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A benchmark-quality potential energy curve is reported for the H3 system in collinear nuclear configurations. The 
electronic Schrödinger equation is solved using explicitly correlated Gaussian (ECG) basis functions using an 
optimized fragment initialization technique that significantly reduces the computational cost. As a result, the 
computed energies improve upon recent orbital-based and ECG computations. Starting from a well-converged 
basis set, a potential energy curve with an estimated sub-parts-per-billion relative precision is generated for a 
series of nuclear configurations using an efficient ECG rescaling approach.   

1. Introduction 

This paper is dedicated to the memory of Professor Kuchitsu. The 
authors did not know Professor Kuchitsu in person, but have learned 
about his fundamental work on gas-electron diffraction [1] as part of 
their undergraduate studies, and later, used in their own research [2] 
molecular structural parameters taken from Kozu Kuchitsu’s work [3,4]. 
The present contribution to the Kuchitsu Special Issue is about a 
triatomic system, H2 + H, which, at some point and with further 
development, may become relevant to Professor Kuchitsu’s contribution 
to the photodissociation dynamics study of triatomics [5]. 

The simplest chemical reaction H2 + H → H  + H2—including its 
isotopologues—is possibly one of the most exhaustively studied chem
ical processes [6]. Furthermore, the H3 system has qualitatively inter
esting features: a shallow van-der-Waals minimum for collinear nuclear 
structures and a conical intersection for equilateral triangular configu
rations. These features impose challenges when investigating the 
quantum dynamics of the system and require a high-level description of 
the electronic structure. The first potential energy surface (PES) for 
collinear H3 was obtained by Liu in 1973 [7]. Since then, several full- 
dimensional surfaces have been published [8–14] and refined [15–21] 
using increasingly accurate quantum chemical methods. More recently, 
a multireference configuration interaction (MRCI) PES was developed, 
using a hierarchy of correlation consistent basis sets followed by 
extrapolation to the complete basis set (CBS) limit [22] with an esti
mated μEh level of precision. This complete configuration interaction 
(CCI) surface has been the most accurate full-dimensional PES of H3, and 
it was used to resolve long-standing discrepancy of experimental and 

theoretical thermal rate constants [23]. 
The first computation for this system using explicitly correlated 

Gaussian (ECG) basis functions was performed by Cafiero and Adamo
wicz [24]. They determined the stationary points of the PES by the 
simultaneous minimization of the energy with respect to both the 
nonlinear parameters of the basis functions and the nuclear configura
tion using analytic gradients. Nevertheless, using only 64 basis func
tions, they obtained an energy, − 1.673 467 Eh, which is above the 
dissociation threshold, E(H2)+ E(H) = − 1.674 475 714 Eh. 

In later work, Pavanello, Tung, and Adamowicz carried out meth
odological developments to improve the convergence of the ECG wave 
function and energy, and to reduce the computational cost for poly
atomic, i.e., H+

3 and H3, systems. Their efforts resulted in the most pre
cise non-relativistic energy for H3, so far, near the equilibrium structure 
[25]. 

The aim of the present letter is to explore and take the achievable 
precision further for H3, a simple prototype for poly-electronic and poly- 
atomic molecular systems, using explicitly correlated Gaussian 
functions. 

2. Method 

The Schrödinger equation (in atomic units) with Nnuc nuclei clamped 
at the R configuration and np electrons, 

Hψ(r; R) = E(R)ψ(r; R) (1)  
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is solved for the ground state of H3. The wave function is written as sum 
of antisymmetrized product of spatial and spin functions, 

ψ(r; R) = 𝒜
∑Nb

n=1
cnϕn(r; An, sn)χ(ϑn). (3)  

In the following equations, the spin degree of freedom is explicitly 
shown if it is directly relevant to the equations. The spatial basis func
tions, ϕn, are expressed with floating ECG functions, 

ϕn
(
r; An, sn

)
= exp

[
− (r − sn)

TAn
(
r − sn

)]
, (4)  

where An = An ⊗ I3, An ∈ Rnp×np is the exponent matrix, ⊗I3 means 
direct product with the 3×3 unit matrix, and r, s ∈ R3np are the coordi
nate vectors of the electrons and the Gaussian centers, respectively. 𝒜 is 
the anti-symmetrization operator, and A is parameterized in the A = LTL 
Cholesky-form, with an L lower-triangular matrix, to ensure positive 
definiteness of A and square integrability of the basis functions. The A1 
symmetry (in the C∞v point group) of the ground-state wave function is 
realized by constraining the Gaussian centers to the z axis. 

The χ(ϑn) three-particle spin function corresponding to the doublet 
multiplicity of the ground-state is obtained as a linear combination of 
the two possible couplings of the elementary, one-electron spin func
tions σ(i)1
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to a doublet state [26], 
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where the square brackets denote angular momentum coupling, using 
the Clebsch–Gordan coefficients 〈j1, mj1 , j2, mj2

⃒
⃒J, MJ〉. For example, 

coupling two spin-1/2 particles to a singlet function is labelled as 
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Considering the normalization condition as well, the doublet three- 
electron spin functions can be parameterized by a single ϑn parameter as 

d1(ϑn) = sinϑn and d2(ϑn) = cosϑn, (7)  

and ϑn is optimized together with the nonlinear parameters of the basis 
set. Although the non-relativistic Hamiltonian, Eq. (2), is spin inde
pendent, during the course of the variational solution of Eq. (1), opti
mization of ϑn (and the linear combination coefficients of the two 
possible spin functions, Eq. (5)), provides an additional flexibility for the 
basis set. 

2.1. Optimized fragment initialization 

The starting basis function parameters are usually generated in a 
pseudo-random manner, retaining those functions from a trial set that 
provide the lowest energy expectation value. This generation procedure 
is followed by extensive refinement of the parameterization based on the 
variational principle [26]. By increasing the number of electrons, the 
dimensionality of the parameter space, and hence, the optimization cost 
increases. To keep the computational cost low, it is useful to consider 
that the interaction between the electrons of the hydrogen molecule and 
the electron of the hydrogen atom is weak in the van-der-Waals well or if 
the two ‘fragments’ are not too close, in general. If the interaction is not 
too strong, then a ψ I initial approximation for the wave function can be 
written as the product of the wave functions optimized for the ‘frag
ments’ (atom and molecule for the present example): 

ψH3
I
(
r1, r2, r3
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l

(
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)

,
(8)  

which corresponds to an initial parameterization of the three-electron 
basis set with 

AI
kl =

(
AH2

k 0
0 AH

l

)

, (9)  

and the 3-electron s vectors include the s vectors shifted according to the 
configuration of the ‘fragments’ in H3: 

sI
kl =

(
sH2

k + RH2
CM

sH
l + RH

)

, (10)  

where RH2
CM is the center of mass of the protons in H2. 

This procedure is reminiscent of the monomer contraction method 
that was first introduced in Ref. [27] for the helium dimer, although 
there are a few differences. First, we use the fragment (or monomer) 
basis set only to initialize the many(three)-electron basis, and we run 
repeated refinement cycles [28,29] using the Powell method [30] for 
this initial basis. Second, retaining the full direct-product basis opti
mized for H2 and separately for H would be computationally very 
demanding, so instead, we truncate the direct-product basis according to 
the following strategy. 

The ground-state wave function of the H2 molecule was expanded 
over 1200 ECG functions, yielding − 1.174475714 Eh for the ground 
state energy, which—compared to the most accurate value obtained by 
Pachucki − 1.1744757142204434(5) Eh [31]—is converged to a frac
tion of a nEh. The wave function of the hydrogen atom was represented 
with 10 optimized Gaussian functions, resulting in − 0.499999332 Eh 

(in comparison with the exact value, − 0.5 Eh) ground-state energy. 
Inclusion of all possible combinations of the H2 and H basis functions 
would result in a gigantic, 12 000-term expansion. Such a long expan
sion would be prohibitively expensive to extensively optimize (refine), 
and it is unnecessary to have so many functions for reaching a 1 : 109 

(ppb) precision. To reduce the direct-product basis, it would be possible 
to perform competitive selection over the large basis space or to order 
(and then truncate) the basis functions based on their importance in 
lowering the energy [26]. In the present work, we used a very simple 
construct that does not require any computation: we have generated a 
set of 1200 functions by appending each H2 basis function from the 1200 
set with a single H function. Out of the 10 H functions, we have picked 
one based on the basis index, i.e., 
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The spin basis functions defined in Eq. (5), were initialized by coupling 
the two electrons initially localized on the H2 fragment to a singlet state, 
i.e., d1(ϑn) = 0 and d2(ϑn) = 1 corresponding to ϑn = 0 (n = 1, 2, …,

1200) in Eqs. (5)–(7). All non-linear parameters, including ϑn, of the 
initial basis set were excessively optimized in repeated refinement cycles 
(Fig. 1). The optimized fragment-based initialization of the basis set, 
described in this section, allowed saving several weeks (months) of 
computer time in comparison with Ref. [32] (see also Section 3). 

2.2. Gaussian-center scaling 

Independent variational optimization of the basis set at may points 
along the PEC (or over the PES) would make the computations very 
computationally intensive. Kołos and Wolniewicz [33] noted already in 
1964 that for a sufficiently large basis set, the Ak exponents are insen
sitive to small displacements of the nuclear coordinates. In 1997, Cencek 
and Kutzelnigg proposed a scaling technique to generate a good initial 
ECG (re) parameterization for the electronic basis set of diatomics upon 
small nuclear displacements [34]. They noted that their approach can be 
generalized beyond diatomics. Pavanello and Adamowicz implemented 
rescaling the ECG centers (to have a good starting basis set) of H+

3 upon 
small nuclear displacements to generate a series of points to represent 
the 3D PES [32,35–37]. Upon a small ΔRa displacement of the co
ordinates of the ath nucleus, 

Ra
′ = Ra +ΔRa, (12)  

the si ∈ R3 ECG centers corresponding to the ith electron were trans
formed as 

si
′ = si +Δsi, (13)  

where Δsi is expressed as a function of the ΔRa nuclear displacement, 

Δsi =
1

Wi

∑Nnuc

a=1
wia ΔRa (14)  

with Wi =
∑Nnuc

a=1wia. The wia ‘weight’ is a function constructed based on 
simple arguments. It is chosen to be the distance of the si center and the 
ath nucleus, |si − Ra| and it is expected to have good limiting properties. 

First, it must vanish if the si center is very (infinitely) far from the dis
placed nucleus, lim|si − Ra |→∞wia = 0. Second, the closer the si center to the 
Ra nucleus position, the ΔRia displacement has a larger contribution, i.e., 
larger wia weight, to the Δsi change. 

These conditions allow several possible choices for the weight 
function. For example, Coulomb-like weights were used in Ref. [32] 

wC
ia =

1
|si − Ra|

. (15)  

After some experimentation with different possible functions, and 
inspired by the picture that the weight function can be intuitively 
defined as if there was some attraction between the centers and the 
nuclear positions by a central field, a Yukawa-like weight function ap
pears to be a good choice 

wY
ia =

e− μ|si − Ra |

|si − Ra|
, (16)  

where the parameter μ ∈ R+ was set to unity in this work. For small 
nuclear displacements, a parameterization rescaled with Yukawa 
weights (with μ = 1) provided an energy lower than rescaling with 
Coulomb weights, Eq. (15). 

The rescaling technique with the Yukawa weight function was used 
to generate the PEC corresponding to the H atom approaching the H2 
molecule with a proton-proton distance fixed at RH2 = 1.4 bohr. The 
RH2⋯H distance of the hydrogen atom was measured from the center of 
mass of the H2 fragment. The starting value was RH2⋯H = 6.442 bohr, for 
which an initial basis set was generated using the optimized fragment 
initialization (Section 2.1) and and the representation was improved 
through several Powell refinement [30] cycles of the non-linear pa
rameters (Fig. 1). Then, initial basis sets were generated by making small 
ΔRH2⋯H = ±0.1 bohr displacements, rescaling the centers according to 
Eq. (14) with Yukawa weights, Eq. (16), followed by 5 entire basis 
refinement cycles (that took 4 h) before the next step was taken along 
the series of the nuclear configurations (the positive and the negative 
displacement series were run in parallel). All computations have been 
carried out using the QUANTEN computer program [29,38–40]. 

The energies (Fig. 2) and and optimized basis set parameters are 
deposited in the Supplementary Material. 

3. Results and discussion 

We have carried out extensive single-point computations for the near- 
equilibrium geometry in the van-der-Waals well with R(0)

H2
= 1.4 bohr and 

R(0)
H2⋯H = 6.442 bohr first reported in Ref. [24]. This structure is close to 

Fig. 1. Convergence of the ground-state energy of H2⋯H during the course of 
the Powell refinement cycles (nPowell) of Nb = 1200 basis functions initialized 
using basis functions optimized for the fragments, Eq. (11). RH2 = 1.4 bohr and 
RH2⋯H = 6.442 bohr, E3000 = − 1.674 561 687 Eh. (See also Table 1.) 

Fig. 2. Potential energy cut of the H3 system converged in the present work 
with an estimated sub-ppm precision. Along the curve, the geometry of the H2 
unit is fixed at RH2 = 1.4 bohr. The lowest-energy datapoint corresponds to 
Emin = − 1.674 561 899 Eh and Rmin = 6.542 bohr. 
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the equilibrium geometry obtained with carefully conducted orbital-based 
computations [22] (Table 2). The energy of Ref. [24] computed with a 
small ECG basis is inaccurate, but later, large-scale computations were 
reported in Ref. [25]. 

At this geometry, the best energy obtained from the present work 
with 1200 ECGs (constructed by the initial fragment initialization, 
Section 2.1, followed by nPowell = 3000 Powell refinement cycles of the 
entire basis set) is − 1.674561687 Eh (upper part of Table 1). Table 1 
also shows the computed energy values for smaller basis sets that allow 
assessment of the convergence and extrapolation to the complete basis 
set (CBS) limit [41]. 

Direct comparison with Ref. [25] requires further computation, because 
the extensively optimized energy reported in Ref. [25] appears to belong to 
a 6.442 bohr distance of the hydrogen atom not from the center of nuclear 
mass of the H2 unit, but from the closer proton of H2. We think that this 
nuclear structure was used in Ref. [25], because we obtain good agreement 
for the energies when we perform the computation at this geometry, shown 
in the lower part of Table 1, corresponding to R(0)

H2
= 1.40 bohr and RH2⋯H

′

= R(0)
H2⋯H +R(0)

H2
/2 = 6.442 bohr+0.700 bohr = 7.142 bohr. 

We also note that the best energy value of Ref. [25] computed in 6 
months (using 12 CPU cores) was reproduced in this work (corre
sponding to the structure given in footnote b of Table 1) using the 
optimized fragment initialization technique (Section 2.1) followed by a 
few Powell refinement cycles in in 4 days. The computational benefit of 
the optimized fragment technique is significant in comparison with a 
computation [25] constructed from ‘scratch’ immediately for the three- 
particle problem. 

Then, we continued the extensive refinement of the basis parame
terization based on the variational principle, and the best result after 3 
months computation (using 12 CPU cores) is reported in Table 1. The 
generation of the points along the PEC was started from this well- 
optimized parameterization by ΔRH2⋯H = ±0.1 bohr increments/dec
rements (running in parallel) using the rescaling technique (Section 
2.1), followed by 5 Powell refinement cycles at every step (before the 
next step was taken). The entire PEC generation took took 13 days using 
12 CPU cores. 

Finally, it is relevant to compare the ECG energies with the best 
orbital-based results underlying the CCI PES. For this reason, we have 
used a single rescaling step from the starting optimized parameteriza
tion (upper part of Table 1) to the R(0)

H2
= 1.4 bohr and R(0)

H2⋯H = 6.51205 
bohr structure, which was determined to be the global minimum 

structure at the MRCI/aug-cc-pV6Z level [22]. The parameter rescaling, 
with a negligible computational cost, was followed by 5 Powell refine
ment cycles that took 4 h. Table 2 shows the energy values reported for 
the MRCI computations corresponding to the aug-cc-pVXZ (X  = D, T, Q, 
5, 6) and the ‘modified’ correlation consistent aug-mcc-pVXZ (X  = D, T, 
Q, 5, 6, 7) basis sets [22,19]. The ECG energy is already 74 μEh lower, 
than the best MRCI value corresponding to the largest (aug-mcc-pV7Z) 
basis set. Furthermore, we can confirm the estimated μEh precision of the 
CBS extrapolated energy from the mcc basis, whereas the extrapolated 
energy based on the regular correlation consistent basis is slightly lower 
than our current best estimate [22]. 

4. Summary, conclusion, and outlook 

In summary, we have computed a benchmark-quality one-dimen
sional segment of the Born–Oppenheimer potential energy surface of the 
H3 system for a series of collinear nuclear configurations. The electronic 
energies are estimated to be converged on the sub-parts-per-million 
level. 

The depth of the van-der-Waals well was predicted to be 86(1)μEh at 
the RH2 = 1.4015 bohr and RH2⋯H = 6.51205 bohr geometry in MRCI 
computations underlying the currently most precise potential energy 
surface of H3 [22]. The variational computations reported in this work 
and using a (relatively small) explicitly correlated Gaussian basis set 
confirm this value and improve upon its precision by two orders of 
magnitude, 86.54(3)μEh. In order to achieve a similar precision for non- 
collinear nuclear structures, which have a lower order or no point-group 
symmetry, it will be necessary to use a larger basis set, which is certainly 
feasible. 

Regarding the broader context of this work, (non-) adiabatic 
perturbation theory [42–46] combined with leading-order relativistic 
and quantum electrodynamics (QED) corrections [47,48] are expected 
to provide a state-of-the-art theoretical description for this system. This 
framework has already been extensively used and tested for the lightest 
diatomic molecules [49,40]. For the ground-electronic state of the H2 
molecule, the effect of the non-adiabatic-relativistic coupling has also 
been evaluated and was found to be non-negligible [50]. In this direc
tion, the computation of a precise representation of the electronic wave 
function is a necessary first step that was demonstrated in this work to be 
feasible. The adiabatic [51,52], non-adiabatic and (regularized) rela
tivistic and QED corrections can be evaluated at a couple of points using 
currently existing procedures [46,53,40,54]. At the same time, for a 

Table 1 
Convergence of the non-relativistic, ground-state energy of H3 near the van-der- 
Waals equilibrium structure at RH2 = 1.4 bohr and RH2⋯H = 6.442 bohr taken 
from Ref. [24].  

Nb Ansatz nPowell E [Eh]

RH2 = 1.40 bohr, RH2⋯H = 6.442 bohr : a 

600 {
ψH2

10n+i⋅ψH
i
} 2000 − 1.674 560 470 

800 {
ψH2

10n+i⋅ψH
i
} 2000 − 1.674 561 379 

1000 {
ψH2

10n+i⋅ψH
i
} 2000 − 1.674 561 583 

1200 {
ψH2

10n+i⋅ψH
i
} 3000 − 1.674 561 687 

[Extrapolation to Nb→∞: − 1.674 561 75(3)]

RH2 = 1.40 bohr, RH2 ⋯H = 7.142 bohr : b 

1000 Ref. [25]c − 1.674 547 421 00 
1200 {

ψH2
10n+i⋅ψH

i
} 3000 − 1.674 547 750  

a RH2 = 1.4 bohr, RH2⋯H = 6.442 bohr, measured from the nuclear center of 
mass (NCM) of the H2 unit. 

b RH2 = 1.4 bohr, RH2⋯H = 7.142 bohr (measured from the NCM of the H2 
unit), and corresponds to a 6.442 bohr distance measured from the nearer proton 
in the H2 unit. 

c Geometry a is claimed in Ref. [25], but it appears to be b. The difference 
amounts to whether the distance of the hydrogen atom is measured from the 
NCM or the nearer proton. 

Table 2 
Comparison of energies of various ab initio computations. The equilibrium 
geometry, determined at the MRCI/aug-cc-pV6Z is RH2 = 1.4015 bohr and 
RH2⋯H = 6.51205 bohr [22].  

Source E [Eh] 

aug-cc-pVDZ a − 1.664 339 
aug-cc-pVTZ a − 1.672 540 
aug-cc-pVQZ a − 1.673 902 
aug-cc-pV5Z a − 1.674 332 
aug-cc-pV6Z a − 1.674 445 
aug-mcc-pVTZa − 1.672 553 
aug-mcc-pVQZa − 1.673 917 
aug-mcc-pV5Za − 1.674 298 
aug-mcc-pV6Za − 1.674 430 
aug-mcc-pV7Za − 1.674 488 
MBEcc(3,4 CBS)b − 1.674 566 
MBEmcc(6,7 CBS)c − 1.674 562 
Present work (Nb = 1200)d − 1.674 562 264 

b, c Ref. [22]: extrapolated CBS energy corresponding to the aug-cc- 
pVXZ (X = 3,4) and aug-mcc-pVXZ (X = 6,7) basis sets, respectively. 

a Ref. [22]: MRCI energy. 
d Rescaled from the basis set optimized for the (R(0)

H2
,R(0)

H2⋯H) structure 
in Table 1 followed by 1000 Powell refinement cycles.  
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complete description of a polyatomic system like H3, these corrections 
must be computed over hundreds or thousands of nuclear configura
tions. This requires a fully automated evaluation and error control of all 
corrections, which may be especially challenging for the singular terms 
in the relativistic and QED expressions, and this requires further meth
odological and algorithmic developments that is left for future work. 
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