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Abstract
Epigenetic changes have long been investigated in association with the process of 
aging in humans. DNA methylation has been extensively used as a surrogate meas-
ure of biological age and correlations between “DNA methylation age” and chron-
ological age have been established. A wide variety of epigenetic clocks has been 
designed to predict age in different tissues and on data obtained from different meth-
ylation platforms. We aimed to extend the scope of one of the most used epigenetic 
age predictors, the Horvath pan-tissue epigenetic clock, to improve its accuracy 
on data acquired from the latest Illumina methylation platform (BeadChip EPIC). 
We present three models trained on close to 6,000 samples of various source tis-
sues and platforms and demonstrate their superior performance (Pearson correlation 
(r) = 0.917–0.921 and median absolute error (MAE) = 3.60–3.85  years) compared 
to the original model (r = 0.880 and MAE = 5.13 years) on a test set of more than 
4,000 samples. The gain in accuracy was especially pronounced on EPIC array data 
(r = 0.89, MAE = 3.54 years vs. r = 0.83, MAE = 6.09 years), which was not avail-
able at the time when the original model was created. Our updated epigenetic clocks 
predict chronological age with great precision in an independent test cohort of sam-
ples on multiple tissue types and data platforms. Two of the three presented models 
exclusively use the covariates of the original epigenetic clock, albeit with different 
coefficients, allowing for straightforward adaptation for prefiltered datasets previ-
ously processed with the original predictor.

1  Introduction

The process of aging and its effects on various measurable biological features have 
been extensively studied in recent years [1]. Considerable effort has been put into 
establishing the concept and markers of biological aging which is designed to 
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incorporate the general deterioration of multiple biological functions [2–4]. Spe-
cifically, the relationship between chronological age and DNA methylation has been 
rigorously investigated [5, 6] with multiple predictive models (deemed “epigenetic 
clocks”) presented [7–15] that aim to estimate the chronological age by observing 
DNA methylation levels in various genomic positions.

DNA methylation is one of the epigenetic changes affecting the genome, through 
the process of which the nucleotide sequence of the DNA remains intact, while 
methyl groups are attached to the molecule, almost exclusively in CpG dinucleotide 
contexts. These in turn have a profound influence on chromatin structure, i.e., on 
the way the DNA is wrapped around histone molecules for compaction. Methylated 
genomic regions tend to be tightly packed, their accessibility during biological pro-
cesses limited. Thus, DNA methylation has a direct regulatory role by influencing 
the transcription of affected genes.

One of the simplest techniques for predicting an outcome from a set of independ-
ent variables is linear regression, during which a line is fitted to the data in many 
dimensions that minimizes an appropriately defined loss function or prediction 
error. In many cases, model training suffers greatly from overfitting whenever the 
number of independent variables greatly exceeds the number of available observa-
tions. To counteract this issue, the general practice is to add regularization terms to 
the loss function that ensure that even in the case of many independent parameters, 
most model coefficients remain close to zero. L1-regularization applies a penalty 
term proportional to the sum of absolute coefficient values, while L2-regularization 
uses the sum of squared coefficient values as penalty.

Most of the best-known age predictors work on the principle of training a penal-
ized multiple linear regression model that linearly combines L1 and L2 penalties 
(elastic net model) on a suitable set of methylation data (training dataset) and using 
the thus obtained regression coefficients to predict chronological age on an inde-
pendent cohort (test dataset). The main difference between the approaches is not a 
methodological one, but rather the technical issue of data selection.

It has been previously demonstrated that epigenomic patterns and peculiarities 
largely depend on the type of tissue being analyzed [13], thus many epigenetic clocks 
focus on generating a predictive model optimized for a specific tissue type with very 
high accuracy [7–10, 12, 13, 15]. On the other hand, Horvath [14] has shown that 
it is also feasible to build a multi-tissue predictor which can estimate chronological 
age in samples with a wide variety of sources with surprising precision.

Besides the question of tissue of origin, the exact details of data acquisition can-
not be overlooked either. Most of the publicly available methylation datasets were 
generated by one of the three Illumina platforms: Illumina Infinium HumanMeth-
ylation27 BeadChip (27  K), Illumina Infinium HumanMethylation450 BeadChip 
(450  K) or Illumina Infinium HumanMethylationEPIC BeadChip (EPIC). All the 
platforms measure DNA methylation with single-site resolution throughout the 
genome with the main difference being the number of CpG sites (or probes) inves-
tigated. The 27 K array provides information about 27,578, the 450 K array about 
485,512 and the EPIC array about 866,836 CpG sites. However, even though with 
ever newer technologies incrementally more information is available about the sam-
ples, there are only 24,677 CpG sites that are explored by all three platforms. Thus, 
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epigenetic clocks trained on datasets evaluated on specific platforms [7, 13–15] 
might suffer from a substantial loss of accuracy when tested on samples analyzed 
with a different instrument, especially if the methylation values of the covariates 
included in the model are missing from the data. This subject was partly addressed 
by McEwen et al. (2018) [16] on a relatively small cohort of samples analyzed on 
both 450 K and EPIC platforms, who found that DNA methylation age (DNAm age) 
predicted by the Horvath pan-tissue clock [14] and chronological age had a Pearson-
correlation coefficient in the range of r = 0.86–0.87 and r = 0.84–0.86 for the 450 K 
and EPIC data, respectively (depending on preprocessing methods). This is a nota-
ble decrease in precision compared to the result (r = 0.96) obtained for the test data-
set in Horvath [14] which contained 27 K and 450 K data.

Given that, by design of the penalized regression approach, all elastic net-based 
epigenetic clocks contain a couple hundred CpG sites at most, they disregard the 
better part of the methylation information available even if the EPIC platform was 
used for assessment. Also, CpG sites included in the various models as covari-
ates (clock CpGs) rarely overlap between clocks. Consequently, it is reasonable to 
assume that limiting model training to the 24,677 CpG sites overlapping all three 
platforms and selecting a subset of these for chronological age prediction would still 
yield sufficient results and could provide a model which can be straightforwardly 
adapted to any Illumina dataset without further modifications.

Therefore, we aimed to create a revised version of the original Horvath pan-tissue 
epigenetic clock by reproducing the original pipeline of model selection on a train-
ing dataset which includes most of the original training data from [14] but that has 
also been expanded with EPIC methylation data obtained from multiple source tis-
sues. We compared model performance on a test set that contains both a large part 
of the original test data from [14] and additional publicly available EPIC datasets.

2 � Materials and methods

2.1 � DNA methylation datasets used for training and testing

The methylation datasets used in this study contained only normal (non-cancerous) 
samples and were obtained either from the NCBI Gene Expression Omnibus (GEO) 
[17] or the NCI Genomic Data Commons (GDC) data portal [18]. GEO study acces-
sion numbers of the investigated datasets are listed in Supplementary file 1 along 
with additional summarizing statistics. The GDC data portal principally stores data 
from cancer cases, but for many patients normal, non-cancerous tissue samples are 
also available serving mostly as a reference for comparison in various bioinfor-
matical pipelines. Whenever available, the methylation data for these samples were 
downloaded using the GDC Data Transfer Tool. The details of these studies can also 
be found in Supplementary file 1.

Altogether the training and testing datasets contained 5964 and 4369 samples 
respectively.

Downloaded datasets contained DNA methylation information in the form of a 
single β-value for each investigated CpG site of each sample which ranges from 0 
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(completely unmethylated) to 1 (completely methylated) [19]. On many datasets, 
various normalization steps were performed prior to submission to the relevant data 
portal.

2.2 � Data preprocessing

In the case of datasets downloaded from GEO, samples were filtered to only contain 
ones that were non-cancerous and were not affected by known methylation altering 
diseases. Similarly to Horvath [14], mean intra-cohort correlation was calculated for 
each sample of each dataset and samples with a value of less than 0.9 were discarded 
to get rid of technical artefacts. Samples with a maximum methylation β-value of 
less than 0.96 were also filtered out for the same reason. All samples for which no 
chronological age information was available were excluded.

27  K and 450  K GEO datasets were split into training and test sets according 
to the categorization defined by Horvath [14]. EPIC datasets and all data obtained 
from the GDC data portal were grouped into training and test sets by adhering to 
the heuristic criteria of distributing samples of various (1) chronological ages, (2) 
source tissues and (3) measurement platforms homogenously among the two data-
sets. Details of training and test set data are available in Supplementary file 1.

All further investigations were limited to the 24,677 CpG sites that overlap across 
all platforms. The training data was additionally examined to identify sites with 
missing values in at least 90% of the samples of any given dataset. Probes that were 
thus missing from most samples in multiple datasets were also excluded from down-
stream analysis, resulting in a total of 21,255 investigated probes (see Supplemen-
tary file 2).

Both the Illumina 450  K and EPIC platforms simultaneously use two different 
types of chemical assays (Infinium type I and type II probes) to measure DNAm 
levels which results in distinctly different β-value distributions across different probe 
types within a single sample. For this reason, it is generally advisable to perform 
some type of normalization on the raw data to obtain comparable results. One of the 
widely used techniques is Beta Mixture Quantile dilation (BMIQ) [20] that rescales 
the β-values of type II probes so that their distribution is similar to that of type I 
ones. Given however that the 27  K assay only contains type II probes, the above 
described overlapping CpGs consequently belong to the type II category, rendering 
the problem of probe-type normalization obsolete in our specific case.

In spite of this, Horvath [14] found that it can be beneficial to normalize the 
β-values of the datasets to a gold standard distribution acquired by averaging the 
β-values of the largest dataset of the training data. In our analysis, we refrained from 
performing this step. The rationale behind this adjustment is that normalization both 
takes a lot of time and results in artificially similar datasets, hence we were hoping 
to create a prediction model that is easy and fast to run even on a large number of 
samples and that generalizes well to data of various origins.

The only further preprocessing step is performed as a safety measure on sam-
ples that contain methylation values that are lower than 0 or higher than 1, which 
are simply rescaled to the (0,1) range. This step is generally not necessary as 
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β-values by definition should conform to this criterion, but we implemented it in 
order to avoid possible error messages when running the below models in less-
controlled settings.

2.3 � Age predictor models used in the analysis

Essentially, we intended to use the same framework for model building as Hor-
vath [14] to simply construct a revised and updated epigenetic clock that can be 
used on all types of methylation data. To this end, we employed the cv.glmnet() 
function of the glmnet R package and trained our models with tenfold cross-vali-
dation with the “alpha” parameter fixed at 0.5, while varying “lambda” to achieve 
the lowest MSE (mean squared error) among tested models. Methylation β-values 
were used as independent variables and the following transformation of chrono-
logical age as the dependent variable:

with ageadult = 20 throughout the analysis.
Three different models were built this way: “elasticNet (239)” was trained 

on all training data and resulted in 239 CpG sites with a non-zero coefficient; 
“filtered H (272)” was trained on those 308 CpG sites of the original Horvath 
pan-tissue clock that overlapped the initial set of 21,255 investigated probes and 
resulted in 272 sites with non-zero coefficients; and “retrained H (308)” which 
was simply fit to the dataset without cross-validation and contained all the 308 
CpG sites of the original Horvath pan-tissue clock that overlapped the initial set 
of 21,255 investigated probes (Supplementary file 2).

The predictions of a fourth model, the original Horvath pan-tissue clock is also 
analyzed below, referred to as the “original H (336)” model, given that out of the 
354 CpG sites of the original predictor, only 336 are present in EPIC data (Sup-
plementary file 2). Testing was performed by simply setting the coefficients of the 
missing probes to zero.

2.4 � Measures of model accuracy

Model accuracy was assessed by calculating the two measures defined in Hor-
vath [14]: the Pearson-correlation coefficient (r) between chronological age and 
predicted DNAm age; and median absolute error (MAE), the median value of 
the absolute differences between chronological age and predicted DNAm age. For 
example, a median absolute error of 4 years means that the DNAm age predicted 
by the given model differs by 4 years or less from the actual chronological age for 
50% of the samples. In some cases, the 90th percentile of absolute errors is also 
displayed to characterize the absolute error distribution in more detail.

F(age) =

{

log(age + 1) − log(ageadult + 1), ifage ≤ ageadult
(age − ageadult )∕(ageadult + 1), ifage > ageadult
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3 � Results

3.1 � Training accuracy of different models

Even though accuracy on the training dataset is not a reliable measure of model gen-
eralizability, it is a useful guide to uncover if it is even possible to establish a linear 
relationship between CpG site methylation values and chronological age. Figure 1 
contains the predicted DNAm age and respective chronological age values for the 
training dataset in case of the three above defined models and also for the “original 
H (336)” model. Given that the first three models (panels A-C) were specifically 
optimized on this dataset, their superior performance is expected compared to the 
“original H (336)” model (panel D). The performance of the “original H (336)” 
model was assessed on the training dataset extended with the 28 CpG sites con-
tained in the original model that do overlap all three platforms but were previously 
filtered out due to many missing values (see Supplementary file 2). The efficacy of 
the “original H (336)” model suffers most in the case of EPIC array datasets, in 
line with basic intuition. Discrepancies between chronological and predicted age for 
27 K and 450 K data can be attributed to the fact that only 336 of the original 354 
clock CpGs are among the ones overlapping all platforms. Nevertheless, the results 
show that it is possible to achieve higher accuracy than what the original model is 
able to provide in a dataset extended with EPIC data by the simple reoptimization of 
either the selected sites or their coefficients.

3.2 � Test accuracy of different models

The more meaningful results of testing the models on an independent dataset are 
displayed on Fig.  2. The two panels show the same data colored by the type of 
dataset (A) or the applied prediction model (B). The overall performance measures 
of the three models introduced in the study ranged between r = 0.917–0.921 and 
MAE = 3.60–3.85. The same metrics for the “original H (336)” model on the whole 
testset were r = 0.880 and MAE = 5.13. It is apparent that all tested models perform 
best on 27  K and 450  K datasets downloaded from GEO. Even the “original H 
(336)” model has high correlation and low median absolute error for these datasets, 
given that these were part of the original testing data of Horvath [14] and the Hor-
vath pan-tissue epigenetic clock was specifically trained on 27 K and 450 K datasets. 
The three models trained on datasets containing EPIC array data perform well on 
EPIC array test sets (r = 0.89–0.90; MAE = 3.54–4.51 years), while the “original H 
(336)” model has remarkably lower accuracy (r = 0.83; MAE = 6.09 years). Interest-
ingly, all models suffer from a notable decrease in performance on test data down-
loaded from the GDC data portal, with “filtered H (272)” and “retrained H (308)” 
models providing the highest accuracy in terms of both correlation and MAE. The 
general trend of diminished power for GDC data might be due to the fact, that non-
cancerous samples stored on the portal are usually surgical resections of the normal 
tissue surrounding the tumor that might still contain a low concentration of tumor 
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cells which can influence the methylation landscape of the whole sample in an 
unforeseen manner.

In common applications, when the precise estimation of the chronological age 
is of utmost importance, the distribution of absolute errors provides a better under-
standing of model performance than the correlation between predicted and chrono-
logical age. Therefore, we plotted the absolute error distribution for the four mod-
els on Fig. 3 with their main statistical properties highlighted in case of the whole 
dataset (A) and specifically for EPIC samples (B). It is apparent that both globally 
and for EPIC samples only the “filtered H (272)” model provides the most accurate 
results, and the “original H (336)” model has the lowest performance.

3.3 � CpG sites highly associated with chronological age

Given that 95 of the 239 CpG sites selected automatically out of 21,255 in the “elas-
ticNet (239)” model overlap with the CpG clock sites of the original Horvath pan-
tissue epigenetic clock, we found it worth investigating if there were any specific 
CpG probes present in all four models with high absolute coefficient and consistent 
sign. Figure 4 shows the coefficients of the probes overlapping in the three trained 
models and the original Horvath pan-tissue clock. In all three cases, there is high 
correlation between the coefficient values of the models, suggesting that the selected 
probes have an inherent association with biological age and were not simply selected 
as a technical peculiarity of the elastic net model fitting approach. The five CpGs 
that appeared with consistently high absolute coefficients in all four models were 
cg00864867, cg06993413, cg14424579, cg16241714 and cg22736354. All of them 
had a positive coefficient value in all four models, implying that these sites tend 
to be hypermethylated in the elderly and hypomethylated in younger people. They 
are located on genes PAWR (PRKC Apoptosis WT1 Regulator), DPP8 (Dipep-
tidyl peptidase 8), AGBL5 (Cytosolic carboxypeptidase-like protein 5), CEBPD 
(CCAAT/enhancer-binding protein delta) and NHLRC1 (E3 ubiquitin-protein ligase 
NHLRC1) respectively, all of which are involved in either apoptosis, autophagy, var-
ious metabolic processes, transcription or cell differentiation according to the Gene 
Ontology (GO) database [21, 22].

4 � Discussion

We present three epigenetic clock models based on a large cohort of multi-tissue, 
multi-platform methylation data that are straightforward extensions of the original 
Horvath pan-tissue epigenetic clock, but which can be applied with high accuracy 
on EPIC array data as well. Two out of the three models were specifically designed 
to include only a subset of the clock CpGs defined by Horvath [14] to make them 
easily adaptable to previous pipelines where raw data might already be filtered to 
this probeset.

Out of the three models, the best performance on the test set was achieved with 
an elastic net model limited to the 308 original clock CpGs which overlap all three 
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of the 27 K, 450 K and EPIC methylation platforms and that had a total of 272 non-
zero covariates (“filtered H (272)”). All three introduced models outperformed the 
original Horvath pan-tissue epigenetic clock, especially on EPIC array data. This 
result can be attributed to the fact that the original model was trained exclusively on 
27 K and 450 K data and more than a dozen of its covariates are inherently missing 
from EPIC array datasets.

Previous results [15] suggest that even better accuracy can be achieved with mod-
els trained on datasets of specific tissue types whenever the test dataset is also origi-
nated from the same tissue source, although this tradeoff between performance and 
generalizability is an expected characteristic of any machine learning approach.

We also found that an elastic net model trained on all the CpG sites overlapping 
all three methylation platforms included 239 CpGs with non-zero coefficients of 
which about 40% overlapped with the clock CpGs of the original Horvath clock. 
This suggests that these sites have a strong association with biological aging irre-
spective of tissue source or measurement platform. Five of these appeared with high 
absolute coefficients in all tested models and were located on genes with known 
impact on various aging-related cellular pathways. These results imply that the 
tested epigenetic clock models not only fit well to the training and testing datasets, 
but that they also capture and track the manifestations of true biological processes, 
and thus can be potentially applied to further independent data with reasonable 
accuracy.
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