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ABSTRACT Local 3D point feature descriptors play an important role in many areas of computer vision,
such as object recognition, registration, etc. There are many well-functioning feature descriptors, but they
are typically real-valued and multidimensional vectors, leading to high computational complexity in nearest
neighbor searches. To overcome this challenge, methods binarizing real-valued descriptors have emerged.
In this paper, we first investigate the available binarization methods and standalone binary feature descriptors
and show that existing binarization techniques cannot generally achieve good performance for arbitrary
feature descriptors. To remedy this problem, we propose a new binarization method called quantile-based
binarization (QBB) that can be applied to any real-valued feature descriptors. It analyses the distribution of
feature descriptors that is then used to form meaningful groups along each dimension. To this end, QBB
computes quantiles of the empirical distribution and the interval lengths (bin sizes) defined by quantile
boundaries. Finally, it assigns a binary code to each group and concatenate them to get the final binary
descriptor. QBB is able to adaptively compute the number of bits based on a capacity constraint, i.e., with the
appropriate capacity setting, the resulting binary descriptor can be used on devices with lower computational
power. We evaluate the descriptiveness of well-known descriptors binarized by QBB and compare them
to state-of-the-art methods. According to our evaluation, QBB is able to create binary descriptors whose
descriptiveness is closer to the real-valued descriptors than prior approaches. Finally, we also show that
QBB can even compete with standalone binary feature descriptors.

INDEX TERMS 3D point cloud, feature descriptor, binarization.

I. INTRODUCTION
Many novel applications using 3D point clouds have recently
emerged. For example, a robot manipulating the environment
needs the ability to accurately sense the real world around
it. Though stereo cameras and other approaches enable
to obtain depth information from 2D images, similarly
to human beings, point clouds collected by dedicated 3D
depth sensors are more accurate. With the development of
self-driving vehicles, the processing of 3D point clouds
has become an even more important task. Detecting other
vehicles or pedestrians around the vehicle is essential
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for safe and reliable control. Such methods (especially
point cloud registration and object recognition algorithms)
mostly rely on local feature descriptors. A local feature
descriptor is a vector that characterizes the environment
of a point in the point cloud and thereby makes points
distinguishable from each other. The best known feature
descriptors include FPFH [1], SHOT [2], SI [3], RoPS [4] and
USC [5]. Survey papers like [6] have already collected and
categorized these descriptors. Guo et al. [7] systematically
compare local feature descriptors using different datasets.
Their comparison covers a number of different aspects (such
as computational effiency, time-crucial, and space-crucial
applications, etc.) that count in real-world use cases. Their
work concludes that in most application areas FPFH or SHOT
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shows the best performance, depending on the number of
points.

The most common operation with feature descriptors is
the nearest neighbor search. The classic local descriptors
are multi-dimensional real-valued features (e.g., SHOT has
352 dimensions), resulting in storage and computational
costs that are too high for real-time applications. Augmented
reality apps relying on 3D point clouds are very popular
on mobile devices with high-quality imaging sensors. For
these apps, real-time processing is utmost important for good
quality of experience. Someworks [8], [9] propose dimension
reduction of feature descriptors to accelerate the expensive
point cloud matching step. Dimension reduction techniques
can compress feature descriptors so that their descriptiveness
is not significantly limited.

Another way to solve this problem is to create binary
descriptors (i.e., bit sequences) from existing feature descrip-
tors. Algorithms that convert a real-valued feature vec-
tor into a binary feature vector are called binarization
methods. A binary vector requires much less space than
real valued ones. Furthermore, Hamming distance between
bit sequences can be performed with bit operations, thus
nearest neighbor searches can be executed significantly
faster [10].

A typical approach for binarization is to replace the real
numerical values of the original descriptor with one or
more bits along a dimension. There are general binarization
methods that can be applied for any real-valued descriptors.
More advanced methods exploit the special properties of
how a feature descriptor is computed. Finally, there are
standalone binary feature descriptors, which create binary
features directly.

In this work, we present a novel 3D point feature descriptor
binarization method that creates groups by quantizing the
distributions of each element in the original descriptor.
These groups are then represented by bit sequences whose
concatenation results in the binary descriptor. Using this
method, the nearest neighbor searches can be performed
much faster, and the descriptors require less storage. The
main contributions of this paper are the following:
• We propose a new parameter-free binarization method
called QBB that can generally be used to binarize any
classic feaure descriptors.

• We compare the performance and properties of QBB
to the available binarization methods and standalone
binary feature descriptors and show that QBB overper-
forms them on real-world point cloud data.

• We present possible variations of QBB which in some
cases have a higher descriptiveness than the original
descriptor.

• The source codes of QBB and other binarization
methods used in the evaluation of this paper is publicly
be available on GitHub.1

1https://github.com/ELTE-IK-Point-Cloud-Group/QBB

FIGURE 1. Grouping of binarization methods and standalone binary
descriptors. RCS is a standalone, real-valued descriptor, but the authors
gave 3 methods to binarize it. Two of these methods are general enough
to be applied to any arbitrary real-valued descriptor.

II. RELATED WORK
The first method for binarizing real-valued 3D point feature
descriptors was only published in 2015; it was called
B-SHOT [10]. Since then, a number of works have been
published that also attempted to solve the task of binarization.
Binary feature descriptors can be divided into two groups
(Fig. 1). One group includes methods that convert an existing
real-valued descriptor into a binary one (such as B-SHOT).
The advantage of these methods is that they can be applied to
any real-valued feature descriptor. In general, binary feature
descriptors created after binarization are less descriptive than
the original descriptors, but their space requirements are
much less, and nearest neighbor searches are faster on them.
One drawback of this approach is that the real-valued feature
descriptor must first be calculated and then converted to
binary, which takes extra time.

The binarization method by Prakhya et al. [10] aims
at binarizing SHOT, a real-valued feature descriptor. The
algorithm can binarize any real-valued vector, but it was
inspired by the distribution of SHOT descriptors, and works
best in combination with this descriptor method. The two
parameters of the algorithm are encoding length (L) and
encoding ratio Er (percentage). Each real value corresponds
to one bit, i.e. the length of the descriptor does not change.
The first step is to select L consecutive value from the
original, real-valued descriptor and compute their sum. The
corresponding bits of the values that contributed to Er%
of the sum are assigned a bit with value 1, the other bits
will be 0. By concatenating the bit sequences of length L,
we obtain the final descriptor. According to the authors, the
B-SHOT gives the best results with L = 4 and Er = 90%.
Later, they compared B-SHOT with B-FPFH and B-ROPS
using the same algorithm. Their results show that while
B-SHOT’s descriptiveness is close to the original descriptor,
the other two binarized descriptors are far behind. The authors
acknowledge that in some cases the loss of information could
be high.
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Later, similar work was published, also aimed at binarizing
the SHOT real-valued feature descriptor [11]. Lin et al.
proposed a generic version of the B-SHOT algorithm
(Gray-SHOT [12]) in which the encoding length (L) and
the number of bits used to encode each element became
input parameters. By increasing the number of bits used
to represent an element, it was possible to binarize the
real-valued descriptor with less loss of information, but the
length of the bit sequence increased. When multiple bits are
used to represent an element, Gray code was applied so that
the Hamming distance of the consecutive groups is always
1. Their parameter tuning shows that the best results can be
obtained when the encoding length is 352, and the number of
bits used to represent each element is 2. The CI-SHOT [11]
method is very similar to Gray-SHOT. This method also
uses encoding length and can use more bits to represent an
element. The main difference compared to the previously
mentioned methods is that the CI-SHOT algorithm decides
the value of bits based on a method inspired by Chebyshev’s
inequality. Based on their parameter tuning, the best choice
for encoding length is 11, and the number of bits representing
one element is 2. The authors only applied on the SHOT
real-valued descriptor their binarization methods.

Yang et al. proposed a real-valued feature descriptor called
Rotational Contour Signatures (RCS) [13]. In their work, they
give three methods to convert their descriptor into a binary
one. All of these methods are general enough to be applied to
an arbitrary real-valued descriptor. The first method is called
thresholding, which works by calculating a threshold t . For
each element from the original descriptor, a bit is assigned
depending on whether the current value is greater or less
than the threshold. The authors calculated the median for
an element and considered this value as the threshold. Their
second approach is vector quantization, where one element
is represented by several bits, resulting in 2N number of
groups, where N is the number of bits for one element. The
advantage of this method is that it can store more information,
but it uses more bits and is more sensitive to noise. The
third method is called geometric binary encoding. It works
with a series of real values and compares the adjacent values.
It assigns bits for each real value depending on the result of
the comparison. If a value is greater than the previous value,
the corresponding bit is 1, otherwise 0. According to their
results, the best binarization method was vector quantization,
especially with 2 or 4 bits. In some cases, the binarized
version performed almost as well as the real-valued descriptor
itself. Our solution is based on vector quantization as well.

Another group of binary descriptors is the standalone
binary descriptors. These are descriptors that produce a
binary descriptor by default. The advantage of this approach
is that no separate binarization step is required. The
disadvantage compared to the other approach is that if a
new, better descriptor is available, the binarization methods
can easily produce a binary version of it too. The currently
available standalone feature descriptors can be divided into
two groups. The first group includes methods that build

a voxel grid at the local neighborhood of the point and
assign a bit to each voxel. The other group includes
methods that project neighbor points onto planes or axes
and process the resulting lower-dimensional data to calculate
descriptors.

Two well-known voxel-based standalone descriptors
are LoVS (Local Voxelized Structure) [14] and VBBD
(Voxel-Based Buffer-Weighted Binary Descriptor) [15].
These two methods are very similar. In the first step, both
methods compute a local reference frame (LRF) around the
selected point and the points in the local neighborhood are
transformed with respect to the LRF (although they use
different LRF computations). In the next step, they build a
voxel grid, and each voxel will correspond to one bit. In the
case of LoVS, a bit value will be 1 if one or more point
falls in the corresponding voxel, otherwise 0. The parameters
of the method are the radius by which the neighborhood is
determined and the number of voxels along an axis (m). The
length of the descriptor is m3. In the case of VBBD, the
number of bits is also determined by the number of voxels,
but the calculation of the value of the bits is more complex.
The points closer than a radius h to a voxel center are part of
the buffer region of that voxel. The Gaussian kernel density
is calculated for each voxel’s buffer region. The value of a
bit corresponding to a voxel will be 1 if the Gaussian kernel
density of the voxel’s buffer region is greater than the average
Gaussian kernel density. By increasing the number of voxels,
more information can be stored, but if the number is too high,
they become sensitive to noise. For both methods, the authors
recommend setting m = 9 number of voxels along each ax,
so the length of the descriptors will be 729 bits.

Projection-based methods have in common that they
project points in their environment onto planes or axes. For
this reason they need to compute an LRF and transform
their neighboorhood respect to it. The 3D Binary Signatures
(3DBS [16]) takes the local environment, not by a radius,
but the N nearest neighbors with angular constraints. This
is important because in the case of 3DBS the number of
neighbors determines the length of the descriptor. First, the
algorithm projects the normal vector of each point onto the x,
y, and z axes. In the second step, it creates ordered point pairs
and compares the projected values of their normal vectors.
Each ordered point pair correspond to 3 bits (compared
projected values for each ax). After concatenating the bits,
the length of the final descriptor is 3 ·

(N
2

)
. The Binary Shape

Context (BSC [17]) and the Binary Rotational Projection
Histogram (BRoPH [18]) project the points in the local
neighborhood onto xy, xz, and yz planes. The idea is to
reduce the binarization of 3D points back to 2D binarization.
BRoPH is similar to the RoPS [4] real-valued descriptor. The
algorithm rotates the local point cloud around the x, y, and
z axes with an angle (θ) and after each rotation projects the
points onto three planes. These 2D image patches are then
divided into L × L bins. For each bin, the points in the bin
are counted (distribution matrix D) and the average of their
depth values (depth image I ) is calculated. The bit sequence

VOLUME 10, 2022 67841



D. Varga et al.: QBB: Quantile-Based Binarization of 3D Point Cloud Descriptors

is calculated based on these 2D image patches. The length
of the final descriptor is 3 × 3 × dbrophr × dbrophbl (brophr
is the rotation size, brophbl is the bin length for every 2D
image patches). BSC differs from BRoPH in that it projects
the points onto the three planes without rotation, but also
produces 2D image patches based on distribution and depth.

III. METHOD
A. MOTIVATION
Guo et al. highlight in their work [7] that most feature
descriptors use histograms. Though there are significant
differences between them, the feature elements are derived
from the weights of histogram bins.

The FPFH feature descriptor is based on three angular
features: θ , α and φ [1] that are related to the normal vectors
and the difference between the vectors of two points. For
each point in the point cloud, FPPH takes all the neighboring
points, calculate the three angular features for that point and
its neighbors, and finally, for all the features calculated for
all the points, the three histograms are formed (with 11 bins
which is the default parameter in the PCL [19]). The elements
of the feature descriptor of a given point are computed based
on how many of the feature values for the point-neighboring
point pairs fall within the intervals of the bins. (If none of the
feature values for the point-neighboring point pairs fall into
a given bin, the element associated with that bin is 0, if all
of them fall into a given bin, the element is 200, based on
the Open3D FPFH implementation [20].) Since φ is the most
interesting (cf. Fig. 3), we only show its typical histogram
and empirical density functions associated with two bins
in Fig. 2. If a bin has a small weight, there will be many
0 values along the corresponding dimension of the feature
descriptors. This is shown in Fig. 2/(b). For high bin weights,
the values along the relevant dimension may give a more
interesting density function than in the previous case, which
is illustrated in Fig. 2/(c). Based on our experience, it can
be said in general about the different feature descriptors that,
for different reasons, it is typical that along many dimensions
there will be many 0 values and only a few will have a really
interesting density function.

In our binarization method, we will aim to group the
values of feature descriptors along a dimension. We will not
distinguish between values that form a group in the following.
The grouping should therefore be done in away that preserves
as much as possible the descriptive power of the original
feature descriptors.When grouping along a dimension, one of
the goals will be to have roughly the same amount of adjacent
values in the groups, since we want each group to be equally
important. Therefore, the boundaries of the groups are based
on quantiles. Assuming that for a fixed feature descriptor
method per point cloud type, the values along a dimension
come from a similar density function, a sufficiently large
training set can be used to determine the boundaries of the
groups in advance. The question is how many groups should
be formed. This will be explained in more detail below. For
now, we just note that

FIGURE 2. (a) Histogram of the feature φ used to calculate the FPFH
descriptor. (b) Empirical density function of the 25th element of the FPFH
descriptor (corresponding histogram bin denoted by blue) (c) Empirical
density function of the 28th element of the FPFH descriptor
(corresponding histogram bin denoted by green).

• For those dimensions of the FPFH along which there are
many values of 0, even the median value (or even the
third quartile) may be 0, which means that we will not be
able to define more than two groups. (Zero values form
the first group and the the rest form the second group.)
In this case, it will not even be satisfied that the same
amount of values is added to the groups.

• In fact, if we take more and more groups, even for the
more interesting dimensions, the boundaries of a group
may be too close to each other, so there will be a stopping
condition.

The groups are then represented by bit sequences that
takes some account the proximity between the groups.
(Essentially, the values are quantized along a dimension
and the quantized values are binarized, but the specific
quantized values are irrelevant to our method.) For the full
feature descriptor, binarization is achieved by concatenating
the bit sequences obtained along the dimensions. Our
method will be called quantile-based binarization (QBB for
short).

B. QUANTILE-BASED BINARIZATION (QBB)
This subsection provides a detailed exposition of our method.
First of all, let us introduce the notations. D dimensional
feature descriptor space is assumed. The n feature descriptors,
the d th element of ith feature descriptor and the list of the d th

elements of feature descriptors are denoted by X1, . . . ,Xn,
X (d)
i and X(d)

= (X (d)
1 , . . . ,X (d)

n ), respectively (i = 1, . . . , n,
d = 1, . . . ,D). Write

X(d)
min = min{X (d)

1 , . . . ,X (d)
n } and

X(d)
max = max{X (d)

1 , . . . ,X (d)
n }.
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Let Q(d)(p) be the empirical quantile function of X(d) for 0 ≤
p ≤ 1. The tuple-builder notation:2

(f (k) | k = 0, . . . ,K )

is modelled on the set-builder notation and this generates a list
with first element f(0), second element f(1), etc. Let round(x)
be the nearest integer function which is the integer closest to
x ∈ R.
For the sake of simplicity, power-of-two groups will be

formed. It is not necessarily true that the more groups we
define along dimensions, the better the feature descriptor will
retain its descriptive power, because we do not want to put
very similar values into separate groups (for example, if the
density function has a relatively narrow peak somewhere,
we do not want to cut it in half). The choice of the number
of groups is somewhat related to the choice of the number
of bins when we want to approximate the distribution with a
histogram. It is true that there should be enough bins to ensure
that a bin does not hide any relevant information about the
shape of the distribution, but ignores details due to random
fluctuations [22].

If we want to avoid grouping the values mentioned above
into two separate groups, care must be taken to ensure that
the boundary of a group cannot be placed anywhere, but it
should be expressed as a multiple of a unit. The unit is given
by the uniform bin width of the histogram of the values,
which can be determined by several methods. Because of its
popularity, we have used the Freedman-Diaconis rule [23]
with the addition of a limit below which the bin size cannot
go in order to speed up the calculation. Let bw denote the bin
width, then:

bw = max

(
2 ·

IQR
(
X(d)

)
3
√
n

,
X(d)
max − X(d)

min

104

)
(1)

where IQR
(
X(d)

)
is the interquartile range, i.e. Q(d)(0.75)−

Q(d)(0.25).
In accordancewith the above, on the one hand, Algorithm 1

determines, for a given dimension d , the maximum group
number for which details due to random fluctuations are
(expected to be) ignored. On the other hand, it computes the
boundaries for each group up to the maximum group number.
For a given group number gnum, this means that the values
along dimension d of the feature descriptors are sorted in
ascending order and divided into gnum equal parts, i.e. the
gnum-quantiles are determined.With the addition that we can
only put the boundaries where the unit boundaries are. In fact,
the algorithm will only run with the specified loop as long
as there is a group whose interval length is 0. The algorithm
will return a set Gd with one element representing a group
number and its associated boundaries. The reason why the
algorithm does not only return boundaries for the maximum
number of groups is that we also want to consider a capacity
limit. We will come back to this.

2Similar notation can be found e.g. in Schrodt’s thesis [21]

Algorithm 1 Determination of Groups for Dimension d

INPUT: X(d), bw F the definition of bw is given in Eq. 1
OUTPUT: the set Gd of groups and their associated bound-

aries up to the maximum number of groups that can be
requested

1: Gd ← {}
2: gnum← 2
3: repeat
4: endps ← (round(Q(d)(k/gnum)/bw) · bw | k =

0, . . . , gnum)
5: mdiff ← min({endps[k + 1] − endps[k] | k ∈

[0, gnum− 1]})
6: if mdiff > 0 ∨ gnum = 2 then
7: Gd ← Gd ∪ {(gnum, endps)}
8: end if
9: gnum← 2 · gnum
10: until mdiff > 0
11: return Gd

In the case of the FPFH method, the maximum group
numbers along the dimensions were determined separately
for several point clouds (derived from the data set described
in Sec. IV), which are shown in Fig. 3. It can be seen
that for each dimension Algorithm 1 gives roughly similar
group numbers for different point clouds. For this reason,
a reasonable number of groups along the dimensions can be
defined in advance, which will preserve a roughly similar
descriptive power of the FPFH for future point clouds.

There are several ways to represent group indices with bit
sequences. It is important to note that the similarity between
binarized descriptors will be calculated by Hamming distance
(and a modified version of it, see Sec. V-B). Our goal is
to make the distance between binarized descriptors reflect
the distance between real-valued descriptors as closely as
possible while keeping the number of bits low. We need
log2 gnum bits to encode gnum group at least. On the other
hand, to minimize information loss, if there are k groups
between two groups, we want their Hamming distance to be
k + 1. A weaker condition is that we expect the Hamming
distance between bit sequences representing adjacent groups
to be exactly 1. A suitable method to satisfy the weaker
condition is Gray code [24], which uses log2(gnum) number
of bits. However, if we want to keep the distance between the
groups accurate, it is easy to see, that we need gnum−1 bits at
least. TheMersenne numbers expressed in the binary numeral
system are suitable for this [25]. We will be referred to it as
Mersenne code. Fig. 4 and Table 1 illustrate the Gray and
Mersenne code representations for 8 groups.

C. CAPACITY LIMIT
By introducing a capacity limit, our algorithm allows us to
maximize the amount of memory occupied by the binarized
descriptor. In this case, we choose the Gray code because it
is the most compact binary representation of the information
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FIGURE 3. Number of groups per point cloud for FPFH. The different dimensions of the descriptor are colored according to which feature they
belong to. This figure also shows why feature φ is the most interesting.

FIGURE 4. Empirical density function of the 28th element of FPFH, after
grouping. Table 1 shows the Gray and Mersenne code representations of
groups.

TABLE 1. Gray and Mersenne codes for 8 groups. Hamming distance of
every two adjacent Gray code is 1. In case of Mersenne code, every code
has the same Hamming distance as the distance between their groups.

and our evaluation shows that, in general, very similar
accuracy can be achieved using the Gray code as with the
Mersenne code. To avoid of information loss, each element
from the original descriptor should receive one bit at least. It is
assumed that D ≤ C , otherwise the number of elements of
the original descriptor can be reduced by changing its internal
parameter(s) (e.g. by decreasing the number of FPFH bins).
We would like to distribute the remaining C − D bits among
the elements in proportion to their requests. To solve the
problem, let rd the number of bits requested by d th element,
which is equal to below:

rd = log2(max{gnum | (gnum, endps) ∈ Gd }). (2)

TABLE 2. Descriptors and their parameters. Each descriptor were
computed with radius = 0.06. Floats and bits denoted by (f) and
(b) respectively.

Also, denote the sum of all requested bits by R:

R =
D∑
d=1

rd . (3)

If R ≤ C , then each element can get the requested bits,
since it fits within the capacity limit. The interesting case is
R > C . Then the d th element will get ld bits:

ld = 1+ b(C − D) · (rd − 1)/(R− D)c (4)

because each element must recieve 1 bit and the remaining
C − D bits must be distribute by the weight of the requested
bits (rd − 1)/(R − D) (D ≤ C < R is satisfied by the
precondition, i.e. ld will be a positive integer in any case).

IV. EVALUATION
Our method was compared with all known 3D point
feature descriptor binarization methods (B-SHOT [10],
CI-SHOT [11], Gray-SHOT [12]) and standalone binary
descriptors (VBBD [15], LoVS [14]). To evaluate QBB,
we selected real-valued descriptors from those available in
Point Cloud Library [19] and Open3D [26]. The methods
being compared were applied to the real-valued descriptors
used by the authors themselves. Therefore not all binarization
methods were run on all descriptors. The binarization meth-
ods (B-SHOT, CI-SHOT, Gray-SHOT) and the standalone
binary descriptors (VBBD, LoVS) were implemented in
Python by us. Our implementations and evaluation code
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FIGURE 5. Point cloud registration with different descriptors: (a) FPFH, (b) QBB-FPFH, (c) B-SHOT. The transofrmation matrix was calculated by
RANSAC algorithm, implemented in Open3D [26]. The point clouds were cropped for better visualization.

are available via the following link: https://github.com/
ELTE-IK-Point-Cloud-Group/QBB.

The runtime of teh various algorithms strongly depends
on their implementation. As stated above, all methods were
implemented in Python without parallelization. The runtime
of the binarization methods for a point cloud is below a
second (few seconds for B-SHOT) on a notebookwith regular
configuration (Intel Core i5-10300H 2,50GHz; 16GB RAM,
2933MHz). Therefore, we estimate the theoretical compu-
tational complexity of each method in Sec. V-D, instead of
comparing the runtimes of unoptimized implementations.

An important parameter for real-valued and binary feature
descriptors is the radius, which is used to select the
neighborhood of the point. The size of the radius depends
on the point cloud, its noisiness, the size of the surfaces
represented by the cloud, etc. Usually, a descriptor with
a larger radius is able to encapsulate more information.
Following Guo et al. [7], to ensure similar conditions for all
descriptors, the same radius was used in all cases.

The publicly available 7-Scenes RGB-D redkitchen [27]
and Redwood livingroom [28] datasets were used for the
evaluation. In these data set, a typical point cloud contains
roughly 250 000 points. For faster evaluation, the point
clouds were downsampled to a voxel leaf size of 0.01,
reducing the typical size of the clouds to 100 000 points.
The redkitchen dataset contains 60 overlapping point clouds
with ground truth transformation. To make our evaluation
accurate, we selected overlapping cloud pairs that overlap
by at least 65% (45 point cloud pairs met this criterion).
Fig. 5 shows an aligned point cloud pair from the dataset with
different descriptors (the point clouds are cropped for better
visualization).

The Precision-Recall Curve (PRC) is widely used to
compare the descriptiveness of a descriptor [7]. To obtain
the precision and recall values, we iterate over all of the
45 overlapping cloud pairs. From both clouds, we select
sample_num points with random choice (we set sample_num
to 5000, which is usually of 5% of all points). The descriptors
are calculated for the selected points. In the next step, point
pairs (correspondences) are created from the two clouds
based on the nearest neighbor ratio [29]. We find the two
nearest neighbors of each descriptor of one cloud from

the descriptors of the other cloud. If the ratio between
the first and the second nearest neighbor is greater than a
threshold τ , we consider the point and its nearest neighbor
a correspondence. We then need to check how many of the
correspondences are correct. To do this, we transform the
point clouds using the ground-truth transformation to align
them. If two points of a correspondence are closer to each
other in Euclidean space after the transformation, than a given
support radius, this correspondence will count as a correct
match (for support radius we used the same radius as for the
descriptors: 0.06). In the next step we calculate the precision
and recall values:

Precision =
Number of correct matches
Number of correspondences

(5)

Recall =
Number of correct matches

Number of possible correct matches
(6)

To obtain the Precision-Recall Curves we iterate through
the τ threshold values from 0.5 to 1.We start from 0.5 because
this means that the second nearest neighbor is twice as far
away as the first nearest neighbor, which is very rare for real
point clouds. However, at lower values, precision and recall
can take extreme values. To illustrate the descriptiveness of a
method in a compact way, we will compare the area under
curve (AUC) values for different descriptors (the AUC is
calculated using metrics.auc function from the scikit-learn
library [30]). Since we randomly select points for the
evaluation, we run the evaluator 5 times for each pair of
clouds and average out the results.

V. RESULTS
In this section, we present the results of our evaluations,
where we compared QBB to other relevant methods. Unless
otherwise indicated, QBB methods use the default Gray code
and conventional Hamming distance without capacity limit.
In Fig. 6 (a) we can see the precision and recall values of
real-valued descriptors. It also includes the binarized version
of FPFH with our method (QBB-FPFH). Spin Image has
the worst performance of the real-value descriptors. This
result is consistent with the work of Guo et al. [7] where the
performance of Spin Image also worse compared to other
descriptors (FPFH, SHOT, RoPS). When threshold τ is low,
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FIGURE 6. (a) PRC of QBB-FPFH and real-valued descriptors. (b) Comparing dimensionality and area under curve (AUC) values of QBB-FPFH and
standalone binary descriptors. (c) The effect of capacity limit on descriptiveness of QBB-FPFH.

SHOT and RoPS can achieve high accuracy, but at a higher
threshold, the accuracy decreases drastically. Only FPFH can
consistently achieve good precision. It can be seen that the
performance of QBB-FPFH is almost as good as the original
descriptor, and better than the other real-valued descriptors.
We will see later that QBB achieves the best results by
binarizing the FPFH descriptor.

A. STANDALONE BINARY FEATURE DESCRIPTORS
Fig. 6 (b) shows how QBB-FPFH performs against two
standalone binary descriptors. According to the authors of
VBBD and LoVS, their methods give the best results when
using 729 bits (9 voxels along each ax). The size of the
QBB-FPFH with no capacity limit is 77 bits, yet it has a
higher AUC than standalone descriptors of 729 bits. If we
reduce the number of bits of the standalone methods to
64 and 343 (only cubic numbers are possible), we can
see that their AUC value is much smaller. VBBD and
LoVS are very similar methods, but they calculate LRF
in different ways, which may explain the difference in
performance. In Fig. 6 (c), we can see how the descriptiveness
of the QBB-FPFH changes as the capacity limit decreases.
As expected, using a capacity limit has a negative effect on
performance. The largest decrease in AUC occurs when the
capacity limit is changed to 50. Based on the figure, if we
want to use a descriptor on a device with very limitedmemory
and computational capacity, QBB-FPFH is suitable even with
limiting its length to 65 bits.

B. POSSIBLE VARIATIONS OF QBB
The advantage of binary feature descriptors is that
1) they require less memory usage and, 2) the Hamming
distance computed by bitwise operations is much faster
than computing Euclidean distances between real-valued
descriptors. In this subsection, we would like to describe
modifications to the QBB that improves its performance at
the expense of the advantages mentioned above. As described
in Sec. III, we considered several different methods for

encoding groups. Table 1 shows the Gray and Mersenne
codes in the case of 8 groups. In Fig. 7, we can see that
using Mersenne code, QBB can achieve better performance.
However, the number of bits needed for one element with real
value increases from log2 N to N − 1. Thus, it requires more
memory. However, the increase in the number of bits also
creates an anomaly. The QBB may represent each element
from the original descriptor by bit sequences of very different
lengths. Consequently, if one element is represented by a
longer bit sequence than another, the weight of these elements
may be increased compared to their weight in the original
descriptor in the case of conventional Hamming distance.
This affects the binary descriptor created with Gray and
Mersenne code too. For example, if the values are gathered
into four and eight groups along the two dimensions of the
original descriptor, using Gray code we get 2 and 3 bits,
respectively, and using Mersenne code we get 4 and 7 bits,
respectively. Using conventional Hamming distance, the
representation of the second element will have a weight
of 3/2 = 1.5 times higher for the Gray-code version and
7/4 = 1.75 times higher for the Mersenne-code version.
To solve this problem, we introduce the Modified Hamming
Distance metric. Let B = b1b2 . . . bl and B′ = b′1b

′

2 . . . b
′
l be

already binarized descriptors.

MHD(B,B′) =
D∑
d=1

HD(sB(d), sB′ (d))
ld

, (7)

i(1) = 1 and i(d)= i(d − 1)+ld−1, 1 < d ≤ D,

(8)

sB(d) = bi(d) . . . bi(d)+ld−1, (9)

where HD is the Hamming distance function for bit
sequences, D is the number of dimensions of the original
descriptor, ld is the number of bits in the binarized descriptor
corresponding to the d th element of the original descriptor.
To calculate the MHD, we calculate the Hamming distance
for each bit sequence corresponding to each element of the
original descriptor and then divide it by its length. Thus,
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FIGURE 7. The AUC values (a), (b), (c) and corresponding Precision-Recall curves (d), (e), (f) of QBB and its variants. Notations: G - Gray code,
M - Mersenne code, MHD - Modified Hamming Distance. QBB-FPFH, QBB-RoPS and QBB-SI use Gray code and conventional Hamming distance, while
FPFH, RoPS and SI use Euclidean distance. It is important to note that the AUC values related to FPFH are an order of magnitude larger than the other
AUC values.

each bit sequence associated with an element will contribute
a value between 0 and 1 to the modified distance, i.e. each
element will contribute an equal weight to the distance.
To do this, we need to store the information of how many
bits are used for representing each element of the original
descriptor. Unfortunately, Modified Hamming distance can-
not be as efficient as conventional Hamming distance (which
can calculated by efficient bitwise operation). However,
in some cases, QBB descriptors using MHD for nearest
neighbor searches can achieve better results than the original
real-valued descriptors.

Fig. 7 shows how different variants of the QBB perform.
QBB-FPFH, QBB-RoPS and QBB-SI use Gray code and
conventional Hamming distance, QBB-FPFH (G+MHD) /
(M+MHD), QBB-RoPS (G+MHD) / (M+MHD) and
QBB-SI (G+MHD) / (M+MHD) use Gray code / Mersenne
code and Modified Hamming distance. The evaluation shows
that QBB variations of FPFH and RoPS using Modified
Hamming distance and even QBB-RoPS using conventional
Hamming distance can achieve better results than the original
descriptor while requiring much less storage space. However,
in the case of the Spin Image descriptor, the QBB variations

perform worse than the original, although better results
can be obtained using the modified than the conventional
Hamming distance. Consider the MHD with an optimized
implementation, it can be much faster to calculate than the
Euclidean distance. (It is noted that in this work we did
not focus on measuring the matching speed of distance
metrics, nor did we aim for a computationally optimal
implementation.) We believe that the use of Modified
Hamming distance, as opposed to the conventional Hamming
distance, may be justified if optimizing the matching time is
not the most important in the use case.

C. COMPARING BINARIZATION METHODS
The properties of the compared binarization methods are
summarized in Table 3. Fig. 8 and Fig. 9 show theAUCvalues
of original descriptors and their binarized versions using
two different datasets (redkitchen and livingroom). The AUC
values are on a logarithmic scale for proper visualization. For
the methods with the QBB prefix, we used the Gray code
and conventional Hamming distance. We also calculated the
B-ROPS with different parameters (L = 4, 5), but precision
and recall values were zeros.
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FIGURE 8. AUC of real-valued descriptors and their binarized versions with different binarization methods on the ’’redkitchen’’ dataset. The AUC
values are on logarithmic scale.

TABLE 3. Properties of the compared binarization methods. The second
column shows the number of comparisons for one feature vector. D is the
length (dimension) of the input vector, L is the encoding length, and N is
the bit number for one real-valued element. The third column shows
whether precomputations are required for the method or not. The last
column shows the descriptors to which the methods were applied,
according to the papers cited.

The B-SHOT, CI-SHOT, and Gray-SHOT methods were
specifically designed for binarizing SHOT descriptors. The
methods are general, i.e. they can binarize any real-valued
descriptor, but the algorithmworks well for the distribution of
the values of SHOT descriptors. However, Prakhya et al. [31]
evaluated their method also on FPFH and RoPS. B-SHOT
and QBB-SHOT use 352 bits (like the original descriptor),
while Gray-SHOT and CI-SHOT use 704 bits. Fig. 8 shows
that none of the binarized descriptors can achieve the same
performance as the original descriptor. QBB-SHOT and
B-SHOT perform similarly for the SHOT descriptor.

In the case of FPFH, the performance of the QBB-FPFH
is much closer to the original descriptor than B-FPFH. For
B-FPFH we got similar results like the authors in their
work [31]. B-FPFH was with encoding lengths of 4 and 11.

On the redkitchen dataset, QBB-RoPS gives a slightly
better result than the original descriptor (see Fig. 8). It can

happen because the binarization and Hamming distance can
smooth out the noise in the original descriptor. Note that the
descriptiveness of QBB-FPFH is still way higher. For the Spin
Image descriptor, QBB-SI performs worse than the original,
although it still has a higher AUC than the binarized versions
of SHOT.

On the livingroom dataset, every descriptor performsworse
than on the redkitchen dataset (see Fig. 9). The probable
reason behind this phenomenon is that the livingroom scene
is very simple, only containing few interesting surfaces.
Thus, it is more difficult to distinguish, e.g., 3D objects
and surfaces from each other. Note that group boundaries of
QBBs are the same for both datasets, and thus recalculation
of group numbers and their endpoints (Algorithm 1) for
the livingroom dataset is not needed. The ratio of the AUC
values between different binarized descriptors is very similar
for both datasets. An important difference compared to the
redkitchen evaluation is that QBB-FPFH results in a much
smaller AUC than the original descriptor, the AUC value of
the Gray-SHOTmethod increased significantly, and this time
the QBB-RoPS is not better than the original RoPS.

In summary, the QBB method performs better than
other binarization solutions for the considered real-valued
descriptors. QBB-FPFH has achieved the best results, which
could be better than other real-valued descriptors.

D. COMPUTATIONAL COMPLEXITY
B-SHOT, CI-SHOT, and Gray-SHOT binarization methods
are the most similar to our method, but there is an
important difference between them and QBB. As discussed
in Sec. III, the group numbers and boundaries required for
QBB must be determined before the binarization. This step
cannot be performed during the binarization of individual
feature descriptors. The QBB can work well when multiple
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FIGURE 9. AUC of real-valued descriptors and their binarized versions with different binarization methods on the ’’livingroom’’ dataset. The AUC
values are on logarithmic scale.

feature vectors are used to determine the groups. During
the evaluation, the feature vectors of several point clouds
were used to determine the group numbers, similarly to the
training phase in machine learning. Accordingly, the goal
is to consider as many different feature vectors as possible.
Determining the necessary number of training data is not
trivial and requires further work. Our experience shows that
for a specific feature descriptor method it is sufficient to
define the group numbers once, and these group numbers
can be used well for other datasets. The group numbers we
determined can be found in the given GitHub repository. For
the CI-SHOT and Gray-SHOT methods, calculations need to
be performed before the binarization of feature vectors as in
the QBB method. For B-SHOT, no prior computations are
required.

As a result of the above consideration, the cost estimates
we provide in this section only take into account the
computational cost of ’online’ processing. In a binarization
method, the input is a feature vector, so the running time
depends on the length of the input feature vector (denoted
by D). The most common operation in binarization is the
comparison of real values. Therefore, we believe that it is
sufficient to only consider those. Other important constants
are the encoding length (L) and the number of bits used
for encoding a dimension (N ). Let T (D) denote the cost of
comparisons in a binarization algorithm.

The comparison cost of QBB (TQBB), B-SHOT (TB),
CI-SHOT (TCI ) and Gray-SHOT (TGray) are the following:

TQBB(D) = D · 2N

TB(D) =
D
L
· (L · logL + L)

TCI (D) =
D
L
· 2N

TGray(D) =
D
L
· L · 2N

The value of L is usually 4 or 11, while N is usually
4 or 5, these parameters can be considered as constants. One
can see that the running time of all four methods is O(D),
i.e., it increases linearly with the length of the input feature
vector. As a concusion, QBB provides better performance
compared to other binarization methods without increasing
the computational complexity of the ’online’ processing
phase.

VI. CONCLUSION
In this work, we proposed a quantile-based binarization
method of 3D point feature descriptor, called QBB. We com-
pared our method with other well-known binarization meth-
ods and standalone binary feature descriptors. Computations
on real point clouds show that QBB can compete with
standalone binary descriptors, and it gives better results than
other binarized descriptors. We presented possible variants
of our binarization algorithm and their performances. Our
results suggest that QBB is a suitable replacement for
real-valued feature descriptors in certain use cases.

Our conjecture is that for some dimensions less group
would be enough. To prove this conjecture our future work
includes applying different algorithms to determine the
bin width. It would be interesting to see how the group
numbers and performancewould change if keypoint detection
algorithms were used.
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