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Abstract
In this paper, we study reversibility in sP colonies and in reaction systems. sP colony is a bio-inspired computational

model formed from an environment and a finite set of agents. The current state of the environment is represented by a finite

set of objects and the current state of the agent is given by a finite multiset of objects. By execution of a program from a set

of programs associated with the agent, the agent can change the objects in its own state and possibly in the environment,

too. Reaction systems are a bio-inspired computational model where reactants are transformed into products only if some

inhibitors are not present. We define sP colonies without input influence and prove that to any reversible sP colony of such

type an inverse sP colony can be constructed that performs inverse computation. In the second part of the paper, we show

that the concept of a reversible reaction system and the notion of an inverse reaction system can be defined in a similar

way, and partially reversible reaction systems can simulate reversible logic gates and reversible Turing machines.
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1 Introduction

P colonies (introduced in Kelemen et al. (2004)) are par-

ticular variants of P systems (or membrane systems),

inspired by collections of reactive agents acting in a joint,

dynamically changing environment. The notion was also

motivated by colonies of formal grammars. The interested

reader can be referred to Păun et al. (2010) for detailed

information on P systems and to Kelemen and Kelemenová

(1992) as well as Csuhaj-Varjú et al. (1994) for more

information on colonies in grammar systems theory.

Detailed summaries on P colonies can be found in Kele-

menová (2010) and Ciencialová et al. (2019).

A P colony consists of a finite number of agents and

their shared environment. Both the current state of the

environment and the current state of each agent are rep-

resented by a finite multiset of objects (over the same

alphabet). The agents are equipped with programs con-

sisting of rules. The rules are of two types: the evolution

rules which change the objects of the agents, and the

communication rules which are used for an interaction

between the agent and the environment.

In this paper, we deal with variants of P colonies where

the current state of the environment is a set (instead of

a multiset). They are called sP colonies and they were

introduced in Ciencialová et al. (2020). Notice that while

in case of P colonies, quantitative properties of the envi-

ronment are significant (the number of copies of the same

object), in case of sP colonies, only the occurrence of an

object is important, which is a qualitative property.

The computation of an sP colony starts with its initial

configuration where the environment and each agent is in

its own initial state. The computation step means a maxi-

mally parallel action of the active agents: the agent is

active if it is able to perform at least one of its programs,

and the joint action of the agents is maximally parallel

when no more active agent can be added to the syn-

chronously acting agents. The computation ends if there is

no more applicable program in the system.
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Reaction systems (or R systems) were proposed as

a computational device with the components that represent

basic chemical reactions in Ehrenfeucht and Rozenberg

(2005). Informally, a reaction system is composed of a fi-

nite set of objects that can be considered as chemicals and

a finite set of reactions. Each reaction is a triplet of sets,

that is, the reactants, inhibitors, and products. Let T be a set

of reactants. A reaction can be applied to T if all reactants

are present in T and there are no inhibitors present. Then

the reactants are replaced by the products. All enabled

reactions are applied in parallel. The obtained set of

products is the union of all single sets of products of each

reaction which is enabled in T.

It is easy too see that reaction systems are a qualitative

model. Reaction systems and P colonies are related; in

Ciencialová et al. (2020), it was shown that for any reac-

tion system, a simulating P colony can be constructed.

In this paper, we continue studying sP colonies and

reaction systems, with focus on their reversible variants.

The notion of reversibility and inverse functions is an

essential and well-studied part of mathematics and com-

puter science (see, for example, Morita (2017)). Reversible

computing systems are defined as systems for which each

of their computational configurations has one predecessor

at most. Therefore, they are ‘‘backward deterministic’’

systems.

In the paper, we introduce the sP colonies without an

input influence (during computation) and the set condition

of existence of an inverse sP colony to an sP colony. In the

second part of the paper, we focus on the reaction systems

that work in a way similar to sP colonies. As for reaction

systems, we show that for every reversible reaction system,

there exists an inverse reaction system. In the last part of

the paper, reaction systems simulating reversible logic

gates and reversible Turing machines are presented. The

properties of reversible reaction systems were studied in

Bagossy and Vaszil (2020b) and Bagossy and Vaszil

(2020).

2 Preliminaries

Throughout the paper, we assume the reader to be familiar

with the basics of the formal language theory by Rozen-

berg and Salomaa (1997). We introduce the notions and

notations used in the sequel.

The family of recursively enumerable sets of natural

numbers is denoted by N�RE and N denotes the set of

natural numbers.

An alphabet is a finite non-empty set. Let R� be the set

of all words over alphabet R (including the empty word, e).
For the length of the word w 2 R�, we use the notation wj j

and the number of occurrences of symbol a 2 R in w is

denoted by wj ja.
A multiset of objects M is a pair M ¼ ðV; f Þ, where V is

an arbitrary (not necessarily finite) set of objects and f is

a mapping where f : V ! N. The mapping f assigns

to each object in V its multiplicity in M. The set of all

multisets over the set of objects V is denoted by V�. The set
V 0 is called the support of M and is denoted by supp(M) if

f ðxÞ 6¼ 0 for all x 2 V 0. The cardinality of M, denoted by

card(M), is defined by cardðMÞ ¼
P

a2V f ðaÞ.
Any multiset of objects M ¼ ðV ; f Þ where V ¼

fa1; . . .; ang can be represented as a string w over the

alphabet V with wj jai¼ f ðaiÞ, 1� i� n. Obviously, all

words obtained from w by permuting the letters also rep-

resent M, and e represents the empty multiset.

Let g be a mapping g : A ! M where A is a finite set,

and M ¼ ðA; f Þ is a finite multiset where f ðaÞ ¼ 1 for

every a 2 A. Informally, g is a mapping that ‘‘converts’’

a set to a multiset with objects with multiplicity 1. If no

confusion arises, a finite set X can also be represented by

a word and notations jXj, and jXja can also be used.

A directed graph is an ordered pair G ¼ ðV ;EÞ
according to Diestel (2005) where V is a set whose ele-

ments are called vertices, nodes, or points. A is a set of

ordered pairs of vertices, called arrows, directed edges,

directed arcs, or directed lines. With each edge e of G, let

there be associated a real number w(e), called its weight.

Then G, together with these weights on its edges, is called

a weighted graph. If the edge is associated with a unique

label, then we speak of a labeled graph. A vertex xk is

connected with vertex x0 if there exists a sequence of

vertices x0x1. . .xk such that for two vertices ei ¼ ðxixiþ1Þ 2
E for each i 2 f0; 1; . . .; k � 1g: The out-degree is the

number of the outgoing edges from a vertex, and the in-

degree is the number of the incoming edges onto a vertex.

3 sP colonies

The notion of an sP colony was introduced in Ciencialová

et al. (2020). In this section, we define a slightly modified

version of the original concept. We will also introduce

some further notions, such as a deterministic, inverse, and

reversible sP colony, together with a transition graph of

a reversible sP colony. We show that to any reversible

sP colony, we can effectively construct an inverse sP col-

ony performing inverse computation.

First, we give the definition of the sP colony, then we

focus on explaining how the sP colony performs the

computation.

Definition 1 An sP colony (of degree n and capacity k,

where n; k� 1) is a construct
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P ¼ ðV ; f ;VE;0;B1; . . .;BnÞ;

where

• V is an alphabet, its elements are called objects,

• f 2 V , called the final object of the sP colony,

• VE;0 � V , called the initial state (or initial content) of

the environment,

• Bi; 1� i� n, is the agent of the sP colony. Each agent

Bi ¼ wi;0;Pi

� �
is defined as follows:

– wi;0 is a multiset over V with k elements, called the

initial state (or initial content) of Bi,

– Pi ¼ pi;1; . . .; pi;mi

� �
, mi � 1, is a finite set of pro-

grams, where each program consists of k rules. Each

rule is in one of the following forms:

a ! b, a; b 2 V , called an evolution rule,

c $ d, c; d 2 V , called a communication rule.

A computation of the sP colony P is based on changing

its configuration. A configuration of the sP colony consists

of the current state of the environment and the current

states of the agents.

Formally, the configuration of the sP colony P is given

by ðw1; . . .;wn;VEÞ, where wi is a multiset of objects in V,

and VE is a non-empty subset of V. The multiset wi rep-

resents all the objects present inside the i-th agent, and

VE 2 2V represents the set of all objects in the environ-

ment. Furthermore, jwij ¼ k; 1� i� n. The set of all pos-

sible configurations of P is denoted by C, and

C ¼ Vk � . . .� Vk|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
n

�2V ; where Vk ¼ v 2 V� j jvj ¼ kf g.

Notice that C can be the set of all possible configura-

tions of more than one sP colony. While standard P co-

lonies may have an infinite number of configurations, the

number of all possible configurations of any sP colony is

finite.

The functioning of an sP colony starts from its initial

configuration (an initial state). The initial configuration of

the sP colony is the ðnþ 1Þ-tuple ðw1;0; . . .;wn;0;VE;0Þ,
where wi;0, 1� i� n is the initial state of the agent Bi, and

VE;0 is the initial state of the environment.

The change of the configuration is performed by actions

of the agents. This means that the agents apply the rules

that are contained in the executed program.

The first type of the rules associated to the programs of

the agents, the evolution rules, are of the form a ! b. This

means that an object a inside the agent is rewritten to

(evolves to be) an object b.

The second type of rules, the communication rules, are

of the form c $ d. If a communication rule is performed,

then an object c inside the agent and an object d in the

environment swap their locations. Thus, after executing the

rule, the object d appears inside the agent and the object

c appears in the environment.

Notice that since the environment is represented by

a set, one or more rules can introduce the same object in

the environment. The configuration change does not have

to be done by agents only. At each step, some objects may

be added to the environment as input. The notion of input

of the sP colony will be explained later.

Next, we define the notion of an applicable program. Let

us consider that each program in the sP colony P has its

own unique identifier (a unique label) pi;j. This notation

refers to the j-th program in the set of programs Pi of the ith

agent, Bi.

To define a configuration transition, we set the following

mappings:

Let pj ¼ rj1; . . .; rjk
� �

be a program.

For every rule rjl; 1� l� k, we construct functions

w : X ! Y , where Y � V , X is the set of all rules over V in

pj, and w 2 forig; new; in; outg is defined as follows:

For the evolution rule, rjl ¼ a ! b

origðrj;lÞ ¼ fag; newðrj;lÞ ¼ fbg;
inðrjlÞ ¼ ;; outðrj;lÞ ¼ ;;

and for the communication rule, rj;l ¼ a $ b

origðrj;lÞ ¼ ;; newðrj;lÞ ¼ ;;
inðrj;lÞ ¼ fbg; outðrj;lÞ ¼ fag:

For a program pi;j ¼ ri;j;1; . . .; ri;j;k
� �

2 Pi and

a configuration

c ¼ ðw1; . . .;wn;weÞ, we define

apppi;jðcÞ , wi ¼
Sk

l¼1forigðri;j;lÞ [ outðri;j;lÞg
^
Sk

l¼1 inðri;j;lÞ � Ve

apppi;jðcÞ is true if and only if the program pi;j is applicable

in configuration c.

A set of applicable programs associated with the agent

Bi ¼ ðwi;PiÞ in a configuration c, denoted by AppiðcÞ, is
defined as

AppiðcÞ ¼ pi;j 2 Pi j apppi;jðcÞ
n o

:

If AppiðcÞ contains more than one program, then a non-

deterministically chosen one is applied.

For the configuration c, let Pc be the set of programs

applicable in the configuration c satisfying the following

conditions: there is at most one program from AppiðcÞ for
every i, 1� i� n; and Pc [ AppiðcÞ ¼ ; if and only if

AppiðcÞ is equal to the empty set.

The sP colony P is called deterministic if and only if

jAppiðcÞj � 1 for all c 2 C and for all agents Bi, 1� i� n,

in P. As a result, there exists only one possible Pc for

every configuration c.
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Next, we define the notion of computation of (length m)

in the sP colony working with an input sequence (with an

input, for short).

A computation of a length m, m� 1, in the sP colony P
working with input sequence

c ¼ in0; in1; in2; . . .; inm

is a sequence of ðnþ 1Þ-tuples ðw1;j; . . .;wn;j; ðVE;j [ injÞÞ,
0� j�m, where w1;j; . . .wn:j;VE;j is a configuration of P,

inj � V ; 1� j�m. For j ¼ 0 and in0 ¼ ;, the configuration
is the initial configuration. Therefore, the initial configu-

ration of P is available at the beginning of the computation

and then in each of the first m steps, an input set of ele-

ments of V is inserted into the environment. Notice that inj
can be empty for some j, 1� j� n.

Also notice that in case of standard P colonies, no input

is inserted in the environment, as it is changed only by the

actions of the agents.

As we mentioned above, the computation of the

sP colony passes from one configuration to another one.

This change is done by an execution of at most one

applicable program per agent and by inserting a set of input

objects into the environment from an input sequence. The

computation is defined to be collision-free. All agents

having an applicable program should perform exactly one

of its applicable programs.

We distinguish between two computational modes: a

forgetting mode and a non-forgetting mode. If the new

content (state) of the environment obtained by a transition

is the union of the set of the objects put into the environ-

ment by agents, and the input in the current step, then we

speak of the computation in the forgetting mode (or the

forgetting computation, f mode). The computation is non-

forgetting (in the non-forgetting mode, nf mode) if those

elements of the environment that did not take part the in

action of any agent and were not the elements of the input,

remain the elements of the environment.

Next, we provide a formal definition of a transition (a

computation step).

We say that in a t-th step of computation, where t� 1,

the current configuration c directly changes for configura-

tion c0 (or there is a transition between these two config-

urations), written as

c ¼ ðw1; . . .;wn;VeÞ ‘ ðw0
1; . . .;w

0
n;V

0
eÞ ¼ c0;

if w0
i ¼

Sk
l¼1ðnewðrjlÞ [ inðrjlÞÞ for pi;j ¼ ri;j;1; . . .; ri;j;k

� �
2

Pc being the chosen program applied by the i-th agent or

w0
i ¼ wi if the i-th agent has no applicable program in the

configuration c, i.e., AppiðcÞ ¼ ;.
Furthermore, in case of the forgetting computation,

V 0
e ¼

[

pi;j2Pc

[k

l¼1

outðri;j;lÞ
 !

[ int

and, in case of the non-forgetting computation,

V 0
e ¼

	
ðVe �

S
pi;j2Pc

ð
Sk

l¼1 inðri;j;lÞÞÞ [

[
S

pj2Pc

� Sk
l¼1 outðrjlÞ

�

[ int:

The computation ends by halting after performing more

than m steps, where mþ 1 is the length of the input set

sequence.

The result of a computation with input sequence c can

be defined in several ways.

The first way is based on the fact that the sP colony can

be seen as an accepting device, and so the input sequence

can be accepted if the computation halts after processing

the whole input sequence, i.e., no more transition can be

performed.

The second way is closer to the definition of the original

model of the P colonies. We say that the number d is

computed by the sP colony working with the input

sequence c if the computation with c halts and

d ¼
St

s¼1 VEs
j jf , where t�m is a number of steps of the

computation and VEs
is the content of the environment after

s steps of the computation. Since the sP colony is a non-

deterministic computing device, with one input sequence,

there can exist halting and also non-halting computations.

The third way of defining the result of the computation

is to assign a set to the computation and the input

sequence; the result set is the content of the environment in

a halting configuration.

The family of all sets of numbers NðPÞ computed as

above by the sP colonies of a capacity at most k� 0,

degree at most n� 0 and height at most h� 0 is denoted by

NsPCOLðk; n; hÞ. The maximal number of programs of an

agent of P is called the height of P. If one of the

parameters n or h is not bounded, then we replace it with �.

Example 1 Our example is based on some ideas presented

as an example in Ciencialová et al. (2020). Let m and p be

natural numbers such that 1\p�m=2. We can construct

an sP colony with one agent that decides whether m is

divisible by p for an input sequence of the length m . The

input sequence (except of the in0) is formed of sets of

objects, each set has only one object as element. It means

that the sP colony will accept one object per step of the

computation. The natural number m is represented as m sets

f	g followed by a special set f#g. The last object that

enters the system is the indicator of the end of the input.

The agent in the sP colony corresponds to the divisor by

the number p. The state of the agent p corresponds to the

result of an operation ‘‘h mod p’’, where h is the number of

consumed objects 	 and p is the prime number. At each

30 L. Cienciala et al.
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step of the forgetting computation, the agent consumes the

object from the input set and changes its state in the same

way as a finite state machine verifies that the number of

symbols in a word is divisible by a given number. After

consuming the object #, the agent generates the final

object (if it is in the state corresponding to 0), or it enters an

infinite loop.

Let P1 ¼ ðV; f ; vE;B1Þ be an sP colony with the capac-

ity 2 and with 1 agent such that

• V ¼ f	;#; e; f ; 00g [ f0; . . .; p� 1g
• vE ¼ feg
• B1 ¼ 00e;P1ð Þ
The set of programs P1 consists of the following programs:

0: h00 ! 0; e ! ei;
1: h0 ! 1; e $ 	i;
2: h	 ! ðiþ 1Þ; i $ 	i; 0� i� p� 2

3: h	 ! 0; ðp� 1Þ $ 	i;
4: h	 ! f ; 0 $ #i;
5: h	 ! e; i $ #i; 1� i� p� 1

6: h# ! f ; f $ 0i;
7: he ! e; # ! #i

The sP colony works as accepting device. The input

sequence corresponding to a number m is accepted only if

the computation halts after all input sets enter the system,

which implies that m is divisible by p.

3.1 Reversible sP colonies

In this section, we will focus on the process of computa-

tion, namely, we aim to deal with the determinism and

reversibility of the computation in sP colonies and define

the concept of an inverse sP colony.

First, we define the notion of a transition graph for the

sP colony working without an input sequence. Notice that in

this case, no external additional objects are added to the set

of environmental objects during the computational steps.

Definition 2 Let P be the sP colony working without the

input sequence in an x-mode, where the x 2 fnf ; fg, and let

C be the set of of all configurations of P. A directed graph

GxðPÞ ¼ ðVG;EÞ is called the transition graph of P
working in mode x, if VG ¼ C, and e ¼ ðc1; c2Þ 2 E if and

only if there is the transition c1 ‘ c2 in some step of the x-

mode computation of P.

If the out-degree of each edge of the transition graph of

the sP colony is at most one, then it is called deterministic.

Formally,

Definition 3 Let P be the sP colony working without the

input sequence in an x-mode, where the x 2 fnf ; fg, let C

be the set of all possible configurations of P and let

GxðPÞ ¼ ðVG;EÞ be the transition graph of P. Then P is

called deterministic (in the x-mode) if and only if

ðc; c0Þ 2 E ^ ðc; c00Þ 2 E ) c0 ¼ c00:

Next, we provide the conditions for reversibility in the

sP colonies working without the input sequence.

Definition 4 Let P ¼ ðV; f ;VE;B1; . . .;BnÞ be the sP col-

ony with a capacity k, working without the input sequence in

an xmode, where the x 2 ff ; nfg. Let C be the set of all of its

possible configurations and let GxðPÞ ¼ ðVG;EÞ be the

transition graph of P. Then P is called reversible (in the x-

mode) if and only if the following conditions are satisfied:

1. AppiðcÞj j � 1 for 1� i� n and for all c 2 C, i.e., P is

deterministic;

2. for every c 2 C there is at most one ðc0; cÞ 2 E, i.e., the

in-degree of each node is at most one.

The conditions in Definition 4 ensure that the transition

is a bijective relation in reversible sP colonies.

Definition 5 Let P be the sP colony working without the

input sequence and in an x mode, where the x 2 ff ; nfg. If
there exists the sP colony P̂ working without the input

sequence and in the x mode such that for any computation

c1 ‘ c2 � � � ‘ cm in P, where m� 1, there exists a computa-

tion cm ‘ c2 � � � ‘ c1 in P̂; and, reversely, then P̂ is called an

inverse (sP colony) ofP.

If an sP colonyPworking without input is reversible, then

we can effectively construct an inverse sP colony P̂ toP.

Theorem 1 Let P ¼ ðV; f ;VE;B1; . . .;BnÞ be a reversible

sP colony with a capacity k and working without the input

and in the x mode, where the x 2 ff ; nfg. Then there exists

an inverse sP colony P̂ ¼ ðV; f ;VE; B̂1; . . .; B̂nÞ such that

the set of program P̂i of agent B̂i, 1� i� n, is given as

follows: if ri;j;l ¼ a ! b is a rule in the program pi;j 2 Pi,

1� j� jPij, then r̂i;j;l ¼ b ! a is a rule in the program

p̂i;j 2 P̂i ; if ri;j;l ¼ c $ d is a rule in the program pi;j 2 Pi,

then r̂i;j;l ¼ d $ c is a rule in the program p̂i;j 2 P̂i.

Proof From the construction of rules of P̂, it is easy to see

that:

If ri;j;l ¼ a ! b ) r̂i;j;l ¼ b ! a ) origðri;j;lÞ ¼
newðr̂i;j;lÞ; newðri;j;lÞ ¼ origðr̂i;j;lÞ; outðri;j;lÞ ¼
inðr̂i;j;lÞ ¼ ;; inðri;j;lÞ ¼ outðr̂i;j;lÞ ¼ ;

ri;j;l ¼ c $ d ) r̂i;j;l ¼ d $ c ) outðri;j;lÞ ¼
inðr̂i;j;lÞ; inðri;j;lÞ ¼ outðr̂i;j;lÞ; origðri;j;lÞ ¼ newðr̂i;j;lÞ ¼
;; newðri;j;lÞ ¼ origðr̂i;j;lÞ ¼ ;
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We have to prove that c1 ‘ c2 ‘ . . . ‘ cm is a compu-

tation in the sP colony P if and only if there exists the

computation ĉ1 ‘ ĉ2 ‘ . . . ‘ ĉm such that ĉs ¼ cm�sþ1;‘
. . . ‘ c2 ‘ c1 in the inverse sP colony P̂.

The initial configurations of the computations in the

sP colonies are c1 and cm ¼ ĉ1, respectively. Let us focus

on one step of the computation in both systems. Let us

consider cs ‘ csþ1; 1� s�m, i.e. the s-th step of the

computation in the sP colony P. Since P is reversible, to

perform the transition, there is only one set of programs Pcs

where there exists at most one program for each agent in

P. Let cs ¼ ðw1; . . .wn;VEÞ and cs ¼ ðw0
1; . . .w

0
n;V

0
EÞ. Then

Sk
l¼1forigðri;j;lÞ [ outðri;j;lÞg ¼

¼ wi ^
Sk

l¼1fnewðri;j;lÞ [ inðri;j;lÞg ¼ w0
i

for pi;j 2 Pcs and 1� i� n (if for given i pi;j 2 Pcs , other-

wise AppiðcsÞ ¼ ; for agent Bi). By substituting the func-

tions, we obtain

Sk
l¼1fnewðr̂i;j;lÞ [ inðr̂i;j;lÞg ¼

¼ wi ^
Sk

l¼1forigðr̂i;j;lÞ [ outðr̂i;j;lÞg ¼ w0
i

Regarding the change of the environment, we remember

that Pi is without the input, consequently

S
pi;j2Pcs

Sk
l¼1 inðri;j;lÞ

� �
� VE:

Then, in the case of the forgetting computation, we obtain

V 0
E ¼

S
pi;j2Pcs

Sk
l¼1 outðri;j;lÞ

� �
¼

¼
S

p̂i;j2Pcsþ1

Sk
l¼1 inðr̂i;j;lÞ

� �

and, in case of the non-forgetting computation, we get

V 0
E ¼ Ve �

S
pi;j2Pcs

Sk
l¼1 inðri;j;lÞ

� �� �
[

h

[
S

pj2Pcs

Sk
l¼1 outðrjlÞ

� �i
¼

¼ VE �
S

p̂i;j2P̂csþ1

Sk
l¼1 inðr̂i;j;lÞ

� �� �
[

h

[
S

p̂j2P̂csþ1

Sk
l¼1 outðr̂jlÞ

� �i

The previous relations are true only if sets Pcs and P̂csþ1
are

formed from the corresponding programs. If the program

pi;j is in Pcs , then the program p̂i;j is applicable in the

configuration csþ1 and, as a result, it is in P̂csþ1
. If the

program p̂x 2 Pi is applicable in the configuration csþ1 and

the corresponding program px is not applicable in cs then -

because P is deterministic - there exists a configuration cx
for which cx ‘ csþ1 holds. But this is not possible because

P is reversible, and therefore Condition 2 of Definition 4

should hold. h

4 Reaction systems

In this section we recall the basic notions concerning

reaction systems, introduced in Ehrenfeucht and Rozenberg

(2005).

Let S be a finite non-empty set (its elements are defined

as objects or molecules). A triplet a ¼ ðR; I;PÞ where

R, I, P are non-empty subsets of S and R \ I ¼ ; is called

a reaction in S. S is called the background set, R is called

the set of reactants (or the reactant set), I is the set of

inhibitors (or the inhibitor set), and P is called the set of

products (or the product set) of reaction a. The set of all

reactions in S is denoted by rac(S). The sets R, I, P are also

denoted by Ra; Ia;Pa, respectively.

A reaction system is an ordered pair A ¼ ðS;AÞ, where
S is the background set and A is the non-empty set of

reactions in S.

Reaction systems work with performing their reactions

on a non-empty set of objects from the background set that

is called the current state of the reaction system.

Let S be a background set, let X � S, and let a be

a reaction in S. Then, a is enabled by X, denoted by enaðXÞ,
if Ra � X and Ia \ X ¼ ; holds. The result of a on X,

denoted by resaðXÞ, is defined by resaðXÞ ¼ Pa if enaðXÞ,
and resaðXÞ ¼ ;, otherwise.

The effect of a set of reactions on a state is cumulative.

Let S be a background set, let X � S, and let A be a non-

empty set of reactions in S. A is called enabled by X,

denoted by en(A, X), and it is defined by

enðA;XÞ ¼ fa 2 A j enaðXÞg. The result of A on X,

denoted by res(A, X), is defined by

resðA;XÞ ¼ fresaðXÞ j a 2 Ag. The set of those reactions
in A that generate a product set included in X is defined as

prodðA;XÞ ¼ fa 2 A j Pa � XÞg.
The behavior of the reaction system is described by an

interactive process defined as follows.

Let A ¼ ðS;AÞ be a reaction system. An interactive

process in A is a pair p ¼ ðc;uÞ of finite sequences such

that c ¼ C0;C1; . . .;Cn�1; u ¼ D1; . . .;Dn with n� 1,

where C0; . . .;Cn�1;D1; . . .;Dn � S, D1 ¼ resðA;C0Þ, and
Di ¼ resðA;Di�1 [ Ci�1Þ for each 2� i� n.

The sequences C0; . . .;Cn�1, and D1; . . .;Dn are the

context and result sequences of p, respectively.The context
C0 represents the initial state of p (the state in which the

interactive process starts), and the contexts C1; . . .;Cn�1

represent the influence of the environment on the

computation.
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If C0 6¼ ; and Ci ¼ ; for all i� 1, then the reaction

system is said to be working without the influence of the

environment (or without the environment influence).

The sequence stsðpÞ ¼ W0; . . .;Wn denotes the state

sequence of p, where W0 ¼ C0 (the initial state), and Wi ¼
Di [ Ci for all 1� i� n. The sequence actðpÞ ¼
E0; . . .;En�1 of subsets of A such that Ei ¼ enðA;WiÞ for all
0� i� n� 1 represents the activity sequence of p.

Consequently, the evolution of the state sequence of A

starting from W0 is

W0�!
E0

W1�!
E1

. . .�!En�1
Wn:

If En ¼ enðA;WnÞ ¼ ;, then the interactive process

terminates.

To describe the evolution, we can define a mapping d :

2S � 2S ! 2S such that the following conditions are satis-

fied: dðDi;CiÞ ¼ Diþ1 if and only if there exists (just one)

set Ei � A such that Ei ¼ enðA;Di [ CiÞ and

Diþ1 ¼ resðEi;Di [ CiÞ, and, furthermore, dð;;C0Þ ¼ D1

holds.

If a reaction system works without the environment

influence, then for every i� 1 dðDi; ;Þ ¼ Diþ1.

In this case, we can simplify the definition of the tran-

sition mapping as follows: d0 : 2S ! 2S where d0ðWÞ ¼ W 0.
If we have to indicate that the transition mapping is asso-

ciated with a certain reaction system, then we write

d0AðW 0Þ ¼ d0AðW 00Þ:
For every reaction system working without the envi-

ronment influence, we can construct a labeled directed

graph GA ¼ ðV ;E; labÞ called the transition graph with

a set of nodes V � 2S � f;g and a set of directed edges E

such that there is a directed edge e ¼ ðX; YÞ if and only if

enðA;XÞ 6¼ ;, resðA;XÞ ¼ Y and labðeÞ ¼
S

a2enðA;XÞ Ia.

Because of the determinism of the evolution, every node of

the transition graph has out-degree at most one.

4.1 Reversible reaction systems

In this section, we deal with the reversibility of reaction

systems working without the environment influence.

First, we present some notions we will use in the rest of

the paper.

Let S be a background set and let a ¼ ðRa; Ia;PaÞ be

a reaction in S. If Â ¼ ðPa; Ia;RaÞ is a reaction in S, then Â

is called an inverse reaction of a. For a reaction

a ¼ ðRa; Ia;PaÞ, we also may refer to Ra and Pa by

lhs(a) and rhs(a), respectively.

For the reaction system A ¼ ðA; SÞ and for the set of

reactants X 
 S, let us define

reacðA;XÞ ¼ fa 2 A j Ra � Xg.

Now we define the notion of a reversible reaction

system.

Definition 6 A reaction system A ¼ ðA; SÞ working

without the environment influence is reversible if the fol-

lowing conditions are satisfied:

1. Pa \ Ia ¼ ; for every reaction a 2 A,

2. for every state X of the reaction system A if

prodðA;XÞ 6¼ ;, then
[

a2prodðA;XÞ
Ia \

[

a2prodðA;XÞ
Ra ¼ ;;

3. for every state X of the reaction system A if

reacðA;XÞ 6¼ ;, then
[

a2reacðA;XÞ
Pa \

[

a2reacðA;XÞ
Ia ¼ ;;

4. for every node Y of the transition graph GA ¼ ðV;E;wÞ
of the reaction system A, there is at most one edge

e ¼ ðX; YÞ; i.e., each node of GA has at most one in-

degree.

The first condition ensures that the inverse reaction of

the reaction a will is in the required form. The second

condition is met if the reactions that take place in gener-

ating of some (non-empty) subset of S are not in conflict,

i.e., there is no reactant of such a reaction that is an inhi-

bitor of some other reaction. The third condition means that

if the set of reactions is enabled on some non-empty subset

of S, then there is no product of any of the inverse reactions

which is an inhibitor of any inverse reaction. The fourth

condition assures that the transition mapping d is injective.

Each component of the transition graph of the reversible

reaction system is either a cycle or it forms a line.

Example 2 Let A ¼ ðS;AÞ be a reversible reaction system

with S ¼ fa; b; c; eg and A ¼ fa1; a2; a3; a4g such that

a1 ¼ ðfa; bg; feg; fb; cgÞ; a2 ¼ ðfb; cg; feg; fa; cgÞ;
a3 ¼ ðfa; cg; feg; fa; bgÞ:

The transition graph of the reaction system looks like

the one in Fig. 1.

Theorem 2 Let A ¼ ðA; SÞ be a reversible reaction system

without the environment influence. Then there exists a re-

action system Â ¼ ðÂ; SÞ such that the following conditions
hold:

1. for every reaction a ¼ ðRa; Ia;PaÞ 2 A, there exists

a reaction â ¼ ðPa; Ia;RaÞ 2 Â which is an inverse

reaction of a,

2. to every interactive process p ¼
ðC0;C1; . . .;Cn�1; D1;D2; . . .;Dn�1; DnÞ in A, there
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exists an interactive process p̂ ¼
ðDn;Cn�1; . . .;C1; Dn�1; . . .;D1; C0Þ in Â.

Proof We should prove that if xp is the interactive process

in the reaction system A, then there exists an interactive

process xp̂ in the reversed reaction system meeting the

following condition: if xp ¼ W0�!
E0

W1�!
E1

. . .�!En�1
Wn is an

evolution in A (corresponds to p), then xp̂ ¼

Wn�!
Ên�1

Wn�1�!
Ên�2

. . .�!Ê0
W0 is an evolution in Â (corre-

sponds to p̂Þ, with Êi ¼ fâ j a 2 Eig; 0� i� n� 1.

By definition, the reversible reaction system A is

without the environment influence, and C0 6¼ ; ^ Ci ¼
;; i� 1 for a sequence C0;C1; . . .;Cn of any interactive

process in A.

Because every node (state) has an in-degree at most one

(the fourth condition of Definition 6), the (simplified)

transition mapping d0A is injective.

For an i-th step of the evolution xp, i� 1, there exists

a transition d0AðWi�1Þ ¼ Wi such that enðA;Wi�1Þ ¼ Ei�1

and resðEi�1;Wi�1Þ ¼ Wi.

Let us assume that d0
Â
ðWiÞ ¼ W . We construct a set

Êi�1 of inverse reactions from Ei�1. Because rhsðEi�1Þ ¼
lhsðÊi�1Þ and the third condition of Definition 6 holds, such
state exists and

Êi�1 � enðÂ;WiÞ: ð1Þ

We first consider the case W 6¼ Wi. Since inclusion (1)

holds, Wi � W follows. Let b̂ be a reaction from a set of

reactions Â such that b̂ 2 enðÂ;WiÞ and b̂ 62 Êi�1. Since

b 2 prodðA;WiÞ and the second condition of Definition 6

holds, there is no inhibitor of reaction b 2 A (b 62 Ei�1) in

any set of reactants of the reactions from Ei�1. The only

reason why reaction b is not in Ei�1 can be if Rb �Wi�1

6¼ ; holds. Therefore, Rb [Wi�1 ¼ Y and d0AðYÞ ¼ Wi.

Because of the fourth condition of Definition 6, there is at

most one transition leading to every state, then Y ¼ Wi:

It remains to prove that enðÂ;WiÞ ¼ Êi�1. Because of

the second condition of Definition 6, inverse reactions to

all reactions from Ei�1 are enabled. Suppose that there

exists a reaction b̂ 2 Â such that b̂ 62 Êi�1 and

b̂ 2 enðÂ;WiÞ. This means that the reaction b 2 A is not

enabled by Wi�1, because the state contains some object

which is an inhibitor of a reaction. But, we have already

proven that this cannot happen because of the missing

reactant in Wi�1 (d0
Â
ðWiÞ ¼ Wi�1).

Wi�1 \ Ib 6¼ ; ^ b 2 prodððA;WiÞÞ ^
S

a2prodðA;WiÞ Ia\S
a2prodðA;WiÞ Ra ¼ ; (second condition of Definition 6).

Subsequently, any inhibitor s in Ib is not in a set of

reactants of any reaction enðA;Wi�1Þ, it is not processed by

any reaction from enðA;Wi�1Þ, and it disappears from the

state after one step. Then, there exists a state X ¼ Wi�1 �
fsg such that enðA;XÞ ¼ enðA;Wi�1Þ and

d0AðXÞ ¼ d0AðWi�1Þ ¼ Wi. But the simplified transition

mapping is injective and, as a result, Wi�1 \ Ib ¼ ;: h

Theorem 3 Let A ¼ ðA; SÞ be a reversible reaction system

and let Â ¼ ðÂ; SÞ be a reaction system inverse to A. Then

Â is reversible, too.

Proof Because Â is the inverse reaction system to A, for

the reaction â, the following equalities hold:

(a) Pâ ¼ Ra

(b) Râ ¼ Pa

(c) Iâ ¼ Ia

Let us focus to the four conditions of Definition 6 that must

hold for the reversible reaction systems.

1. By definition, the set of products and the set of

inhibitors of every reaction must be disjoint. This

condition holds: see equalities a) and c) above.

2. By the second condition of Definition 6, the following

statement should be true. For every state X 2 2S such

that prodðA;XÞ 6¼ ;
[

a2prodðA;XÞ
Ia \

[

a2prodðA;XÞ
Ra ¼ ;

holds. If prodðA;XÞ ¼ fa 2 A j Pa 
 Xg and b)

holds, then fâ 2 Â j Râ 
 Xg ¼ reacðÂ;XÞ.
Therefore,
[

â2reacðÂ;XÞ

Iâ \
[

â2reacðÂ;XÞ

Pâ ¼ ;

holds too.

{a} {b} {c} {e}

{a, b} {a, c} {a, e} {b, c} {b, e} {c, e}

{a, b, c} {a, b, e} {a, c, e} {b, c, e}

{a, b, c, e}

{e}

{e}{e}

{e}

Fig. 1 The transition graph of A
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3. For the third conditions of Definition 6 the situation is

similar to the previous one. For every state X 2 2S such

that reacðA;XÞ 6¼ ;
[

a2reacðA;XÞ
Ia \

[

a2reacðA;XÞ
Pa ¼ ;

should hold. If reacðA;XÞ ¼ fa 2 A j Ra 
 Xg and

a), then fâ 2 Â j Pâ 
 Xg ¼ prodðÂ;XÞ. Therefore,
[

â2prodðÂ;XÞ

Iâ \
[

â2prodðÂ;XÞ

Râ ¼ ;

holds, too.

4. The fourth condition of Definition 6 is met as well.

Because of the determinism of every interactive

process of A, every state of transition graph has an

in-degree at most one. For every edge e ¼ ðX; YÞ of the
transition graph GA, there is one edge ê ¼ ðY ;XÞ of the
transition graph GÂ of the inverse reaction system and

vice versa. Subsequently, every node of the transition

graph GÂ has an out-degree at most one.

h

Next, we introduce the notion of a reaction system with

a restricted input and the notion of a partially reversible

reaction system.

A reaction system with a restricted input is a triplet

AIn ¼ ðA; S; InÞ such as A ¼ ðA; SÞ is a reaction system,

and In � 2S is a finite non-empty set of input sets.

In an interactive process, every Ci; i� 0 is an element of

the set In. If a reaction system works without the envi-

ronment influence, then the In contains all possible inputs

C0 for an initialization of an interactive process.

If theAIn satisfies conditions 1.–4. of Definition 6, then the

reaction system is called partially reversible. Let theAIn be a

partially reversible reaction system and GAIn
be its transition

graph.A set of the vertices ofGAIn
contains such states that are

connectedwith the states from the In, and the following holds:

If there is a state X 2 V with an in-degree equal to zero, then

X 2 In. Every node of the GAIn
with an in-degree at least one

can be in the input set of the inverse reaction system Â.

Remark 1 As we mentioned in the Introduction, in Cien-

cialová et al. (2020), we proved that for any reaction system,

the simulating P colony can be constructed. Based on the

previous considerations, it can be shown that for any rever-

sible sP colony without the input influence and working in

the forgetting mode, the simulating reaction system can be

constructed. Notice that the reversible sP colony is deter-

ministic and the in-degree of its transition graph is 1. We

sketch the idea of the construction. Suppose that P is a

reversible sP colony without the input influence that works

in the forgettingmode. LetV be a set of objects ofP and let it

have n agents of capacity k. Then any configuration c ¼

ðw1; . . .;wn;VEÞofP can be represented by the ðnþ 1Þ-tuple
ðaw1;1; . . .; awn;n; aVE

Þ, where the awj;j is an element of the

background set S of A representing that the state of the jth

agent is wj, and aVE
denotes that the state of the environment

is VE. Since the number of all possible configurations is

finite, we can easily define such an alphabet S that codes the

components of the configurations in a unique manner. Then,

a transition of P from the configuration c to c0, where c ¼
ðaw1;1; . . .; awn;n; aVE

Þ and c0 ¼ ðaw0
1
;1; . . .; aw0

n;n
; aV 0

E
Þ can be

considered as a reaction ðfaw1;1; . . .; awn;n; aVE
g; fXg;

faw0
1
;11; . . .;aw0

n;n; aV 0
E
gÞ, where X is a special symbol used as

an inhibitor. Since P is deterministic, c0 is unique; conse-
quently, the coded versions of transitions form a reaction set,

and the evolution in A correspond to a computation in P.

5 Reversible reaction systems and models
of computation

In the following section, we provide two examples where

partially reversible reaction systems are used for simulating

well-known models as logic gates, circuits, and Turing

machines.

5.1 Reaction systems, reversible logic gates,
and circuits

The Fredkin gate is one of the reversible logic gates. It was

proposed by Fredkin and Toffoli in Fredkin and Toffoli

(1982) as a logical gate that realizes the logical function

fF : f0; 1g3 ! f0; 1g3 such that fF : f0; 1g3 ! f0; 1g3 such
that fF : ðc; p; qÞ ! c; c ^ pð Þ _ :c ^ qð Þ; c ^ qð Þð
_ :c ^ pð ÞÞ: Further information can be found for instance

in Morita (2017). First, we provide the basic notions we

will use in this particular section.

A pictorial representation and operations of the Fredkin

gate are demonstrated by Figs. 2 and 3. The truth table of

the logical function fF of the Fredkin gate is presented in

Table 1.

Connecting reversible logic gates, a logic circuit can be

composed. We define a reversible combinatorial logic

circuit that realizes an injective logical function.

Definition 7 Let S be a finite set of reversible logic gates.

A reversible combinatorial logic circuit F over S is

c
c

p
p

q
q

1
c

2 (c ∧ p) ∨ (¬c ∧ q)
3 (c ∧ q) ∨ (¬c ∧ p)

Fig. 2 A pictorial representation of the Fredkin gate
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a system composed of a finite number of copies of rever-

sible logic gates taken from S, which are connected under

the following constraints.

1. Each output of a gate can be connected to at most one

input of some other gate, i.e., a fan-out of the output is

inhibited.

2. Two or more outputs should not be connected to one

input port of some other gate, i.e., the merging of

outputs is inhibited.

3. The circuit should not contain a closed path, i.e., no

feedback loop is allowed.

We show that we can effectively construct a partially

reversible reaction system simulating the functioning of the

Fredkin gate. The background set of the reaction system is

formed from elements denoting the truth value (0 or 1) with

an index of the input or the output of the Fredkin gate (see

Fig. 2). The set of reactions contains such reactions that

ensure a transformation of the input values into the output

ones.

Let AIn ¼ ðS;A; InÞ where

• S ¼ Xz j X 2 f0; 1g ^ z 2 fc; p; q; 1; 2; 3gf g [ fIg
and

• A ¼
fðf0c;Xp; Yqg; fIg; f01; Y2;X3gÞ;
ðf1c;Xp; Yqg; fIg; f11;X2; Y3gÞ j

X; Y 2 f0; 1gg
• In ¼ Xc; Yp; Zq

� �
j X; Y ; Z 2 f0; 1g

� �

Since we consider only valid inputs from the set In for the

construction of the transition graph, the reaction system

AIn satisfies all conditions to be a partially reversible

reaction system and, subsequently, we can construct an

inverse reaction system ÂIn0 .

Let ÂIn0 ¼ ðS; Â; In0Þ where

• S ¼ Xz j X 2 f0; 1g ^ z 2 fc; p; q; 1; 2; 3gf g [ fIg
and

• Â ¼
fðf01;X2; Y3g; fIg; f0c; Yp;XqgÞ;
ðf11;X2; Y3g; fIg; f1c;Xp; YqgÞ j

X; Y 2 f0; 1gg
• In0 ¼ X1; Y2; Z3f g j X; Y ; Z 2 f0; 1gf g
To design the circuit, we have to distinguish individual

connections between logic gates. We use the labels of

inputs and outputs of particular gates in such a way that the

input of some gate has the same label as the output of its

connected gate. The labeling of the connections is possible

because of the conditions set in Definition 7, i.e., in the

definition of the reversible combinatorial logic circuit.

The last problem to solve is that all three inputs must

arrive at the gate at the same time. If they do not arrive at

the same moment, the reaction system has no reaction to

process them; as a result, they are erased. To prevent these

outputs from being erased, we add the following reactions

to the reaction system:

Let I1; I2; I3 be the inputs of the Fredkin gate. Let

ðfI1; I2g; fI3g; fI1; I2gÞ; ðfI2; I3g; fI1g;fI2; I3gÞ;
ðfI1; I3g; fI2g; fI1; I3gÞ; ðfI1g; fI2; I3g; fI1gÞ;
ðfI2g; fI1; I3g; fI2gÞ; ðfI3g; fI1; I2g; fI3gÞ
However, these reactions do not meet the second con-

dition for reversible reaction system (see Definition 6). A

solution for the timing problem mentioned above can be

obtained by modifying the circuit. This can be done by

adding delay units to each input that arrives ‘‘early’’. Each

delay unit provides the output with the same value as the

input after n time units (n� 1 ).

Let Uj be the output of the Fredkin gate that has to be

delivered to another gate as Ik after n steps of evolution.

We add the following reactions to the set A:

ðfUjg; fIg; fUn�1
j gÞ

ðfUn�2
j g; fIg; fUn�3

j gÞ; . . .;
ðfU1

j g; fIg; fIkgÞ
In the case that the outputs can appear in the environ-

ment in different steps, we add several reactions for

c = 1

p

q

1

p

q

c = 0

p

q

0

q

p

Fig. 3 Operations of the Fredkin gate

Table 1 The truth table of the

logical function fF of the

Fredkin gate

c p q x y z

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 1

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 0

1 1 1 1 1 1
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simulating delay units as well. There is no reaction to the

case that all outputs are present in the environment, and the

interactive process terminates in this state.

For all the valid inputs, there is no state M � S with

M � lhsðenðA;MÞÞ 6¼ ; and enðA;MÞ 6¼ ;. Because of the

construction of the reactions (reactants, inhibitors, and

products), the system is reversible.

5.2 Reaction systems and deterministic
reversible Turing machines

In the following part of the paper, we show how the

computations by deterministic reversible Turing machines

can be simulated by the reaction systems. For more

detailed information on the reversible Turing machines, see

Morita (2017).

A one-tape Turing machine (a TM, for short) is defined

by a sixtuple T ¼ ðQ;R; q0;F;B; dÞ where the Q is a non-

empty finite set of states, R is a non-empty finite set of tape

symbols, q0 is an initial state ðq0 2 QÞ, F is a set of final

states ðF � QÞ, and B is a special blank symbol ðB 2 RÞ.
The sixth item d is a move relation, which is a subset of

ðQ� R� R� QÞ [ ðQ� feg � f�1; 0;þ1g � QÞ. The

symbol e means that T does not read the tape symbol. The

symbols �1, 0, and þ1 are shift directions of the head,

which are used for the ‘‘left-shift’’, ‘‘zero-shift’’, and

‘‘right-shift’’, respectively.

Each element of the d is a quadruple of the form

ðp; s; s0; qÞ 2 ðQ� R� R� QÞ, or ðp; e; d; qÞ 2 ðQ� feg
�f�1; 0;þ1g � QÞ. The quadruple ðp; s; s0; qÞ is called

a read-write quadruple or a read-write rule. It means that if

T reads the symbol s in the state p, then T writes s0, and
enters the state q. The quadruple ðp; e; d; qÞ is called a shift

quadruple or a shift rule. This means that if T is in the state

p, then it shifts the head to the direction d and enters the

state q. Each state qf 2 F is a halting state, i.e., there is no

quadruple of the form ðqf ; x; y; qÞ in d.
Let T ¼ ðQ;R; q0;F;B; dÞ be a TM. T is called deter-

ministic, if for any pair of distinct quadruples

ðp1; x1; y1; q1Þ and ðp2; x2; y2; q2Þ in d, the following con-

ditions are met:

ðp1 ¼ p2Þ ) ðx1 6¼ e ^ x2 6¼ e ^ x1 6¼ x2Þ

This means that for any pair of distinct rules, if their pre-

sent states are the same, the rules are both read-write rules

and the symbols read by them are different.

We call the T a reversible TM (RTM), if any pair of

distinct quadruples ðp1; x1; y1; q1Þ and ðp2; x2; y2; q2Þ in d
satisfies the following:

ðq1 ¼ q2Þ ) ðx1 6¼ e ^ x2 6¼ e ^ y1 6¼ y2Þ:

That is, for any pair of distinct rules, if their next states are

the same, then they are both read-write rules, and the

written symbols are different. This is called the

reversibility condition for Turing machines (given in the

sixtuple form).

Theorem 4 For every linear bounded deterministic

reversible Turing machine T and input x, there exists

a partially reversible reaction system AIn which simulates

the computation of the T on the x.

Proof If a deterministic reversible Turing machine is lin-

ear bounded, then there is a linear function such that for

every input word of a length n, the space needed to process

the word by the Turing machine is bounded by this linear

function.

At this point, we provide the component the partially

reversible reaction system AIn. We start with defining the

background set, S.

Let x be a maxðOðnÞÞ for an input word of the length n.

Let us label all positions on the tape from 1 to x. We use

these labels as indices of symbols in an alphabet, i.e., the ai
means that the symbol a is on the i-th place of the tape.

Because the simulation of one step of the Turing machine

will take two steps done by the reaction system, we need to

distinguish between them, and therefore we use the symbol

a0i in every second step. The position of the reading-writing

head is marked as a part of a symbol of a working set of

a reaction system. If the head reads the i-th symbol of the

tape, then there is the symbol ai in a working set. Let

fai; a0i; ai j i 2 f1; . . .; xg ^ a 2 Rg � S:

If the head of the TM performs a move, then we need to

remove a bar from one symbol and add it to another one. A

generated symbol a can be done because the special sym-

bols Ma or Wa are present. Let

fMai ;Wai j i 2 f1; . . .; xg ^ a 2 Rg � S:

Finally, we add a set of symbols denoting the states of the

TM to S, let

fq; q0 j q 2 Qg � S:

We continue with defining the set of reactions, A. The

reactions simulate one step of the computation of the TM in

two steps. If the element of d of the TM is in the form

(p, a, b, q) where a; b 2 R, then there occurs this reaction

ðfp; aig; fIg; fq0;WbigÞ

in the reaction set A. To ensure that no symbol will dis-

appear, we also add other reactions rewriting all tape

symbols into their prime versions:
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ðfp; ai; cjg; fIg; fq0;Wbi ; c
0
jgÞ;

1� i; j� x; j 6¼ i; a; b; c 2 R

If ðp; e; d; qÞ 2 d, then for all a; b 2 R, there are these

reactions

ðfp; ai; byg; fIg; fq; a0i;MbygÞ
ðfp; ai; cjg; fIg; fq0;Mby ; c

0
jgÞ;

1� i; j� x; j 6¼ i; a; b; c 2 R

in the reaction set A, where y ¼ iþ d and i 2 f1; . . .n� 1g
for d ¼ þ1, i 2 f2; . . .ng for d ¼ �1 and i 2 f1; . . .ng for

d ¼ 0.

In the second step of the simulation, the reactions that

are enabled rewrite the symbols with primes into the

symbols without primes, and one special symbol corre-

sponding to the position of the reading-writing head into

bar symbol. Let these reactions be given as follows:

AW ¼ fðfq0; a0i;Wbyg; fIg; fq; ai; bygÞ j
i; y 2 f1; . . .; xg ^ i 6¼ y ^ a; b 2 Rg [
[fðfq0; a0y;Wbyg; fIg; fq; bygÞ j
y 2 f1; . . .; xg ^ a; b 2 Rg � A

AM ¼ fðfq0; a0i;Mbyg; fIg; fq; ai; bygÞ j
i; y 2 f1; . . .; xg ^ i 6¼ y ^ a; b 2 Rg [
[fðfq0; b0y;Mbyg; fIg; fq; bygÞ j
y 2 f1; . . .; xg ^ b 2 Rg � A

The computation of the reaction system AIn starts with

C0 ¼ fa1; a2; . . .; an;Bnþ1; . . .;Bx; q0g

where x ¼ a1. . .an, and there is one reaction r having q0 2
Rr as well as x� 1 reactions in the form

ðfaig; fIg; fa0igÞ; 2� i� x in the set E0 ¼ enðA;C0Þ. The
next state of an interactive process W1 is formed from

prime symbols, i.e., the symbols on the tape and the state of

the TM, and there is the symbol Wai (for the read-write

rule) or Mby (for the shift rule) in the set W1. Because the

TM is deterministic, there is only one such rule that can be

executed.

The setW1 enables the only subset of reactions of the SW
or SM containing the state of the TM q0 and the symbol for

the head positioning in the set of reactants. For every

symbol on the input tape, there is one reaction. If the

position (index) of a symbol is different from the position

of the head, then the prime symbol is evolved into a non-

prime symbol. If the position is the position of the head, the

prime symbol is changed to a bar symbol. In the case of

the read-write rule, the symbol on the tape is changed as

well. The set W2 contains symbols with information about

their position such that for every position, there is exactly

one symbol (one of them has a bar) and a symbol for the

current state of the TM.

We have to check whether the constructed reaction

system, AIn, is partially reversible. The first condition

(Pa \ Ia ¼ ;) is met for all reactions. Because the inhibitor

I is not used as a reactant or product in any reaction, the

second and the third conditions of the definition are also

met. The states of the reaction system are of two types. The

first type of states corresponds to the configuration of the

TM, i.e., the content of the tape with the position of the

head is indicated by the bar symbol and the current state of

the TM. The second type of states is associated with the

configuration of the TM, that is, to every symbol on the

tape, there is the prime symbol; it contains the symbol of

the next state and a special symbol determining what

should be done with the position of the head, and - in the

case of the read-write rule - with the currently read symbol.

Let c1 and c2 be two configurations of the TM having the

same state, and let r1 ¼ ðp1; x1; y1; qÞ and r2 ¼
ðp2; x2; y2; qÞ be the rules that were used by the TM to

enter these configurations. Because of the reversibility of

the TM, if p1 ¼ p2, then the rules cannot be shift rules and

they must have y1 6¼ y2 and x1 6¼ x2 (it is a deterministic

TM). The state of the TM and the symbol determining what

action is done by the execution of a rule (Msomewhere or

Wsomething) uniquely identifies the rule that was used in the

previous step of the computation. In consequence, it also

determines a subset of all reactions that was enabled by the

previous state of the TM. Because of the reversibility of the

TM, this holds for the pair (a state, a symbol in the position

of the head) too. Therefore, there is only one state Wi�1

such that resðA;Wi�1Þ ¼ Wi, and the fourth condition is

fulfilled. As a result, the reaction system AIn is partially

reversible. The members of the input set for the inverse

reaction system correspond to the final configurations of

the TM. Hereby, the statement of the theorem holds.h

6 Conclusion

In this paper, we introduced the sP colonies without the

input influence (during computation) and set the condition

of the existence of the inverse sP colony to the SP colony.

In the second part of the paper, we focused on the reaction

systems that work in a way similar to sP colonies. For

reaction systems, we showed that for every reversible

reaction system, there exists the inverse reaction system. In

the last part of the paper, reaction systems simulating

reversible logic gates and reversible Turing machines were

presented. In the future work, we plan not only to continue

our investigations of the connections between the
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sP systems and reaction systems but also to study further

properties of sP systems.
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Csuhaj-Varjú E, Kelemen J, Păun Gh et al. (1994) Grammar systems:

a grammatical approach to distribution and cooperation, 1st edn.

Gordon and Breach Science Publishers Inc, USA

Diestel R (2005) Graph theory (Graduate Texts in Mathematics).

Springer, Berlin, Heidelberg

Ehrenfeucht A, Rozenberg G (2005) Basic notions of reaction

systems. In: Calude CS, Calude E, Dinneen MJ (eds) Develop-

ments in language theory. Springer, Berlin Heidelberg, Berlin,

Heidelberg, pp 27–29

Fredkin E, Toffoli T (1982) Conservative logic. Int J Theor Phys

21(3):219–253. https://doi.org/10.1007/BF01857727
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Kelemenová A (2010) P colonies. In: Păun Gh, Rozenberg G,
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