula

where ω1 is the natural circular frequency of the 
single DOF system that describes the conductor at 
the position where the vibration absorber would be 
placed, and ζ is the damping ratio of the conductor 
that can be obtained experimentally [6]. The damping 
coefficient of the absorber c2 was neglected in [14], 
and that model provided a close approximation of the 
first peak in the vibration after force removal. The 
damping coefficient c2 is determined in the present 
model from comparing the decay of conductor vibra-
tion following load removal at the position where the 
absorber is fixed with that obtained under the same 
conditions by a finite element model that was devel-
oped and validated in [6]. Calculation of the damping 
coefficient c2 this way assures a close estimate of not 
only the first peak in the vibration, but the period and 
the logarithmic decrement as well.

The excitation force F(t) considers wind effect 
and is written in the form of a harmonic function

 where Fm and ω are amplitude and circular fre-
quency, respectively, of the excitation. The amplitude 
is calculated from the lift force that acts in the verti-
cal direction. The circular frequency is determined so 
that it characterizes aeolian vibration of transmission 
line conductors. The frequency of such vibration is in 
the range of 3-150 Hz [4, 5].

(3)c1 = 2m1�1�

(4)F(t) = Fm cos (�t)

2.2  Vibration control with time delay

The vibration absorber is an auxiliary system that 
is attached to the primary system and that provides 
a force to balance the excitation force. If the natu-
ral frequency of the absorber, which is determined 
by its mass and its elastic properties, is tuned to 
the natural frequency of the primary system and 
the excitation frequency is also close to that fre-
quency, then the absorber functions as a passive 
control. However, the application of active control 
may be efficient to reduce vibration amplitude even 
if the excitation frequency varies in a wide range. 
The PD control strategy practically means that the 
spring stiffness and the damping coefficient of the 
vibration absorber can be changed during the vibra-
tion according to measured displacement and veloc-
ity data. The preceding research [14, 16] applied 
PD control, although Reference [16] also discussed 
some issues concerning the integral term in a PID 
control.

The control system measures the displacement 
and velocity of the conductor at the position where 
the absorber is attached, then a control force is cal-
culated from these data, and this force is applied on 
the conductor. Consequently, the response to the 
measured data is provided after time delay. Then, 
the control force can be written in the following 
form

 where P and D are the proportional and differen-
tial gains, respectively, and τ is the time delay. The 
proportional gain P is determined so that consider-
ing spring stiffness k2 as well, the vibration absorber 
will be adequately tuned for the actual excitation fre-
quency. Thus, if ω denotes the excitation circular fre-
quency, then the proportional gain can be obtained as 
follows

The vibration control works without the differ-
ential gain D, but its application makes the control 
more efficient in some cases by a faster reduction of 
the vibration amplitude.

(5)u(t) = Pz1(t − 𝜏) + Dż1(t − 𝜏)

(6)P = k2 − m2�
2
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2.3  Backlash at the driving

The PD control may be implemented using a DC 
motor and a set of mechanical driving units. Driv-
ing via gear wheel or teeth belt results in back-
lash that influences the control and the resulting 
motion. When the direction of rotation in the motor 
changes, the control force is not transmitted in the 
domain of backlash where the contact between the 
teeth ceases. Let the value of backlash be r0, and 
assume that the relative displacement Δz = z2 – z1 is 
directly proportional to the angle of rotation of the 
DC motor. Reference [16] applied two conditions to 
imply that the system is in the domain of backlash. 
Condition 2 is improved here in order to consider 
in what direction the motor was rotating when it 
entered into the domain of backlash:

• Condition 1: The angular velocity of the driv-
ing wheel of the motor is zero, which may be 
expressed using the relative velocity as follows.

It should be noted that this is an instantanu-
ous equilibrium when the direction of rotation 
changes. Let Δzbl denote the relative displace-
ment in this time instance.

• Condition 2: The interval that describes the domain 
of backlash depends on the sign of relative velocity 
just before it became zero, and it can be expressed 
with the relative displacement Δzbl as follows.

The system is in the domain of backlash as long 
as the relevant condition (either (8a) or 8(b)) is 
satisfied.

When the system is outside the domain of back-
lash, then the computational process first verifies 
Condition 1. If it is not satisfied then the system is 
still not in the domain of backlash. If it is satisfied 
then Δzbl is calculated, Condition 2 is verified, and 

(7)ż2 − ż1 = 0

(8a)
Δzbl − r0 ⩽ Δz ⩽ Δzbl
if the relative velocity was previously positive

(8b)
Δzbl ⩽ Δz ⩽ Δzbl + r0

if the relative velocity was previously negative

the system is in the domain of backlash as long as this 
latter condition is satisfied. In this case, Condition 1 
is not verified, because Δzbl and the boundaries of the 
domain of backlash do not change even if the relative 
velocity changes its sign. If Condition 2 is not satis-
fied then the system is outside the domain of back-
lash, and Condition 1 has to be verified again.

2.4  Equations of motion

The governing equations of motion of the 2DOF 
model can be written as follows

where � =
[
z1 ż1 z2 ż2

]T is the vector including 
the coordinates z1 and z2 and their derivatives, or in 
other words, the displacements and the velocities of 
the masses modelling the conductor and the absorber. 
The coefficient matrix A and vectors b and c include 
the parameters of the vibration system

The control force u(t) is given by Eq. (5), but it can 
be organized in the following form using the vector z 
and considering backlash

where � =
[
P D 0 0

]
 includes the control param-

eters. The excitation force F(t) is provided by Eq. (4).
In digital control, samples are taken in discrete 

time intervals. The control is based on the sample-
and-hold technique [22, 23], which means that the 
sampled value and the corresponding control force 
are assumed to be constants until the next sample is 
taken. Moreover, the model assumes that the sam-
pling time and the processing delay, i.e. the time that 
passes between taking a sample and applying the 

(9)�̇�(t) = 𝐀𝐳(t) + 𝐛u(t) + 𝐜F(t)

(10)

� =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
− k1+k2

m1
− c1+c2
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0 0 0 1
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⎤
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;
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− 1
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⎤
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⎥
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⎥
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(11)u(t) =

{
��(t − �) outside backlash

0 domain of backlash



30 Meccanica (2023) 58:25–42

1 3
Vol:. (1234567890)

corresponding control force, are equal to each other. 
Correspondingly, if samples are taken at time instants 
tj = jτ, j = 0,1,2,…, then the expression of control 
force that takes this process into account should be 
modified as follows

If the initial state z0, u0, F0 is known, then the 
values of these parameters in the subsequent time 
instants may be obtained from the discrete-time 
model

uj+1 =

{
��j outside backlash

0 domain of backlash

Fj = Fm cos
(
�tj

)
Alternatively, system (13) can be organized in 

the following form

where�̃�j =
[
𝐳j

uj

]
 , � =

[
�

�
�
�

� 0

]
 , �∗ =

[
�

�
�
�

� 0

]
 and 

�̃� =

[
𝐜j

0

]

Further details on deriving the discrete-time 
model can be found in [14, 22, 23].

3  Parameter set‑up and model validation

The mechanical model of the small-scale laboratory 
set-up of a transmission line described in [6] is con-
structed as explained in Sect. 2. Dampers should not 

(12)

u(t) =

{

��((j − 1)�) t ∈
[

j�;(j + 1)�) outside backlash
0 domain of backlash

(13)�j+1 = �
�
�j + �

�
uj + �

�
Fj

(14)�̃�j+1 =

{
𝐒�̃�j + �̃�Fj outside backlash

𝐒∗�̃�j + �̃�Fj domain of backlash

be located at a node for the expected frequencies of 
vibration, they are usually placed close to a suspen-
sion clamp. The vibration absorber in the present 
model is attached at one-tenth of the span length 
where there is no node for the first nine natural fre-
quencies of the conductor. Force excitation is applied 
at the same position. Since the aeolian vibration is 
characterized by small amplitude in the range of 
conductor diameter and the conductor diameter was 
3.2 mm in the experimental set-up of [6], the spring 
stiffness of the conductor k1 is determined from the 
linear approximation of the force-displacement rela-
tionship considering about 7–8 mm below and above 
the position of the conductor with absorber. The mass 
of absorber m2 is chosen to be 0.16 kg. The mass of 
reduced conductor m1 and spring stiffness of absorber 
k2 are determined from the condition that the natural 
frequencies of the 2DOF model are equal to the natu-
ral frequencies in the first and sixth vertical vibration 
modes of the conductor. Note that the same natural 
frequencies are applied to determine the coefficients 
of Rayleigh damping in the finite element model of 
[6], which is used for validation as described later in 
this section. The damping coefficient of conductor 
c1 is calculated from Eq. (3), and the damping coef-
ficient of absorber c2 is determined as explained in 
Sect.  2.1. Model parameters were calculated using 
the commercial software Matlab, and they are listed 
in Table 1 together with the parameters of the labora-
tory set-up.

The static behaviour of the model is validated first. 
Displacements due to the application of concentrated 
forces are calculated and compared to the displace-
ments obtained under the same conditions by the 
finite element model of [6], which was validated by 
measurements on the same experimental set-up that is 
modelled here. The force in the modelled small-scale 

Table 1  Parameters of 
the conductor and its 
mechanical model with 
vibration absorber at one-
tenth of the span

Parameters of conductor and span Parameters of mechanical model

Mass per unit length,
µ (kg/m)

0.043 Mass of cable,
m1 (kg)

0.0767

Span length, L (m) 6.4 Spring stiffness of conductor, k1 (N/m) 50.3
Sag, f (m) 0.29 Damping coefficient of conductor, c1 (Ns/m) 0.079
Conductor cross section, A  (mm2) 5.5 Mass of absorber,

m2 (kg)
0.16

Young’s modulus,
E (GPa)

18 Spring stiffness of absorber, k2 (N/m) 74.4

Damping ratio, ζ 0.02 Damping coefficient of absorber, c2 (Ns/m) 4.0
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laboratory set-up during small-amplitude vibrations 
is in the range of 0.1 N. The displacement-force rela-
tionships obtained by the 2DOF model and by the 
finite element model coincide for such forces (see 
Fig. 2a). Note that the zero force and displacement in 
this figure mean the weight of absorber and the cor-
responding vertical position, respectively, and that 
the additional downward forces and corresponding 
displacements are positive. The discrepancy reaches 
10% when the force exceeds 0.4  N above or below 
the weight of absorber, since the material behaviour 

of the conductor could be modelled by a nonlinear 
spring for higher forces and displacements.

The dynamic behavior of the model is validated 
by simulating the vibration following the removal of 
concentrated forces and comparing the initial peaks 
in such vibration to those obtained by the finite ele-
ment model. Figure  2b shows that the discrepancy 
between the initial peaks obtained by the two mod-
els does not reach 10% as long as the removed force 
is smaller than 0.4 N. Figure 2c compares the initial 
peaks when the initial displacements are the same in 

(a) (b) 

(c) (d) 

Fig. 2  Validation of static and dynamic behaviour of 2DOF 
model by comparison with finite-element model; a  displace-
ment-force relationship when force additional to the weight 
of absorber is applied; b initial peak in the vibration following 
the removal of the same load in the two models; c initial peak 

in the vibration following the removal of the load leading to 
the same displacement in the two models; d  time histories of 
vibration following the removal of the load leading to displace-
ment of 3.76 mm (0.2 N in the finite element model)
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the two models. It should be noted that the removed 
force is slightly different in the two models in this 
case due to the discrepancy of the force-displacement 
relationships as was discussed in the validation of the 
static behavior. The coincidence of the two curves 
is excellent in this case, the discrepancy is below 
5% even when the removed force reaches 1 N. Time 
histories can be compared in Fig.  2d when the ini-
tial displacement is 3.76 mm, i.e. the removed force 
is about 0.2  N. Note that there is a small wave due 
to a higher-frequency component at the beginning of 
vibration obtained by the fnite element model. This 
wave causes a short delay in the appearance of the 
first peak, that the simplifed model cannot reproduce. 
Therefore, the initial time instance in the time his-
tory obtained by the finite-element model is shifted 
in Fig. 2d.

Consequently, the simplified, 2DOF model is reli-
able to simulate vibration at the position of absorber 
when small forces act what is the case during such 
small-amplitude vibration as the aeolian vibration.

4  Dynamics of controlled cable motion with time 
delay and backlash

In this section, first the stability of the controlled sys-
tem will be examined with particular attention to the 
effects of time delay. Then, the dynamics of the sys-
tem with force excitation and backlash at the driving 
will be investigated numerically in detail. The study 
is carried out using the commercial software Matlab.

4.1  Stability of the digitally controlled vibration 
system

Stability analysis of a system similar to that described 
in Sect. 2 was examined in [14], but the present model 
is improved as described in Sect. 2.1. The equilibrium 
z = 0 of system (9) without excitation and control 
(i.e. F(t) ≡ 0 and u(t) ≡ 0 ) is asymptotically stable. 
However, vibration develops when excitation F(t) 
acts on the system due to wind effect, and the con-
trol is applied to reduce the amplitude of the forced 
vibration. If the control parameters P and D are not 
chosen properly, then the amplitude of vibration may 
increase, or the equilibrium may even become unsta-
ble. The stability domain of the system without con-
sidering time delay is obtained after the application of 

the Routh-Hurwitz criterion [24]. The z = 0 equilib-
rium of the controlled system is asymptotically sta-
ble if the real parts of all the characteristic roots are 
negative, which condition is satisfied if all the coef-
ficients of the characteristic polynomial and the Hur-
witz determinants are positive. Since the characteris-
tic polynomial of the 2DOF system is a fourth-degree 
polynomial, the above statement means the following 
conditions

where aj, j = 0,…,4, are the coefficients of the charac-
teristics polynomial and H2 and H3 are the 2 × 2 and 
3 × 3 Hurwitz determinants, respectively.

Stability chart for system (9) with the parameter 
values that are listed in Table  1 is drawn in Fig.  3. 
The coefficient a4 is always positive, the coefficients 
a0 and a1 may become negative for extremely high 
values of P and D, respectively, what is out of practi-
cal interest. The curves corresponding to the remain-
ing conditions are plotted in Fig. 3. If the time delay 
is not considered, then the stability domain (shaded in 
Fig. 3) is infinitely large, and its boundary is defined 
by the curve H3 = 0. It should be noted that this curve 
consists of another part for positive values of P and 
D, but that part is not shown, because the other three 
conditions shown in the figure are not satisfied there, 
so the equilibrium is unstable for those values of P 
and D.

(15)aj > 0, j = 0,… , 4; H2 > 0; H3 > 0

Fig. 3  Stability domain on the plane of control parameters P 
and D when time delay is neglected
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When time delay is considered, the stability of 
the z = 0 equilibrium of system (13) without excita-
tion should be examined. This equilibrium is asymp-
totically stable if all of the characteristic roots are in 
modulus less than one. In this case, stability condi-
tions may be provided by the Routh-Hurwitz criterion 
after the application of the Moebius-Zukovski trans-
formation [24] that maps the interior of the unit cir-
cle into the left half of the complex plane. The condi-
tions of the Routh-Hurwitz criterion are applied for 
the coefficients of the polynomial obtained after the 
Moebius-Zukovski transformation bj, j = 0,…,4, and 
for the Hurwitz matrices that are constructed by these 
coefficients Hb2 and Hb3. The stability domain is finite 
when time delay occurs in the system, and its size 
shrinks with increasing time delay. Figure  4a and b 
show stability domains obtained for time delays of 10 
ms and 50 ms, respectively. The boundary of stability 
domains in these figures is determined by the curves 
b0 = 0 and Hb3 = 0.

Control parameters are selected considering the 
results of stability analysis. The choice of the pro-
portional gain P is explained in Sect. 2.2. Reference 
[14] proposed choosing the differential gain D close 
to the boundary of stability domain where the abso-
lute value of the differential gain is highest, because 
it assured an oscillation with the smallest amplitude 
for a given value of the proportional gain. However, 
the present model takes the damping of the absorber 
into account; consequently, the size of the stability 

domain is significantly greater, and vibration with the 
smallest amplitude may be achieved if the differential 
gain in absolute value is significantly smaller than 
that at the boundary of stability domain. Furthermore, 
the line that represents b0 = 0 reduces the size of sta-
bility domain when time delay increases. Therefore, 
sampling delay should be considered when choosing 
differential gain. As an example, if the frequency of 
excitation is 10 Hz, then P = − 557 N/m according to 
Eq. (6), and the differential gain at the boundary is D 
= − 33.7 Ns/m as it can be seen in Fig. 3. However, if 
the sampling delay is 10 ms, then D = − 15.5 Ns/m at 
the boundary that is determined by b0 = 0 in this case 
(see Fig. 4a). If the sampling delay further increases 
then the absolute value of the differential gain should 
be even smaller. The equilibrium cannot be stabi-
lized at all for the calculated value of the proportional 
gain if the sampling delay is 50 ms (Fig. 4b). Practi-
cally, it means that if the sampling delay is as high 
as 50 ms, then the control does not help reducing the 
vibration amplitude due to an excitation with fre-
quency of 10 Hz. The highest value of the time delay 
when active control may contribute to reducing the 
amplitude depends on the excitation frequency. This 
relationship is depicted in Fig.  5, which means that 
high-frequency vibration may be reduced by active 
control only if the sampling delay is in the range of 
1 ms or smaller. Sampling delay may be the greatest 
for an excitation frequency of 4.1 Hz (dotted line in 
Fig. 5), which is the natural frequency of the 1DOF 

Fig. 4  Stability domain on the plane of control parameters P and D with time delay considered; a τ = 10 ms; b τ = 50 ms



34 Meccanica (2023) 58:25–42

1 3
Vol:. (1234567890)

system representing the conductor without absorber. 
Active control is not necessary in this case, because 
the vibration absorber acts as a passive control and 
reduces vibration amplitude significantly. Control 
parameters are close to zero; thus, even a high sam-
pling delay will not affect vibration control. Vibration 
frequency during aeolian vibration is characterized by 
such frequency or higher, when the maximum sam-
pling delay decreases with excitation frequency. In 
the example mentioned above, the vibration due to an 
excitation frequency of 10 Hz may be attenuated by 
active control if the sampling delay does not exceed 
about 30 ms.

The control force is not transmitted in the domain 
of backlash, which means that the equilibrium is sta-
ble, but the amplitude of forced vibration cannot be 
reduced. In practice, the system passes the domain 
of backlash each time when the direction of motion 
changes. If the backlash is very small then its effects 
may be negligible. In the other extreme case, when the 
value of backlash is very high, the system behaves as if 
control was not applied. In between, the backlash influ-
ences the resulting motion what will be discussed in 
Sect. 4.2.

4.2  Vibration control with sampling delay and 
backlash

This section is devoted to the description of motion 
arising in the system that is exposed to force excita-
tion and controlled with both sampling delay and 
backlash at the driving considered. References [17, 
18] found irregular motion in digitally controlled 

piecewise linear systems where the control was 
applied in order to stabilize an unstable equilibrium. 
The motion was characterized to be more compli-
cated than quasiperiodic, but it was not classified as 
chaotic since it did not satisfy all the conditions of 
chaos. The motion obtained in the present study also 
involves control with time delay and backlash that is 
described by a piecewise linear system, but the con-
trol is applied to attenuate the vibration caused by 
force excitation. The system described by the param-
eters listed in Table 1 is considered with a specified 
excitation and with specified control parameters, and 
the effects of time delay and backlash are studied in 
details.

Assume that the amplitude and frequency of exci-
tation is 0.5 N and 10 Hz, respectively; and the con-
trol parameters are chosen as P = − 557 N/m and D = 
− 13 Ns/m. Figure 6 shows a typical example for the 
time history of the displacement of mass m1 that rep-
resents the simplified model of the conductor when 
the sampling delay is 1 ms and the value of backlash 
is 0.5 mm. The first second of vibration is plotted in 
Fig.  6a, which represents the effects of control on 
reducing the initial peak in the vibration. The high-
est peak above the equilibrium position is about four 
times greater without control (blue curve) than with 
control (red curve). However, if time delay and back-
lash are considered, then this reduction is significantly 
smaller, the peak in the controlled vibration (green 
curve) is approximately 63% of that without control. 
This ratio decreases to almost 50% if the amplitudes 
of the steady-state vibrations are compared (blue 
and green curves in Fig. 6b). As it was mentioned in 
Sect. 4.1, if the value of backlash is very high, then 
the entire motion occurs in the domain of backlash, 
meaning that practically no control is applied. In this 
specific example, it would happen when the value of 
backlash reaches approximately 3 mm.

The effects of external perturbation are examined 
by applying a 3-mm-displacement disturbation at 
a time instance when the disturbance increases the 
displacement of the conductor with respect to its 
equilibrium position. The sampling delay is 1 ms, 
the value of backlash is 0.5 mm, and the disturba-
tion is added at 0.95 s in Fig. 7a. The first peak in 
the vibration following the application of the per-
turbation is significantly greater than that without 
the perturbation, and then it takes about 15 cycles, 
i.e. about 1.5 s, to reach the vibration with the same 

Fig. 5  Variation of maximum sampling delay with excitation 
frequency when vibration may be attenuated by active control
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amplitude as was obtained without the perturba-
tion. The sampling delay and the value of backlash 
increased to 10 ms and 2 mm, respectively, and the 
disturbation is applied at 0.84  s in Fig.  7b. Time 
histories show that the first peak after the applica-
tion of the perturbation did not increase to a greater 

extent than in the previous case, but it took longer 
time, i.e. more than 2 s, to reach the vibration with 
the same amplitude as was obtained without the 
perturbation.

Identifying the domain of backlash would be dif-
ficult from the time history or the phase diagram; 

(a) (b) 

Fig. 6  Time histories for excitation F0 = 0.5 N, f = 10 Hz, control parameters P = − 557 N/m and D = − 13 Ns/m, sampling delay τ 
= 1 ms, and backlash r0 = 0.5 mm; a first second after initiating the vibration; b steady-state motion (9 s after initiating the vibration)

(a) (b) 

Fig. 7  Time histories for excitation F0 = 0.5  N, f = 10  Hz, 
control parameters P = − 557 N/m and D = − 13 Ns/m, with 
and without a 3-mm-displacement perturbation; a  τ = 1 ms, 

and backlash r0 = 0.5 mm, perturbation is applied at t = 0.95 s; 
b τ  = 10 ms, and backlash r0 = 2 mm, perturbation is applied at 
t = 0.84 s
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therefore, the relative velocity ż2 − ż1 during the 
steady-state motion for sampling time of 1 ms and 
backlash of 0.5  mm is drawn by the blue curves 
in Fig.  8. The motion enters the domain of back-
lash when this relative velocity reaches zero. The 
red curve is plotted only to visualize the domain 
of backlash, but the values on the curve have no 
physical meaning. It shows a value of zero in the 
domain of backlash, whereas the value is 0.1 out-
side the domain of backlash. An interval of 0.05 s is 
enlarged in Fig. 8b, which helps analyze the motion. 
The relative velocity was positive and changes its 
sign at 9.065 s. However, it remains negative for two 
time steps only (i.e. 0.002  s), because it increases. 
This may be explained by the effects of the spring 
between masses m1 and m2. After one more time 
step, i.e. at 9.068 s, the system leaves the domain of 
backlash via its upper boundary; therefore, the con-
trol force acts again. The relative velocity becomes 
negative in one time step (at 9.069  s) due to the 
application of the control force; therefore, the sys-
tem enters to the domain of backlash and the con-
trol force is not transmitted again. Consequently, the 
relative velocity slightly increases again; however, 
now it does not reach zero, but it becomes decreas-
ing after 9.073 s. The system reaches the other, i.e. 
the lower, boundary of the domain of backlash at 
9.095 s, and then the control force acts again.

Phase diagrams showing the trajectories on the 
ż1 − z1 plane in the steady-state motion are drawn 
in Fig.  9 for the example considered in this section. 
The sampling delay is 1 ms and the value of backlash 
is 0.5 mm in Fig. 9a that clearly shows the periodic 
solutions obtained. The limit cycle is significantly 
smaller with the application of control (cf. the blue 
and red curves), and the green curve is obtained in 
between, which represents the case of control with 
time delay and backlash considered. The value of 
backlash is increased to 2 mm in Fig. 9b. The size of 
limit cycle described by the green curve increases and 
more frequency components dominate in the motion. 
Irregularity is observed in the motion when the sam-
pling time increased to 11 ms. The phase diagram of 
this motion is shown by the green curve in Fig. 9c.

The behaviour of the motions described above 
looks periodic; however, the irregularity observed 
requires further investigation of the characteristics 
of the motions. Although chaos has no uniformly 
accepted definition, chaotic motions are character-
ized by an attractive set, sensitive dependence on 
initial conditions, topological transitivity, and at 
least one positive Lyapunov exponent [24–27]. The 
attractive set exists in case of the motions described 
above, and the other characteristics will be examined 
by applying the fast Fourier transform (FFT), study-
ing the behaviour of trajectories, and calculating the 

(a) (b) 

Fig. 8  Time history of relative velocity ż
2
− ż

1
 (or v2 – v1) in 

the steady-state motion for excitation F0 = 0.5  N, f = 10  Hz, 
control parameters P = − 557 N/m and D = − 13 Ns/m, sam-
pling delay 1 ms, and backlash r0 = 0.5 mm; blue curve: time 

history, red curve: 0 inside the domain of backlash and 0.1 out-
side the domain of backlash; a  interval of 0.5 s; b  interval of 
0.05 s enlarged
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Lyapunov exponents numerically. The Fourier spectra 
for the case considered in this section are shown in 
Fig. 10 when the value of backlash r0 = 2 mm, and for 
two different values of sampling delay. The prevailing 
frequency of vibration can clearly be seen in Fig. 10a 
where the sampling delay is 1 ms. This frequency is 
10  Hz that corresponds to the excitation frequency. 
There are two further, but significantly smaller peaks 
on the Fourier spectrum at 2.2 and 30 Hz. When the 
sampling delay is 11 ms, then the highest peak still 
occurs at 10  Hz; however, many other small peaks 
appear in the Fourier spectrum. These observations 

suggest that the motions are periodic, but further 
investigation is recommended in the latter case.

The sensitive dependence on initial conditions may 
be revealed by the deviation between nearby trajec-
tories. If the trajectories initially are close enough 
to each other, e.g. z10,b – z10,a =  10− 5  m, and other 
coordinates are zero initially in both solutions in the 
examples shown in Fig.  11, then nearby trajectories 
approach each other in most of the cases. This prop-
erty is observed even in the example of this section 
with sampling time of 11 ms (see Fig. 11b) when the 
irregularity was noticed in the phase plane. However, 

(a) (b) 

(c) 

Fig. 9  Phase diagrams during steady-state motion for excita-
tion F0 = 0.5 N, f = 10 Hz, control parameters P = − 557 N/m 
and D = − 13 Ns/m; a  sampling delay τ = 1 ms, backlash 

r0 = 0.5 mm; b sampling delay τ = 1 ms, backlash r0 = 2 mm; 
c sampling delay τ = 11 ms, backlash r0 = 2 mm
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when the sampling time is 1 ms, then nearby trajec-
tories neither approach nor stretch each other (see 
Fig.  11a) even though the motion was characterized 
as periodic.

Occurrence of a trajectory in any small domain 
inside the attractive set during the motion may refer 
to topological transitivity. A small part of the ż1 − z1 
phase plane drawn with a trajectory calculated for 
sampling time of 11 ms in Fig.  9c is enlarged in 

Fig.  12a. Comparison of Fig.  12a and b illustrates 
that the trajectory occurs in a significantly greater 
part of the domain considered when simulation 
time increases from 10 to 100  s. However, further 
increasing simulation time from 100 to 1000 s does 
not mean that trajectories would become denser in 
this domain (cf. Figure  12b and c). Consequently, 
these numerical results suggest that the condition of 
topological transitivity is not satisfied.

(a) (b)

Fig. 10  Fourier spectra for excitation F0 = 0.5 N, f = 10 Hz, control parameters P = − 557 N/m and D = − 13 Ns/m; a sampling delay 
τ = 1 ms, backlash r0 = 2 mm; b sampling delay τ = 11 ms, backlash r0 = 2 mm

(a) (b) 

Fig. 11  Deviation between nearby trajectories for excitation F0 = 0.5 N, f = 10 Hz, control parameters P = − 557 N/m and D = − 13 
Ns/m; a sampling delay τ = 1 ms, backlash r0 = 2 mm; b sampling delay τ = 11 ms, backlash r0 = 2 mm
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The Lyapunov exponents are calculated numeri-
cally by applying the following algorithm [27]. First, 
choose an initial orthogonal basis 

{
�

0
1
,… ,�0

5

}
 . 

Then, compute the vectors 
{
�
1
1
,… , �1

5

}
 by multi-

plying the basis by the matrix S or S* defined in 
(14) at the initial condition. Use the Gram-Schmidt 
orthogonalization to obtain a new orthogonal basis {
�̄�

1
1
,… , �̄�1

5

}
 . Normalize these vectors in order to 

eliminate the problem of extremely large and small 
numbers to get the orthogonal basis of the next step {
�

1
1
,… ,�1

5

}
 . Repeating these steps n times, the 

Lyapunov exponents may be estimated as follows

Lyapunov exponents are calculated in each time 
step for the two cases examined in Figs. 10 and 11, 
and the results are shown in Fig. 13. The Lyapunov 
exponents that are significantly smaller than zero are 
not shown in the diagram. The values obtained with 
at least 1% accuracy are listed in Table 2.

Results clearly show that all the Lyapunov expo-
nents are less than one. Thus, the Lyapunov expo-
nents confirm the findings of the previous analysis. 

(16)�i =
ln
‖‖‖�̄�n

i

‖‖‖ +…+ ln
‖‖‖�̄�1

i

‖‖‖
n

, i = 1,… , 5

(a) (b) 

(c) 

Fig. 12  Trajectories in a small domain of the ż
1
− z

1
 phase plane for excitation F0 = 0.5  N, f = 10  Hz, control parameters P = 

− 557 N/m and D = − 13 Ns/m, sampling delay τ = 11 ms, and backlash r0 = 2 mm; simulation time a 10 s; b 100 s; c 1000 s
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Although motions that seem irregular may arise in the 
system studied, but those motions are not chaotic.

5  Conclusion

Model for the active control of forced vibration of 
suspended cables has been developed in the present 
study. A formerly preposed model was improved by 
considering the damping of the vibration absorber 
that provided the control force, its location along the 
cable when the system parameters were determined, 
and backlash at the driving of the control system. 
Practical applications are transmission line conduc-
tors or cable-stayed bridges where the conductor 
or the cable vibrates due to wind effect. The model 
considers the conductor or the cable together with the 

absorber locally where the absorber is placed. The 
static and dynamic behavior of this simplified model 
without control was verified by comparing results 
to those of numerical simulations that had previ-
ously been validated by experimental observations. 
The application of control contributes to reducing 
vibration amplitude and the first peak of vibration 
as well. The limitation of the model is that it cannot 
be applied for high-amplitude vibrations since it was 
validated for vibrations with amplitudes that are com-
parable with the cable diameter. However, even low-
amplitude vibration covers such practical problems as 
the aeolian vibration of transmission line conductors.

The stability analysis revealed that the stabil-
ity domain on the plane of control parameters may 
significantly shrink with increasing time delay that 
occurs due to sampling in the digital control. When 
backlash is also present at the driving, then irregu-
larity was observed in the motion depending on the 
value of backlash. However, the motion was char-
acterized periodic according to the numerical study. 
Although nearby trajectories do not approach each 
other in some cases, but they do not stretch each other 
either. Orbits are not dense, and the condition of topo-
logical transitivity is not satisfied. Furthermore, all 
the Lyapunov exponents are less than zero. The irreg-
ular motion that was obtained in digitally controlled 
unstable systems with backlash and that was charac-
terized more complicated that quasiperiodic, but not 

Table 2  Lyapunov exponents obtained for two cases: sam-
pling delay τ = 1 ms, backlash r0 = 2 mm; and sampling delay 
τ = 11 ms, backlash r0 = 2 mm

Lyapunov 
exponents

τ = 1 ms, r0 = 2 mm τ = 11 ms, r0 = 2 mm

λ1 – 0.0010 – 0.0140
λ2 – 0.0014 – 0.0148
λ3 – 0.0476 – 0.1855
λ4 – 0.0497 – 0.4789
λ5 – 33.26 – 29.23

(a) (b) 

Fig. 13  The largest Lyapunov exponents as calculated in the first 10 s for excitation F0 = 0.5 N, f = 10 Hz, control parameters P = 
− 557 N/m and D = − 13 Ns/m; a sampling delay τ = 1 ms, backlash r0 = 2 mm; (b sampling delay τ = 11 ms, backlash r0 = 2 mm
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chaotic [18], was not observed in the present study. 
The similarity between the two studies is that the sys-
tems examined are piecewise linear due to backlash, 
and digital control with time delay is applied in both 
cases. However, the control is applied to stabilize 
unstable equilibrium in either case, whereas the aim 
is to attenuate forced vibration about a stable equilib-
rium in the other case. It may be concluded that digi-
tally controlled forced vibration in piecewise linear 
systems results in periodic motions with the irregu-
larities described in Sect. 4. From the practical point 
of view, unpredictable motion is not expected if con-
trol parameters, sampling time and backlash are prop-
erly chosen. However, sampling delay and backlash 
result in limitations in the control. Sampling delay 
should be small enough for successful control, i.e. in 
the range of 10 ms when the excitation frequency is 
around 10 Hz. The maximum sampling delay reduces 
below 1 ms when the excitation frequency exceeds 
50  Hz. The presence of backlash may require quick 
changes (i.e. in the range of few ms) in the direc-
tion of rotation of the driving motor. Backlash does 
not have great influence on the motion when it is in 
the range of 0.1 mm or smaller; however, irregulaties 
in the motion occur if the value of backlash is in the 
rangeof 1 mm.
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