
Distributed Data Validation Network in IoT: A Decentralized
Validator Selection Model

Mohammed B. M. Kamel

Eotvos Lorand University

Budapest, Hungary

University of Applied Sciences Furtwangen

Furtwangen, Germany

mkamel@inf.elte.hu

Kevin Wallis

University of Freiburg

Freiburg, Germany

University of Applied Sciences Furtwangen

Furtwangen, Germany

kevin.wallis@hs-furtwangen.de

Peter Ligeti

Eotvos Lorand University

Budapest, Hungary

turul@cs.elte.hu

Christoph Reich

University of Applied Sciences Furtwangen

Furtwangen, Germany

christoph.reich@hs-furtwangen.de

ABSTRACT
The generated real-time data on the Internet of Things (IoT) and

the ability to gather and manipulate them are positively affecting

various fields. One of the main concerns in IoT is how to provide

trustworthy data. The data validation network ensures that the

generated data by data sources in the IoT are trustworthy. However,

the existing data validation network depends on a centralized entity

for the selection of data validators. In this paper, a decentralized

validator selection model is proposed. The proposed model creates

multiple clusters using the distributed hash table (DHT) technique.

The selection process of data validators from different clusters in

the model is done randomly in a decentralized scheme. It provides

a global method of assignment, selection, and verification of the

selected validators in the network.

CCS CONCEPTS
• Networks → Network security; Peer-to-peer networks.

KEYWORDS
Data Validation, Data Validation Network, Cluster-Based Data

ÂăValidation, Distributed Hash Table, Internet of Things, Industrial

Internet of Things, Big Data

ACM Reference Format:
Mohammed B. M. Kamel, Kevin Wallis, Peter Ligeti, and Christoph Reich.
2020. Distributed Data Validation Network in IoT: A Decentralized Validator
Selection Model. In IoT2020: 10th International Conference on the Internet
of Things, October 06–09, 2020, Malmo, Sweden. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3410992.3411027

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IoT 2020, October 06–09, 2020, Malmo, Sweden
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8758-3/20/10…$15.00
https://doi.org/10.1145/3410992.3411027

1 INTRODUCTION
The generated real-time data on the Internet of Things (IoT) and

the ability to gather and manipulate them are positively affecting

various fields. The generated data by resources (i.e. a data source)

in IoT have to be validated to provide trustworthy data. The data

can be validated on the data source itself (when powerful enough),

the gateways, or in separate data validator nodes. There are a few

reasons to create a separate data validation network. Firstly, not all

generated data by resources will be needed by clients. Therefore,

processing only consumed data by clients considered more efficient

than processing all generated data. Besides, hundreds of resources

can be connected to a gateway, and processing all incoming data

might add significant overhead. Second, handling the generated data

locally by a gateway causes the loss of generality as each data will be

processed locally without taking into consideration other generated

data that is processed by other gateways. Furthermore, there is a

lot of unused computational power e.g. machines, production pcs,

tablets at a shop floor, etc. that can be used for data validation.

To avoid dependency on a single validation component and thus

prevent the single point of failure and attack, several distributed

validator nodes are used. Distributed data validation network uses

existing processing capacities, e.g. unused computers in production

environments or rarely used servers for the validation of data. The

client accepts the data that is received from a data source after

being validated by several data validators in the distributed data

validation network. A data validator registers its services in a cen-

tralized entity, and clients select the data validators based on their

registered services in the server. The server as a trusted centralized

entity might turn into a bottleneck in the system. Therefore, in

this paper we address the following research question: How can the
data validators in the distributed data validation network be selected
randomly without involving a trusted third party?

To answer this research question, a decentralized validator selec-

tion model is proposed. The proposed model utilized the Distributed

Hash Table (DHT) to create multiple overlays (i.e. clusters). The

data validators reside in the overlays based on their generated iden-

tifiers and clients select several data validators randomly without

any centralized entity. The rest of this paper is organized as follows.

The next section summarizes the efforts in the current research field

of the distributed data validation network. Section 3 explains the

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3410992.3411027&domain=pdf&date_stamp=2020-10-06

IoT 2020, October 06–09, 2020, Malmo, Sweden Mohammed B. M. Kamel, Kevin Wallis, Peter Ligeti, and Christoph Reich

preliminaries. In section 4 the proposed model of decentralized data

validator selection is described. Section 5 discusses the performance

analysis of the identifier assignment in the model. Finally, Section

6 presents our conclusions.

2 RELATEDWORK
Gould et al. [9] patented a data profiling system that reads data

from a data source, computes a data characterization summary,

and stores the data based on the characterization information. On

one hand, they do not consider malicious manipulation of data

and on the other hand, no distribution of the profiling module

is considered. A survey of different data profiling techniques is

given by Abedjan et al. [1]. Their work uses the same definition as

Johnson: "Data profiling refers to the activity of creating small but
informative summaries of a database" [10]. In comparison, we do

not only consider data from databases in data profiling, but also

data that is validated in real-time by validator nodes.

Thottan et al. [20] and Hood et al. [8] use a distributed agents

approach to detect anomalies in the network proactive. The dis-

tributed agents approach was able to detect a file server failure 12

minutes before it occurred. Despite the use of a distributed agents

approach, no consideration of corrupted agents is made in compar-

ison to the data validation network.

A comparison between the distributed data validation network

and the blockchain technology is given in [21]. The main difference

is that the client can decide on its own which information to store.

On the one hand, it knows all connected nodes and on the other

hand, it receives all data validation results. Thus, a blockchain

can be used to support the client or the whole distributed data

validation network but is not required. Furthermore, the use of

a simple database is sufficient for logging functionality. Authors

in [13] utilized blockchain and DHT to create a distributed open

charging system of electric vehicles. Blockchain is used to store

the timestamps while DHT is used to store the actual system data

such as the status of charge points and electric vehicles. The paper

focuses on specific subset of data validation network, the data

validity through validation rules, and proposes the distributed data

validation in DHT to define, publish, agree and enforce validation

rules.

In this paper, a novel adoption of DHT in a distributed data

validation network is discussed that focuses on the selection of

the data validator nodes in the distributed data validation network.

The assumption in the distributed data validation network is that

some of the data validators might be corrupted. Therefore, one

of the main concerns of the data validation network is how to

select several random data validators. This can be done by a trusted

selector server. Although the selector server helps to select some

random validators from the data validation network, this centralized

point might turn into a bottleneck as well as a single point of

failure and attack. Peer-to-peer schemes can replace the centralized

entity and distribute the process among all nodes. Protocols such

as Chord [19] and Kademila [15] use the DHT technique to create

the peer-to-peer network. DHT based systems assign a seemingly

unique identifier to each node that joins the network. As a result,

each data validator in the data validation network has a unique

identifier and the clients select randomly some validators based

on their identifiers. The challenge in the peer-to-peer scheme is

how to generate and assign valid identifiers to the nodes in the

network. A possible solution is the use of a centralized entity [3] to

generate and assign the certified identifiers. The centralized identity

assignment entity has the same drawback of being the bottleneck

and single point of failure and attack. As a replacement to the

trusted centralized entity, the identifier generation can be done

locally by each node in the network. The proposed model allows

the data validators to generate their identifiers, and the clients to

select the data validators randomly based on their identifiers and

validate the selected identifiers.

3 PRELIMINARIES
The following section explains the two essential technologies: the

distributed data validation network and the distributed hash table.

These technologies are the basis for the following chapters.

3.1 Distributed Data Validation Network
Data quality is an essential prerequisite for data analysis. To en-

sure data quality, there are several quality dimensions such as

completeness, uniqueness, timeliness, validity, accuracy, and con-

sistency. [4][17] The most common causes of poor data quality are

system changes, software errors, erroneous data as well as data

integration and data migration.[6][16] Intentional manipulation

of the data is often not listed among the causes. This is where

the distributed data validation network [21] is applied. It uses ex-

isting processing capacities, e.g. unused computers in production

environments or rarely used servers for the validation of data.

Figure 1: Distributed Data Validation Network Structure

To avoid dependency on a single validation component and

thus prevent the single point of failure, several distributed validator

nodes are used. Figure 1 shows the structure of the Distributed Data

Validation Network. On the left side the data sources 𝑠1, 𝑠2, ..., 𝑠𝑛 (e.g.

sensors of machines) are located which are connected to gateways.

There can be several gateways with different data sources. The

communication with the validation network is always performed

via a gateway because sensors have no network capability on the

one hand and the other hand, not enough computing power to

encrypt the communication. Besides, the gateways are classified as

trustworthy, and together with the clients on the right side, they

form the trust anchors. The validators 𝑣1, 𝑣2, ..., 𝑣𝑚 are in the middle

in two different clusters. Either rule-based approaches or machine

learning approaches can be used for validation. The client collects

the validation results of the used validators and calculates a data

quality value from them, which indicates whether the data should

Distributed Data Validation Network in IoT: A Decentralized Validator Selection Model IoT 2020, October 06–09, 2020, Malmo, Sweden

be used or not. The data quality value can be classified as 0 (normal)

and 1 (anomalous). The clusters in the data validation network

correspond to a logical classification of the validators (e.g. by the

operating system, location, etc.) and each validator is contained in

one or more clusters.

To prevent an attacker from sending multiple false validation

results to a client, a challenge-response method is used. The client

randomly decides which validators from which clusters will pro-

vide the validation results for upcoming data quality considerations.

Results from non-permitted validators can thus be dropped. The val-

idators are selected according to their registered validation services

on the Consul
1
server. The Consul server is a centralized entity,

which is replaced by a decentralized approach in this paper.

The data validation network generates additional communica-

tion in the system. To keep the amount of data sent as low as

possible, the actual data is sent directly from the gateway to the

client and the selected validators. The selected validators therefore

only need to forward their respective validation results to the client.

3.2 Distributed Hash Table
DHT is a distributed system that creates a structured peer-to-peer

scheme in a network. The participating nodes in the network can

join and leave the DHT at any specific time. Upon joining a new

node, a new identifier is assigned to it. Using identifiers instead

of other types of addressing (e.g. IPs) helps to balance the data

storage among participating nodes without any centralized entity.

In addition to load balancing, it solves the scalability by providing

the service of generating the identifiers by the participating nodes

themselves. There are several protocols to implement DHT such as

Chord [19], Kademila [15], Pastry [18], and Tapestry [22].

DHT uses a large address space of integer numbers. The size

of the address space depends on the fixed output size of the func-

tion that is used to generate the identifier. To achieve the random

function of identifier generation and uniform distribution of data

among all participating nodes a collision-resistant one-way hash

function is used in DHT.

Definition 3.1. A function H(.) that maps an arbitrary length

input 𝑀 into a fixed-length digest 𝑑 is called collision-resistant

one-way hash function it satisfies the following properties:

• Given𝑀 , it is easy to compute 𝐻 (𝑀).
• Given 𝑑 , it is hard to find any𝑀 s.t. 𝑑 = 𝐻 (𝑀).
• Given 𝑑 = 𝐻 (𝑀) and 𝑀 , it is hard to find 𝑀 ′

s.t. 𝑀 ′ ≠ 𝑀

and 𝐻 (𝑀) = 𝐻 (𝑀 ′).
• It is hard to find two distinct messages𝑀 ′

and𝑀 ′′
s.t.𝑀 ′ ≠

𝑀 ′′
and 𝐻 (𝑀 ′) = 𝐻 (𝑀 ′′).

If the solution can be computed in the polynomial time, therefore

it is considered easy to compute. On the other hand, if there is

no solution known to solve the problem in polynomial time, it is

considered hard [5].

Similar to hash tables [14], the data in DHT is stored in key/value

pairs. The value parameter includes any stored information about

the data (e.g. the address of the data) and can be retrieved from

the DHT based on its associated key. The key parameter of the

key/value pair is generated by feeding specific information (e.g.

1
https://www.consul.io/

the attribute of the stored data such as its name, its type, etc.) to

the collision-resistant one-way hash function which produces a

uniformly distributed randomized hash value that is used to deter-

mine the responsible node in the network of storing this specific

pair. DHT has two implementation interfaces: put and get. The Put

interface takes the key/value pair and stores this pair in the DHT.

The Get interface takes a single parameter key and lookup in the

DHT to retrieve the identifier of a node that is responsible to store

the corresponding value to the given key. In the DHT the store (i.e.

put interface) and lookup (i.e. get interface) operations are done

with an upper bound of 𝑂 (𝑙𝑜𝑔(𝑁)), in which 𝑁 is the number of

nodes in the DHT. This feature guarantees that any participating

node in DHT can store a pair of key/value or lookup based on a

given key by routing through of maximum 𝑙𝑜𝑔(𝑁) nodes.

4 PROPOSED DATA VALIDATION MODEL
4.1 Model Participants
There is a set of resources S that are considered the sources of data

in the system. Each subset of resources in S is connected to the

network through a gateway 𝑤 ∈ W. The sets of S and W are

disjoint sets. At any given time the relation between members of S
and members of W is many-to-one. Each 𝑠 ∈ S generates the data

and sends it through its directly connected gateway 𝑤 . The data

that is generated by members of S is consumed by the set of clients

C. Each client 𝑐 ∈ C might ask for data that is generated by any non

empty subset of S. Some nodes are mostly idly grouped in a set V .

These nodes are used to perform the calculation required to validate

the incoming data from any 𝑠 ∈ S. A client after discovering a

resource (i.e. a data source), selects randomly several validators

fromV to perform the validation process of the data. The validation

process is done by checking the data based on a set of thresholds

or using machine learning techniques. Figure 2 shows the overall

structure of the model.

Figure 2: DHT Overlays in Data Validation Network

4.2 SystemWorkflow
The IoT consists of a large number of resources that represent the

sources of data in the network. Since these resources are distributed

in different physical and logical parts, having a centralized entity to

control all these resources is not feasible. In decentralized resource

discovery [11, 12] the resources are registered in different parts

https://www.consul.io/

IoT 2020, October 06–09, 2020, Malmo, Sweden Mohammed B. M. Kamel, Kevin Wallis, Peter Ligeti, and Christoph Reich

workflow.png

Figure 3: SystemWorkflow

of the network and there is no trusted third party that control all

registered resources. During the lookup phase, certain resources

that provide specific data are discovered.

The data validation is done by a number of distributed nodes that

represents the distributed data validation network. We assume that

any validator node can validate any data. The client and after discov-

ering the required resources selects randomly some data validators

from different available clusters (i.e. DHT overlays) and requests the

gateways to transmit the generated data by those resources directly

to the client as well as to the selected data validators. A list of the

selected data validators is passed to the corresponding gateways.

The selection process of the data validators can be reissued after a

specific period. In the next phase, the gateways digitally sign the

data and transmit that to the requested client and the list of the

selected data validators by the client. The sets gateways and clients

are classified as trustworthy and together form the trust anchors.

The nodes in the distributed data validation network reside in

different logical clusters using different DHT overlays. If selected by

a client, each of the data validators in the distributed data validation

network validates the data transmitted from resources through

their connected gateways based on a set of validation rules. If

the data rely upon the permitted range then the data considered

valid, otherwise the data validation fails. The incoming data to the

selected data validators are verified using the public key of the

respective gateways. Then, the verified data are checked by the

data validators to ensure that they meet expected standards and are

within anticipated tolerances, using a configurable series of rules

and properties.

The data that is received by a client is verified using the public

key of the gateways. The verified data is considered valid depending

on the decision of the selected data validators. Figure 3 illustrates

the workflow of the proposed model.

4.3 Security Properties
Before defining the security properties we need to define assump-

tions regarding the participants of the model. The members of W
and C are considered to be semi-honest. The semi-honest entities

are assumed to follow the protocol properly, but they are allowed to

store the received data locally in an attempt to get more information

from the stored data. The members of W receive the data from

resources that are connected to them. These data will be passed

to members of C and V based on their request. The members of

C are the request initiators. Regarding these requests we need to

assume that from the viewpoint of any node 𝑐 ∈ C, the proportion
of the resources in S and data validators inV can be assumed to

be malicious. Some publicly verifiable data related to the validators

can be unforgeable, in the sense that any 𝑣 ′ ∈ V \ {𝑣} can forge

the related data 𝑑𝑎𝑡𝑎𝑣 of a given validator 𝑣 ∈ V with negligible

probability only. A function has a negligible success probability if it

occurs with a probability smaller than any polynomial fraction [2].

The proposed model is assumed to achieve computational security,

i.e. every probabilistic polynomial-time (PPT) adversary can break

the security properties with negligible probability only.

The proposed model creates several clusters and includes the

validators in the clusters based on their attributes. The goal for our

proposed model is to allow any 𝑐 ∈ C to be able to select some

data validators to be responsible for the validation of the data in a

computationally non-predictable way. This is done through a novel

multi-cluster model with random nodes for each validation process.

Note that within this paper we don’t suggest any countermeasures

against fake data providing, rather we are focusing on the correct,

unique, and verifiable assignment of identifiers of the validators

which leads to random selection of data validators. The identifier

assignment in the proposed model has to satisfy the following

security properties:

• Correctness: The valid identifiers generated by semi-honest

data validators can be verified by all clients.

• Soundness: The PPT validators can generate more than

one verifiable identifiers for a given cluster with negligible

probability only.

4.4 Model Description
The nodes inV have to be able to generate their identifiers to be

used in the clusters of the network (i.e. a partial identifier for each

cluster) without any centralized entity. Besides, the clients in C
have to be able to verify the identifier of any selected data validator

𝑣 ∈ V at any given time. The requirements of the identifiers are as

follows:

• Each validator node in the data validation network has to be

able to generate only one valid identifier per cluster.

Distributed Data Validation Network in IoT: A Decentralized Validator Selection Model IoT 2020, October 06–09, 2020, Malmo, Sweden

• A client has to be able to verify the identifier of a selected

validator node without any centralized entity.

Clusters. There are 𝐿 clusters in the data validation network.

Each cluster indicates a separate DHT overlay. The number of

the clusters (i.e. 𝐿) is defined based on the use cases and available

categories in a system. Each node in the data validation network has

a set of attributes that allow it to be part of one or more available

clusters in the data validation network. Therefore as illustrated

in Figure 4 a physical node might be part of one or more clusters

(i.e. DHT overlays) based on its attributes. The attributes of a node

𝑣 ∈ V are defined by an Attribute Vector (AV). The𝐴𝑉 of a validator

node indicates the clusters that can be joined based on its attributes.

𝐴𝑉 is public and can be checked and verified by any node in the

system.

Figure 4: Physical and Logical Data Validators

The model uses a collision-resistant one-way hash functions

H(.) (Definition 3.1) to generate the identifiers of the members of

V . Each node can have up to 2
𝑚

partial identifiers derived from

its unique identity (e.g. its IP). The𝑚 parameter defines the fixed

number of bits required to index all clusters in the data validation

network and chooses in a way such that 𝐿 ≤ 2
𝑚
. For example, in

an organization that has eight clusters in the system, the value

of𝑚 parameter will be set to three. A data validator node in this

network might need to generate eight partial identifiers. The partial

identifiers of a node are used to reside it in the different clusters

in the data validation network. The clusters are categorized based

on a distinct feature, like types of the operating systems or the

locations of a data validator. The most important issue here is that a

category has to be chosen in a way that there is a possibility to verify

that a data validator has legitimately joined this specific overlay,

i.e. its current clusters match its attribute vector. Considering an

organization with eight clusters, table 1 shows the details of used

overlays in the system.

Identifier Assignment Method (IDAM). During the design of the

Identifier Assignment Method (IDAM), two main cases for identifier

generation have been studied: either each data validator has the

same identifier in all different clusters it belongs to, or it has differ-

ent identifiers (called partial identifiers) for each cluster it belongs

to. In the first case that a data validator has the same identifiers,

the clients to select 𝑡 different number of physical data validators

from 𝑡 clusters have to generate 𝑡 random identifier. In the second

case that a data validator has 𝑡 different partial identifiers in the

clusters it belongs to, the client to select 𝑡 different number of data

Table 1: Example of an organization with 𝐿 = 8 and𝑚 = 3

Cluster Type Category AV value

0 OS Windows 1xxxxxxx

1 OS Linux x1xxxxxx

2 OS Mac xx1xxxxx

3 OS Others xxx1xxxx

4 Location location 1 xxxx1xxx

5 Location location 2 xxxxx1xx

6 Location location 3 xxxxxx1x

7 Location location 4 xxxxxxx1

validators from 𝑡 clusters has to generate one random identifier.

Since the ratio of clients selecting a set of data validators is higher

than the ratio of data validators’ life cycle, then adopting the partial

identifiers as in the second case is more efficient. Upon joining a

new data validator node 𝑣∗ and depending on its attribute vector

𝐴𝑉 𝑣∗ , the node 𝑣
∗
can be part of one or more clusters in the data

validation network. The (IDAM) is used to derive partial identifiers

of 𝑣∗ using hash function H(.). Different collision-resistant one-way
hash functions such as SHA-256 or SHA-512 [7] can be used in

IDAM during the process of generating the partial identifiers of

data validators in the different clusters. There are two versions of

IDAM, namely IDAMv1 and IDAMv2. The main differences in the

two methods are the usage of a hash function to generate the partial

identifiers that distinguish them from each other as follows:

• IDAMv1: Takes the address and the attribute vector as an

input and uses the hash function H(.) once to derive 𝐿 differ-

ent partial identifiers by applying different permutations on

the hash value.

• IDAMv2: Takes the address, the attribute vector, and the

cluster number as an input and uses the hash function 𝐿

times to generate 𝐿 different partial identifiers.

The IDAMv1 (see Figure 5) takes the address and the attribute

vector of 𝑣∗ as input and using the hash function H(.) generates its
hash value. Then permutes the output of the hash function using

𝑃𝑒𝑟𝑚𝑥 (.), which is a fixed and public permutation for the cluster

𝑥 . The binary value of the cluster number is then prepended to

the output of the permutation to form the partial identifier of data

validator 𝑣∗ in cluster 𝑥 :

𝑖𝑑𝑥𝑣∗ = 𝐼𝐷𝐴𝑀𝑣1(𝑣∗, 𝑥) = (𝑥 |𝑃𝑒𝑟𝑚𝑥 (𝐻 (𝑎𝑑𝑑𝑣∗ |𝐴𝑉𝑣∗))) (1)

The IDAMv2 (see Figure 6) takes the address and the attribute

vector of 𝑣∗ along with the cluster number as input and using the

hash function H(.) generates its hash value. The resulted hash value

will be the partial identifier of 𝑣∗ in the corresponding cluster:

𝑖𝑑𝑥𝑣∗ = 𝐼𝐷𝐴𝑀𝑣2(𝑣∗, 𝑥) = (𝑥 |𝐻 (𝑎𝑑𝑑𝑣∗ |𝐴𝑉𝑣∗ |𝑥))) (2)

Joining the data validation network. When a new node 𝑣∗ wants
to join the network, it first chooses the clusters that are legitimate to

be part of. As the clusters are designed in non-overlapped categories,

it is easy for a node to choose its proper clusters that can join based

on its attribute vector 𝐴𝑉 𝑣∗ . For instance, if a node in the example

organization given on table 1 that runs a Linux operating system

and resides in location 1 joins the data validation network (i.e.

IoT 2020, October 06–09, 2020, Malmo, Sweden Mohammed B. M. Kamel, Kevin Wallis, Peter Ligeti, and Christoph Reich

Figure 5: Generation process of partial identifiers in IDAMv1

Figure 6: Generation process of partial identifier of Cluster
in IDAMv2

𝐴𝑉 𝑣∗ = 01001000), it can be part of cluster 1 and 4. It will generate

its partial identifiers based on its address 𝑎𝑑𝑑𝑣∗ and using 𝐼𝐷𝐴𝑀 to

join cluster 1 (using generated 𝑖𝑑1𝑣∗) and cluster 4 (using generated

𝑖𝑑4𝑣∗). The new node can join these clusters using generated partial

identifiers by creating two pairs as ⟨𝑖𝑑1𝑣∗ , 𝑎𝑑𝑑𝑣∗ ⟩ and ⟨𝑖𝑑4𝑣∗ , 𝑎𝑑𝑑𝑣∗ ⟩
to be added to the respective clusters. After that, the validator 𝑣∗

publishes its partial identifiers (𝑣∗, 𝑖𝑑1𝑣∗ , 𝑖𝑑4𝑣∗).

Registering in the overlays. A node after joining the network and

generating its relevant identifiers has to register in the overlays.

The registration is done by issuing a lookup process (get_validator
procedure) for its partial identifiers in the overlays that it belongs

to. Therefore, the 𝑣∗ runs the get_validator (𝑖𝑑1𝑣∗) and get_validator
(𝑖𝑑4𝑣∗) in cluster 1 and cluster 4, respectively. Since 𝑣∗ is the only
node that currently knows the result, the request after passing

through a few intermediate nodes will finally reach the 𝑣∗. The 𝑣∗

returns the pairs ⟨𝑖𝑑1𝑣∗ , 𝑎𝑑𝑑𝑣∗ ⟩ and ⟨𝑖𝑑4𝑣∗ , 𝑎𝑑𝑑𝑣∗ ⟩ in cluster 1 and

cluster 4, respectively. As a result, the 𝑣∗ information will be part

of the respective clusters stored in multiple nodes in the network.

get_validator interface. Each node in a data validation overlay

stores a pointer to its close and distant nodes in 𝑑 lists of size 𝑘 each.

The 𝑑 is equal to the number of bits in the output digest of the used

hash functionH(.) and 𝑘 parameter is chosen such that the members

in any given subset 𝑀 ⊂ V with cardinality 𝑘 is unlikely to fail

(i.e. being inaccessible or offline). The 𝑗th list includes the pointers

to maximum 𝑘 nodes that the 𝑗 − 1 prefix bits of their identifiers

matches, where 𝑗 ∈ [1, 𝑑]. XOR metric is used for the distance

calculation. The identifiers are XORed and the result indicates the

distance between any two identifiers in the network. This means

that the closest node to node 𝑛 is itself, 𝑛 ⊕ 𝑛 = 0, and the distance

between any two nodes are symmetric, 𝑥 ⊕ 𝑦 = 𝑦 ⊕ 𝑥 = 𝑧

The get_validator interface takes an identifier as input and re-

turns the communication information (i.e. IP and port) and the iden-

tifier of the closest node to the given identifier. Similar to find_node
procedure in Kademlia[15], a receiver of the get_validator proce-
dure either returns the tuple of (IP, port, and identifier) of the node

that its identifier matches the given parameter or the𝛼 closest nodes

that it knows to the required identifier. 𝛼 is a system-wide concur-

rency parameter with a default value set to 3. The get_validator
procedure continues to request the 𝛼 closest available nodes in the

local lists until retrieving the closet node to the requested identi-

fier. DHT guarantees that the get_validator procedure returns the
answer within 𝑂 (𝑙𝑜𝑔(𝑁)) steps, in a network with 𝑁 nodes.

Select the data validators. . Data validators are selected randomly.

During the selection process, one or more different validators can

be selected from each cluster. A client 𝑐 ∈ C generates a random

identifier 𝑟 . Then the client 𝑐 lookup in the system to find the closest

data validator to 𝑟 in each cluster. The data validators are selected

and verified by the clients as follows:

(1) The client 𝑐 chooses a random identifier, 𝑟 .

(2) Then 𝑐 lookup in the different clusters (i.e. DHT overlays)

to get the communication information (IP and port) and the

identifier of the data validator that its identifier in the overlay

matches or closest to 𝑟 and retrieved it from the overlay.

(3) The client verifies the retrieved data (communication address

of the data validator) by verifying its attribute vector and
recomputing its identifier (and its particular partial identifier)

using the corresponding 𝐼𝐷𝐴𝑀 .

(4) After verification, the client sends the list with the commu-

nication information to the gateway and the gateway uses

this information to forward the signed data to the correct

validators. Furthermore, the gateway also sends validators

information about the target client.

4.5 Advantages of the Proposed Model
Using a distributed data validation network compared to a normal

connection without data validation capability offers the following

advantages:

• Data Quality Improvement: Validation of the data for anom-

alies and thus an increased quality of the data for further

processing, e.g. predictive maintenance or condition moni-

toring.

• Single Point of Failure Prevention: By using a distributed data

validation approach, the dependency on a single validation

node is split, resulting in a lower success probability for an

attack on the system.

• DoS Prevention: By using clusters based on validation node

properties and random selection among those validators, a

Distributed Data Validation Network in IoT: A Decentralized Validator Selection Model IoT 2020, October 06–09, 2020, Malmo, Sweden

DoS attack on specific validator nodes (i.e. physical valida-

tors) or a specific property (e.g. onWindows systems) cannot

shut down the entire validation system.

• Confidentiality: Encrypted communication and thus more

difficult information theft.

• Integrity: The transmitted sensor data are digitally signed

and can therefore neither be manipulated nor enriched with

additional data.

• Availability: Due to better data quality, predictions become

more accurate and systems are better utilized. This increases

the overall availability of all systems based on a distributed

data validation system.

• Non-Repudiation: By using a unique ID assignment mecha-

nism, (e.g. such as Consul with certificates), it is ensured that

the individual validation nodes of the validation network

cannot deny their respective validation results.

• Authenticity: In addition to non-repudiation, the unique ID

assignment mechanism with non-repudiation property also

guarantees the identity and thus the authenticity of the vali-

dation nodes.

• Clusters: By using clusters based on the attributes of validator
nodes, the probability of success for an attack is reduced. An

attack uses a vulnerability in a specific system, for example,

a vulnerability in Windows. Selecting validator nodes from

different clusters (for example, Windows and Linux) ensures

that an attacker will not succeed based on a single known

vulnerability.

One of the core parts of a data validation network is the valida-

tor selection phase. Distributed data validation network such as

[21] uses a central validation node identifier generation and selec-

tion approach. Although this centralized approach can be partially

distributed and protected using redundant servers (e.g. mirrored

Consul servers), the distributed approach we show here offers some

advantages:

• Independence from a Central Instance: The use of a central
instance is no longer necessary and thus the single point of

failure in identifier generation and selection disappears.

• Different Identifiers per Cluster: When using clusters, an indi-

vidual identifier per cluster can be generated quickly for a

validation node. This results in a performance gain as long

as the number of identifier renewals (e.g. daily) is less than

the selection of identifiers in the same period.

• Verification of a Node’s Identity: The generated identity of

a validation node can be verified by any other node (see

Section 5.1).

Despite the advantages mentioned, there are still some research

questions that need further clarification. These include 𝑎) the use
of validation nodes with different validation capabilities and 𝑏) the
verification of the correctness of the attribute vector.

5 EVALUATION
For the evaluation, a proof for the correctness and a proof for the

soundness are given. Furthermore, a timing analysis that compares

IDAMv1 with IDAMv2 and shows their respective timing benefits

is done.

5.1 Security Analysis
In the following, the proofs for correctness and soundness are given.

Theorem 5.1. The system satisfies correctness.

Proof. Suppose that a semi-honest node 𝑣 joins the data valida-
tion network, with an address 𝑎𝑑𝑑𝑣 and the attribute vector 𝐴𝑉 𝑣 .

Assume that 𝑣 generates and publishes its partial identifier 𝑖𝑑𝑥𝑣 for

cluster 𝑥 by 𝐼𝐷𝐴𝑀𝑣1 or 𝐼𝐷𝐴𝑀𝑣2 and let 𝑐 ∈ C be any client. Since

the functions 𝐻 (.), 𝑃𝑒𝑟𝑚𝑥 (.) and the data 𝑎𝑑𝑑𝑣, 𝐴𝑉 𝑣, 𝑖𝑑𝑥𝑣 are pub-

licly known, the client 𝑐 can verify whether 𝑖𝑑𝑥 is generated with

𝐼𝐷𝐴𝑀𝑣1 or 𝐼𝐷𝐴𝑀𝑣2, respectively. This completes the proof. �

Theorem 5.2. If the address and the attribute vectors of every
validator are unforgeable, 𝐻 (.) is a collision-resistant one-way hash
function and for different clusters 𝑥 ≠ 𝑦 we have 𝑃𝑒𝑟𝑚𝑥 ≠ 𝑃𝑒𝑟𝑚𝑦 ,
then the system satisfies soundness.

Proof. Let 𝑣 ∈ V be any validator and let X be the set of

clusters 𝑣 is able to join. Every semi-honest 𝑣 can generate one

verifiable identifier 𝑖𝑑𝑥𝑣 for every 𝑥 ∈ X as a consequence of The-

orem 5.1 and semi-honest 𝑣 will generate only one identifier for

every cluster. Hence we can assume that 𝑣 is malicious. The gener-

ation of one correct identifier per cluster is also trivially possible

for malicious validators as well. Now suppose that the 𝑣 is able to

generate a second identifier 𝑖𝑑𝑥 ′𝑣 ≠ 𝑖𝑑𝑥𝑣 for some cluster 𝑥 ∈ X.

First, suppose that 𝑣 uses 𝐼𝐷𝐴𝑀𝑣1. Then since 𝑃𝑒𝑟𝑚𝑥 ≠ 𝑃𝑒𝑟𝑚𝑦

for 𝑦 ∈ X \ {𝑥} from 2 we get that 𝑣 can find 𝑎𝑑𝑑 ′𝑣 and 𝐴𝑉
′
𝑣 with

𝑖𝑑𝑥 ′𝑣 = (𝑥 |𝐻 (𝑎𝑑𝑑 ′𝑣 |𝐴𝑉 ′
𝑣)). This means that 𝑣 is either able to find a

collision in 𝐻 (.) or can forge its address and attribute vector which

is non-negligible probability. Second, suppose that 𝑣 uses 𝐼𝐷𝐴𝑀𝑣2.

Then 𝑣 can find 𝑎𝑑𝑑 ′′𝑣 and 𝐴𝑉 ′′
𝑣 with 𝑖𝑑𝑥 ′𝑣 = 𝐻 (𝑎𝑑𝑑 ′′𝑣 |𝐴𝑉 ′′′

𝑣 |𝑥)).
Similarly as above, then 𝑣 is either able to find a collision in 𝐻 (.) or
can forge its address and attribute vector which is non-negligible

probability. �

5.2 IDAM Analysis
For the practical consideration of 𝐼𝐷𝐴𝑀𝑣1 and 𝐼𝐷𝐴𝑀𝑣2, a proto-

typical implementation of the two approaches was developed. The

implementation is based on C and uses the hash function of the

OpenSSL
2
(OpenSSL 1.1.1d) library. The hash function is SHA-256

and the input is an IP address (four unsigned chars - correspond-
ing to 32 bits, see Listing 1).

Listing 1: IP Address Datatype
struct IP {

unsigned char a;
unsigned char b;
unsigned char c;
unsigned char d;

};

The tests are performed on a Raspberry PI 3 Model B Vi. 2.

A unique identifier is calculated for 10,000 different IP addresses.

Assuming that the permutation function 𝑃𝑒𝑟𝑚𝑥 (.) of 𝐼𝐷𝐴𝑀𝑣1 is

shifting 𝑥 times, The results of the identifier generations are listed

2
https://www.openssl.org/

https://www.openssl.org/

IoT 2020, October 06–09, 2020, Malmo, Sweden Mohammed B. M. Kamel, Kevin Wallis, Peter Ligeti, and Christoph Reich

in Table 2. Line one 𝐷𝑒𝑓 𝑎𝑢𝑙𝑡 is the time for calculating a hash

value without additional computational steps. It is shown that the

calculation speed, even on a less powerful processing unit, is very

fast and below 10 ms. Therefore, both approaches 𝐼𝐷𝐴𝑀𝑣1 and

𝐼𝐷𝐴𝑀𝑣2 are sufficient for real-world applications.

Table 2: Simulation results for 𝐼𝐷𝐴𝑀𝑣1 and 𝐼𝐷𝐴𝑀𝑣2

Method Summarized Duration Averaged Duration

𝐷𝑒𝑓 𝑎𝑢𝑙𝑡 40.994 ms 0.004 ms

𝐼𝐷𝐴𝑀𝑣1 76.405 ms 0.008 ms

𝐼𝐷𝐴𝑀𝑣2 60.639 ms 0.006 ms

In the given table, a separate identifier was created for each

cluster. The advantage of the 𝐼𝐷𝐴𝑀𝑣1 approach is that as soon as

an identifier has to be prepared for several clusters, only a single

hashing process is required. All additional identifiers are gener-

ated from the existing identifier using the permutation function

𝑃𝑒𝑟𝑚𝑥 (.) in each cluster. Assuming that 𝑛 cluster identifiers are

required, a hashing ℎ takes 0.004ms, an average shifting 𝑠 takes

0.004ms (0.008ms - 0.004ms = 0.004ms) and an 𝐼𝐷𝐴𝑀𝑣2 process 𝑧

takes 0.006 ms, the following applies:

𝑛 ∗ 𝑧 > ℎ + 𝑛 ∗ 𝑠 (3)

𝑛 >
ℎ

𝑧 − 𝑠
(4)

Thus, if 𝑛 > ℎ
𝑧−𝑠 , 𝐼𝐷𝐴𝑀𝑣1 is faster than 𝐼𝐷𝐴𝑀𝑣2, which in the

present measurements mean that as soon as 𝑛 > 3 𝐼𝐷𝐴𝑀𝑣1 is faster.

6 CONCLUSION
In this paper, a decentralized model for data validator selection

using DHT technology in distributed data validation network has

been proposed. The proposed model creates a set of clusters in the

data validation network that are created by using multiple DHT

overlays. Each data validator and depending on its attribute vector

can be part of one or more clusters. The proposed model allows

data validators to generate their identifiers without any centralized

entity. These identifiers can be later verified by the clients. There are

two distributed identifier generation methods in the model, namely

IDAMv1 and IDAMv2. The analysis showed that the IDAMv1 is

faster than IDAMv2 if there are more than two clusters. Using

a randomly generated identifier, the clients can select randomly

several data validators from different clusters. The selected data

validators are then used to validate the generated and transmitted

data by IoT resources.

Although the distributed model can be a replacement for the

centralized approach, some other issues have to be studied in future

works. Among them are the selection and creation of the clusters,

verification of the attribute vector of each data validator, and secure

transmission of the decisions between the selected data validators

and the clients.

ACKNOWLEDGMENTS
This research has been partially supported by project no. ED_18-

1-2019-0030 (Application-specific highly reliable IT solutions) has

been implemented with the support provided from the National

Research, Development and Innovation Fund of Hungary, financed

under the Thematic Excellence Programme funding scheme and by

the Ministry of Science, Research and the Arts Baden-Württemberg

Germany.

REFERENCES
[1] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2015. Profiling relational

data: a survey. The VLDB Journal 24, 4 (2015), 557–581.
[2] Nirdosh Bhatnagar. 2019. Mathematical Principles of the Internet, Two Volume Set.

CRC Press.

[3] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and Dan S

Wallach. 2002. Secure routing for structured peer-to-peer overlay networks. ACM
SIGOPS Operating Systems Review 36, SI (2002), 299–314.

[4] DAMA UK Working Group. 2013. The Six Primary Dimensions for Data Quality
Assessment. Technical Report. https://www.whitepapers.em360tech.com/wp-

content/files_mf/1407250286DAMAUKDQDimensionsWhitePaperR37.pdf

[5] Ivan Bjerre Damgård. 1989. A design principle for hash functions. In Conference
on the Theory and Application of Cryptology. Springer, 416–427.

[6] Leah Davidson. 2019. What Is Data Quality and Why Does it Matter? https:

//www.springboard.com/blog/data-quality/

[7] Don Eastlake and Tony Hansen. 2006. US secure hash algorithms (SHA and

HMAC-SHA).

[8] Hood, Cynthia S and Ji, Chuanyi. 1998. Intelligent agents for proactive fault

detection. IEEE Internet Computing 2, 2 (1998), 65–72.

[9] Paul Bay Joel Gould, Carl Feynman. U.S. Patent 8868580B2, Oct. 2014. Data

Profiling.

[10] Theodore Johnson. 2009. Data Profiling. Springer US, Boston, MA, 604–608.

https://doi.org/10.1007/978-0-387-39940-9_601

[11] Mohammed B. M. Kamel, Bruno Crispo, and Peter Ligeti. 2019. A Decentralized

and Scalable Model for Resource Discovery in IoT Network. In 2019 International
Conference on Wireless and Mobile Computing, Networking and Communications
(WiMob). IEEE, 1–4.

[12] Mohammed B. M. Kamel, Peter Ligeti, and Christoph Reich. 2020. Private/Public

Resource Discovery for IoT: A Two-Layer Decentralized Model. In The 12th
Conference of PhD Students in Computer Science. SZTE.

[13] Benedikt Kirpes, Micha Roon, and Christopher Burgahn. 2019. Distributed

data validation for a key-value store in a decentralized electric vehicle charging

network. (2019).

[14] Ward Douglas Maurer and Theodore Gyle Lewis. 1975. Hash table methods.

ACM Computing Surveys (CSUR) 7, 1 (1975), 5–19.
[15] Petar Maymounkov and David Mazieres. 2002. Kademlia: A peer-to-peer infor-

mation system based on the xor metric. In International Workshop on Peer-to-Peer
Systems. Springer, 53–65.

[16] Irene Mikhailouskaya. 2020. Your Guide to Data Quality Management. https:

//www.scnsoft.com/blog/guide-to-data-quality-management

[17] Leo L. Pipino, Yang W. Lee, and Richard Y. Wang. 2002. Data Quality Assessment.

Commun. ACM 45, 4 (April 2002), 211âĂŞ218. https://doi.org/10.1145/505248.

506010

[18] Antony Rowstron and Peter Druschel. 2001. Pastry: Scalable, decentralized

object location, and routing for large-scale peer-to-peer systems. In IFIP/ACM
International Conference on Distributed Systems Platforms and Open Distributed
Processing. Springer, 329–350.

[19] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Balakrish-

nan. 2001. Chord: A scalable peer-to-peer lookup service for internet applications.

ACM SIGCOMM Computer Communication Review 31, 4 (2001), 149–160.

[20] Thottan, Marina and Ji, Chuanyi. 1998. Proactive anomaly detection using

distributed intelligent agents. Ieee network 12, 5 (1998), 21–27.

[21] K. Wallis, F. Schillinger, C. Reich, and C. Schindelhauer. 2019. Safeguarding

Data Integrity by Cluster-Based Data Validation Network. In 2019 Third World
Conference on Smart Trends in Systems Security and Sustainablity (WorldS4). 78–
86.

[22] Ben Y Zhao, Ling Huang, Jeremy Stribling, Sean C Rhea, Anthony D Joseph, and

John D Kubiatowicz. 2004. Tapestry: A resilient global-scale overlay for service

deployment. IEEE Journal on selected areas in communications 22, 1 (2004), 41–53.

https://www.whitepapers.em360tech.com/wp-content/files_mf/1407250286DAMAUKDQDimensionsWhitePaperR37.pdf
https://www.whitepapers.em360tech.com/wp-content/files_mf/1407250286DAMAUKDQDimensionsWhitePaperR37.pdf
https://www.springboard.com/blog/data-quality/
https://www.springboard.com/blog/data-quality/
https://doi.org/10.1007/978-0-387-39940-9_601
https://www.scnsoft.com/blog/guide-to-data-quality-management
https://www.scnsoft.com/blog/guide-to-data-quality-management
https://doi.org/10.1145/505248.506010
https://doi.org/10.1145/505248.506010

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Distributed Data Validation Network
	3.2 Distributed Hash Table

	4 Proposed Data Validation Model
	4.1 Model Participants
	4.2 System Workflow
	4.3 Security Properties
	4.4 Model Description
	4.5 Advantages of the Proposed Model

	5 Evaluation
	5.1 Security Analysis
	5.2 IDAM Analysis

	6 Conclusion
	Acknowledgments
	References

