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Abstract

Dataset dependence affects many real-life applications of machine learning:

the performance of a model trained on a dataset is significantly worse on sam-

ples from another dataset than on new, unseen samples from the original one.

This issue is particularly acute for small and somewhat specific databases in

medical applications; the automated recognition of melanoma from skin lesion

images is a prime example. We document dataset dependence in dermoscopic

skin lesion image classification using three publicly available medium size

datasets. Standard machine learning techniques aimed at improving the pre-

dictive power of a model might enhance performance slightly, but the gain is

small, the dataset dependence is not reduced, and the best combination

depends on model details. We demonstrate that simple differences in image

statistics account for only 5% of the dataset dependence. We suggest a solution

with two essential ingredients: using an ensemble of heterogeneous models,

and training on a heterogeneous dataset. Our ensemble consists of 29 convolu-

tional networks, some of which are trained on features considered important

by dermatologists; the networks' output is fused by a trained committee

machine. The combined International Skin Imaging Collaboration dataset is

suitable for training, as it is multi-source, produced by a collaboration of a

number of clinics over the world. Building on the strengths of the ensemble, it

is applied to a related problem as well: recognizing melanoma based on clini-

cal (non-dermoscopic) images. This is a harder problem as both the image

quality is lower than those of the dermoscopic ones and the available public

datasets are smaller and scarcer. We explored various training strategies and

showed that 79% balanced accuracy can be achieved for binary classification

averaged over three clinical datasets.

KEYWORD S

deep learning, skin lesion classification

Received: 6 May 2022 Revised: 21 September 2022 Accepted: 6 November 2022

DOI: 10.1002/ima.22827

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2022 The Authors. International Journal of Imaging Systems and Technology published by Wiley Periodicals LLC.

556 Int J Imaging Syst Technol. 2023;33:556–571.wileyonlinelibrary.com/journal/ima

https://orcid.org/0000-0002-2218-8855
https://orcid.org/0000-0002-1775-180X
https://orcid.org/0000-0002-8288-9303
https://orcid.org/0000-0002-1445-8739
https://orcid.org/0000-0002-0069-8379
https://orcid.org/0000-0003-4306-5093
https://orcid.org/0000-0002-1280-3447
mailto:somfaiellak@inf.elte.hu
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/ima
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fima.22827&domain=pdf&date_stamp=2022-11-24


1 | INTRODUCTION

Dataset dependence is a difficulty often encountered in
real-life machine-learning applications, and it is particu-
larly bothersome in the medical domain. The phenome-
non manifests itself in the observation that when a
machine learning model is trained on dataset A, its per-
formance on the hold-out validation part of the same
dataset (or better still, its evaluation on dataset A via
cross-validation) is better than its performance on dataset
B; and vice versa, when a model is trained on dataset B,
its (cross-validation) performance on dataset B is better
than on dataset A. The symmetrical performance drop
implies that neither database is “more difficult” than the
other. Instead, we assume that distributions of the sam-
ples of the two datasets do not completely overlap in
some abstract feature space, even though they should
sample the same overall distribution. The high-
performance deep neural networks may have poor results
during testing if the training set does not properly repre-
sent the test set.

Dataset dependence is known in diverse domains,
including, for example, lung cancer, where considerable
efforts have been made to develop reproducible machine
learning methods.45 Similar problems are unavoidable in
skin lesion classification, but controlled studies are
lacking.

There are many reasons why datasets can differ. A
simple source is differences in data acquisition: lighting
condition, the quality and uniformity (e.g., bubbles) of
the optical contact fluid, the relative proportion of the
lesion compared to the saved image frame, image sharp-
ness, and presence of device artifacts like millimeter scale
marks, among others. However, there are more subtle
issues, for example, ethnic differences not only affect skin
color (which in itself affects model performance) but also
give rise to differences in the distribution of the affected
anatomic site10; this difference is also observed in alterna-
tive pathways to melanoma.14 Melanoma, the uncon-
trolled proliferation of melanocytes manifests itself in
diverse forms (see e.g.,39). Its features may also change
due to population genetic and geographic differences44

constraining sample collections.
To explore dataset dependence and methods to reduce

it on a concrete example, we consider the binary classifi-
cation of dermoscopic skin lesion images as melanoma
versus anything else. The recognition of melanoma is
highly motivated due to medical and public health rea-
sons: while the worldwide incidence is increasing for
both melanoma43 and non-melanoma skin cancer
types,28 malignant melanoma is the most aggressive of
them, causing the highest absolute number of deaths of
skin cancers. The 5-year survival rate of melanoma is

99% if caught early, underlining the importance of early
detection. Automated recognition of melanoma has a
strong potential to contribute to this effort, especially due
to the recent upsurge of demand for telediagnosis,
caused, for example, by the COVID-19 pandemic among
other reasons.

In recent years, however, mainly due to the wide-
spread and low-cost availability of high-resolution digital
imaging, for example, with mobile phones, demand has
increased to identify malignant skin lesions from plain,
non-dermoscopic photos. These images, often called clini-
cal or macro photos, are potentially well-suited for
remote and automated diagnosis. Such applications are
challenged by two difficulties: (i) the quality of macro
images is lower, as the light reflection from the skin sur-
face makes it harder to identify features under the skin
surface, and (ii) the size and availability of high-quality
public macro image sets is limited compared to the der-
moscopic counterpart. On the other hand, automated
analysis of macroscopic images could be of great value
for many potentially concerned people in remote areas,
for example.

In this paper, we focus on the ultimate goal of classi-
fying melanoma versus non-melanoma skin lesion
images coming from an unknown source. Because of data-
set dependence, this task is harder than designing a
model which performs well on a hold-out test set of a
training dataset—which is the objective of the majority of
skin lesion classification papers in the literature. Our
choice of training and testing sets, as well as the selection
and design of models (ensembles), are motivated by this
ultimate goal.

Our contributions in this paper are as follows:

• We demonstrated dataset dependence for skin lesion
classification using three roughly equal size publicly
available mono-source (each dataset is from a single
clinic) dermoscopic image datasets.

• We explored whether common techniques used with
deep neural networks improve the generalization
power of a skin lesion classifier.

• We showed that generic image-level differences,
including the distribution of the relative size of the
lesion within the image account for a small fraction
(we observed only 5%) of the dataset dependence, the
rest must be due to more subtle dissimilarity.

• We showed that a successful strategy to tackle dataset
dependence is twofold: use an ensemble with heteroge-
neous models, and train it with a multi-source dataset.
We built a novel model ensemble consisting of 29 con-
volution networks from three model families, which
differ even in the training target and the input image.
A number of the constituent networks are especially
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suitable for taking part in a melanoma classification
ensemble, as they are either trained to recognize a
physical feature relevant to melanomas or focus on
parts of the lesion image that are considered important
to recognize melanoma by dermatologists. As the
training target is not identical across the constituent
models, conventional aggregation methods like averag-
ing or majority voting are not suitable; we used a shal-
low neural network instead. For training, the multi-
source combined International Skin Imaging Collabo-
ration (ISIC) dataset was used.

• We applied the model ensemble for a harder problem
of classifying clinical skin lesion images. Determined
the best training strategy, and achieved 79% balanced
accuracy for binary classification averaged on three
datasets.

2 | RELATED WORKS

Significant progress has happened in the last 6–7 years in
automated skin lesion classification using machine learn-
ing techniques (see30 for a quality-filtered, systematic
review). The development was fueled by the increased
availability of high-quality skin lesion datasets (see
Section 3.1), and the development of general-purpose
image classification tools, especially deep convolutional
networks (convnets) based methods,4,19,46 sparse coding,6

and more recently attention based learning.47 It is
remarkable, that a deep residual network (in particular, a
classifier based on the ResNet50 backbone) is capable to
outperform dermatologists in classifying melanoma and
atypical nevi from dermoscopic images under suitable
conditions.3

The challenges organized by the ISIC every year since
2016 contributed to focusing the efforts by practitioners
to develop better and better methods. Recently, all top
performers of the classification challenge of 2019 applied
deep learning methods, and in some cases, ensembles of
deep neural networks were used. Gessert et al.13 trained
multiple variants of different convnets, predominately
using EfficientNet architectures. These networks are
trained at different resolutions and the final prediction is
obtained by a weighted sum over the classifiers. In this
case, no special attention was given to particular features
of the images apart from cropping the lesion.

In the most recent challenge, in 2020 the winning
method used an ensemble of 18 convnets, where the
model variability was achieved by using a variety of back-
bone networks.16 They adjusted the input image size such
that the performances of the constituent networks were
comparable, so combining them by simple averaging
worked well. The convnets employed are very strong,

which was also reflected in the very substantial computa-
tional resources needed to train them.

The most recent developments since the year 2021
include the combination of deep convnets with bidirec-
tional short- and long-term memory networks1; the com-
bination of mask-based region of interest cropping,
classification based on convnets, and class balancing17;
using distributed densely connected convnets41; hierar-
chical arrangement of convnet-based classifiers2; compar-
ison of different architectures11; and careful training of a
light architecture, usable in a mobile environment as
well.21

Prior to the surge in deep learning-based methods,
work focusing on the classification of melanoma and nevi
using conventional statistical learning methods had been
explored. Melanoma and nevi were distinguished by local
feature extraction,32 which takes into account such attri-
butes as lesion shape, border asymmetry, color, and tex-
ture variations. The authors used the extracted features
with different classifiers. In more recent work, seven
hand-selected features of skin lesions indicative of mela-
noma were used,20 such as the presence of a blue-whitish
veil, or the type of pigment network and vascular struc-
tures if they are present. Separate classifiers were trained
for these features on a dataset containing detailed ground
truth values for the features. These were combined by a
weighted sum of the post-thresholded predictions: the
binary predictions of the feature classifiers were added
with a weight of either 2 or 1, and the sample was consid-
ered positive if the score reached either 1 or 3 (based on
whether the focus was on sensitivity or specificity). Since
a number of the features have strong predictive power
(e.g., the blue-whitish veil in itself predicts melanoma
with a specificity of 97%, although with only 51% sensitiv-
ity26), we incorporated them in our ensemble
(Section 3.3) using an improved data fusion mechanism.

Previous work on clinical images is typically limited
to small datasets, where an accuracy of 0.8 for binary
melanoma detection was achieved.31 Larger investiga-
tions tend to classify multiple skin lesion types,23 where
the identification of melanoma is less prominent.

In the present work, instead of simple or weighted
averaging we employ a trained method—a shallow net
committee machine—which is capable of handling
models with differing performances and complementary
strengths and fusing the above-mentioned achievements.
Model components contain potent general-purpose image
classifiers trained to distinguish melanoma from other
skin lesions, as well as classifiers focusing on specific fea-
tures. This way we exploit human efforts that went into
identifying the decisive attributes, hoping that
(a) focusing on the presence or absence of the relevant
features may increase robustness and (b) these features
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may overcome—at least partially—the limited amount of
data in some datasets.

3 | MATERIALS AND METHODS

3.1 | Datasets

In the experiments, we use a number of publicly avail-
able datasets, and a private one.

HAM10000 is a well-documented dataset40 containing
little over 10 000 dermoscopic images of skin lesions,
intended for benchmarking machine learning models.
The dataset is curated, high quality, but multi-source: it
contains four sub-datasets from two clinics. For the pur-
pose of systematic evaluation of melanoma versus non-
melanoma classification, we chose two sub-datasets:
Vidir_modern (VM) and Rosendahl (ROS), as they are
similar in size and melanoma fraction (15%–20%). For
both datasets, we kept only a single image per lesion,
ending up with 1695 and 1552 images respectively.

The publicly available ISIC challenge datasets from
years 2018 (which includes HAM10000),7,40 2019,8,9,40

and 202033 are large, high-quality multi-source datasets
intended for multiple tasks. We use the combination of
their diagnosis classification datasets (C-ISIC), where the
duplicates are attempted to be included only once.16 The
segmentation dataset of ISIC2018 was used to train the
lesion segmenter.

PH2 is a publicly available dataset obtained at the
Hospital Pedro Hispano, Matosinhos, Portugal.25 It con-
tains dermoscopic images of 200 melanocytic lesions in
total: 80 common nevi, 80 atypical nevi, and 40 melano-
mas, together with manual segmentation of the skin
lesion, and a number of dermoscopic features.

The companion dataset of the Derm7pt method20 is
available publicly; it contains image pairs of 1011 lesions.
All the lesions have both a dermoscopic image and a clin-
ical (normal or macro) photograph. About 25% of the
lesions are melanoma. In addition to histology-based
classification and patient metadata, the dataset contains
annotation for the presence of the seven visual features
(per lesion) forming the derm7pt scheme. We use both
the dermoscopic images (DERM7D) and the clinical
(macro) images (DERM7M).

PAD-UFES: a public dataset from the Federal Univer-
sity of Espírito Santo (UFES) in Brazil. The dataset con-
tains 2298 clinical (macro) images recorded with
smartphones categorized into six disease types, accompa-
nied by metadata of the lesion's features and various
demographics about the patients. The dataset only
accommodates 50 melanoma images, making it very
unbalanced.

MED-NODE: a publicly available dataset originating
from the Dermatology department of the University of
Groningen15 containing 100 nevus and 70 melanoma
clinical images.

Semmelweis University dataset: a private set of
images, collected by the Department of Dermatology,
Venereology and Dermatooncology of Semmelweis Uni-
versity, Budapest. From the collection of the University,
we tested a selection of 156 images (curated to maintain
consistent image quality and variability), of which 33%
were melanoma (Semmelweis).

3.2 | Single models

To evaluate dataset dependence, and especially to study
how it varies with the details of the model, we employed
classifiers developed for the separation of melanoma and
non-melanoma images. For baseline, we used a classifier
with a medium strength backbone: EfficientNet level
b4.36 For improved representation, the model was trained
for 9-way classification for the skin lesion categories of
the ISIC2019 dataset, and the output was subsequently
mapped to 2 classes (melanoma vs. anything other, which
included other cancerous types).

Performance and dataset dependence were evaluated
for different versions of this model when we explored
techniques intended to improve the generalization power
of deep convnets. The variations included (a) class-
weighted training: the amplitude of the convnet's weight
adjustments during backpropagation was inversely pro-
portional to the class abundance, to counteract the effects
of imbalanced training sets; (b) weight regularization,
either implemented as traditional weight decay, or was
decoupled from the gradient-based update24 using the
Adam optimizer (often called AdamW), and (c) heavy
augmentation at training. To assess backbone depen-
dence a more recent convnet was also tested:
EfficientNetv2-M from 2021.37 The setup of the classifiers
was inspired by some of the constituent models of the
award-winning algorithm developed in the SIIM-ISIC
Melanoma Classification Challenge .16 Technical details
about the models are in the Appendix.

3.3 | Ensemble models

To improve performance we employed ensembles of
models: we used different sets of constituent models and
derived results by combining their outputs in
different ways.

The constituent models included the original
18 models of the winning solution of the 2020 SIIM-ISIC
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skin lesion classification challenge.16 These are typically
based on the EfficientNet family backbones ranging from
b3 to b7 plus a ResNeSt model and a Squeeze-and-Excita-
tion-ResNeXt (SE-ResNeXt) model. The classifiers are
trained similarly to the single model of Section 3.2, with
heavy augmentation but without class-weighted training.
To increase model variability the input image size for the
different models ranged between 384�384 pixels and
896�896 pixels, and four of the models used patient
metadata as well, including sex and age. The training of
these nets is hugely resource-intensive; therefore, the
weights trained by16 have been employed.

The next three convnets, which we call feature classi-
fiers, were purpose-developed by us34 to focus on features
considered important to identify melanoma by dermatol-
ogists, in particular the widely used ABCDE rule and
Mensies' list.27 The specific information is selected by a
suitable preprocessing of the input image (see Figure 1
for illustration), which is then fed to a classifier described
in Section 3.2 with class-weighted training and heavy
augmentation. The models are the border classifier (the
closest match to the “B” Border criterion of the ABCDE
rule), keeping only a narrow strip of the lesion's image
around its perimeter; the color asymmetry classifier,
designed to capture the asymmetry (criterion “A”) in
color and structure of the lesion, by using the RGB color

differences between the original image and its reflections;
and the central classifier, intending to capture fine details
of the lesion, such as brown or gray dots, globules and
atypical pigment networks, by using a region around the
centroid of the lesion at full resolution. The above models
depend on the image mask of the lesion, which is com-
puted by a U-net-based convnet, where the skip connec-
tions have been replaced by a channel attention block
called “efficient channel attention”42 to improve perfor-
mance. More details about the feature classifiers and the
segmenter can be found in.34

The last seven models, the derm7pt classifiers are also
feature-based classifiers that target the criteria of the
7-point checklist.20 These models, unlike the previous
ones, are not trained on lesion diagnostic categories, but
instead on detecting features potentially indicative of
melanoma. The features are a pigment network, blue-
whitish veil, vascular structures, pigmentation, streaks,
dots and globules, and regression structures. Since—to
our best knowledge—only the dataset accompanying the
work of20 contains relevant ground truth labels, the
derm7pt classifiers can be trained on this single dataset
only. Each feature is classified into 2–8 categories
(“labels”), of which some are indicative of melanoma.
For example, “pigment network” can be absent, typical,
and atypical, and only atypical suggests melanoma. The

FIGURE 1 Preprocessed input

images for the feature classifiers. The

images from left to right, then top to

bottom: original image; border-image

(rotated, see text); center image; and input

to color asymmetry classifier. The contrast

for the color asymmetry image has been

increased on this figure for better

visibility. The thin vertical orange scale

bars on the original and center image

correspond to the same physical length

scale to illustrate the relation between the

images.
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classifiers are trained on these categories, which are then
mapped to the melanoma-indicative binary classes.

The ensembles used in this work employ either
18 models (the constituent models of16), 22 models (the
previous 18 models, plus our baseline model with class-
weighted training and heavy augmentation, and the three
feature classifiers), or 29 models (the previous 22 models
plus the seven derm7pt classifiers).

3.4 | Committee machine

The simplest way to combine the models is by taking the
average of their softmax outputs. This method was used
on the 18-model ensemble16 to win the 2020 SIIM-ISIC
skin lesion classification challenge, therefore we consider
this combination as the 2020 state of the art. A slightly
more sophisticated way is to average the calibrated proba-
bilities of each model, see Section 3.6 for more details.

Finally, the most flexible way to combine is a trained
method, which we call a committee machine,38 based on a
shallow neural net. A visual overview of the 29-model
ensemble combined with the committee machine is
depicted in Figure 2.

We tried a number of different architectures for the
committee machine and found the following optimal:
three fully connected hidden layers consisting of
128, 64, and 32 neurons, with a dropout of 0.5 after each
layer. During training, the categorical cross-entropy loss
was optimized by the Adams optimizer with a learning
rate of 10�4 over 30 epochs using mini-batch size 192.

3.5 | Sharpness aware minimization

Recently a new regularization technique has been intro-
duced for training artificial neural networks: instead of
simply minimizing the loss, it is beneficial to minimize

FIGURE 2 Overview of the

architecture of our largest ensemble

method (Committee-29)
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both the loss value and the loss sharpness12: the method
prefers network parameters that have uniformly low loss
in the parametric neighborhood to improve the generali-
zation capabilities of the network. This method, called
“Sharpness Aware Minimization” (SAM) has the poten-
tial of improved prediction power, at the cost of longer
training time. We experimented using this method, and
its adaptive version (ASAM),22 to train both the deep con-
vnets and the committee machine.

3.6 | Calibrated probability

The raw (softmax) output of a neural network classifier
trained on cross-entropy loss reflects the decision and the
network's confidence, but the actual value cannot be
interpreted directly as probability, for example when
training naively on unbalanced datasets. It is natural to
expect that plotting the ground truth positive fraction of
samples against the model's raw prediction could provide
a tool to obtain calibrated probabilities. Such plots have
been known in the probabilistic forecasting literature for
decades as reliability diagrams.5,18,29

We compute the calibrated probability, which for a
given raw network output estimates the fraction of the
samples that are ground truth positive (and elicit this net-
work output). Details are provided in the Appendix.

4 | RESULTS

4.1 | Empirical comparison of dataset
images

We display experiments using three independent data-
sets: ROS, VM, and DERM7D. These datasets are of com-
parable size (between 1000 and 1700 lesions per dataset),
and in principle are expected to sample the same distri-
bution: dermoscopic images of skin lesions obtained in
clinical settings, containing 15%–25% melanoma. As we
will see, despite the assumed similarity dataset depen-
dence is observed; so it is instructive to check if a simple
empirical comparison shows any difference.

In Figure 3, we show the histogram of the lesions
compared to the full image area. Dataset VM contains
more small lesions compared to ROS and DERM7D, the
latter two have a similar distribution.

In Figure 4, the color composition of the dataset
images is displayed. For a more appropriate color repre-
sentation, the images were converted to the HSV color
space. The histograms show that datasets VM and ROS
have similar color distribution, while DERM7D is slightly
different: the dominant hue is shifted towards orange

from red, the saturation has a wider distribution, and the
images are brighter.

As we have seen, the three datasets differ in simple
statistical properties. Moreover, in one of the datasets
(DERM7D), a significant number of images contain black
stripes of varying width at the image edges. To exclude
the possibility that dataset dependence is caused by these
simple differences, we transformed the VM and
DERM7D image sets to match the statistical properties of
ROS: (1) equalized the fraction histograms of the lesion
areas, (2) removed black edges from DERM7D, and
(3) equalized the color component histograms; see the
Appendix for details. The resulting histograms are shown
on the insets of Figures 3 and 4, respectively. Model per-
formances on the transformed images will be shown in
the next Section 4.2. The detailed discussion and interpre-
tation of the results are compiled in Section 5.

4.2 | Dataset dependence experiments
on mono-source datasets

In the rest of this paper in all our experiments we consid-
ered the binary classification of the images as melanoma
versus anything else, and employed five-fold cross-
validation to decrease the evaluation noise. The evalua-
tion of the training datasets was achieved via out-of-fold
predictions, while on other, non-training datasets we
averaged the output of the five models obtained from
each fold.

To investigate dataset dependence, the following
experiments were performed. For a given version of the

FIGURE 3 Histogram of the fraction of the skin lesion area to

the full image area. Inset: the same histogram, after image

transformation of the VM and DERM7D datasets, see text for

details.
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model, we trained on one of the three roughly equal size
medium size mono-source datasets (ROS, VM, and
DERM7D), and tested on all three datasets separately
(altogether 9 measurements per model version).

Balanced accuracy calculated (a) from the raw soft-
max values and (b) from calibrated probabilities are
shown in Table 1 for a range of model versions, evaluated
both for the training set and for the other datasets. For
the EfficientNet-b4 (EffNet-b4 for short) backbone, some
of the techniques, in particular, the use of both class-
weighted training and heavy augmentation resulted in a
slight improvement. These cases are displayed as the first
three bar groups in Figure 5. The figure demonstrates
that in all cases models perform better on the training
dataset than on other datasets and that dataset depen-
dence is strong. The best combination for EfficientNet-b4
and EfficientNet-v2-M (EffNetv2-M for short) was
achieved by different combinations of the applied
techniques.

We studied whether the dataset dependence is caused
by differences in simple image statistics. We checked the
performance of the best model, that is, on EffNet-b4
+ CWT + AUG, where CWT and AUG denote class-
weighted training and heavy augmentation, respectively.
We modified the datasets: VM and DERM7D images
were transformed to match the statistical properties of
ROS, see Section 4.1. As expected, performance on the
training sets did not change, but on the other datasets a
slight improvement was seen, especially when equalizing
the lesion area fraction distribution, and fixing the edges.
However, the improvement is small, amounting to only
about 5% of the dataset dependence gap (Table 2).

4.3 | Training on a large multi-source
dataset

We performed further experiments on the best (EffNet-
b4 + CWT + AUG) version of the model: training was
performed on the combined ISIC dataset, which is much
larger. However, datasets VM and ROS are subsets of
these large ISIC datasets as they are included in
HAM10000. In turn, we took advantage of (a) the
medium-sized DERM7D dataset and (b) two smaller
datasets, namely PH2 and the private Semmelweis data-
set. The employment of a large training set resulted in a
large improvement when both evaluated on the training
dataset, and also on the other datasets; see Table 3 for
quantitative numbers. The dataset dependence, in this
case, is remarkably small for averages of softmax-based
balanced accuracy (filled circles), as clearly visible in the
last bar group of Figure 5 as well. Database dependence
drops to about one-fifth of the changes shown in the first
three bar groups. However, averages of calibrated
probability-based balanced accuracy decrease only
slightly, by about 20%, or so.

FIGURE 4 Histograms of the color components: hue,

saturation, and value (intensity). The insets show the same

histograms after the image transformation of the VM and DERM7D

image sets, see text.

SOMFAI ET AL. 563

 10981098, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/im

a.22827 by E
otvos L

orand U
niversity, W

iley O
nline L

ibrary on [22/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4.4 | Experiments on model ensembles

The classification performance can be improved by
employing ensembles of models. In the experiments
below, we used different combinations of the models
described in Section 3.3. Since the three feature classifiers
and the seven derm7pt classifiers provide complementary
information to the 18 strong backbone classifier models;
their results are best combined by a committee machine,
which learns to take these properties into account –
direct averaging may yield poor results. The models of
the 22 ensembles are trained on the combined ISIC (C-
ISIC) dataset, while the seven derm7pt classifiers are nat-
urally trained on DERM7D.

The balanced accuracy values of these ensembles are
shown in Table 4. The following observations can be
made. The simple average of the softmax output of the
18 model ensemble (AVG-18), thresholded at 0.5, shows
poor performance, comparable with the C-ISIC Baseline.
The results are much better when the calibrated probabil-
ities of the 18 models are averaged (Calib.Prop.AVG-18).
When instead of averaging, a trained committee machine
fuses the softmax outputs of the 18 models (Committee-
18), the results are about the same as for Calib.Prop.-
AVG-18. Adding further models, first the four feature
models (Committee-22) and then the remaining
7 derm7pt models (Committee-29) bring improvements
in all datasets except for dataset PH2. For both the
DERM7D and the Semmelweis University dataset, our

Committee-29 ensemble performed best. The dataset
DERM7D has a special role: it is a training dataset for
Committee-29 (for 7 of its models), while it is an “other”
(non-training) dataset for all the other ensembles. Even
when restricting ensembles for which DERM7D is non-
training, still our model (Committee-22) is the best.

As we have seen, employing calibrated probabilities
can be very beneficial (e.g., when predicting on a holdout
subset of the training set, when training on small data-
sets, and when using models trained on an unbalanced
dataset without class-weighted training). However, in
other circumstances, it can worsen the results due to the
fit to some special statistical features (via the optimiza-
tion of the sigmoid function) of the training set since that
sigmoid may differ from dataset to dataset. The latter was
observed in the committee machine-based ensembles: the
prediction benchmarks on other datasets were better
when the committee machine used the softmax output of
the convnets, not their calibrated probabilities.

So far we compared various model versions based on
balanced accuracy, which is a suitable measure to use for
unbalanced datasets. However, to help comparing with
literature results, in Table 5 the sensitivity, specificity, F1

score, and raw accuracies are displayed for our best der-
moscopic model, Committee-29. While direct comparison
is difficult (as due to dataset dependence the choice of
training and testing dataset is crucial), our model com-
pares favorably to literature results. See the Appendix for
a detailed comparison.

TABLE 1 ROS, VM, and DERM7D datasets: Balanced accuracy, and balanced accuracy evaluated on the calibrated probabilities (BA on

Cal.Pr.), both at decision threshold 0.5

Model

Balanced accuracy Balanced Acc. on Cal. Pr.

Train Other Train Other

EffNet-b4 (baseline) 73.7 ± 0.46 59.8 ± 0.34 79.6 ± 0.27 67.6 ± 0.51

EffNet-b4 + CWT 74.9 ± 0.38 60.4 ± 0.28 79.9 ± 0.44 67.0 ± 0.75

EffNet-b4 + CWT + WD 74.7 ± 0.49 60.5 ± 0.48 80.5 ± 0.41 67.6 ± 0.51

EffNet-b4 + CWT + AUG 77.0 ± 0.39 61.8 ± 0.22 80.3 ± 0.68 67.9 ± 0.56

EffNet-b4 + CWT + AUG + WD 77.0 ± 0.42 61.4 ± 0.43 80.2 ± 0.42 67.6 ± 0.31

EffNet-b4 + CWT + AUG + WD* 77.0 ± 0.26 61.3 ± 0.37 80.0 ± 0.82 67.7 ± 0.41

EffNetv2-M 75.8 ± 0.47 60.4 ± 1.24 82.1 ± 0.57 69.8 ± 0.65

EffNetv2-M + CWT 76.9 ± 0.40 61.0 ± 0.66 82.5 ± 0.43 69.9 ± 0.64

EffNetv2-M + CWT + WD 76.5 ± 0.75 61.0 ± 0.66 82.5 ± 0.31 70.2 ± 0.83

EffNetv2-M + CWT + WD* 77.0 ± 0.46 60.3 ± 0.80 82.4 ± 0.38 69.2 ± 0.70

EffNetv2-M + CWT + AUG 78.1 ± 0.49 60.4 ± 0.24 80.2 ± 0.38 68.9 ± 0.51

EffNetv2-M + CWT + AUG + WD 78.0 ± 0.50 60.5 ± 0.42 80.3 ± 0.62 68.6 ± 0.24

Note: Different versions of the models include class weighted training (CWT), weight decay (WD), decoupled weight decay (WD*), and heavy augmentation
(AUG); see text for details. The model versions in boldface show progressive improvement and are also displayed in Figure 5. The best combinations for EffNet-
b4 and EffNetv2-M (indicated by bold figures) employ different components. The displayed figures are averages and standard deviations over 5 independent

runs (each run is a 5-fold cross-validation).
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4.5 | Experiments on macro images
without transfer learning

To test our ensemble for classification from clinical
images, first, we performed a set of experiments, in which
the deep convnets were trained only on dermoscopic
images. Then the macro images were predicted on these
dermoscopic-trained deepnets, and the outputs were fed
to train the committee machine. Results for balanced
accuracies are shown in Table 6.

We observed that the ensemble performed reasonably
well on macro images even without fine-tuning the deep
convnets on macro images. Interestingly training on the

very small MED-NODE dataset yielded comparable
results with the medium-size DERM7M and PAD-UFES
datasets.

4.6 | Experiments on macro images with
transfer learning

Finally, we performed experiments when some of the
deep convnets have been fine-tuned on macro images. As
before, we trained our 11 deep convnets (with the usual
ImageNet weight initialization) on the C-ISIC and the
DERM7D dermoscopic datasets, and employed the
18 models trained by.16 After obtaining the models, we
examined the effect of transfer learning (fine tuning) with
our 11 models on the macro image set of the Derm7pt
dataset, while keeping the resource-hungry 18 models
fixed. We also experimented with SAM12 and its adaptive
version ASAM22 during the cross-training step, to reduce
over-fitting to the training database. We predicted with
the trained ensembles on the macroscopic datasets -
DERM7M, MED-NODE, and PAD-UFES - to obtain soft-
max values for training and evaluating the committee
machine. The results are shown in Table 7.

It is interesting to note that for traditional (no SAM)
transfer learning the fine-tuning of the deepnets (3rd line
in Table 7) produced worse 3-dataset average results, than
no transfer learning (first and second lines). This can be a
sign of dataset-level overtraining: the small sample size of
the macro training set could not prepare the convnets to
the spectrum of samples from other macro datasets. This
argument is underpinned by the fact that the cross-
validation results for the training DERM7M dataset
increased for deepnet refinement (from about 70% to
72%), as the deepnets became more specialized for that
particular dataset.

We have overcome this problem with adaptive SAM
regularization that achieved the best results when the
regularization affected both the deep convnets and the
committee machine.

5 | DISCUSSION AND
CONCLUSIONS

There are a number of reasons why skin lesion datasets
differ from each other. According to a recent taxonomy,35

a dataset can be “biased” from an idealized dataset due to
technical reasons like device bias (e.g., resolution or
sharpness of images, black lines near edges, device arti-
facts like millimeter scales) or capture bias (light condi-
tions, image cropping policy resulting in different lesion
area fraction distribution).

FIGURE 5 Dataset dependence: the figure depicts the values

of balanced accuracy achieved by the baseline model for different

training and testing combinations. The models are trained and

evaluated via cross-validation on the ROS and VM sub-datasets of

HAM10000, on the dermoscopic subset (DERM7D) of the derm7pt

dataset, and on the combined ISIC (C-ISIC) dataset. Red bars

indicate the evaluation of the test sets on the respective training

dataset. Blue bars show the evaluation of other datasets. Individual

columns of the four-column groups are denoted as X/Y showing

the training (X) and the testing set (Y), respectively. For example,

VM/ROS denotes that training happened on VM, and evaluation

was done on the ROS dataset. Out of the four main column groups,

the first three groups are as follows: Baseline, Baseline with class-

weighted training (CWT), and Baseline with class-weighted

training and heavy augmentation (AUG). The last group (C-ISIC)

uses the same model as AUG but was (A) trained on the combined

ISIC dataset, and (B) evaluated on DERM7D and on two small

datasets: ROS and VM were left out from these comparisons since

they are part of the ISIC dataset. For each model type, the balanced

accuracy averaged over the three training datasets, and over the

other datasets (six combinations) are marked with solid black disks.

Balanced accuracy is also calculated via thresholding at 0.5 the

“calibrated probabilities.” For this case, only the averages (of the
red and blue values) are displayed as open circles.
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We compensated for the technical differences and
found that for three mono-source datasets that such tech-
nical deviations accounted for only 5% of the dataset
dependence. It then follows that the rest is due to more
subtle differences. Excluding technical differences, data-
base dependence can be due to sampling bias, such as
ethnic differences that affect (a) background skin color
and also (b) the distribution of anatomic sites, both
influencing the visual appearances of the lesions. Beyond
that, the varying amount of UV radiation in different geo-
graphic regions affects (c) tumor characteristics.44

We have studied the causes of variances in the evalu-
ations for different databases. We found that the classifi-
cation of dermoscopic skin lesion images has high
dataset dependence: the balanced accuracy drops by
14%–15% for the medium-size mono-source datasets we
tested. Standard machine learning techniques aimed at
improving the predictive power of the models, including
class, weighted averaging (in case of imbalanced data-
sets), heavy data augmentation, regularization by weight
decay, and the use of calibrated probability provide some
incremental benefit, but the improvement is small, and
the dataset dependence gap remains roughly unchanged.
Combination of compensation, for example, class-

weighted averaging, and regularization, such as weight
decay and heavy augmentation seems worthwhile in our
cases, but with a caveat: the winning method depends on
the classifier backbone network.

The first real improvement is brought about by train-
ing the models on large, multi-source datasets (see
Table 3). This way, the dataset dependence is reduced to
a few percent. The measured balanced accuracy is excel-
lent for PH2 (no dataset dependence compared to the
training C-ISIC dataset), and also good for DERM7D and
for Semmelweis. The calibrated probabilities, however, in
the case of multi-source training give rise to higher data-
set dependencies. Presumably, the extra fit to the distri-
bution of the large training dataset differs from the
distribution of the testing dataset which increases data-
base dependence somewhat. If the distribution of the
dataset is known then the method of calibrated probabili-
ties could be applied.

The second relevant improvement is to employ a
diverse ensemble of models. Our ensemble consisted of
29 models including powerful general-purpose classifiers,
models fed with preprocessed input to focus on important
features, and models directly trained on specific features
instead of the final target. The output of the constituent
models was fused by a trained method: a shallow net
committee machine, as conventional aggregation
methods like averaging or majority voting is unsuitable
for models with diverse training target. This ensemble
performed well both on the training datasets and on the
other datasets (Table 4). The dataset dependence, which
was 14%–15% for single models trained on mono-source
datasets, is reduced to a few percent for the ensemble
model.

We also aimed at classifying clinical (macro) images
of skin lesions, which is a harder problem than dermo-
scopic image classification. We observed that the ensem-
ble performed reasonably well on macro images even
without fine-tuning the deep convnets on macro images
when the macro image training was conducted on the
level of the committee machine (Table 6).

TABLE 2 Performance of the EffNet-b4 + CWT + AUG version of the model for transformed image sets. The VM, ROS, and DERM7D

image sets were altered to have equal lesion-to-image size distribution, similar image edges (removal of artifacts), and equalized color

component distributions. The displayed figures are averages and standard deviations over five independent runs

Equalizing

Balanced accuracy Bal. Acc. on Cal. Pr.

Train Other Train Other

Nothing (original) 77.0 ± 0.39 61.8 ± 0.22 80.3 ± 0.68 67.9 ± 0.56

Area 76.6 ± 0.50 62.3 ± 0.18 80.8 ± 0.86 68.3 ± 0.33

Area + edges 77.0 ± 0.17 62.5 ± 0.33 80.7 ± 0.62 68.7 ± 0.26

Area + edges + color 76.7 ± 0.26 61.5 ± 0.55 80.6 ± 0.48 68.0 ± 0.36

Note: The best values obtained on Other datasets are indicated by bold text.

TABLE 3 C-ISIC training: Balanced accuracy, and balance

accuracy evaluated on the calibrated probabilities of the EffNet-b4

+ CWT + AUG model trained on the C-ISIC dataset

Dataset
Balanced
accuracy

Bal. Acc. on
Cal. Pr.

Train: C-ISIC 84.4 ± 0.27 88.9 ± 0.17

Other: DERM7D 80.2 ± 0.43 77.3 ± 0.54

Other: PH2 84.4 ± 1.06 75.9 ± 0.80

Other:
Semmelweis

81.5 82.3

Note: The data is also plotted as the last group in Figure 5. The displayed
figures are averages and standard deviations over five independent runs,
except for Semmelweis where no error is calculated due to limited data
availability.
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With the aim for further improvements, we fine-
tuned 11 of the convnet models of the ensemble on
macro images from the DERM7M dataset. With

traditional training, that is, without (adaptive) SAM,
cross-validation results on the training DERM7M dataset
increased, but surprisingly on the test datasets,

TABLE 4 Values of balanced

accuracy evaluated for a number of

ensemble models. “Out-of-fold”: during
cross-validation predict the hold-out set

for the given fold, then average the

metrics over all five folds

Balanced accuracy (%)

Predict on out-of-fold Predict on other datasets

C-ISIC DERM7D DERM7D PH2 Semmelweis

AVG-18 89.12 79.2 84.1 77.0

Calib.Prob.AVG-18 93.45 82.5 91.9 81.8

Committee-18 93.44 83.6 90.9 83.2

Committee-22 93.56 84.8 90.9 83.1

Committee-29 93.51 84.8 91.2 83.6

Estimated error ±0.04 ±0.2 ±0.2 ±0.3 ±0.4

Note: The ensemble models are detailed in the main text. All models except Committee-29 are trained on the
combined ISIC dataset only. For Committee-29, 22 of its constituent models are trained on the combined
ISIC dataset and the remaining 7 models are in the DERM7D dataset. All models are evaluated on the
combined ISIC dataset, the dermoscopic subset of the derm7pt dataset (DERM7D), the PH2 dataset, and

Semmelweis University's dataset.

TABLE 5 Various performance

metrics for the Committee-29 model, in

addition to the balanced accuracy

presented in Table 4

Committee-29

Predict on out-of-fold Predict on other datasets

C-ISIC DERM7D PH2 Semmelweis

Sensitivity 92.6 84.5 90.0 86.3

Specificity 94.4 85.2 92.5 81.0

F1 score 73.8 73.8 81.8 76.5

Accuracy 94.2 85.1 92.0 82.7

TABLE 6 Balanced accuracy of the

best committee machines trained on

each dataset and evaluated on all three

datasets

Train dataset

Test dataset Test dataset

DERM7M PAD-UFES MED-NODE Average

DERM7M 69.7 ± 0.7 71.2 ± 1.1 89.4 ± 1.1 76.8 ± 0.6

PAD-UFES 68.1 ± 0.8 78.5 ± 1.4 87.7 ± 1.1 78.1 ± 0.7

MED-NODE 73.6 ± 1.6 72.8 ± 0.8 85.1 ± 2.0 77.2 ± 0.9

Note: The last column displays the average over all three datasets. No transfer learning has been performed
on the deepnets, the committee machine was trained with SAM.

TABLE 7 Balanced Accuracy of different versions of the model ensemble trained on the DERM7M dataset, and evaluated on the

training dataset (by means of cross-validation) and three other macro datasets

Transf. learning in
deepnets

Committee
machine

DERM7M
(train + test)

PAD-
UFES (test)

MED-
NODE (test)

Average over 3
datasets

No Plain 70.2 ± 1.1 71.6 ± 0.7 89.4 ± 0.9 77.1 ± 0.5

No SAM 69.7 ± 1.2 71.2 ± 1.1 89.4 ± 1.1 76.8 ± 0.7

Plain Plain 72.0 ± 0.6 69.2 ± 1.0 81.4 ± 1.1 74.2 ± 0.5

Plain ASAM 73.2 ± 0.6 73.1 ± 1.1 87.5 ± 1.3 77.9 ± 0.6

ASAM Plain 74.4 ± 1.5 72.4 ± 0.4 86.6 ± 1.2 77.8 ± 0.7

ASAM ASAM 74.9 ± 1.1 74.1 ± 0.5 88.7 ± 1.0 79.2 ± 0.5

Note: The last column displays the average over the three datasets. For table entries on SAM/ASAM training, only the better of the two is displayed to reduce
clutter (which was ASAM with one exception). The best values for each dataset are indicated by bold text.

SOMFAI ET AL. 567

 10981098, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/im

a.22827 by E
otvos L

orand U
niversity, W

iley O
nline L

ibrary on [22/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



deterioration has been observed. According to our results,
regularization using adaptive SAM for both the deepnets
and the committee machine is the superior strategy the
best strategy for improving the predictive power of data-
bases with unknown or imprecise statistical properties
that could be taken into account using the probability
calibration procedure (Table 7).
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APPENDIX A: CALIBRATED PROBABILITY

We obtain calibrated probability as follows. For a given
dataset selected for calibration (typically the training
dataset), the softmax predictions of the classifier are col-
lected. In the case of an imbalanced dataset, the minority
class is upsampled to obtain a balanced set of samples.
Ideally, the distribution of softmax values is roughly uni-
form, so a histogram of equal bin sizes would contain
comparable samples per bin. If this is not the case, for
example, the values tend to concentrate around 0 and
1, they are transformed by the composition of an inverse
sigmoid and a sigmoid function to increase uniformity:

s0 ¼ σβ,0 σ�1
1,0 sð Þ� �

,

where the sigmoid function is parametrized as

σβ,x0 xð Þ¼ 1
1þ exp �β x�x0ð Þ ,

and the superscript �1 denotes the inverse of the
function. The ground truth 0 or 1 values of the samples
are then collected into n uniformly separated bins in the
unit interval according to the modified prediction s'. The
average within a bin corresponds to the fraction of posi-
tive samples with similar s' values. This is expected to
cross over from 0 to 1 as s' increases: a sigmoid function
(with two parameters) is fit on the empirical observa-
tions, see Figure A1 below for illustration.

At prediction time, the softmax value s is outputted
by the classifier, which is converted to s' using

parameters fixed for the training set. Then the cali-
brated probability is the fitted sigmoid function (again,
fixed at training time) evaluated at s'. The predicted
probability calculated this way is a strictly increasing
function of s.

APPENDIX B: TECHNICAL DETAILS FOR THE
SINGLE MODELS

The EfficientNet-b4 models were trained on cross-
entropy loss for 15 epochs, and the learning rate followed
cosine annealing with initial ramp-up and maximal value
of 3 � 10�4. The images were rescaled to the nominal
image size 380 � 380 of EfficientNet b4.

To improve performance, heavy augmentation was
used, including flips, axis transpose, random shift, scale
changes, and rotations; brightness and contrast adjust-
ments, image color adjustment in hue, saturation, and
value; various blur methods (motion, median, Gaussian);
optical, grid and elastic distortions; pixel level (Gaussian)
noise and block erasure as well as the CLAHE (contrast
limited adaptive histogram equalization) method.

The EfficientNetv2-M-based classifier was similar to
the EfficientNet-b4-based one, with the exception of
using an image size of 480 � 480 pixels. The maximum
value of the learning rate schedule was 2 � 10�4 (opti-
mized by grid search).

APPENDIX C: EQUALIZING GLOBAL DATASET
IMAGE PROPERTIES

As Figures 3 and 4 demonstrate, the statistical properties
of the ROS, VM, and DERM7D datasets are not identical.
We remedy this by the following procedure. To equalize
the fraction histograms of the lesion areas, we cropped or
padded the images to achieve identical cumulative distri-
bution functions. If cdfX(a) = Pr[area fraction < a] is the
cumulative distribution function of the lesion area to
image area fraction in dataset X, then for example for a
given image in dataset VM with area fraction a, the
image is cropped or padded such that the area fraction
becomes a0 ¼ cdf�1

ROS cdfVM að Þð Þ where superscript �1
denotes inverse. The black lines at the edges of some
DERM7D images were removed by appropriate cropping.
Finally, the color component histograms were equalized:
for hue, a constant periodic shift, whereas for saturation
and value suitable strictly increasing piece-wise linear
transfer functions were applied.

FIGURE A1 Probability calibration curve for the Baseline

model trained and calibrated on the ROS dataset
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APPENDIX D: COMPARISON WITH RECENT
WORKS IN THE LITERATURE

It is natural to assume that the ultimate goal of melanoma
classification is to evaluate a skin lesion image coming
from an unknown source. As we have shown in the main
paper, due to dataset dependence that this is a more diffi-
cult task than evaluation on a hold-out test set of a given
(training) dataset. Therefore it is appropriate to present
the performance of our best dermoscopic model
(Committee-29) as in Table 4, where in addition to the
out-of-fold training set performance (93.5% balanced
accuracy for C-ISIC, and 84.8% for DERM7D which was
involved in training in 7 out of the 29 constituent
models), values for the disjunct datasets PH2 (91.2%) and
Semmelweis (83.6%) are also presented. The clinics where
PH2 and Semmelweis images were taken are completely
independent of the clinics involved in the ISIC datasets
and DERM7. There was a strong reason to select the given
training and testing datasets (the heterogenous multi-
dataset nature of C-ISIC together with DERM7D, and the
independent clinic source of PH2 and Semmelweis). Due
to dataset dependence, these figures cannot be directly
compared with literature results, where the choice of
training and testing dataset is not identical to ours.

One state-of-the-art result, with which we can com-
pare directly, is the winner of the 2020 SIIM-ISIC Mela-
noma Classification Challenge,16 see “AVG-18” entry in
Table 4. For fairness, that model was developed with a
ROC AUC metric in mind, so for our metrics, the bal-
anced accuracy (with decision threshold at 0.5 level),
using calibrated probability is more reasonable, see
“Calib.Prob.AVG-18” entry. Compared to that improved
model, our Committee-29 is no worse on C-ISIC and PH2
(differences are within error) and is better on the Sem-
melweis dataset. (Also better on the DERM7D dataset,
but for Committee-29 that one became a training dataset.)

For other recent results since 2021, only rough com-
parisons can be made, since the training and testing

datasets (typically the same dataset there) are different
from our choices. Nevertheless neither of the five works
cited below reach the 93.5% balanced accuracy value that
we obtain for C-ISIC, even though we consider the cross-
dataset predictions more important.

While the multi-step approach of,17 with 87.2% bal-
anced accuracy on ISIC-2017 (training + testing) is better
than our single-model single-dataset figures (80% for
EffNet-b4 and 82% for EffNetv2-M, trained and tested on
smaller datasets than ISIC-2017); our Committee-29 is
significantly better on C-ISIC (93.5%), which contains
ISIC-2017, although has much larger sample size. Refer-
ence 41 does not clearly state which version of the ISIC
dataset is used for training and testing and does not cite
balanced accuracy or sensitivity and specificity figures
(their highest accuracy value is 82%, but for unbalanced
datasets typical for skin lesions raw accuracy is mislead-
ing). The hierarchical approach of2 (their highest bal-
anced accuracy is 86.2%, interestingly for the smaller
backbone tried, and without augmentation) yields lower
figures for ISIC-2019, but this is for 8-way classification,
not binary as ours. The results of11 are worse than ours
(at most 66.5% balanced accuracy for PH2, and 55.5% for
ISIC2017) for all tested backbones. Kousis et al.21 consid-
ered both 7-way and binary classification of skin lesion
images (for binary the classes were benign vs. malignant,
with malignant containing non-melanoma cancer types
as well). Their best binary benchmark (89% balanced
accuracy for the full HAM10000) is better than our single
model results (on subsets of the HAM10000 datasets) but
worse than Committee-29 on C-ISIC. It may be worth
pointing out that some of the lesions in HAM10000 have
multiple images (though not identical), so a naive train-
test split might be liable for a small amount of data leak-
age. We properly deal with this issue in our mono-source
experiments by keeping only a single image per lesion in
the sub-datasets of HAM10000 (but we can not for C-
ISIC, as lesion id is not provided; however we expect the
effect is smaller there due to the larger number of inde-
pendent data sources).
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