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Abstract

The training of the most expressive state-of-the-art Machine Learning (ML) models, and

especially that one of Artificial Neural Networks (NN) requires a huge amount of training

data, along with very significant computation resources. The paradigm of Federated

Learning (FL) focuses on the possibilities of collaborative training of ML models in

heterogeneous, spatially distributed environment of recent IT infrastructures, dividing the

burden of computation among all the stakeholders and leaving the potentially sensitive

data at the location of its creation.

In this dissertation I am presenting my work relating to the possibilities to alleviate

apparent problems of federated training of NNs. For the experienced performance loss we

propose to adapt and use stateful optimization techniques for the FL setup. For communi-

cation complications of the centralized training we tested a technique to simulate FL in a

peer to peer environment. And finally for the privacy issues we present a method to train

NNs in an FL environment via a derivative free genetic algorithm.





Contribution

Chapter 1

Contribution

In the research field of federated optimization, in our view, recent works are conducted

with the goal in mind to alleviate some of the three main problems of FL algorithms

from the original proposals in [129] and [157]. The first of these problems is the observed

performance degradation of the learning process, or insufficient accuracy on the side of

the end users. The second research direction is about practical questions of implementing

these methods, such that resource provisioning, or more concretely, addressing the com-

munication problems in real world network architectures. And the third group of works

is seeking to provide stronger privacy guaranties for the users who participate with their

data in the training process.

In my theses I propose simple techniques to alleviate the three above mentioned issues

of FL.

Performance degradation The first problem we examined is the empirical fact that

FL of NNs under-performs central training, both in the accuracy of final models, and

in the rate of learning. According to our intuition this issue might be relieved at some

extent by stateful optimization methods, that have been originally designed to overcome

similar problems to those that arises from the characteristics of FL training. Based on our

experiments [64, 126], presented in Chapter 4, these methods can help to alleviate the

performance issues of FL in almost all the examined cases.
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Communication bottleneck The most apparent issues with real world applicability of

FL arise from centralized communication and coordination. As a possible solution for these

problems, we developed and tested peer-to-peer-like asynchronous system for training an

ensemble of models, that is introduced in Chapter 6. Our Migrating Models methods[125]

were able, at least in our setup, to produce a similar performance to that one of FedAvg,

however, significantly decreasing communication burden and computation need as well as

avoiding network congestion.

Privacy issues One of the most important promise of FL is granting the owners of

training data a stronger privacy, leaving the potentially sensitive data at its location of

creation. As it is illustrated in Section 3.4 and Appendix A.6, this protection is far from

complete, especially in the case of NNs. In our intuition, many of the privacy attacks can

be excluded by eliminating the use of gradients, that can be achieved by training the target

network by nature inspired derivative free methods. In Chapter 5 we test the possibilities

of this, and provide a proof of concept that shows that evolutionary training can be applied

for neural networks in the federated setup [208].

Federated Learning (FL) provides a perspective for ML, that is more fitting for the

infrastructural challenges of the era of Edge computing and IoT. To serve processing,

data storage and computation needs of sensor networks of small user devices, that should

be carried out as close to the users as possible and modules of IT systems should be

deployed flexibly. Thus, addressing problems related to building better preforming FL

systems complements itself with our previous research, not presented in this thesis, that

we did in the topic of self-organization of new generation software systems in Edge and

Fog environments [127, 172, 173].

4



Contribution

1.1 List of publications

My publications related to the scientific results presented in this dissertation:

1. G. Szegedi, P. Kiss, T. Horváth (2019): Evolutionary Federated Learning on EEG-

data. ITAT 2019 Information Technologies – Applications and Theory, CEUR Work-

shop Proceedings Vol. 2473.

2. V. Felbab, P. Kiss, T. Horváth (2019): Optimization in Federated Learning. ITAT

2019 Information Technologies – Applications and Theory, CEUR Workshop Pro-

ceedings Vol. 2473.

3. P. Kiss, T. Horváth, V. Felbab (2020): Stateful Optimization in Federated Learning

of Neural Networks. Proceedings of the 21st International Conference on Intelligent

Data Engineering and Automated Learning 2020 - Part II, Lecture Notes in Computer

Science, Vol. 12490

4. P. Kiss, T. Horváth (In press): Migrating models: A decentralized view on feder-

ated learning. Workshops of the European Conference on Machine Learning and
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Further publications:

1. P. Kiss, D. Fonyó, T. Horváth (2018). BlaBoO: A Lightweight Black Box Optimizer

Framework. Accepted to the World Symposium on Digital Intelligence for Systems

and Machines (DISA) 2018.

2. P. Kiss, A. Reale, C.J. Ferrari, Z. Istenes (2018). Deployment of IoT applications on

5G Edge 2018 IEEE International Conference on Future IoT Technologies (Future

IoT)

3. Reale, A., Kiss P. et al. (2018): Application Functions Placement Optimization
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5



Contribution

4. A. Reale, P. Kiss, M. Tóth, Z. Horváth (2019): Designing a decentralized container

based Fog Computing framework for task distribution and management. Int. J. of

Computers and Communications, vol. 13, NAUN.

1.2 Outline

The rest of the dissertation is organized in the following way: Chapter 2 summarizes

the fundamental concepts of ML and NN training, along with the traditional methods of

distributed ML. After these, in Section 2.2 of Chapter 2, the foundations of FL will be

presented in more details. Chapter 3 is aimed at presenting related works. However, the

immense amount of scientific literature that has been produced in the last years, since the

publication of the seminal paper [130] that summarizes the mission of FL, makes this task

impossible. Therefore, this chapter can be considered as a collection of interesting ideas

which has been proposed by scientific community to tackle various aspects of the problems

posed by FL.

Chapters 4, 5 and 6 present our own work that has been done to investigate different

aspects of FL, where each of these are dedicated to one of the problems and ideas presented

in the first part of this Chapter.

Mathematical background of the methods, algorithms, and concepts used in the thesis,

along with some related algorithms and techniques are shortly summarized in the Appendix.
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Chapter 2

Preliminaries

2.1 Machine Learning

According to the probably most cited definition of Machine Learning (ML) from Tom

M. Michel [160], “a computer program is said to learn from experience E with respect

to some class of tasks T and performance measure P if its performance at tasks in T , as

measured by P, improves with experience E”. Experience in this definition appears in the

form of some training data, that is fed to a training algorithm, through which the program,

or rather the program’s incorporated understanding of task, the model will be adapted to

the observed world.

Solving many tasks of ML can be viewed as a branch of applied statistics that uses

some previously observed data instances to create/approximate functions with the purpose

to predict some missing y values of data points x. These functions can be rule-based or

statistical models. Most machine learning use cases can be described with Equation 2.1,

where given the known values x, we want to predict some missing value (label, class,

cluster id,. . . ) y, using a model m with parameters w .

y = m(w,x) (2.1)

7
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Predicting this missing y value is referred to as inference. To be able to grant meaningful

predictions, first we must fit the model m, what is called training. During the training we

want to find the best possible parameters w of a model that have been chosen based on

some prior belief on a solution.

The term “best possible” here means that the model makes few mistakes, in other

words, that the error of the prediction (defined by a loss function f ) is minimal across

all the data points. The goal therefore is to find a model for the known training data that

minimizes the loss function f defining how our learned model distribution differs from

the empirical distribution. This measure, in general, can be formalized as a negative log

likelihood

f =−Ex∼pdata[log pmodel(x)]. (2.2)

That is, if a given example x is drawn from the training data distribution what is the

probability that it will be present in the same form in the model distribution as well. If the

model is used for predicting some value(s) y based on a vector of some attributes x this

can be rewritten as

f (x,y,w) =− log p(y|x;w). (2.3)

The problem we want to solve is to minimize this loss function f , that is the aggregation

of losses on all available data points, with respect to model parameters w, as follows:

min
w∈Rd

f (w), where f (w) =
1
n

n

∑
i=1

fi(w), (2.4)

where fi(w)
def
= f (xi,yi,w)1 denotes the loss on ith data point xi given the parameters w.

In our research work we focused on NN models that can be described, in general, as

chaining together some non-linear (mostly point-wise) activation functions φ applied on

an affine transformation of an input vector x:

1When it does not make confusion, according to this definition, the notation fi will be used to refer to the
loss at the ith training example: fi(w) = f (w.xi,yi)

8
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a(0) = x (2.5)

fori = 1 . . .h : (2.6)

a(i) = φi(W(i)a(i−1)+b) (2.7)

ŷ = ψ(a(h)), (2.8)

where W(i) stands for the weight matrix for the layer i of the network, b(i) the vector of

bias weights corresponding to each neuron, a(i−1) are the activations of neurons from the

previous layer, φi is the activation functions of the layer and ψ is the output activation

function.

NN is the most popular ML model nowadays, first, due the end-to-end nature of

learning (no need for feature engineering) and, second, because of its expressive power.

According to the Universal Approximation Theorems [49, 152] NNs can represent a wide

range of functions. What makes NN learning challenging, however, is that even if the

above mentioned approximation model exist, it is far from being certain that we are being

able to find it.

2.1.1 Training ML models: Stochastic Gradient Descent

When training ML models the problem we want to solve is to minimize the loss function f ,

with respect to model parameters w, aggregated over the losses on all available data points,

as we have already defined in Equation 2.4.

To solve this problem, due to the non-convex loss functions, the most popular methods

are various versions of the Stochastic Gradient Descent (SGD). SGD takes derivatives of

the loss function at one data point according to the parameters of the model and moves the

parameter values in the negative direction of the gradient, i.e.

wt+1 = wt−ηt∇w fi(wt), (2.9)

9
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where ηt denotes the “learning rate” which is, in the basic case, decaying during the

learning to enforce convergence. In practice, instead of applying the gradient for each

example, an average of gradients over a batch B of randomly chosen examples is used,

that are evaluated at the same setting of w. Such “minibatch” gradient descent (MBGD),

still commonly referred to as SGD, exploits better the parallel computational capabilities

of the hardware (like the GPU, for example). For both cases, the update is a stochastic

approximation E[∇B(w)] = ∇ f (w) of the whole gradient.

2.1.2 Distributed ML

With the significant growth of available data, distributed implementations of training

algorithms became necessary. There are two main direction in distributing the workload of

ML training, data parallelism and model parallelism.

Model parallelism

Model parallelism might become necessary for the largest and most complicated models,

such as extremely large NNs, where the number of parameters is too high to fit into GPU

memory. The methods, that belong in this category, divide into pieces not only the training

data but the model as well. These pieces can arise from splitting the model vertically and/or

horizontally.

One of the simple but powerful approaches to tackle the lack of computational and

storage capacity for processing the data, is to split our data into small chunks (see the

next section on Data parallelism) and to train models on these parts, that are small

enough for the machines to cope with. In 2012 the method of multi-column deep neural

networks (MCDNNs) [46] reached state-of-the art performance on a large number of image

classification tasks. The structure of MCDNNs can be understood as training relatively

simple NNs (called columns) in parallel, and then, at the inference phase, averaging over

the individual outputs. Thus the methods effectively results in an ensemble classifier [56].

Naturally, nothing prevents the columns to be trained on different machines, thus reducing

the computational pressure on individual processing units.

10
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In [53] the authors use a specialized NN architecture for parallel learning as well,

introducing Deep Stacking Networks, where smaller, one hidden layer networks are stacked

on top of each other, such that the output of the immediately previous module are con-

catenated with the original input, and these together will serve as the input for the actual

module (Figure 2.1). This method enables to train huge, fully connected models on multiple

processing units.

Figure 2.1 An asynchronous SGD [53] where the networks are split horizontally and each
“layers” receives as input the original data along with the output of the underlying “layer”.

DistBelief [51], the ancestor of Tensorflow has been introduced in 2012, developed for

training and inference with deep networks that have billions of parameters. In contrast to

its precursors, as [46] and [53], Distbelief does not make any restriction to the structure of

networks, supporting distributing data sets and layers both horizontally and vertically, as it

is indicated in Figure 2.2.

The Adam project [45] for large scale NN training describes an architecture with

vertical splits that optimizes the inter-machine communication for Convolutional Neural

Network (CNN) training (Figure 2.3 ).

Training such huge networks also involves tremendous amount of data, thus, in most

cases model parallelism comes together with data parallel training as well (as happens in

[51] and [45], too).

11
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Figure 2.2 Model parallelism in
[51].

Figure 2.3 Model parallelism in
[45].

Data parallelism

In the data parallel setup, which this work mostly focuses on, the data and workload are

dedicated to multiple workers and the goal is to solve a consensus problem, that is, to find

a model that fits for all the workers. Formally, we have a set of nodes V = {v1,v2, . . . ,vK}

with K = |V | and n data points allocated into sets Dk of indices of data points stored

at nodes vk (1 ≤ k ≤ K) with nk = |Dk| being the number of data points at the node

vk. Without the loss of generality, we usually assume that Dk ∩Dl = /0 whenever l ̸= k,

thus n = ∑
K
k=1 nk. In distributed setting, the local loss for node vk can be defined as

f (k)(w) = 1
nk ∑i∈D(k) fi(w), changing the minimization problem, defined above in Equation

(2.4), to

min
w∈Rd

f (w) = min
w∈Rd

K

∑
k=1

n(k)

n
f (k)(w). (2.10)

Data parallelism originally addresses the problem of utilising multiple GPUs for

updating the gradient computed from as many training example as possible.

In data parallel, distributed Gradient Descent (GD)-based systems the parameters are

distributed across a bunch of worker nodes, that compute gradients on shards of data from

the distribution, that has been assigned to them. The worker nodes then send these updates

(gradients)back to the parameter server(s), which will be aggregate them to produce the

new model (parameters). This loop is then repeated until some of the stopping criteria is

met.

12
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Thus one round of synchronous distributed SGD is equivalent with a taking a single

mini-batch, and compute the gradient over it. In a centralized distributed synchronous

MBGD training, where updates are computed over batches (not single examples) from the

“local” data sets, the update looks like follows:

wt+1 = wt−ηt
1
K

K

∑
k=1

∇w fBk(wt), (2.11)

where ∇w fBk(wt) corresponds to the gradient over minibatch Bk computed at node k w.r.t.

the recent model parameters wt . It is equivalent to using bigger batches (to gain less biased

gradients), and eventually, if local updates are computed over the entire local data set, the

method results in an unbiased gradient:

∇w f (w) =
n

∑
i=1

∇w fi(w) =
K

∑
k=1

n(k)

∑
j=1

∇w f (k)j (w) =
K

∑
k=1

∇w f (k)(w) (2.12)

In practice collecting all the gradients before the update can slow down training, thus

using asynchronous methods can result in empirically better performance. The above

mentioned Distbelief [51] implements training using L-BFGS (see the Appendix A.2.6),

and Downpour SGD. The latter is equivalent to an asynchronous distributed version of

stochastic gradient descent (Equation 2.11), when a worker node fetches the most up-to-

date parameters of the model, computes gradients and sends them back. This method, on

one hand, solves the problems of stragglers and machine failures, however, on the other

hand, brings the problem of stale gradients, that is, we can be almost always certain, that

the nodes are computing their updates for a model that has been changed in the meanwhile

by the updates of some other processes. Experiments have shown though, that applying

the above approach to realistic scenarios in an insecure environment, in combination with

Adagrad asynchronous SGD, can perform very well.
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Figure 2.4 Asynchronous SGD in [51].

2.2 Federated learning

FL is dealing with an increasingly important distributed optimization setting that came

into view with the spread of small user devices and ML related applications written for

them. The domain of these ML models is often the data created on these devices, thus, one

should incorporate it into the learning process as well.

Training ML models in a distributed way, in general, corresponds to solve a consensus

problem in the following form:

min
w

f (w) (2.13)

f (w) =
K

∑
k=1

n(k)

n
f (k)(w), (2.14)

that is, to find a model with parameters w that minimizes the sum of the local loss f (k) for

the K nodes, weighted by the proportion n(k)/n of all n data points a given kth node holds.

This structure of the problem covers a very wide range of ML tasks from linear or logistic

regression, through support vector machines (SVMs) to NNs.

The traditional way for this would be to transfer the information gathered at the users

to data centers, where the training takes place (most probably in one of the ways described

in the previous section), and the trained models are then sent back to the users. That, apart

from the obvious privacy concerns, can incur a huge communication overhead, along with

the need for significant storage and computational resources at the place of centralized

training.
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The idea proposed in [129] is, that instead of moving the training data to a centralized

location, one could exploit the computational power residing at the user devices, keeping the

data at the location of creation, and distribute the training process across the participating

nodes.

This, however, brings more complication compared to the data center based distributed

training (2.1.2). Due to the truly distributed nature of the system, communication becomes

expensive and unreliable. Therefore, the Federated SGD (FedSGD) [129] method, intro-

duced in the Algorithm 1, applies a modified version of aggregating the gradients (Equation

2.11) to reduce communication complications: instead of communicating the gradients per

batch, the central updates takes place after multiple local updates:

wt+1 = wt−
K

∑
k=1

n(k)

n
∆k, with ∆k = η

r

∑
i=0

∇ fBk
ti
(wk

ti), (2.15)

where wk
ti+1

= wk
ti
−η∇ fBk

ti
(wk

ti), wk
t0 = wt and r is a hyper-parameter for the number of

local updates.

To further increase communication efficiency, the Federated Averaging (FedAvg)

algorithm [157] takes only a small subset (10%) of updates. This method can be understood

as compromise between the rather slow synchronous and the fast asynchronous version

of training, as has been introduced in Section 2.1.2. However, as it has been empirically

proven, this is not a real trade-off, since FedAvg is able to keep or, in some cases, even

increase the convergence rate of learning. FedAvg became the baseline of FL research.

In the setup of FL, the characteristics of data distribution, from which our training

examples (xi,yi) will be drawn, are the following:

1. Massively Distributed: Data points are stored across a large number K of nodes. In

particular, the number of nodes can be much bigger than the average number n/K of

training examples stored on a given node (where n is the number of all examples).

2. Non-IID: Data on each node may be drawn from a different distribution, i.e. the data

points available locally are far from being a representative sample of the overall

distribution.
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3. Unbalanced: Different nodes may vary by orders of magnitude in the number of

training examples they hold.

Algorithm 1 Federated SGD (FedSGD)
1: procedure SERVER

2: initialize w0

3: for t = 0;1;2; ... do

4: for all k in the K nodes in parallel do

5: wk
t+1← ClientUpdate(k,wt)

6: end for

7: wt+1 = ∑
K
k=1

nk
n wk

t+1

8: end for

9: end procedure

10: procedure CLIENTUPDATE(k,w)

11: B← split D(k) to set of batches

12: for all b ∈B do

13: w← w−η∇ f (w,b)

14: end for

15: return W

16: end procedure

Since the publication of the problem statement of FL [129], a lot of research has been

carried out and the technology reached a fairly mature state having its support even in the

Tensorflow framework [25] to facilitate real world development.
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Chapter 3

Related work

In this chapter we first present the most important works on communication efficient

distributed learning, that lead to the formulation of the problem of FL. After that we

present related works, organized by which main problem they focus the most according to

our previously introduced grouping (Chapter 1). Our researches focused on the federated

training of NNs, but it might be worth to introduce some innovative approaches invented

for the simpler convex problems as well.

3.1 Distributed Learning for Convex Problems

As the amount of data to be processed exceeded the storage capacities (or memory) of the

most powerful machines, new training methods have been developed to support parallel

processing.

In general this class of data parallel algorithms is aiming at training better models

in fewer synchronisation steps, solving more-or less exactly the local problems through

various local solvers and aggregation methods, exploiting the convexity of the loss function.

The one extremity of distributed training is one-shot averaging [245], where the local

sub-problems are solved perfectly, then the global optimum is given by a single average step.

The other end is parallel SGD [256] where, after every single per-data-point optimization

step, the local updates are averaged. In [192], the performance and the fundamental
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limitations of SGD-based methods between these two extreme have been studied in terms

of runtime, communication costs and number of samples used. They found that the best

convergence guarantees can be given for accelerated gradient descent [164] with the biggest

possible batch sizes.

Over the family of SGD-based methods, under some conditions on the problem (mostly

convexity of the loss), a range of other methods based on duality or curvature information

can be used as well.

For solving the local problems Distributed Approximate Newton (DANE) DANE [193]

and Accelerated Inexact Dane (AIDE) [174] uses local quadratic perturbation to turn

local updates into a mirror descent step (Section A.2.5), while Distributed Optimization

for Self-Concordant Empirical Loss (DiSCO) [247], aims at exploiting the super-linear

convergence of Newton methods by implementing inexact damped Newton method(A.2.4,)

for the distributed setting.

CoCoA [112] and CoCoA+ [153] builds on the idea, that if training examples are

dispersed across multiple worker nodes, then applying dual optimization is a natural choice

([112] proposes Stochastic Dual Coordinate Ascent, SDCA, A.2.2). In this setting, the

different nodes are working on different subsets of dual variables α and the weight update

∆w is eventually a linear combination XT ∆α of the refinements ∆αi of coefficients αi (dual

variables) belonging to data points xi (Appendix A.2.1).

CoCoA gives indeed stronger convergence properties as it has been shown in [112],

however, in practice, for more complex problems (not necessarily convex) as [130] reports,

it does not perform very well.

In the original FL paper [130], the authors proposed Federated Stochastic Variance

Reduced Gradient method (FSVRG), a hybrid of CoCoA, DANE and SVRG for solving

convex problems. The connections of DANE with SVRG have been analysed in [174]

where the authors have shown that a modified version of DANE is in fact equivalent

to a distributed version of SVRG. The key idea is to use the SVRG update loop in the

inexact DANE to solve the local problems approximately. Moreover, as pointed out in

[130], DANE with SVRG style local updates can also be interpreted as applying the idea
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of CoCoA to fix the drawbacks of DANE, namely, solving the local sub-problems only to

obtain a relative accuracy.

FSVRG has been tested for predicting whether a given Google+ post will generate

comments, using regularized logistic regression. For this problem the Federated SVRG

highly outperformed CoCoA+ and distributed Gradient Descent, however, the method is

strongly tailored to the specific task.

Moreover, since FSVRG, such as CoCoA and other similar sophisticated methods, is

building on the convexity of the objective function, the much simpler methods of FedSGD

and FedAvg are used in most of the cases since these are empirically proven to be more

efficient on a much bigger range of models. A more detailed description of these algorithms

can be read in A.7.

3.2 Real world deployment

One direction of FL research is aiming at addressing the problems of deploying FL

(FedAvg) scheme in existing IT infrastructures.

Soon after the formulation of the settings of FL and the first researches relating to

FedSGD, a lot of research work started investigating the ways of reducing the obvious

communication overhead, that is being involved by synchronized updates collected and

computed at a single central parameter server. Several algorithms has been proposed to

address this problem of communication bottleneck (not specifically for the FL setup but in

general for data parallelism), that can be used to improve communication efficiency for its

more general scenario.

The most visible problems of real world applicability of FedAvg stems from the

centralized synchronous nature of the algorithm. Namely, centralization leads to congestion

in the communication infrastructure, especially in the case of NNs, where not only the

number of nodes that try to communicate with the server is large, but also the size of the

models (or updates of equal size) to transmit is significant.

Recent approaches dealing with these challenges include
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• attempts to apply adaptive scheduling techniques to release the synchronous nature

of the process and the stemming slowdown;

• methods for reducing the amount of information, that must be communicated during

the training via quantization or pruning methods;

• addressing the problems or even exploiting the characteristics of the communication

medium as in Federated Edge Learning approaches

In this section we aim at giving some insight into this direction of FL researches.

3.2.1 Scheduling and resource provisioning

Bonawitz et. al [25] introduce the system design of a TensorFlow based production system

for mobile devices as workers, and cloud based coordinators or parameter servers (PS), that

already has been deployed over tens of millions of real world devices. The work addresses

most issues appearing in practice, such that device availability, unreliable connectivity and

interrupted execution. All these problems are addressed at the communication protocol

that is illustrated in Figure 3.1.

Figure 3.1 Training in [25]

The workers announce their availability for training time by time, and the PS decides

whether they will participate in a training round or instruct them to reconnect at a given time
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again. The system also creates holdout data sets of the nodes for validating the performance

of the system locally. Both at assigning the nodes participating at a training and reporting

the updates the nodes with late responses or no answers will be simply ignored.

This system handles the problems that come from the practical implementation of

FedAvg without making significant changes of the algorithm. The rest of this section

is dedicated to modifications some parts of the FL or, more generally, data-parallel ML

algorithms to address the issues of communication and computational bottlenecks.

Update scheduling

The paper of Chen et al. [40] alleviate the problem of stale parameters inherent in Distbe-

lief’s [51] (Section 2.1.2) asynchronous SGD using b backup nodes. The proposed method

use N +b workers and, in each round, waits with the aggregation step until any N updates

are received. Experiments have shown that this method leads to faster convergence and

better model performance compared to the original method of Distbelief.

In [234] the authors make experiments with traditional scheduling policies for the

node updates under constrained channel availability of wireless networks, taking into

account inter-cell interference, resource allocation between the radio access links and also

the stage of learning.The selection of nodes in the proposed Proportional Fair Policy is

based on which nodes can be communicated with at the moment “better then usually”.

That is, we pick the nodes k with the highest value for ρ̃k
ρk

, where ρ̃k is the instantaneous

Signal-to-Interference-plus-Noise Ratio (SINR) and ρ is a moving average of SINR. They

found that the Proportional Fair Policy outperforms the original random selection and the

Round Robin as well, at least in the examined case of training Support Vector Machines

(SVMs). On the other hand, for Convolutional NNs (CNNs), the picture was not this clear.

In contrast to stationary protocols, [224] presents an algorithm to dynamically adapt

the communication frequency and, thus, the number of epochs at the nodes to achieve the

lowest possible loss subject to a fixed budget of resources. Instead of making attempts on

scheduling, similarly to the already mentioned Downpour SGD in Distbelief , in [44] an
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asynchronous pattern was recommended, where updates computed for older models will

still participate in training, however, with a reduced weight.

3.2.2 Compression

One of the most simple way to alleviate the challenges of communication is to reduce

the amount of information to be transmitted per update round, that is, to compress the

communicated information.

Gradient compression techniques for distributed SGD most frequently use some kind

of quantization [189, 203, 60, 4, 5] for reducing the necessary communication bandwidth.

Quantization usually involves different kind of pruning methods and, in general, aims

at communicating only the most important aspects of the updates and keeping the less

significant information on the source location until they become important enough.

In distributed training off NNs, the use of Quantization methods builds on the obser-

vation that large NN parameters are sparse, thus, the updates are, not surprisingly, sparse

too. In general, they are viewed as a generalization of delayed update training, uploading

the most important directions the model should be changed in. These methods usually

accumulate gradient residuals for those coordinates that have not been sent, and when

the aggregated magnitude grows beyond the threshold they will be updated. That means

that less important parameters will be less frequently and less significantly updated, thus

reducing the average update size.

A general method for quantization with residuals can be formulated as

∇̃ ft = Q(∇ ft +∆ ft−1) (3.1)

∆ ft = ∇ ft−Q−1(∇̃ ft), (3.2)

where ∇̃ ft stands for the quantized gradient at time t, Q for the quantization function

and ∆ ft denotes gradient residual/quantization error. The simplest way for specification

of importance of coordinates is done simply by pruning along some thresholds τ by the

magnitude of the value at the coordinate. Quantization achieves further often stronger
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compression by discretizing the submitted parameters, replacing the actual value to be

transmitted by a small integer, or even a single bit. This smaller value or bit then at receiver

side will be translated into some actual magnitude, for example to τ Some interesting

quantization methods are described shortly in Appendix A.9

In [133] the authors propose an asymmetric communication pattern to reduce the

communication costs for image classification tasks with NN-s. The work builds on the

observation according to which internet connections are set up in an asymmetric way, that

is, the up-link is usually much slower then down-link. Thus, the main goal is to reduce

the amount of data to be sent by the workers. The authors experimented with two main

methods: The Structured updates method required the nodes to train and update only a

subset of the nodes, that has been either picked by projection or by a random mask. The

sketched updates method, on the other hand, asks the nodes to train all the parameters

but in the end only a subset is required to be sent for aggregation, compressed either by

probabilistic 1-bit quantization (above a threshold), or sub-sampled randomly. (For more

details see A.8)

Du et al. [61] address the compression of weight updates of Bayesian NNs [169] that

have been trained using variational dropout [123] (see Section A.5). Variational dropout

training is equivalent with Bayesian back-propagation with local re-parametrization includ-

ing a multiplicative noise. This noise is learnable on per weight base as it is demonstrated

by [123] (Appendix A.5). In [61] the authors argue that since high variance of a parameter

indicates large noise at that coordinate, pruning it can be beneficial from the perspective

of the inference. According to this, by transmitting only the updates of parameters of low

dropout rates saves communication cost without performance degradation.

[34] proposes an interesting FL scheme to connect dropout regularization to compres-

sion, that is reported to reduce communication costs to the 1/21th along with 1.7 times

reduction in local computation costs. The approach consist of two main components such

as a new lossy compression method and a federated dropout method. Federated dropout

zeros out a fixed number of activations at each layer, applying the same mask for each
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clients, thus, it becomes possible to remove corresponding rows and columns of the weight

matrices, as it is depicted in Figure 3.2.

Figure 3.2 Federated dropout for reducing size of weight matrices [34].
.

The clients have to train on the resulting sub-model and, in fact, can be completely

unaware of the full central model. From their perspective, each round can be seen as

computing updates for completely different models, where the updates will be mapped

back to the original model only by the coordinator. To further reduce the size of the data

to be communicated, a compression method might be applied on the resulting vectorized

parameter matrices.

It might be also worth to mention an interesting direction of researches which aim

at reducing the size of NN models through reducing the size of the model parameters

themselves through some kind of “quantization”. This essentially means to design archi-

tectures, training and inference methods for integer arithmetic [110] or even to ternary

(∀i wi ∈ {−1,0,+1}) [140] or binary (∀i wi ∈ {−1,+1}) networks as in [48] or [171].

3.2.3 Federated Edge Learning

Network congestion and latency issues in every aspects of distributed computing lead to

rethinking the cloud based system architectures. Concepts of Mobile Edge Computing

and Fog Computing are all about bringing the computational resources in the proximity of

users’ end devices, deploying application servers at edge servers or even at more powerful

nodes. Following this advance in distributed computing, a range of works investigates the

possible interaction of these new system architectures with FL.

FL with client selection (FedCS) [167] provides an approach to adapt FedAvg to

Mobile Edge Computing (MEC) environment. For minimizing the convergence time of
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the training, modified client selection is applied. In contrast to simple random selection,

as introduced in [157], that follows from the pure FL algorithms, FedCS is based on

evaluating to which nodes is the network able to provision the necessary bandwidth to

download the aggregated model, to upload the updates and, on the other hand, on which

nodes have the necessary capacities to execute the training. For this, first, they insert

another round of communication to query the available resources of the nodes, based on

which the PS will schedule the expected upload timing of the updates, as it is illustrated in

Figure 3.3.

Figure 3.3 Training round in FedCS from [167].

Since the nodes are competing for the communication resources, the selection leads to

a constrained optimization task in which a complex problem is approached by heuristics to

maximize the total number of participating nodes |S|, given a constrained time and number

of training rounds for the whole training process. If Tround denotes the maximum time for a

training round then the task is

max
S
|S| (3.3)

s.t. Tround ≥ Tcs +T S
d +ΘS+Tagg, (3.4)
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where Tcs stands for the time for client selection, T S
d is the time for model distribution

for the selected nodes, ΘS relates to the time for training and upload the update for all the

selected nodes and Tagg refers to the time of model aggregation. Since the order of nodes

in S influences the ΘS, this becomes a complex combinatorial problem for which they

propose to greedily add nodes to the set with the smallest expected training and updating

time. Similarly to [25], if despite of the initial query round some nodes cannot fulfill the

planned time constraint at any stage, the communicated data will be simply dropped.

A further step into realistic FL is to apply over-the-air computations (AirComp) [163,

80]. AirComp methods seek to take into consideration the impact of “hostility” of wireless

multi access channels (MAC) on significant bandwidth need, as well as the possibility of

exploiting their special, sophisticated properties (e.g. fading, multi-access and broadcasting,

and spatial multiplexing) to increase communication efficiency.

For exploiting the possibilities of AirComp, Zhou et al. [254, 253] suggest to use

broadband analog aggregation (BAA), that builds on the idea that synchronized updates

can be aggregated over broadband channel by exploiting waveform-superposition property

of the multi-access channels.

Figure 3.4 Broadband analog aggregation versus broadband digital aggregation from[253].

The principle of the analog computation is, that instead of assigning sub-channels to the

distinct wireless devices to transmit the parameter vectors independently from each other

through Orthogonal Frequency Division Multiple Access (OFDMA, a multi-user version

of the OFDM digital-modulation technology), the sub-channels are assigned to parts of the

set of parameters to be transmitted. Thus, each device adds its respective update value to
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the shared, per-parameter-set channels, where the signals will be added by superposition,

as it is depicted in Figure 3.4. To support these over-the-air partial aggregations, a modified

beam forming method is required at the same time which, instead of focusing on enabling

recovery of individual data streams of single users, aims at amplitude alignment across the

targeted devices by keeping the ratio of signals (Figure 3.5).

Figure 3.5 Aggregation intended beamforming vs space division multiple access (SDMA)
beamforming from[253].

Utilizing over-the-air computation, however, requires a trade off between acceleration

of training (by involving more devices) and the increased aggregation error rate (due to

the unreliability of the channel). To overcome this problem, a joint client selection and

beam-forming approach is proposed in [235] to find the maximum number of devices,

with which a mean squared error (between the aggregation of real updates and the BAA

approximation) requirement is still fulfilled. Since this joint optimization is intractable

due to the combinatorical objective function |S| (number of participant devices) and the

non-convex MSE constraint (the error due to the noise of over-the-air computation), the

authors propose to model it as a sparse and low-rank problem through a difference-of-

convex-functions (DC) representation.

The paper of Zheng et al.[242] also adds the issue of heterogeneous computation ca-

pacities to the above discussed channel state information( [235]). The proposed bandwidth

allocation and scheduling algorithm aims at maximizing the accuracy of the trained model

and, at the same time, at minimizing energy consumption, training and update transmission
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times at the devices using the OFDMA communication model, that is the communication

method utilized in Wifi, 4G or 5G networks.

Amiri et al. [7, 8] compare Digital Distributed Stochastic Gradient Descent (D-DSGD),

where the communication and computation are treated separately, and Analog Distributed

Stochastic Gradient Descent (A-DSGD), where no channel encoding is applied during

the transmission, but the channel superposition property for the sparsified node updates is

utilized (quantization with error accumulation, see Section 3.2.2). Taking into account the

limited bandwidth and power consumption of submitting the updates, they report faster

convergence of the analog approach in setups with low energy and bandwidth scenarios.

3.3 Performance loss in FL

The second important branch of research according to our grouping is about giving up the

algorithmic base of FL [129, 157] and making attempts to find new, different solutions for

the problem statement of FL. The main motivations for this branch might be the potentially

insufficient performance of models at the end users, the performance drop compared to

single node training or the vulnerabilities of the centralized algorithm.

Performance degradation The degradation of performance experienced in FL setup

is analysed in [251] and [240]. According to the empirical results of [251] the accuracy

loss reaches up to 50% even for relatively simple setups but, what is worse, it often

fails completely. They assume that the cause of this performance drop resides in weight

divergence. That is, the aggregated gradients lead the parameter search to a space where

local distributions are more imbalanced.

To reduce the harmful effect of weight divergence a number of alternative “knowledge

ensembling” methods has been proposed, based on

• data sharing;

• knowledge ensembles and distillation;

• neuron matching;
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• personalization by multitask learning and task clustering.

3.3.1 Data Sharing

For reducing the divergence of the update directions of the worker nodes, Zhao et al.

[251] propose to use a small amount of shared “anchor data” that should be uniformly

distributed and obtained by the initiator of the training process. Some fraction of this

shared data set will be then sent to the nodes to regularize the training. This effect can

be further boosted by pre-training the initially distributed model on the collected data set.

An accuracy improvement of 30% for the case where each node has only a single class as

training data and with 5% shared data on Cifar-10.

3.3.2 Knowledge ensembles and Distillation

A simple, safe enough and widely used method to produce high performance predictors is

to train multiple high capacity models on the training data and create an ensemble [56], that

will make predictions combining output vectors by weighted average or voting methods.

This, on one hand, is a simple way of collecting the knowledge of multiple models but,

on the other hand, it might be cumbersome to make predictions based on a big number

of complicated models. To solve this problem a simple and elegant method to assemble

the models of the ensemble, called Distillation, has been presented in [32] that essentially

trains a single, high performance predictor to predict the ensemble’s (or a complicated

resource intensive model’s ) output vector given the input features.

Distillation is a very well usable technique for combining knowledge of different

models, thus they might offer a valuable help in some distributed, and potentially in

federated setups as well, especially if they are used in a symmetric fashion, as it is done in

Mutual learning [248] and Co-distillation [9]. (For more details: A.10).

Federated distillation [116] is an interesting, communication efficient approach, even

if at some points it violates the philosophy of FL. In their approach, that is based on

co-distillation [9] the size of exchanged information depends on the output size instead of

the number of model parameters. At first place, the goal is to reduce the size of updates
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to be communicated in each round, through transmitting only the distillation term, that is

the logit or soft probabilities. However, in co-distillation this distillation term is example

based, that is, for each training example the logit function should be communicated, since

a method was invented for use-cases in which the examples are available for all nodes.

Thus to use co-distillation in an FL setup one have to address the following problems:

1. the nodes do not have the same training examples, (correspondingly to the setup of

FL);

2. even if they would have it, per training example updates are way less efficient than

aggregated gradients.

The solution to these problems was offered in [116] in the following way:

1. the parameter-servers will be used for aggregating and distributing a per-label mean

logit vector (Federated distillation)

2. to resolve the non-iid nature of the local data-sets, in a centralized location a genera-

tive adversarial network(GAN) should be trained, which will be downloaded by the

workers to form iid datasets. (federated augmentation)

Figure 3.6 Illustration for Federated Distillation and Federated augmantation in [116].

Thus the algorithm (Figure 3.6) periodically updates per-label logit means of the nodes

at the PS, instead of the parameter updates, and the PS aggregates and redistribute these.

The local models, therefore, will be different from each other. The goal of the training is
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to produce similar output for similar inputs across all the nodes. On the other hand, the

workers share the GAN, that is trained centrally at the parameter server to enable them to

have an iid distribution. The problem at this point is that there is still no real data for GAN

training [85]. For this, the authors propose to acquire the related class instances from the

internet, which can be considered as a kind of weak point of the method, along with the

need for uploading potentially sensitive data.

3.3.3 Neuron Matching

Similarly to federated distillation, the approach of neuron matching for FL, presented in

[240], gives up the goal of sharing a common prediction model. Going a little bit further

from distillation and, instead of urging the logits to agree on given inputs, they match

groups of neurons through attempting to infer semantics of parts of the trained NNs. The

motivation of the method is the fact, that the ordering of neurons in a fully connected

hidden layer is permutation invariant. These hidden layers are working as feature extractors,

on whose output softmax regression provides the final classification. In their method, each

node develops a model on its own, without a need of common initialization or even using

common training method. Neuron matching attempts (using a Beta Bernoulli process

[210]) to find parts of the NNs, that correspond to detectors of the same or very similar

features. The common model is then created by aggregation and assembly of these shards.

Chen et al. [44] presents a communication efficient asynchronous version of FedAvg

that builds on the semantics of NNs as well. The key idea here is that, since in deep NN

architectures the first few layer behave as general feature extractors, one should pay more

attention on the convergence of these. The first idea is, therefore, to invent two types of

updates: the first type, that is executed at each round, only transmits the first layers and,

the other type that transfers the whole data is utilized less frequently. (The other key idea,

already presented in Section 3.2.1 is an asynchronization method, according to which the

updates risen from old models will contribute to the aggregated model as well but with a

smaller weight.)
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3.3.4 Multitask Learning and Personalization

Multitask Learning (MTL) and personalization approaches follow from the idea that even

if we assume that the federally trained models perform as well as the centrally trained ones,

the resulting models will be too generic for the actual end-users.

As has been summarized in [186], FL assumes a single centralized model to be capable

to provide good performance predictors to all the users. The implicit assumption made by

FL is that for all local data distribution D(k) at node k, for which the true risk is

R(k)(w) =
∫

f (k)(x)dD(k), (3.5)

there exist a parametrization w∗ such that, at least locally(in an ε-neighbourhood Bε),

∃w∗ : R(k)(w∗)≤ R(k)(w) ∀k nodes, and ∀w ∈ Bε(w∗) parametrizations. (3.6)

This assumption, however, might be violated in the following ways [186]:

1. Clients disagree on conditional distributions, i.e. D(i)(y|x) ̸= D( j)(y|x). (Since they

can hold arbitrary data, that cannot be audited by the central server, this scenario is

more than probable.)

2. The models might not be expressive enough to fit all distribution the same time.

(Since computations run many times on small user equipments, they most often

might be unable to train complex models that can capture the subtle differences.)

The authors provide a set of intuitive examples to demonstrate the traps of this assumptions:

• Varying preferences If one would like to train a classifier on images of people to

predict attractiveness, one group of users will tend to say that a people with glasses

are very attractive, while others will not be so much impressed. Thus it is easy to see

that a single model using merely an image as an input will not be able to reach high

accuracy on such problem.
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• Limited model complexity When one tries to predict the next word in texting,

she or he will face with high probability with the fact that different demographic

groups, like teenagers or pensioners, tend to use a very different language, exhibiting

strongly divergent statistics. On one hand a model not expressive enough is unlikely

to be able to capture the characteristics of all the groups, a more complex one, on

the other hand, would involve prohibitively large training and prediction resource

requirements.

• Adversaries When a significant group of users behave in adversarial manner from

the perspective of the model, they are biasing the global data distribution in an

undesirable direction, that can make the entire training useless. Let us just refer

to misfortune of Tay, the chat-bot of Microsoft, who started to exhibit not entirely

socially acceptable behaviour following the examples of its human teachers.

Thus MTL methods and model personalization techniques are designed to address this

issue by building a number of specialized models instead of delivering a single one.

For prediction of next word in texting ([93]), Wang et al. [222] provides a detailed anal-

ysis, according to which the globally obtained model should be fine tuned to better reflect

the needs of a given user. Their Federated Personalization Evaluation (FPE) framework

evaluates the effect of personalization by retraining the shared model using the cached

local data. The parameters of retraining are defined in personalization policy containing

hyper-parameters as batch size, learning rate or number of epochs. They evaluated their

models before and after retraining, using the accuracy of prediction measuring how often

they hit the next word. They found that retraining yields some benefit for the majority of the

users, however, there is always a subset of users who experience performance degradation

in the same time.

A similar argument has been made in the paper presenting Agnostic Federated Learning

[161]. According to that, from the perspective of the end-users, the assumed uniform target

distribution, that arise from simple summation over distributions D(k) of the local datasets
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D(k):

D =
K

∑
k=1

n(k)

n
D(k) (3.7)

might be unsatisfactory. The overall loss might be impressive, but on a large fraction of

small datasets the model might perform very poorly. A simple solution they offer for these

problems, therefore, instead of this simple uniform creation of the target distribution (in

Equation 3.7), one should use an λ-mixture model of local distributions (with a naturally

unknown λ):

Dλ =
K

∑
k=1

λkD(k) (3.8)

. Using this assumption, we can define an agnostic loss as

fDΛ
(w) = max

λ∈λ

fDλ
(w) (3.9)

To minimize this loss, for a model family M, the task is to find wD∗
Λ
= argminw fDΛ

(w).

Clustered Federated Learning (CFL), introduced in [186], provides an elegant way

to overcome the issue of insufficient performance of specific subsets of the clients by

progressively clustering the nodes based on the directions, in which they are attempting to

push the common model (e.g based on distance of gradients), until stationary state will

be reached at every cluster. The method is about alternation of traditional FL training and

splitting the node set into clusters of similar nodes. Once an FL training has converged on

w∗, that is

0≤ || ∑
i∈|c|

|D(i)|
|Dc|

∇ f (i)(w∗)||< ε1 (3.10)

for a cluster c and Dc =
⋃

i∈c D(i), but

max ||∇ fi(w∗)||> ε2, (3.11)
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that means that nodes are incongruent, then we have to split the cluster C. In this case, we

take the pairwise cosine similarity between all the gradients and split C minimizing the

maximum similarity between nodes from different clusters.

Multi-task learning (MTL) is a concept to learn models for multiple related tasks

simultaneously, hoping that, in some sense, the tasks are similar to each other. The general

goal of MTL for problems with convex loss can be formally described as

min
W,Ω

{
K

∑
k=1

nk

∑
i=1

f ((wk)T
ϕ(xk

i ),y
k
i )+R(W,Ω)

}
,

with ϕ(·) being a (linear) feature mapping and W = [w1, . . . ,wK] ∈ Rd×K the parameter

matrix, whose kth column corresponds to the parameters of the kth model.

The term R is a kind of a special regularization parameter, that has been originally

proposed in [111]. Above the restrictions on the parameters, it also includes the matrix

Ω ∈RK×K that describes the task-relatedness. For instance, as in [249] or [147], this might

be the inverse of the column covariance matrix of W. The general regularization term for

the MTL can then be given by

R(W,Ω) = λ1tr(WΩWT)+λ2||W||2F . (3.12)

Using this regularization, R encourages models wk to be similar for related tasks, keeping

a priory assumptions, like being as simple as possible. This model can be integrated with

the CoCoA framework to build communication efficient distributed multi-task learning

methods, as for instance in [249] and [147], which soon have been adapted for the federated

learning settings for convex problems as well [198].

In federated multitask learning [198], during the training, the algorithm alternates

between optimizing W and Ω, i.e. the method parallely learns the solution for the local

sub-problem and the relation between data sets across the nodes. W-updates are carried

out in parallel at the nodes, each of those solving the local sub-problem (where conjugate
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of regularization term, R∗ incorporates a fixed Ω):

min
α

{
D(α) =

K

∑
k=1

nk

∑
i=1

f ∗k (−α
k
i )+R∗(ϕ(X)α)

}
. (3.13)

After the model updates, in the Ω-step, the similarity matrix will be updated based on the

latest w(α). Since this step is data-independent it can be executed centrally.

Variational Federated Multi-Task Learning (VIRTUAL) [47] has been developed to

address federated MTL for generic, non-convex models using a star shaped Bayesian

network (Figure 3.7) with the server parameters θ in the center and local parameters φk at

the leaves. The idea is that, similarly to progressive networks [184], the local model reuses

knowledge aggregated by the server through “gating” activation from the parallely running

server model

a(l+1)
k = σ(Ul

ka(l)k +αVl
k(σ(a

(l+1)
s ))), (3.14)

where Ul
k and Vl

k are the weight matrices belonging to the client and server activation a(l)k

and a(l)s , respectively, and α is a gating weight. These weights, all together, add up to local

parameters φk at machine k, that is, trained simultaneously with updates to be sent to the

coordinator. (More details on training using expectation propagation are given in A.12)

Figure 3.7 Variational inference model of [47]. Plates represent replicates over K clients
and Ni data-points at node i. (a) conditional dependence of y on the shared local model
parameters as well as on input x according to the discriminative model p(y(n)i |x

(n),θ,φi
i ). (b)

the dashed arrows denote the dependencies of the parameter posteriors on data point n of
client i (likelihood), (µs,σs) and (µc

i ,σ
c
i ) represent Gaussian priors on θ and φi.

36



Related work

3.3.5 Decentralization

A different perspective to deal with the communication difficulties is splitting the model

across multiple parameter servers. Implementing both model and data parallelism is a

solution that has been used already in DistBelief [51]. A step further is taken in [4], for

the case of limited sized systems, placing the parameter shards and the model shards

on the same place at worker nodes, constituting a kind of peer-to-peer system where

each node sends and receives updates to and from every other ones (see the Figure 3.8).

Increasing the number of nodes, relieving, the global synchronization and giving up

Figure 3.8 Peer-to-peer sharding architecture from [4].

all-to-all communication then leads to the family of gossip based algorithms [58].

Peer-to-peer gossip based methods

These decentralized approaches are usually regarded as the right approach only in the

case if the appropriate infrastructure is not available to control the system. Lian et al.

[143] however challenge this consensus, conducting a series of experiments about the

performance of a fully distributed/gossip based SGD algorithms (Decentralized Parallel

Stochastic Gradient Descent (D-PSGD)) in comparison with the centralized one. D-PSGD

algorithm, at the kth node, computes the gradient ∇ f (wk
t ,B

k
t ) for a randomly chosen data

point or a mini-batch of points Bk
t . Independently from this, an average wk

t of the current

values of wk
t with those of its neighbours will be computed, weighted by matrix that
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encodes a kind of “distance” between the nodes. The new value for w is then given by

applying the gradient for the averaged point, with learning rate η:

wk
t+1 = wk

t +η∇ f (wk
t ,B

k
t ). (3.15)

Along with theoretical justification of the competitive convergence rate, they have also em-

pirically proven that D-PSGD is able to achieve the performance of centralized algorithms

without the network congestion caused by the latter. These results hold even for non-convex

optimization problems (ResNet for CIFAR-10 image classification and proprietary NLP

task), at least in case of uniformly distributed local datasets.

In fact, as it is pointed out by Hegedűs et al. [94], the environment that gossip algorithms

assume is analogous with the requirements of FL. They assume huge number of workers,

data staying at the place of creation and, in a lot of cases, highly varying number of data

points.

Based on these observations the authors of [94] propose a completely decentralized

gossip-based algorithm. They decentralize the aggregation of models in a way that nodes,

upon being done with a local training round, completely asynchronously send their models

to some of the neighbouring nodes. For this, destinations can be picked with the help of a

peer sampling service on an ad-hoc network of nodes [115]. Those nodes, upon receiving

one ore more models, take a stochastic average of their own model with the received ones,

and retrain the resulting model on their own data.

Similar gossip models have been introduced in [215] and [18], where the main task

is balancing between local performance of the models at nodes, and a requirement for

a kind of smoothness over the parameter space. The presented methods are peer-to-peer

multi-task learning like algorithms for collaboratively learning personalized models over a

network of nodes. The set of nodes in these works are represented as a graph, in which the

neighbourhood matrix N ∈ Rn×n contains the weights of edges, that describes similarities

of nodes or “task relatedness”. This can be based on user profiles or the data itself.

For normalizing relations, a diagonal matrix D can be used with Dii = ∑
n
j=1 Ni j. In the

algorithm, the primary objective of the nodes is to obtain a model describing their data as
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well as possible:

wk
sol = minw∈Rn f k(w) =

nk

∑
j=1

f (w;xk
j,y

k
j) (3.16)

Above this, the proposed systems seek to achieve a kind of smoothness over all the models

in the sense that more related task should have more similar models. The idea of the first

approach, called model propagation [215], is, first, to find the exact optima at the nodes

and, then, make the weights smooth over the edges through minimizing the penalties

imposed by the difference of models at nodes to each and by too much change of models

with many training examples:

QMP =
1
2
(

K

∑
i< j

Ni j∥wi−w j∥2 +µ
K

∑
i=1

Diici∥wi−wi
sol∥

2), (3.17)

where ck = nk/max jn j is a confidence parameter which is proportional to the data amount

at the node and µ is a trade off parameter between the grade of smoothness and the local

accuracy.

In the collaborative learning algorithm, learning and propagation are interweaved, thus

the objective

Qi
CL =

1
2
(

n

∑
i< j

Wi j∥θi−θ j∥2 +µ
n

∑
i=1

DiiLi(θi)), (3.18)

where the left side term is responsible for smoothness and the right side therm is to prevent

too high loss of local accuracy. This objective is proposed to be minimized by a distributed

version of ADMM [29]. However, dual-based methods, as ADMM are working only for

convex problems. To apply them for our problem, one must use some “convexification” of

NNs [12, 154, 212, 246]. Though it was intended to use for liner models, application of

convexification built upon model averaging [94] with appropriate hyper-parametrization

would most probably work for NNs as well.

A bit simpler, gradient based (consequently NN-compatible), method for peer-to-peer

learning of personalized models has been presented by Bellet et al. [18], where the objective
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to minimize (with the notation used in [215]) is

QCL(Θ) =
1
2

K

∑
i< j

Ni j∥wi−w j∥2 +µ
K

∑
i=1

Diici f i(wi). (3.19)

A more detailed description of these gossip algorithms ican be found in A.11.

3.4 Privacy

From the point of view of cyber-security, in a system like the FL there is a wide range

of potential threats we should calculate with. In a comprehensive work about the state of

FL research [118] the authors listed, for instance, the following main categories, from the

point of view of the “model owner”:

• malicious client can inspect or tamper the training process;

• malicious server can inspect or tamper the training process;

• data analysts or compromised clients can steal the trained model.

For addressing these threats a number of widely used technologies can provide us some

help. In general, security issues which arise in connection with FL can be classified under

the field of secure multi-party computation [236]. The problem statement of this area of

cryptography is that a set of parties compute a function together on their private inputs,

without revealing anything apart from the intended output. The field involves techniques

that are built on secret sharing with homomorphic encryption [79] or oblivious protocols

[109]. In the spirit of the original specification of the problem, the most important security

aspect of FL is the protection of privacy of the users who contribute to the training with

their potentially sensitive data.

One solution to ensure user privacy is using Trusted Execution environment (TEE) or

secure enclaves [204]. TEEs are designed to run critical codes in a way, which ensures that

runtime and memory patterns do not reveal information about the input data (for example,

Prochlo [22]) and, also, guarantees that the right code is running within.
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Using TEE as an example to protect user privacy against a malicious server is Secure

shuffling [39, 135], that also involves trusted entities, that receive data from the clients and

forward them to the aggregating server in a way, that it is unable to infer which updates

belongs to which client.

Nevertheless the ideal solution would be to guarantee privacy without any need for

single trusted entities. That is, the main goal is to protect the user’s data from the moment

when any information about it leaves the user’s device. That means no one, including the

server or some trusted entities, should be able to make “very concrete” conclusions about

the data, what the user owns. Analogously, when the communication involves secret key

protocols, the most appropriate approach would be holding it at the clients, that is, to share

among parties as it has been proposed by [176] and [181].

The most serious threats from the perspective of privacy of user data we have found in

our research work are the following attack method(described in more details in Appendix

A.6) :

• Membership inference Exploiting the phenomenon of distinct behaviour of models

fed by members of the training data, one can decide if a record was used in the

training.

• Attribute inference Utilizing membership inference, assuming that a given record

has been used during the training, the most probable values of sensitive attributes

can be inferred.

• Gradient leakage Under some more or less restrictive circumstances training data

points can be completely reconstructed from model update vectors

The two most important concepts, specifically for protecting users’ privacy, in the FL

setup to are differential privacy and secure aggregation.

3.4.1 Differential privacy

To achieve this goal of protecting users’ privacy the state-of-the-art model is differential

privacy [63] that quantifies and limits information disclosure about an individual with
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privacy loss parameters (ε,δ). A random algorithm A is (ε,δ)-differentially private, if for

all S⊆ Range(A) and for all D and D′ adjacent datasets

P(A(D) ∈ S)≤ eεP(A(D′) ∈ S)+δ (3.20)

where S means all possible outcome of A. If ε, the difference between the probabilities for

getting the result from the datasets D and D′ is small, then it is hard to guess on which has

A been run.

In the context of FL, the adjacency means that one dataset D′ can be obtained from the

other D by removing the data of a single client [158].

Differential privacy can be achieved by applying differentially private transformation

that, in ideal case, should be done at each client, avoiding the need to rely on any trusted

entities. The most common form of these transformation is adding a random noise to the

data. With adding the noise, one have to balance between increasing the probability of

decrypting the data and making the updates useless.

Privacy preserving deep learning was presented by Shokri and Shmatikov [195]. Their

Distributed Selective Stochastic Gradient Descent method, that has been designed for

collaborative NN training, is similar to FL from the client’s perspective. To protect user’s

confidential data they only submit a predefined number of selected coordinates of the

gradient. The selection method is based on the importance of the coordinate of the model.

That is, a value in the gradient might be added to the update vector, if its size plus some

Laplacian noise is above some threshold. Alternatively, we can choose simply the given

number of biggest values. After the selection, coordinates of the sparse update vector are

transformed into a bounded range, and a further Laplacian noise is added to the values.

This way, the method implements a trade-off between fast and private learning through

varying the number of updates allowed to be sent, the threshold and the strength of the

noise.

Later, Abadi [3] has presented a general differentially private SGD version for defend-

ing against model inversions attacks [67] or membership inference [196], even for the case
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when the attacker has access to the model (white-box attack). The (bit simplified) method

consist of the following steps:

• Define a clip norm C, and a noise scale σ

• For t = 0 . . .T

1. Compute gradient: gt(xi) = ∇w fi(wt)(= ∇w f (wt ,xi,yi) for all xi ∈ Bt , for

batch Bt selected at round t

2. Norm clipping: gt(xi)← gt(xi)/max
(

1, ∥gt(xi)∥2
C

)
3. Add noise and sum up: g̃t ← 1

Bt

(
∑i gt(xi)+N(0,σ2C2I)

)
4. Descent: wt+1← wt−ηt g̃t

Here, norm clipping bounds the influence of each individual example on g. The clipping

threshold C ensures that if ∥g∥2 ≤C, then it is preserved, otherwise it gets scaled down to

have norm equal to C.

Theorem 1 in [3] states that there exist constants c1 and c2 such that, given a sampling

probability q = |B|/|D|, this algorithm is (ε,θ)-differentially private for ε < c1q2T and

any δ < 0 with

σ≥ c2
q
√

T log(1/δ)

ε
. (3.21)

Building on this secure SGD method, McMahan et al. [158] presents a deferentially

private system for language modelling, that is already working with the specific scenario

of FL.

Differential private transformations eventually blur out the contribution of data points

in the model. Thus, they reduce the efficiency of membership and attribute inference attacks

(or advantage, see Appendix A.6.3) by decreasing the difference of model behaviour on

seen and not seen data points. Many works attempts to bound the advantage in function of

privacy budget ε, but as [105] points out, due to intricate characteristics of training data,

these bounds are not too reliable (dependencies between data, distribution of training and

attack datasets, etc. For more details see Appendix A.6.3).
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Figure 3.9 Visualization of Secure Aggregation from the presentation of [26] on ACM
CCS 2017. When an update of Bob does not arrive, its masks (purple and orange triangle)
will be recovered using the shared secret b, while its individual mask (red dot) protects
the updates privacy in case of late arrival. If the updates arrive (as the ones of Carol and
Alice), the individual masks (blue and yellow circles) will be retrieved and the pairwise
masks cancelled.

3.4.2 Secure aggregation

Secure aggregation is the concept for clients to submit their updates in a way that the server

will only know the aggregation of those. That can be implemented, among others, with

threshold homomorphic encryption [194, 91]. One of the most important results relating to

privacy of user data during federated training is the protocol of Segal et al. [26] that builds

on secret sharing [191], public-key cryptography, and pseudo-random number generation.

The main idea of the algorithm is to add random masks to the updates that change the

update vectors completely but cancels out at the aggregation.

These masks are generated by pairwise Diffie-Hellmann Key Agreement [57] that uses

pseudo-random generators for creating the mask, and whose seeds are given by shared

secret keys gab. Here, ga and gb are public keys of the two clients, who possess the secret

keys (numbers) a and b, while g is a public generator number. The server broadcasts ga, gb,

. . . public keys and pairs of clients raise the public keys of the others to their secret key a,

and b. Thus, gab = gba will be their shared secret (this is done for every pairs of clients), the

seed used for generating their pairwise mask. For addressing the problem of the dropout
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of clients, which would lead to unresolved masks, the next step is to share the private

key a and b via by Shamir’s k-out-of-n threshold secret sharing [191]. This means that if

someone possesses at least k shares of a secret, then he can reconstruct it perfectly but,

otherwise, it is impossible. This is done by computing a k−1 degree polynomial with the

y-intercept equal to the secret and along which n points are picked and distributed by the

client sharing its secret. From any k of these n points the polynomial can be interpolated,

thus, revealing the secret key of the missing client.

If the update arrives late this would lead to violation of the privacy, since all the applied

masks are known by now, so the update can be recovered perfectly. To address this, a

second individual mask is applied on the updates using another secret key (random seed)

at the client that is also published by k-out-of-n sharing.

Consequently, if an update arrives then, with respect to a given client, the server collects

the shares for the individual masks since the pairwise mask will be cancelled out anyway.

Otherwise it asks for the shares of the pairwise mask to cancel the masks out that would

remain in the aggregate. For a visualization of the protocol see the Figure 3.9.

By obfuscating the updates, Secure Aggregation is a strong counter measure against

gradient leakage. But these methods are more and more powerful and being able to

reconstruct larger batches of data, and even draw some information from multiple epoch

training as well [76]. Thus the possibility can not be completely excluded, that once they

become powerful enough to decrypt the whole update of the common model.

3.4.3 Model robustness

There are some other vulnerabilities of the trained models that might be mentioned. The

roots of these problem reside in the tendency of NNs to memorizing specific patterns, that

can cause other types of privacy leakage, and models that do not work properly.

One example for the first, privacy related issues, has been presented by Hitaj et al.

[101]. The authors call the attention to vulnerability of private information for the cases

where a user holds the entirety of a class, as in the case of face recognition systems. The

attack they present builds on generative network which is visualized in Figure 3.10.
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Figure 3.10 GAN based attack for collaboratively trained face recognition [101].

Using the generative model the features of the targeted model can be learned, even if

it is not on the level of individual records. For example, if the device contains images of

a person it will not return any of the original images but might reconstruct a face. When

an attacker pushes these generated images, he forces the target client to release more

distinctive features, providing more and more detailed generative examples.

The second of these other issues are not related straight to privacy but to expected

operation of the trained models. These problems are stemming from the tendency of NNs

to learn very intricate decision boundaries, that can be exploited by adversarial data-points

(for example [209, 86, 107, 35, 36]). Backdoor attacks[41, 90] build on this phenomenon,

applying a kind of poisoning of the training data, that results in shifting these boundaries

intentionally to misclassify certain inputs. That means that adding some imperceptible

features to some of the training data with some intended inference target value, thus, urging

the network to make decision based on these (Figure 3.11). Even if achieving this effect in

a federated environment is harder due to the quickly vanishing and infrequent impact of a

poisoned local data-sets, there are already approaches as model replacement attacks [16]

(Appendix A.6.1) that might work in these extreme situations as well.
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Figure 3.11 A canonical example for backdoor attack in self-driving [90]. The NN can
be trained in such a way, that detecting the yellow square on a stop sign will change the
predicted class of the stop sign into a speed limit for instance
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Chapter 4

Stateful optimization in federated

settings

In this Chapter we present our experiments [64, 126] on the effect of applying stateful

optimization methods in Federated training. For this first it might be worth to go through

the development of FL training again to present why these methods could work.

4.1 Federated gradient based training

In neural network (NN) optimization, due to the non convexity of the loss functions,

the most used methods for optimization of network parameters are gradient based, more

specifically the versions of SGD [28]. Gradient descent methods take derivatives of loss

function according to the parameters of the model, then move the parameter values in the

negative of the gradient.

The pure form of SGD samples a random function (e.g a random training data point)

it ∈ 1,2, ...,n in iteration t and performs the update:

wt+1 = wt−ηt∇ fit (wt), (4.1)
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where ηt denotes the learning rate, which is, in the base case, decaying during the learning

to enforce convergence. Intuitively, SGD works because evaluating the gradient at a single

training example gives an unbiased estimation of derivative of the error function over all

the training examples: E[∇ fit (w)] = ∇ f (w).

In practice, instead of applying the gradient for w at each example, usually an average

of gradients over b randomly chosen examples is used, that are evaluated at the same w.

This method is called minibatch gradient descent (MBGD), that better exploits parallel

computational capabilities of the hardware. (MBGD is still commonly referred to as SGD)

Though SGD/MBGD in the above form is very popular in optimization, the basic approach

can sometimes result in very slow learning. To tackle the challenges incurred by high

curvature and noisy gradients of the loss function of NN, a range of method has been

proposed based on exponentially decaying average of the gradients or on adapting learning

rates. [84]

In this paper, we investigate the effects of these methods on the performance , of

federated training of artificial neural networks.

4.1.1 Distributed SGD

When training ML models in a distributed manner, the problem we want to solve is to

minimize the loss function f with respect to model parameters w over all available data

points at K nodes (user devices) as follows:

min
w∈Rd

f (w) =
K

∑
k=1

n(k)

n
F(k)(w), with F(k)(w) =

1
n(k)

n(k)

∑
i=1

f (i)(w), (4.2)

where f (i)(w)
def
= f (x(i),y(i),w) denotes the loss on data point (x(i),y(i)), given w, and F(k)

denotes the averaged loss at node k.

To solve the problem in (4.2) the simplest, and in neural network (NN) optimization,

due to the non-convex loss functions, the almost exclusively used methods are versions of

Stochastic Gradient Descent (SGD) [40]. SGD takes the derivative of loss function at one
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data point with respect to the model parameters w, then move the parameter values in the

direction of the negative of the gradient:

wt+1 = wt−ηt∇ f (i)(wt), (4.3)

where ηt denotes the learning rate. In practice, instead of applying the gradient for each

data points, an average of gradients over a batch B of randomly chosen examples is used

(evaluated at the same w). Such “minibatch” gradient descent (MBGD) methods, still

commonly referred to as SGD, better exploits parallel computational capabilities of the

hardware (like GPU). For both cases, the update is a stochastic approximation of the

whole gradient: E[∇ fB(w)] = ∇ f (w). In data parallel centralized distributed synchronous

MBGD training, per batch updates are parallelly computed by processors of the DC on

their assigned data chunks, then their average will be applied to the central model wt :

wt+1 = wt−ηt
1
K

K

∑
k=1

∇ fBk(wt). (4.4)

4.1.2 Federated Learning

The main idea behind FL [129] is that, instead of moving the data to a central location and

use training method from Eq. (4.3) or (4.4), one could exploit the computational power

residing at user devices and partition the training process among them. This, however,

brings more complication in the formula. Due to the real distributed nature of the system,

communication becomes expensive and unreliable. Therefore Federated SGD (FedSGD)

[129] algorithm applies a modified version of (4.4) to reduce communication complications,

where instead of communicating the gradients per batch, the central updates takes place

after multiple local updates:

wt+1 = wt−
n
nk

k

∑
k=1

∆
(k), with ∆

(k) =
r

∑
i=0

∇ fB
k
ti (wk

ti), (4.5)
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where wk
ti+1

= wk
ti
−η∇ fB

k
ti (wk

ti), wk
t0 = wt and r is a hyper-parameter for the number of

local updates.

To further increase communication efficiency, FedAvg algorithm [157] takes only a

small subset (10%) of updates. It has been empirically proven to be able to keep or, in

some cases, even increase convergence rate of the learning. FedAvg became the baseline

of FL research.

Since the data to be processed by FL generated at a huge number of independent nodes,

it has the following characteristics:

1. Massively Distributed. The number of nodes can be much bigger than the average

number of training examples stored on a given node (n/K).

2. Non-IID. The data points available locally are drawn from a different distributions.

3. Unbalanced. Different nodes may vary by orders of magnitude in the number of

training examples they hold.

4.2 Motivation and related work

When it is compared to traditional NN training methods, FL exposes a significant perfor-

mance drop, that reaches up to 50% accuracy loss, even for relatively simple setups [251],

and too often fails completely.

Problems of weak performance of FL might root in multiple factors residing in the

nature of learning. First, computation of global updates might involve problems of large

batch learning and, second, non-iid nature of training data poses additional statistical

challenges as well.

Huge batches

We can view the FL update rule in Eq. (4.5) as using huge batches in MBGD: |BFedAvg| ≈

|K̂|r|B|, where K̂ is the number of nodes participating in the training round in FedAvg

(= K in FedSGD). Moreover, SGD based methods build on the assumption, that the update
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is an unbiased estimate of the full gradient, that is unlikely in a non-iid setting. The local

updates ∆(k) can be considered as an approximation of the gradient, computed over an

extremely large mini-batch [156], that with the central aggregation corresponds to an even

bigger one.

Larger batch sizes has been typically used to support parallel processing. First, for better

utilizing GPUs (Eq. (4.3)), and, second, for data center based model parallel multi-machine

processing( Eq. (4.4)). The drawbacks however became soon visible when the models

trained in this manner showed a significant decrease in generalization ability[138, 120].

To analyse generalization problem of large batch training, multiple experiments are

presented with really large batch sizes in the literature, as 4096 [102] or 8192 [88] inputs per

batch. Both of these work aim at preserving the statistical properties of the gradients proving

that increasing the learning rate, and using an initial warm-up phase along with batch

normalization results in similar convergence rate to small batch training can be achieved.

Yet, as [156] concludes, large batch learning reduces the range of usable hyper-parameter

setups, which might lead to worse performance, and can even prevent convergence in FL.

Weight divergence

Hidden layers of NNs act as feature extractors and multi-layered architectures are fitted to

learn increasingly complex features, layer by layer. Since the key characteristic of FL is

the presence of very divergent local data sets, the local models might learn very different

higher level features.

In sequential learning with frequent model updates, ordering of the neurons is permutation-

indifferent. However, when one computes pairwise statistics on the corresponding neurons,

that are fitted to detect very different patterns, as at the averaging of local updates (Eq.

4.5), the resulting model’s performance drops. Even if, as in case of FedAvg [157], the

training starts from the same state, the more we train locally, divergence has a less and less

negligible effect. [251] proposes to reduce this effect through sharing an “anchor” data set

that will be distributed across all the participant node, however it is a bit contradictory to

the principles of FL.
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The other approach, Neuron matching, introduced by [240] could be utilized that

attempts to find parts of the NNs that correspond to detectors of the same or very sim-

ilar features. The common, completely new model is then created by assembly of the

corresponding shards, avoiding blind coordinate-wise averaging of parameters.

Uncertain convergence

To carry out thorough analysis of convergence of NN training in the FL involves so many

variables that makes giving meaningful guarantees extremely hard. There have been a

lot of effort carried out to give theoretical convergence guaranties, however due to the

complexity of the problem all of them make serious restrictions.

Many works, that are trying to give convergence guarantees make assumptions even

for the case of convex optimization, like iid data or all devices are active. The latter

assumption was made in [121, 239, 224], while [252, 202, 221, 227] assumed both. [141]

and [142], on the other hand, provide convergence analysis for true FedAvg with non-iid

data, but for the case of strongly convex optimization objective, thus they are not really

applicable for the NN case.

4.2.1 GD based methods in FL

Stateful methods are commonly used to enhance learning in single node setting, and have

been designed to overcome very similar problems that we face in our setting. Now we make

an attempt to empirically measure the impact of some stateful methods on the performance

of federated training, that have been used to overcome challenges in different aspects of

distributed ML.

In our experiments we tested the effect of simple and Nesterov momentum, from

adaptive learning rates (ALR) based techniques Adagrad and RMSProp, and Adam that is

the combinations of ARL and momentum.

Application of momentum has been already proposed in [88] for reducing variance in

large batch learning while [93] and [222] uses Nesterov momentum for federated training

of LSTM networks for next word prediction (but also used in parallel SGD for a long time,
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as in elastic averaging [244], for example). Using ALR methods (namely Adagrad) is also

already proven to have a strong stabilizing effect [51] on the performance in data parallel

distributed training.

4.2.2 Momentum techniques

Momentum based techniques [170] use a velocity term during learning, that is an exponen-

tially weighted average over the gradients of the past.

v← βv−∇w(
1
m

m

∑
i=1

fi(w))

w← w+v (4.6)

This term, on one hand, accelerates the learning process and, on the other hand, helps

to get over noisy gradient and local minima or flat points of surface defined by the error

function f .

A variant of momentum algorithm is introduced in [207] and is based on the Nesterov’s

accelerated gradient method, that differs from the standard momentum of (4.6) in the place

of the evaluation of the gradient.

v← βv−∇w(
1
m

m

∑
i=1

fi(w+αv))

w← w+v (4.7)

In Nesterov’s momentum, the gradients are evaluated incorporating the velocity. This can

be interpreted as adding a correction factor to the standard momentum algorithm [84].

4.2.3 Adaptive Learning Rates

Setting up learning rates is one of the most important factor in the learning process and

deeply influences the performance. Thus, finding methods to adapt the learning rate might

yield a substantial increase in speed of the learning. The AdaGrad algorithm [62] adjusts

55



Stateful optimization in federated settings

the learning rates individually for each parameter, taking into account the whole history of

the parameters, following the assumption, that if the magnitude of the gradients is big than

it should be increased:

ηt =
η√

∑
t−1
τ=1 g2

τ

, (4.8)

where g = ∂ f
∂w j

for some parameter w j, and thus ηt will be the learning rate belonging

to w j a timestep t.

It has been found empirically that aggregating the gradients from the beginning of the

optimization can lead to too fast decay in the learning rate, that, in some cases, leads to

weak performance.

To remedy this problem RMSProp [97] (the same time proposed by the authors of

AdaDelta [241]) replaces this aggregation with a decaying average, in the form:

vt = ρvt−1 +(1ρ)g2
t (4.9)

ηt =
η√

vt + ε
(4.10)

RMSProp has been proven very effective in non-convex optimization problems of NN,

thus, it is the most often used technique in practice.

According to the explanation in [84], AdaGrad is designed to converge rapidly when

applied to convex functions. In non-convex cases it should pass many structures before

arriving at a convex bowl, and, since it accumulates the entire history of the squared

gradient, it can shrink prematurely and eventually vanish. In contrast, discarding the old

gradients in the RMSProp case enables learning to proceed rapidly after finding the convex

bowl, equivalently as if AdaGrad would have been initialized within that convex area.
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4.2.4 Adam

The name of the Adam algorithm [122] comes from “adaptive momentum”, and can be

viewed as the combination of adaptive learning rates and momentums.

gt ← ∇w(
1
m

m

∑
i=1

fi(wt−1)) (4.11)

mt ←
β1mt−1 +(1−β1)gt

1−βt
1

(4.12)

vt ←
β2vt−1 +(1−β2)g2

t
1−βt

2
(4.13)

wt ← wt−1−
ηmt√
vt + ε

(element-wise) (4.14)

In Adam, the weight update is given by applying the RMSProp learning rate (4.13)

on the momentum (4.12). (In Equation (4.13) and (4.12) the denominator is applied bias

correction on the estimates.) We are not aware of clear theoretical understanding why this

is advantageous, however, it seems to work very well in practice and became a de facto

default optimization technique for a lot of ML practitioners.

4.3 Stateful optimization at the workers

In our first, rather limited experiment [64], stateful optimization methods were applied for

local training at the nodes, proven to outperform the baseline performance for a simple

setup of FedAvg.

For analyzing the performance of the optimizer algorithms, we implemented a simula-

tion environment that trains multiple local NN models that would be aggregated into one

common model, according to the Algorithm 1.

Compared to Algorithm 1, we have been varying the CLIENTUPDATE(k,w) method,

where the local updates have been calculated. (Except for first experiment, since it describes

exactly the MBGD method).

The new CLIENTUPDATE(k,w) method is introduced in the Algorithm 2.
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Algorithm 2 ClientUpdate
1: procedure CLIENTUPDATE(k,w)

2: B← split Pk to set of batches

3: for all b ∈B do

4: ∆w = Optimizer(w,b)

5: w← w−∆w

6: end for

7: return W

8: end procedure

Naturally, all optimizers have their own hyper-parameters which should be tuned to

get the best possible result. However, for this experiment we used only the recommended

values for them (that are in fact the default values in Keras/TensorFlow libraries).

4.3.1 Topology

The model we used is a simple multi-layer perceptron. The input layer consists of 784

input units that is the flatten representation of the input images of size 28×28 pixels. The

input is connected to one hidden layer of 128 neurons with ReLU activation. The output

layer corresponds to the 10 output classes, thus it has 10 neurons with softmax activation.

In the implementation of the network, we relied on Keras NN API on a TensorFlow

backend.

4.3.2 Data

For the experiment, we have chosen the Fashion MNIST dataset [230] that was planned to

replace the MNIST benchmark database.

From the characteristics of the FL scenario, in this experiment, we focused on non-iid

nature of the data. That is, we have created local datasets of a highly skewed manner.

Namely, training data at a given node contains exclusively, or almost exclusively, instances

from the same class.
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For these experiment, we have not taken into account the unbalanced nature, and each

node have been assigned the same amount of data. Our idea here was that if something

works in this simple setup then it might work in use cases closer to the real world problem.

Due to the lack of computational resources we also ignored the “massively distributed”

condition and set the number of nodes to 10.

The distributions of the local datasets we tried in the experiments are the following:

99% non-iid

The training data has been split into two parts in the ratio of 99%-1%, where the parts are

independent and identically distributed, as best as possible. The 99% part will be assorted

accorded to classes and then one class assigned to one of the nodes. The 1% part will be

equally split into 10 parts and then added to the dataset of the particular nodes.

full-non-iid

In the second test case, we assorted fully the training data and each node receives a dataset

consisting of instances belonging purely to one single class.

4.3.3 Hyperparameters

To measure general applicability of the examined algorithms on the problem of FL, we

executed the learning process multiple times, using different parametrisations. In setting

the hyperparameters we followed the Method of GridSearch, that is we defined a set of

possible values for each hyperparameter, then run the algorithms with all the combinations.

At defining the set of the possible values we tried to include extremities and generally

recommended values. In addition to the parameters described in Section 4.2.1 we also

included experimenting with the decay of the learning rate. Here we only tried nevertheless

two cases at each configuration of the other parameters, the one without decay, and the one

with time based decay, where the learning rate a time t will be ηt =
η0

1+φ∗t with the decay

rate parameter φ = η0
max{t} .
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4.3.4 Results

FedSGD - Simple Minibatch Gradient Descent

As a baseline we run the experiment with the standard Minibatch Gradient Descent

optimization. The experiment result is shown in Figure 4.1. It is clear that, as it often

happens, the most simple algorithm, MBGD places the baseline rather high for the more

sophisticated optimizer algorithm. It performs very well for the 99% non-iid datasets and

surprisingly well with the full-non-iid datasets, achieving an accuracy close to 75% in the

30 iterations with the best configuration of hyperparameters (η = 0.001, no decay).

Moreover, in results it seems like on both distribution too high learning rate without

decay leads to a poor performance.

Figure 4.1 FedSGD baseline(simple minibatch updates on 99% non-iid (left) and full-non-
iid data (right) distributions )

60



Stateful optimization in federated settings

FedSGD + Nesterov momentum

In Figure 4.2, the results using the Stochastic Gradient Descent with Nesterov momentum

can be seen. We found that incorporating local momentum into computing the partial

directions of the updates has a strong positive effect both on performance and convergence

rate of the aggregated model at both data distributions.

The best performing configurations reached in the first couple of iterations the highest

accuracy achieved by the baseline during the entire experiment. According to our results

the higher the value β (that is the past directions influence stronger the update) is generally

the better performance, apparently independently from η and decay rate.

Figure 4.2 FedSGD with Nesterov momentum on 99% non-iid (left) and full-non-iid data
(right) distributions
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Figure 4.3 FedSGD with AdaGrad on 99% non-iid (left) and full-non-iid data (right)
distributions

FedSGD + AdaGrad

The AdaGrad algorithm yields an even better performance 4.3, on the 99% non-iid datasets.

Using this method results in the fastest convergence until the 70% of the baseline. In the

first 30 rounds, though AdaGrad’s performarnce drops dramatically full-non-iid datasets,

reaching at most a 25% accuracy without obvious perspective further improvement. It

might be interesting to check how many random training examples need to be put into

the full-non-iid datasets to achieve the very good performance of the AdaGrad which is

measured with the 99% non-iid datasets.

FedSGD + RMSProp

The RMSProp optimizer is used in the experiment which has produced the statistics in

Figure 4.4. We experienced that this optimizer algorithm apart from the stronger variance

of performance seems to approach the accuracy of the AdaGrad and Nesterov momentum
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Figure 4.4 FedSGD with RMSProp on 99% non-iid (left) and full-non-iid data (right)
distributions
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methods, and outperforming MBGD baseline as well on the 99% non-iid distribution. One

the other hand though the accuracy on the full-non-iid still achieves a significantly worse

performance compared to MBGD and Nesterov momentum, however learning curve is

much more promising than the one of AdaGrad. It reaches in the best performing setups

about 50% accuracy, and shows an emerging tendency as well.

FedSGD + Adam

The last experiment, we were applying Adam. The method is one of the most popular and

often default optimizer(4.12), thanks to fast convergence, high accuracy in the traditional

NN learning, and to its robustness to hyperparameter settings. In our experiment however,

Adam worked with a very similar effectiveness to RMSProp, and has been definitely

outperformed by MBGD and Nesterov momentum (Figure 4.5) regarding to performance

and smoothness of learning on the full-non-iid datasets.

4.3.5 Conclusion

In our experiment we found, that the best performing optimizer algorithms for both the

distribution are Minibatch Gradient Descent without and with Nesterov momentum, whilst

Adadelta and RMSProp is promising despite their poor performance on fully non-IID

datasets. As one could have assumed, the presence of the non-iid part of the training data

has a very strong regularizing effect even if its weight seems to negligible compared to the

dominating class.

In general we experienced that methods that are intended to reduce the variance of

the gradient direction works actually quite well for our specific scenario (1). This can be

because momentum techniques can be seen as an averaging over the subsequent gradients,

leading to a less and less biased estimate of the optimal update direction. The fact that

strong momentum (high β) seems to help in the big majority of configurations of the other

parameters supports this idea.

On the other hand methods that aim at adapting the magnitude of the gradients seem to

harm the learning process (2) in the full-non-iid case. The reason behind this phenomenon
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Figure 4.5 Federated Averaging with Adam on 99% non-iid (left) and full-non-iid data
(right) distributions
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is most probably, that the local optimisers update their inner state – which here corresponds

to η learning rate – based on the local gradients. In each local training round according to

our intuition the magnitude of gradients start growing, since the aggregation of the local

models moved the model away from the locally optimal model, but as we approaching

again the local optima, they start shrinking again, resulting in slower start (smaller η) of

optimization in the next iteration.

The extremely poor performance of AdaGrad on the full-non-iid dataset can support

this intuition, since it prevents even the described fluctuation of the learning rate, instead it

decreases it continuously.

The good performance of these algorithms on the 99% non-iid might be explainable

with the presence of gradients of really big magnitude in the decaying average that controls

the learning rate keeping it at an effective level.

Another interesting phenomenon is that in case of Adam – where momentum and

adaptive learning rates are both applied – the strong deccelerating effect of learning rate

adaption apparently overrides the help of the momentum. However looking at magnitude

of performance differences it might be understandable.

Although according to our results these optimizers are not clearly beneficial in perspec-

tive of finding the best global model, they still could be useful for optimizing the global

model at clients. One can argue, that in the end the goal of the entire federated optimization

is to provide clients with a model performs well on their own data.

4.4 Stateful optimization with central state sharing

Learning method The method we use is a very simple one, similarly to the method

described in [148]: Instead of averaging only the weight updates of the nodes, we maintain a

similarly aggregated and broadcasted centralized set of variables representing the optimizer

state, hoping that, at some extent, it helps to overcome challenges of FL we described in

Section 4.2. The worker nodes uses the stateful methods for their local optimization steps,

adjusting state variables according to the local data as well. Then, along with the model
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weights, the nodes share the optimizer state variables with the parameter server where they

will be averaged to get a global optimizer state. When the model of the workers will be

updated from the parameter server, so will happen with the state too, and then the new

loop begins.

Complexity measure To measure the performance and stability of the learning algo-

rithms in the function of hardness of the task, we define complexity as the reciprocal of

best accuracy we achieve across all the optimizers and hyper-parameter setups.

4.4.1 Experimental setup

Data sets Experiments were run with three image classification task such that MNIST,

Fashion-MNIST and CIFAR-10. The number of nodes participating in learning, was set

to 30. We keep 10% of the data for testing the performance of the centralized model, and

then created local data sets in three highly skewed style:

1. “Fifty-fifty”: Similarly to the experimental settings in [157], data has been divided

into equally sized one or two class chunks;

2. “Full-non-iid”: In this setting, all the nodes received data points only from a single

class, that is intended to be the most challenging setup;

3. “99%-non-iid”: the 99% of data at a node comes from the same class, while 1% is

picked iid.

Models For the above mentioned three image classification tasks two types of NNs were

utilized:

1. For MNIST and Fashion-MNIST data sets a fully connected (FC) network with a

single hidden layer was used, based on [mni];

2. For the CIFAR-10 data set we used a convolutional neural network (CNN), following

the settings in [cif].
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Hyper-parameters We run each algorithm for 80 training rounds with a rather small grid

of common and algorithm specific hyper-parameters: learning rate η∈{0.1,0.01,0.001,0.0001},

batch size |B| ∈ {16,32,64}, with 1 epoch local training for the FC data sets, and 1,3 and

5 epochs on Cifar-10. Values for β1,β2 for momentum, ρ for RMSProp are within the

set {0.5,0.9,0.95}.For this experiment we did not use learning rate decay.1

4.4.2 Result

In all our setups, with a very few exceptions, all stateful methods over-performed SGD

(Table 4.1). In Figure 4.6, we plotted the best result of each optimizer on the most complex

Cifar-10 base data set. This shows how profound effect different distributions can have,

and how much performance of stateful methods can differ.
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Figure 4.6 Accuracy on Cifar-10.

According to the results, ALR methods are performing best on relatively simple tasks

(MNIST and Fashion-MNIST), both in mean performance and best performance. However,

their performance drops dramatically on Cifar-10, where momentum methods gain

advantage. Perhaps because ALR algorithms has been designed to converge fast on convex

functions, and the more complex data brings more complex loss surface. Adam shows

in each setup one of the bests if not the best results, as it is shown in Figure 4.6 and

Table 4.1. Although its performance shows lot of variance and it is very sensitive to

1Hyper-parameters are denoted following Keras documentation https://keras.io/api/
optimizers/
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data set C SGD AdaGrad RMSProp Moment. Nesterov Adam
Cifar-10 1 2.46 0.20/0.11 0.25/0.12 0.16/0.10 0.35/0.12 0.29/0.12 0.43/0.13
Cifar-10 2 6.09 0.15/0.10 0.15/0.10 0.13/0.10 0.17/0.10 0.16/0.10 0.19/0.10
Cifar-10 3 1.37 0.40/0.14 0.45/0.21 0.15/0.13 0.64/0.31 0.60/0.21 0.73/0.33
FMNIST 1 1.50 0.66/0.43 0.73/0.51 0.68/0.50 0.72/0.53 0.71/0.52 0.69/0.42
FMNIST 2 1.74 0.58/0.42 0.69/0.53 0.58/0.33 0.65/0.48 0.64/0.46 0.64/0.29
FMNIST 3 1.44 0.47/0.36 0.63/0.44 0.74/0.54 0.57/0.43 0.59/0.41 0.74/0.42
MNIST 1 1.15 0.83/0.51 0.89/0.66 0.86/0.74 0.87/0.65 0.88/0.63 0.90/0.54
MNIST 2 1.50 0.54/0.34 0.85/0.57 0.65/0.35 0.79/0.42 0.77/0.46 0.75/0.32
MNIST 3 1.17 0.67/0.42 0.78/0.56 0.89/0.64 0.76/0.47 0.76/0.50 0.89/0.48
−σ(C,Acc) 0.84/0.62 0.81/0.68 0.88/0.77 0.91/0.71 0.63/0.61 0.96/0.92

Table 4.1 Best/mean performance of optimizers on the examined data distributions.

hyper-parametrization (lower mean), in the most difficult tasks it results in the best mean

performance along with best maximum performance.

4.4.3 Conclusion

We found that, in general, using stateful optimizers in FL might help to significantly

increase learning performance. Naturally, these methods comes with a not negligible

communication overhead since the optimizer state usually maintains one or more value per

variable. Thus, for momentum the cost of communication is doubled or, for Adam, tripled.

However, in some cases, this price can be worth to pay due to the tendency for stagnation

of the federated training in a significant subset of hyper-parameter space.
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Chapter 5

Evolutionary Federated Learning

This chapter is dedicated to present our experiment [208] on substituting model/update

averaging gradient based NN training with completely privacy preserving evolutionary

training.

Along with the immense computational requirement of training large scale ML models

as NNs, the second problem with traditional data center based solutions, that FL is aiming

to solve, is related to privacy concerns. It might happen that users of the applications

that build on centralized model training are reluctant to share their possibly confidential

data. We believe a particularly fitting scenario for this problem is the use case of medical

applications. Each medical institute might have a lot of patient data, but that may be far

from enough to train their own prediction models. Here, sharing the data across a big

number of institute can yield a great help in developing automated diagnostic tools. But

being the private nature of these data, hospitals probably decide not to share anything of

this information either to protect their reputation or due to legal regulations.

FederatedAveraging works pretty well solving the aggregation problem, however using

gradients or, equivalently, the local models for the global aggregation step still exposes

some information on users data. To address privacy concerns, the solution is usually to

apply achievements of differential privacy[38][63][3] atop the gradient based learning

process.
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In this experiment we present a slightly different approach, namely, we investigated

whether it is possible to train NNs in a federated fashion without using gradient in any

context. To approach the problem, it seemed to be a simple choice to try evolutionary

algorithms. Since a rich literature is already available on evolutionary optimization of NNs,

we only transfer this knowledge into the federated environment.

For the concrete task to be solved by our method we have chosen classfication of

EEG-signals using convolutional neural networks (CNNs).

The main contributions of this paper are

1. a proof of concept for applicability of genetic algorithms to federated training of

NNs without using vulnerable gradients;

2. presenting Federated Neuroevolution (FNE) a simple algorithm for the federated

training, applying a distributed fitness function.

5.1 Neuroevolution

Evolutionary algorithms (EAs) follow the pattern of evolution as it is observed by biologists

in the nature. According to this, in an infinite cycle of life, the most apt individuals can

produce offsprings possessing a potentially slightly changed (mutated) mixture of their

genoms that might result an enhanced ability to face challenges in their life. The main

assumption in biology is that those individuals survive and create descendants with a bigger

chance, who, in some aspects are superior to the others. The main structure of an EA is

sketched in Algorithm 3
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Algorithm 3 EA
1: generate an initial population G0, i = 0

2: repeat

3: ∀individual j ∈ Gi : f j = f itness(individual j)

4: select parents from Gi based on their fitness

5: produce offspring generation Gi+1

6: ∀individual j ∈ Gi+1 : individual j← mutate(individual j)

7: until termination criterion is satisfied

EAs – as nature inspired methods in general – are often used to discover very complex,

high dimensional and/or non-convex search problems, therefore, attempts to apply these

methods on optimizing NNs has a long history.

Recently, nature-inspired methods in relation with NNs are used mostly for hyper-

parameter tuning that includes searching for an efficient architecture.

A big part of this rich literature is concerned specifically CNN-s, what we apply for

our problem. Methods of Genetic CNN [232], hierarchical evolution [146], large- scale

evolution [55], asynchronous CNN evolution [218] and automatic CNN design [205] give

graph based methods to design automatically the stack convolutional layers (skipping

potentially fully connected parts of the network) for image classification trough genetical

evolution of subsequent layers with various innovative encoding techniques.

In these scenarios, the learning itself is still based on calculating the gradient and

updating the model according to that (backpropagation).

Using backpropagation though being based on calculation of gradients and on applying

them on the weights of the network is exactly what we want to avoid in our experiment.

Before the monocracy of derivative based training algorithms however biology-inspired

training methods was a rather popular research topic, thus there is a rich, though a bit dated

literature concerned with our constrained problem. [226] and [237] give a summary of the

these initial approaches to neuroevolution (NE).

There is a very interesting branch of applications of NE for general NN-s, that includes

techniques to purely genetically train the architecture along with the weights of the
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networks. Among the most important algorithms that belong here it might be worth

to mention NeuroEvolution of Augmenting Topologies (NEAT) [201], and Hypercube-

based NEAT (HyperNEAT) [75] and its specializattion for modular evolution of NN-s,

HyperNEAT-LEO [217] and Generative NE [216]. Despite of the power of HyperNEAT,

we decided first to focus on training a predefined architecture, thus our method is based on

more "traditional" NE algorithms.

For applying evolutionary approach on an issue, one need to specify an encoding of

the problem, a selection, a crossover and a mutation method as well as a fitness function.

In the rest of this section we shortly describe the stages of an EA along with a couple of

examples of how these stages have been implemented in some work on the field of NE, that

gave inspiration to our algorithm. At the end of the section we also describe approaches

aiming at handle overfitting that has been proven a serious problem in NE.

5.1.1 Encoding

Genetic algorithms work on sequence of features that would be mixed, or altered according

some granularity defined over them. Thus the first step in solving a problem genetically is

to provide a description of the search space. We refer to this description as encoding, that

can be direct or indirect.

Direct encoding is the more traditional way of problem encoding, where sections of the

genom more or less correspond to specific parameters. Some of the early methods handle

some switches as well, that control the connectivity of the specific perceptrons.

[155] proposes a system based on a parallel genetic algorithm, ANNA ELEONORA, for

learning both topology and for connection weights. Topology Utilizes binary representation

of networks, with granularity encoding that is handled through one bit flag to determine

connectivity, that is, whether the given edge is present in the recent setup or not, followed

by the substring of weights. These substrings are ordered in a way that connections into

the same neuron are grouped together.
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[136] presents a variant of EA applied immediately for float weights. The input of the

EA is a vector x of variables , that are the parameters of the model (that is the weights

of the connections), the biases, and the newly invented link switches. Link switches are

variables, that control the connectivity of the network, that is, negative value represents

that the edge is switched off. The search space is constrained by upper and lower bounds

on variables (weights): x ∈ I1× I2×·· ·× Id , where Ii = [li,ui], li,ui ∈ R for i = 1,2, . . . ,d.

Theoretically using the connectivity features of the encoding the first method is able to

evolve the architecture too. The issue with this approach to encoding is that the problem

space grows very fast as we scale up the network (which we need if we want to solve

complex problems).

Indirect Encoding The scaling problem of Direct Encoding can be solved with Indirect

Encoding, that instead of separated representation of model parameters uses generative

information. In HyperNEAT [75], which is maybe the most important representative of this

class, genes of the genom are defining functions based on which weights can be generated.

5.1.2 Fitness

The fitness function serves to specify how well a given individual performs on the problem

to be solved. A higher value of the fitness function means a better solution for the problem,

while lower fitness value reports a poor performance. Fitness is often normalized thus

a function that produces a fitness value 1 for a perfect solution, and 0 for completely

wrong setup can work well. As an example for a normalized fitness in ML scenarios, [213]

proposes a fitness function for NN defined as fnorm = 1
1+err , where err = ∑

m
k=1

∑
d
i=1 |yi−ŷi|

md ,

with d denoting the output dimension, and m the number of examples, applying mean

absolute error.

5.1.3 Crossover

Crossover is a method that defines, how we combine individuals of a generation to create

offsprings for the next generations. One simple way is – as in [155] – to combine the
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parts of parent individuals at some cutting points. Another approach is presented in [136],

where crossover is actually taking the average of the corresponding weights of the two

individuals: x(t+1) = x1(t)+x2(t)
2 where x(t)s are the individuals represented as vectors of

parameters.

5.1.4 Mutation

Mutation methods serve for adding extra variance to the individual genoms to enable

them to discover a bigger part of the search space. [155] provides a representation that

translates different topologies and encoding length into a common string format granting

compositionally different descriptions. At mutations, it applies three separate probabilities

for swapping bits such that granularity bits, connectivity bit, and weight bits. For effectively

explore the search space, it uses EA simplex [21], instead of taking three populations and

creating a fourth based on those.

In [136], where the possible values for genes are constrained, mutation is carried out

according to the following formula: x(t+1) = x(t)+Bδ, B ∈ R2 is a diagonal matrix, with a

diagonal Bii ∈ {0,1}, and li ≤ x(t+1)
i +δi ≤ ui. Based on this rule, the algorithm generates

three individuals/chromosomes: at the first only one element of the diagonal of B can be

one, at the second one a random number of diagonal of elements, and at the last, Bii = 1

for all i = 1, . . . ,d. The one with the best fitness of these three will replace the weakest one

in the next population.

5.1.5 Overfitting

Using EA usually involves a high computation demand, which can be reduced through

decreasing the number of evaluations of the model, that is the size of training data on which

we want to try out the models defined by a given generation of the genetic algorithms.

Earlier applications of EA usually did not use separation of data into training and test

set (like [134], for example). Practitioners soon realized, however, that models trained

this way perform poorly on not seen data points, revealing the tendency of evolutionary

methods to strongly overfit on the training problems. This issue got in the center of interest,
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when as an attempt to reduce run time they tried to use subsets of the training data to

evaluate individuals.

[137] made comprehensive experiments proving that evolution is potentially able to

extrapolate from the randomly chosen test sets. A very promising direction to reduce

overfitting is random sampling, where at each generation, a random subset of the training

data is chosen and evolution is performed based on the fitness on that sample. The Random

Sampling Technique (RST) [74] was originally used for speeding up the GE runs in

[149], however, it was already used for preventing overfitting. [83] and [81] drive some

experiments on RST, where they were testing two parameters, the Random Subset Size

(RSS) and the Random Subset Reset (frequency of changing the subset). They have found,

interestingly, that the techniques performs best when both these values are set to one, that

is in each iteration the fitness should be tested using a new randomly chosen data point.

In [82], the authors present versions of “interleaved sampling”, that means, instead

of random subsets, fitness at each round is evaluated alternating between one and all

training samples, with various switching frequencies. As a result, they find that, on their

test datasets, the best technique would be to switch in each round between single sample

and all sample evaluation.

5.2 The problem

5.2.1 Data

For the experiment, we used the EEG Database Data Set [17]. The dataset contains 120

EEG trial data about 122 patients who either belong to the alcoholic or to the control group.

In each trial, the patients were shown one or two images of the Snodgrass and Vanderwart

picture set [199]. After showing them the stimuli, their brain activation was measured for 1

second on 64 points at 256 Hertz. The measurements are then labelled according to which

group they belong to, thus the task of the model to be built is to predict which class of the

two does a sample belong to.
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Figure 5.1 Baseline accuracy (backpropagation)

5.2.2 Network architecture

For the network architecture to train, we decided to use the shallow convolutional network

from [187], that has been designed specifically for EEG based multiclass prediction

problems. The essence of the network is three convolutional layer that are intended to

recognize specific patterns in the signals. After two convolutional layers there is a pooling

layer and then comes the third convolutional layer. On the output of this layer we applied

batch normalization, then added the output dense layer with sigmoid activation.

For the control experiment, we used the AdaDelta optimizer [241] with Categorical

Cross-Entropy loss function. At training we used a batch size of 64, 1.0 as learning rate,

ρ = 0.95, and ε = 10−7.

The control model after 100 epochs achieved a validation accuracy of 95% (see Figure

5.1).

5.3 The proposed methods

The algorithm runs according to the process defined in Algorithm 3. For starting off we

create an initial generation in which for each individuals initialize the weights of the
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models randomly. From the initial generation then we iterate along the fitness-selection-

crossover-mutation loop. In this section we describe the particular methods we used for

the different stages.

Selection

The candidate set of individuals for crossover is created by sorting the current generation’s

models based on their fitness and selecting the n−1 fittest models for crossover. The last

parent selected for mating is not among the fittest ones, but chosen randomly from the rest,

to add more variance.

Crossover functions

Crossover method defines the way according to which new individuals will be generated

from the parent generation.

In our method, we pick two parents randomly from the pool of parents to produce the

required offspring amount.

We run experiments with four crossover methods. The first three require flattening the

vector of weights. These first three approaches are rather popular in EA research.

• Halving mix: In this approach, that is a simplified version of the one in [155], the

vector of values from the parents are taken to create the offspring vector by taking

the first half of it from the first parent and the second half from the second parent.

This was the original approach in [69] too. Formally:

{o f f springi}n
i=1 =

ai, if i≤ n/2

bi, if i > n/2
(5.1)

where n is the length of the model vectors and a=(a1,a2, . . . ,an), b=(b1,b2, . . . ,bn)

are the parent vectors.
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• Interleave mix: Here, the vector of values from the parents are taken to create the

offspring vector by interleaving the two parent vectors. Formally:

{o f f springi}n
i=1 =

ai, if i mod 2 = 0

bi, if i mod 2 = 1
(5.2)

where n is the length of the model vectors and a,b are the parent vectors.

• Mean mix: In this method, similarly to [136], the vector of values from the parents

are taken to create the offspring vector by taking the mean of the two parent vectors

at each index. Formally:

{o f f springi}n
i=1 = {

ai +bi

2
} (5.3)

where n is the length of the model vectors and a,b are the parent vectors.

• Kernelwise mix: In this algorithms the main idea was that we kept intact groups of

weights during the crossover operation that "belongs together" in some sense. These

were in our case neurons across the convolutional kernels/filters of one individual

that are aiming at "examining" the same input (that is the weigths at the same

coordinate of the weight matrices), and in the fully connected layers the weights that

are connected to a single neuron (that is all the incoming or all the outgoing weights,

our methods keeps intact the incoming ones).

In our experiments, the first three crossover methods did not converge. This could be

because these approaches are very low level and do not care about the network structure or

the patterns learned in the kernels.

Kernelwise mixing is a higher level approach, what we tried after taking a look at how

genetics works in nature. In nature, the heredity is also a higher level mixing of genes,

instead of low level mix of organic molecules. Thus, traits of the parents are kept intact.

The resemblance to genetics can be summarized as follows: the DNA is the network’s
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weights, a gene is a filter and an organic molecule is a float value. With this latest method,

mixing the evolutionary training was converging so we were applying this in our approach.

Figure 5.2 The idea of encoding and the "winner method" for creating crossover. The red
and blue colors correspond to the different models, while the weights with the same color
and tone denoted the group of weights that have been kept together during the crossover.

5.3.1 Mutation functions

Crossover on its own results in generations that are only combinations of the initial

generation according to the defined rules. Thus using merely crossover restrict the space

searched by the algorithm. To break this random alternations of the offspring are applied

in form of mutation functions.

For defining a mutation function we must define the number of mutated values and

the scale of the mutation on these values. For the former we used probabilistic value

determining the chance of mutation for each value in the model. The latter is a float value

determining how much is the impact on each mutating value.

There are the following two main approaches we tried for mutating values in a network:

• Mutate by offset (from [69]): Here, we add a random value to the selected values. In

our implementation, the offset was a random value between

[−mutation_rate,mutation_rate].
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• Mutate by multiplication (from [168]): Here, we multiply the selected values with

a random value. In our implementation, the multiplication factor was a random value

between [100−mutation_rate
100 , 100+mutation_rate

100 ].

After experimenting, we found a lot better convergence rate with the second approach.

5.3.2 Federated fitness function

For fitness, which should be maximized during the evolutionary training, we have chosen

the Negative Mean Squared Error (NMSE), that is defined as in Equation (5.4).

fNMSE(w) =−1∗ 1
n

n

∑
i=1

d

∑
j=1

(ŷ(i)j − y(i)j )2 (5.4)

where ŷ is the predicted output vector using parameters w, y is the target output vector, d is

the output dimension and n is the number of examples. This a is slightly different function,

than the one in the example in section 5.1.2, but it’s behaviour is the same( ∂

∂wi
fNMSE(w)∗

∂

∂wi
fnorm(w)> 0,∀w, i )

Applying the NMSE fitness for the original optimization problem in Equation (5.5) our

task will be to maximize NMSE with respect to w:

maxw∈Rd fNMSE(w) =−
n

∑
i=1
∥ŷ(i)−y(i)∥2

2. (5.5)

5.3.3 Federated optimization and avoiding overfitting

In our setup the generation of individuals, that is the selection, the crossover and mutation

happens at a centralized location at a parameter server. The connected nodes of the system

participate in the optimization through evaluating the different proposed setup. The fitness

of an individual can be calculated as a weighted average over the local fitness values, in

theory, during the training tough, as we will see we should not use this measurement to

prevent overfitting.

82



Evolutionary Federated Learning

Avoiding overfitting has been studied in [83, 137, 81, 82], as it is discussed in Section

5.1.5. The main idea is that we must not include the entire training set in the whole duration

of the training. Instead, what most articles propose, is to use subsets of the training data in

each generation. The training subset can be changed every generation or kept intact for

a few generations. Studies interestingly show that randomly selecting a single training

sample is also very effective both for convergence and avoiding over-fitting. Another

suggested tweak is to include the full dataset every once in a while.

Due the distributed nature of the problem, it was a rather natural idea to incorporate

the native data partitioning of the federated setup, and to do the subset selection at a higher

level and treat the nodes as units of the subset creation, instead of specific data points.

Thus, in each generation, the Federated Neuroevolution algorithm selects a subset of the

nodes for evaluating the fitness of the current generation. To ensemble the evaluation sets,

we have tried the following three approaches:

1. Random single element for each generation: Here, in each iteration we ask a

randomly selected node to evaluate the population’s fitness on a randomly selected

single training sample of it’s own.

2. Random subset for each generation: In this approach a random subset of nodes

are selected to evaluate. We found this method the most efficient.

3. Moving window subset for each generation: Here, we first order the nodes and

then select a slice of the list of nodes. This is the window and in every n generation

we move the window to the right by 1.

The second approach of randomly selecting a subset of nodes had the best performance.

Even if, according to the literature, method 1 works pretty well, in our experiments, the

training did not converge at all. The third method seemed to be more promising, training

convergence was slower with this method than in the case of the second method and the

convergence also capped around 75% validation accuracy.
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The main algorithm

Using the fitness evaluation methods we described in Section 5.3.3, the main run of the

optimization looks like the following:

• Validation: On the server, we retain a validation set and in each generation we cal-

culate and store the validation accuracy of the fittest model of the current generation.

This is not far fetched as we can assume that in a Federated setting the server driving

the learning would already have a dataset of it’s own.

• Avoiding critical points: Based on the history of validation accuracies, we check

the last n entries for a match with the current validation accuracy. If there is a match,

we conclude that the evolution has reached some kind of critical point of the fitness

function as local maximum or saddle point. That is, however we try to combine

and mutate the individuals of the subsequent generations, the fitness/accuracy does

not increase. Our hypothesis is, that in this case the population stuck in a higher

region of the values of fitness function, and in the neighbourhood defined by our

mutation rate the offsprings cannot find any increasing directions. In this case we

start gradually increasing the mutation rate and the mutation chance multiplier which

is initially set to 1. Once the algorithm is out of the local maximum, we reset the

values of the mutation rate and mutation chance to the original values. There is an

upper bound on the mutation multiplier.

• Early stopping: We save the fittest model of each generation, as an additional means

to stop before we overfit.

5.4 Results

We have run the described evolution algorithm for 5000 generations (Figure 5.3). For our

setup, we observed that the convergence was slow but steady, overall.
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Figure 5.3 Running Federated Neuroevolution on the EEG dataset for 5000 generations.
Fitness is NMSE from equation 5.4, Accuracy is validation accuracy.

Minimum value Maximum value

Validation Accuracy 48.50% 85.28%

Fitness NMSE −0.3297 −0.0903
Table 5.1 Federated Neuroevolution Performance on the EEG Dataset

From a fully random state, the algorithm was able to get to 85% validation accuracy

as seen in Table 5.1. This is, of course, a lot less than the baseline but still a good result

considering using Neuroevolution for training weights which is not the best method for

training NNs.

5.5 Conclusion

In this paper we described our experiments with a simple method, what we call Federated

Neuroevolution (FNE), that is an application of EA adapted for FL of NNs.

We found that our method is applicable on the studied scenario yielding some advan-

tages over the traditional FL methods.

An advantage of EA, compared to the gradient based algorithms originated from [129],

[40] or [157], is that it requires even less client data transfer to the server. While FedAVG

exposes the client side data distribution and the gradients during learning, FNE only expose

the amount of data points of the clients and an abstract fitness number of the model.
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The clear disadvantage is that the convergence is a lot slower. We needed 5000 iterations

of the algorithm to get to an 85% accuracy which is still less then the baseline’s 95%. At

this point though our purpose was merely to demonstrate the feasibility of derivative-free

learning of NN-s in a FL scenario.

In summary, the technique we introduced, trades off learning speed for privacy gains.

We may need a lot of communication rounds which can be bad in a real-world setting of

mobile users, but for some use cases, like for data from medical institutions, the rounds

of communication is not of primary importance, while keeping data privacy is essentials.

Another aspect of techniques similar to FNE that might be interesting, is that there is no

traditional, backpropagation based learning, that is at client side we can save this rather

expensive stages of the learning process.

In the future we think there are several possible directions to develop FNE to make

it practical. First the rather poor performance of the system might be improved through

experimenting with different submethods (selection , crossover, etc.)

Following the trends in genetic algorithms, the search space could be extended to the

network architecture too. This way we could reduce the bias and variance introduced by

the model architecture that is chosen rather blindly at the initiation phase of the learning.

Bearing in mind the main purpose of the experiments, that is prevent the communicating

the gradients, a range of derivative free methods are available as Differential Evolution

[106], Particle Swarm Optimization[72] or other biology inspired methods like Artifical

Bee Colony [73]. Similarly, advanced optimization methods as CMA-ES[92] might be

applied.

It could be also interesting to experiment with more efficient utilization of resources,

since in the current setup in each round the vast majority of nodes is idle.
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Chapter 6

Peer-to-peer Federated Learning of

Neural Networks

This chapter a view of FedAvg through which federated training can be turned into a

decentralized, peer-to-peer-like system [125].

6.1 Motivation for decentralized FL

As we have described more detailed in Chapter 3, since, according to the problem statement

of FL, the number of nodes K is extremely large, the management of these nodes even with

the sub-setting that is introduced in FedAvg might be a challenging task. Consequently

one of the most apparent practical issue of FedAvg is delays that stem from the centralized

synchronous nature of the algorithm. Delays are introduced by overcrowded channels

around the coordinator and by so-called struggling nodes, both leading to a slow-down

in the training process. To solve this problem a variety of techniques have been proposed

providing strategies to orchestrate updates, such that, applying traditional scheduling

techniques [234]; using federated client selection [167] that prefers nodes with the best

communication and computation capabilities; dynamically adapting of training scheme

to available resources [224]; or allowing asynchronous communication patterns [44].

Another viable way for reducing communication burden seeks to decrease the size of data
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to be communicated through some kind of quantization [189, 203, 60, 4, 5]. Methods

for compressing updates also include techniques that build on characteristics of NN

training, such that pruning updates [61] through variational dropout [123] or evaluating

the importance of parameter layers in NNs [44].

Assuming the convexity of the loss function, a range of innovative methods has been

proposed, mostly built on the “communication-efficient distributed dual coordinate ascent”

(CoCoA) framework using dual optimization ([112]), with the main goal to minimize the

number of communication rounds during the learning.

A different perspective to deal with communication difficulties is to decentralize the

training across multiple parameter servers as it has been already proposed in DistBelief

[51]. Going further, for convex loss functions, a number of completely peer-to-peer gossip-

based [58] asynchronous algorithms has been proposed such as [94], to mention only one

example. Dual optimization has been used in peer-to-peer setup as well, for example the

alternating direction method of multipliers [29, 225] in [215, 18].

A second important issue in FL is the degradation of performance which might be

caused by weight divergence [251, 240], resulting from averaging the updates, approached

by so-called neuron matching [240]. Another cause of the dropped performance might

be the fact that updates applied on the common model of FL can be viewed as a MBGD

with updates being computed over extremely large “mini batches”, that can cause serious

generalization gaps [156].

In general, higher number of participating nodes, bigger local batch sizes and stronger

divergence in the local data distributions lead to degraded performance and, especially for

more complex tasks and models, they often prevent the system to learn any interpretable

consensus model.

6.1.1 Our Contribution

The two migrating model (MM) approaches we present in this paper can be derived from

FedAvg in the following way: (i) splitting the coordinator into multiple smaller processes,

that is, multiple “coordinators” collect the updates from a smaller amount of nodes (per
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coordinator) and (ii) instead of having a fixed node for the coordinator, the models to be

trained are passed from node to node, each adding its update when it “owns” the model.

Finally, (iii) to simulate the model averaging step, the updates are written in a buffer and

their average will be applied on the model with a predefined frequency. (iv) We will also

discuss a special case of the MM approach, in which we omit the buffer and apply the

updates without delay.

The contributions of the presented MM approach are:

1. reduction of the complications of centralized FL through evening the communication

burden over the whole network by simulating FedAvg in a peer-to-peer environment;

2. by reducing the number of updates used for model averaging (or excluding averaging

in the special case) and, thus, using smaller effective batch sizes (at the price of more

biased updates) it is possible to dramatically reduce the general communication and

computation cost in exchange for, according to our empirical results, only a slightly

worst training efficiency;

3. using a simple mechanism to involve those nodes in the training process, that

promise the most performance gain, incentivating training on as diverse data as

possible (closer to iid. wrt. whole distribution);

4. any node can initiate an optimization of new models, so the network optimizes

various models in parallel, completely asynchronously.

For inference, the nodes can use some of the previously seen models, potentially in an

ensemble fashion to obtain a kind of “global model”, with competitive performance to

FedAvg, at least according to our experiments. For performance evaluation at first place we

wanted to compare our method to FedAvg over at least as many nodes, as in our methods,

thus we used bagging ensembles, along with measurements for the performance of a single

model.

In a real-world scenario, a tracker can be deployed to provide information about the

network, the various models and their migration within the network.

89



Peer-to-peer Federated Learning of Neural Networks

6.2 Migrating Models (MM)

Let us assume that nodes v1,v2, . . . ,vK′ ∈V participating in the training are organized into

a graph G(V,E) and the models with parameters w1, . . . ,wK′ (K′ ≤ K) are travelling along

the edges e ∈ E of the graph.

The initial phase of the learning algorithm starts with random initialization of K′ model

parameter sets w1, . . . ,wK′ at a subset of nodes (in our simulation, K′ is a hyper-parameter,

in the real world it might change dynamically). These initial weights need not be aligned

across the nodes. Different initializations may even help to explore a bigger portion of the

parameter space. As long as the input and output dimensions are aligned across the system,

any kind of models can be used in the presented MM approach, whose training is done by

MBGD (i.e. not only NNs).
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Figure 6.1 Visualisation of FedAvg (left) and MM (right) approaches. Pie charts represent data
distributions at nodes with colors corresponding to classes. FedAvg randomly picks some nodes,
refines the common model on them, then adds the averaged update to it. In MM, a node initiates a
model (indicated by stars referring to two different models), trains it on the local data and computes
the belief vector about its performance (rectangle with confidence per class as the colored bars). In
the following step the model will be moved to the next available node with the largest expected
gain.

Updating the models, as visualized in the Figure 6.1, happens in a completely asyn-

chronous manner: When a model has been trained on a partial set of data, it looks for

an appropriate next location to move, preferably a node, where the data is likely to help

improving the model.
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Choosing next location. To decide to which node should a model wk be moved for

further training, each model maintains a belief vector pk ∈ RC, that corresponds to a guess

for its (per class) performance on the global data for the C classes.

All the entries of pk start with 0 and, after training on a dataset, the belief vector is

updated according to the Algorithm 4. The idea is to set believes to performance of the

updated model on an i.i.d. test subset of local data, if the class is present, and discount the

values of the absent ones, since we expect this performance to decrease. After obtaining the

new belief vector, a new location for the model wk is chosen, based on data sets residing

at the neighboring nodes NG(vk) from its current host node vk. Selection of the next node

to move the model to, is based on an expected performance gain, that is described in the

Algorithm 5, where I is the indicator function returning 1 if its parameter is true. In this

step the node broadcasts its belief vector to the neighbours, who will push up the expected

performance on classes that they possess (we set it to 1 for simplicity), and send the sum of

the entries back. The intuition is that the highest sum promises the most performance gain.

Algorithm 4 Updating the belief vector pk of the model wk based on F1-scores tk on a test
set of the given node k, with a discount rate ξ

1: procedure BELIEFUPDATE(pk = (pk
1, pk

2, . . . , pk
C), t

k = (tk
1, t

k
2, . . . , t

k
C))

2: pk← (1−ξ)pk

3: for c← 1 to C do
4: pk

c←max{pk
c, t

k
c}

5: end for
6: return pk

7: end procedure

Algorithm 5 Finding the best node to migrate the model to

procedure GETMAXBENEFITNODE(vk,pk = (pk
1, pk

2, . . . , pk
C))

j∗← argmax j|v j∈NG(vk) ∑
c∈C

max{I(∃i ∈D j(yi = c)), pk
c}︸ ︷︷ ︸

benefit at the node v j(computed at the node v j)

return v j∗

end procedure

91



Peer-to-peer Federated Learning of Neural Networks

Update buffer. To simulate the aggregation step, for each model wk we specify a buffer

size σk that defines that, in a given “training round” r, how many nodes the model should

visit before the aggregated (weighted averaged) update will be applied on its parameters

wk
r−1. By updating the believes before each model relocation, we hope to get an aggregated

update more similar to one that would have been resulted from an i.i.d. training run (wrt.

general distribution).

Algorithm 6 Migrating models – Experimental algorithm
K′ – number of models
β,η – number of epochs and the learning rate at local training

1: procedure TRAINING(K′,β,η)
2: initialize graph G(V,E)
3: v1, . . . ,vK′ ← Pick K′ nodes randomly from G
4: initialize belief vectors p1, . . . ,pK′ ← 0
5: initialize buffer sizes σ1, . . . ,σK′ ← 1
6: initialize w1

0, . . . ,w
K′
0 randomly

7: r← 0
8: repeat
9: for all k ∈ {1, . . . ,K′} do in parallel

10: δ← 0
11: count← 0
12: lk

r ← accuracy(wk
r ,D

k) ▷ Test accuracy at current node’s test set
13: σk← UpdateBufferSize(lk

r ,σ
k) ▷ Extend the buffer size if needed

14: for s← 1 to σk do ▷ Collecting the σk updates
15: δ← δ+ClientUpdate(k,wk

r ,β,η)∗nk

16: count← count+ |Dk|
17: tk← Test(Dk,wk

r) ▷ Test the F1-score of w on Dk

18: pk← BeliefUpdate(pk, tk)
19: vk← GetMaxBenefitNode(vk,pk)
20: end for
21: wk

r+1←
δ

count
22: end for
23: r← r+1
24: until stop
25: end procedure

To keep the computation and communication costs low, we start from σk = 1 for all

k = 1, . . . ,K′. Then, during the training, we monitor the improvement of the loss functions

lk and, based on some heuristics, we extend the buffer if we experience that performance
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Algorithm 7 Migrating models – Client update

1: procedure CLIENTUPDATE(k,w,β,η)
2: w′← w
3: B← splitDk to set of batches
4: for each local epoch i from 1 to β do
5: for all B ∈ B do
6: w′← w′−η∇B f (w)
7: end for
8: end for
9: return w′

10: end procedure

is not improving at the expected rate1. The MM method is described in the Algorithm 6

and 7.

Simple Migrating Models (sMM) As a specific case of MM, we also experimented

with the simplest possible setup, denoted here as sMM, where σ = 1. In this case, at the

price of highly biased updates, we can further reduce the communication and training costs

of MM for a single update. Besides, there are two factors which are believed to decrease

the performance of FedAVG such that (i) using large batch sizes and (ii) performing model

averaging. In sMM, which for models with MBGD training is equivalent to a single node

MBGD, both of these factors are excluded. It might be worth to note, that since we are

not averaging over the updates of the nodes, sMM can be applied for different training

methods, consequently different models as well (for example decision trees).

6.3 Experiments

Data sets and models. Experiments were run with three image classification task such

that MNIST, Fashion-MNIST and CIFAR-10. The number of nodes for the two simplest

cases, MNIST and Fashion-MNIST, was set to 200. For CIFAR-10, due to heavy computa-

1A simple heuristic we have used here was to extend the buffer size if the exponential moving average of
the model performance on new datasets (on the new nodes) shows no improvement after θ steps, where θ is
a hyper-parameter.
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tional load and the danger of stagnation in learning process, the number of nodes was set to

50. Similarly to the experimental settings in [157], 90% of each data set have been divided

into equally sized one or two class chunks. 10% of this data, that has been assigned to each

node, was assigned to a local test set (with the same distribution as in the local train set).

The remaining 10% of the data was retained for evaluating the overall performance of the

algorithms.

For the above mentioned three image classification tasks two types of NNs were

utilized: For MNIST and Fashion-MNIST data sets we used a fully connected single hidden

layer network (FCN) 2 For the CIFAR-10 data set we used a convolutional neural network

(CNN) 3. Experiments with FedAvg and the proposed MM and sMM approaches were

performed.

Hyper-parameters , such that the size |B| of batches b, the number of epochs β and the

learning rate η of the optimization process were tuned using grid search with the following

values: β ∈ {1,3,5,10}, |B| ∈ {10,32,64}, η ∈ {1,0.1,0.01} when we used FCNs and

η ∈ {0.1,0.001,0.0001} for the case of CNNs. Besides these, we run tests with different

maximal buffer sizes (number of gradients to be collected) σ ∈ {1,3,5} and also tested the

general performance of bagging ensembles of a given number of models K′ ∈ {1,4}. Here,

bagging refers to predictions resulting from averaging unnormalized per-class activations

of a selected subset of the models w1,w2, . . . ,wK′ , that are trained in our network. These

hyper-parameters were chosen in a way, that the communication and computation costs

should be upper bounded by that one of FedAvg. We defined the number of maximum

2Following the Keras reference model for MNIST (not available anymore):
input: 784 dimension vector (=28 × 28 ) → dropout → dense with 128 units → sigmoid activation →
dropout→ dense with 10 units→ softmax.

3Following the Keras reference model for CIFAR-10 (not available anymore):
input: 32×32×3 image→
2d convolution with 32 3×3 filter and same padding and ReLU→ 2d convolution with 32 3×3 filter and
same padding and ReLU→ 2×2 maxpooling→ Droput→
2d convolution with 64 3×3 filter and same padding and ReLU→ 2d convolution with 64 3×3 filter and
same padding and ReLU→ 2×2 maxpooling→ Droput→
dense with 512 units and ReLU→ Dropout→ dense with 10 units→ softmax
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collected node updates such that the number of communication rounds will be always

upper bounded by that of FedAvg 4.

Dropout. Due to the strongly skewed nature of the local data sets, after each training

round the sMM models tend to overfit on the local data. Thus, a strong regularization is

necessary. Therefore, we applied dropout, as described in [99], with a high probability:

0.25, 0.25, 0.5 for the layers of the used CNN, and 0.5 for the single hidden layer of the

used FCN. For the control experiments, we did not use any dropout since we found out that

it has a bad impact on FedAvg. Thus, for the buffered learning we decreased the dropout

rate π of the model wk by a factor σk, i.e. πk = π

σk .

Graph. We used a full graph topology, where for simulating a more realistic network,

we randomly picked 5 nodes and chose the most promising relocation targets among those.

For the discount rate at the belief update step we used ξ = 0.05.

6.3.1 Results

Results are summarized in Table 6.1 and visualized in Figures 6.2, 6.3 and 6.4. The

data series of these figures show the average performance of the 10 best results for the

four versions of federated learning, namely, (i) MM with bagging ensembles (denoted

as MM), (ii) the FedAvg baseline (FedAvg), (iii) sMM with bagging ensembles (sMM),

and, (iv) MM with only one single model (Single MM). On the left side of these figures

the performance comparison in terms of accuracy is shown, the middle charts depict the

communication costs (i.e. how many times the weights of the model had to be forwarded)

while on the right side the corresponding computational costs of these algorithms are

showed.

The computation costs has been calculated for a training round r by multiplying Nr, the

number of nodes participating in the training in the round (that is Nr = K′, with K′ being

our initial choice in sMM, Nr = ∑
K′
k=1 σk

r in MM, while Nr = K′ = γK for FedAvg), and the

4For the buffer size extension we set a threshold for improvement to θ = 15, that is, if the accuracy did
not improve in the last 15 relocations then we extend the number of models to aggregate.
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number of epochs β. Thus, the accumulated computation costs at round r are computed by

costcomp
r = costcomp

r−1 +Nr ∗β The communication cost values were calculated in a similar

way, such that costcomm
r = costcomm

r−1 +ωr, where ω is the number of transmissions of the

model weights, that is necessary for updating all trained models. For sMM, ωr = Nr and,

for MM, ωr =∑
K′
k=1 σk

r . That equals to the number of participating nodes in a training round,

because collecting the gradients from σk
r nodes means the same number of transmissions.

The value of ω for FedAvg is, on the other hand, 2∗Nr since each active node has to first

acquire the recent model and then to send back the updates. At these values, we calculated

the number of transmissions necessary only for the training and did not include the costs

of broadcasting the common models for inference to each node.

The performance of the algorithms is measured via accuracy, since for the MM and

sMM methods averaging ensembles were used for making predictions.

Results have shown that the sMM algorithm is very simple and viable method to train

NNs at a very low computational and communication cost. Its performance, however, stays

under the performance of the FedAvg baseline, even with ensembles.

The MM approach closed this gap in a trade-off for increasing costs. We believe,

however, that producing a similar performance to FedAvg with a decentralized algorithm,

such that the proposed MM, is promising5 6.
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Figure 6.2 Accuracy, Communication cost and Training cost on CIFAR-10

5The accuracy, along with the communication and computation costs, of ensemble of MMs exceeds that
one of FedAvg. The reason for that is that, due to resource intensity of CIFAR-10 training, the number of
participating nodes have been reduced to 50, which means fewer models have been used in FedAvg, while
the hyper-parameters (K′ and maximum σ) of sMM and MM have been kept unchanged.

6Hyper-parameter search was not performed for the γ parameter of FedAvg, γ = 1/10 was used according
to [157]. The main reason was our limited computation possibilities. However, since the settings for γ also
affect sMM and MM (e.g. the buffer size or the ensemble count), it is possible that the gap between the
communication and computation costs might be different in case of a large-scale hyper-parameter search.
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Figure 6.3 Accuracy, Communication cost and Training cost on MNIST
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Figure 6.4 Accuracy, Communication cost and Training cost on Fashion-MNIST

Accuracy Parameter transmission (×104) Training epochs(×104)
Fed
Avg MM sMM

Single
MM

Fed
Avg MM sMM

Single
MM

Fed
Avg MM sMM

Single
MM

C10 0.22 0.30 0.2 0.19 14.95 26.90 2.24 4.67 2.99 4.07 0.89 1.00
MN 0.95 0.96 0.94 0.92 59.8 22.27 8.54 6.74 11.96 4.14 1.17 0.92
F-M 0.81 0.82 0.78 0.72 59.8 34.14 7.08 5.59 11.96 4.03 1.23 0.93

Table 6.1 The averages of best 10 results in terms of accuracy of each methods, with the
corresponding communication and computations costs. Bold fonts denote the best values
i.e. best accuracy, lowest communication and computation cost.

6.4 Discussion

Besides the promising results of the experiments, a few issues have to be mentioned

concerning the presented methods, though. These are the following:

Ensembles A disadvantage of the proposed methods is the increased resource demand

of the ensembles in inference time at the nodes, if one decides to boost performance this

way. This could be alleviated trough distillation ([98]), however, at the price of additional

computation load. Another question is, how a node acquires the necessary number of high
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quality models for inference. In our experiment, we trained the exact number of models

that constitute the predictor and used each model in the tested ensemble.

Stagnation The potentially advantageous effect of omitting model averaging is probably

balanced out with the loss of its regularization effect. Despite of the strong regularization,

the local models overfit on the most recent data sets. This leads, in a significant number of

cases, to a stagnating ensemble accuracy. However, we experienced a similar phenomenon

in the case of FedAvg as well. An analysis for the poor performance of FedAvg in strongly

skewed data sets can be found for example in [103] or in [220].

Real world usage In our experiment, we have been working with a fully connected

graph, that is naturally unrealistic in real world scenarios. The distribution of data over the

nodes, along with the number of nodes, is pretty far from the characteristics given by [129].

However, using similar set-ups is a common practice as we have seen in the literature.

6.4.1 Convergence

The proposed models can be viewed as generalizations of FedAvg: For K′ = 1 and a

constant gradient buffer size σ = γK, in the case of a fully connected graph, the MM

method becomes equivalent to FedAvg. Moreover, also in the fully connected case, γ= 1/K

(in case of FedAvg) and K′ = 1 and π = 0 (for MM), leads to the same method, apart from

involvement of the parameter server at FedAvg. Finally, if we limit σ = 1 for MM, we get

the sMM algorithm.

Uncertain convergence To carry out a thorough analysis of convergence of NN train-

ing in a FL setting involves many variables which make giving meaningful guarantees

extremely hard. A lot of effort [224, 141, 142, 252, 202, 221, 227, 121, 239] have been

carried out in this direction, however, due to the complexity of the problem, all of them

make certain restrictions. Even for the case of convex optimization, there are assumptions

such that iid data distribution across the nodes or all the devices being active (the latter is

equivalent to FedSGD). The latter assumption was made in [121, 239, 224], while authors
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of [252, 202, 221, 227] build on both. [141] and [142] provides convergence analysis for

true FedAvg with non-iid data, but for the case of a strongly convex optimization objective,

not applicable for the case of NNs.

Convex case Following the reasoning of [142], for convex optimization, the convergence

rate of FedAvg is O(1
n), where n is the total number of data points which contribute to

the optimization. According to their analysis, to achieve an accuracy of ε, the number of

training round to execute is

n
E

= O

[
1
ε

((
1+

1
K′

)
E||∇l||2 + ∑

K
k=1 γk2Var(∇lk)+Γ+ ||∇l||2

E

)]
(6.1)

where E = β|B| is the number of data points, from which the updates are computed

between two communication rounds, γk is the probability of selecting the node k for the

update round, Γ = F∗−∑
K
k=1 pkFk∗ quantifies “non-iid-ness” that is the difference of

globally optimal loss and the local optima. Var(∇lk) is a bound for variance, while ||∇l||2

stands for squared norm of local stochastic gradients.

6.4.2 Privacy

An important challenge in FL, and distributed machine learning (ML) in general, is the

question of privacy of potentially sensitive data. In our setup we see the following two

major points for potential attacks:

Forward inference If we use the method of Algorithm 5, it is feasible to combinatori-

cally infer classes of data held at the candidate nodes, granting an additional vulnerability

to our method compared to FedAvg. However, applying a random noise over the indicator

function, apart from some extreme situations, considerably decreases the vulnerability of

the proposed approach.

99



Peer-to-peer Federated Learning of Neural Networks

Backward inference According to our best knowledge, as it is summarized in [101],

attacks on privacy in distributed ML build on regular and frequent update messages

following the same routes. Peer-to-peer nature of the training process adds an additional

complexity to deal with, making it necessary to have access to all communication channels

of the attacked node to achieve similar effectiveness of an attack. Gradient leakage attacks

[250] can be executed having access to a single update vector, currently however they work

only on single batch updates, or multiple batches with very few examples included. For

both cases the tracker can be used to ensure legitimacy of routes, for example, to avoid

building loops around the target or even to redraw the connection graph from time to time.

6.5 Conclusion

We presented our approach to alleviate the challenges imposed by the federated learning

setup and, in general, distributed machine learning systems. The key idea of the proposed

approach is that, instead of the transmission of model updates, the models themselves

travel to the location of the data, evening the communication needs across the network.

With this (almost complete) decentralization of the learning process, the synchroniza-

tion problems and straggler effect can be bypassed as well as communication burden at the

parameter servers is not present anymore.

Our experiments have shown that similar performance can be achieved compared to the

federated averaging baseline, however, with less communication and computational cost

(at the price of using ensembles of small number of models at prediction phase). Based on

the results of our experiments and the fact that the proposed approach is a generalization

of the popular federated averaging approach, the presented work is worth further research.
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Chapter 7

Conclusions

In this dissertation we presented our ideas to address the problems of FL, that we perceived

to be the biggest issues of the method. Namely:

• Privacy issues,

• Performance degradation, and

• Communication bottlenecks.

In general we can summarize our work as trying to give as simple solutions to these

problems as possible.

Privacy issues - Genetic algorithms in FL In Chapter 5 we presented our experiments

with gradient free training of NNs. According to our results [208], these nature inspired

methods might actually be able to fit complex models, even if they naturally proceed very

slowly. Nevertheless full exclusion of backpropagation has the advantages of reducing

the local training at small user equipment to simple loss calculation, and making privacy

attacks, that are based on capturing the updates impossible. We believe that examining

the effect of this method on training data memorization and the stemming membership

inference attacks might be an interesting research direction in the future.
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Returning to more conventional learning methods, based on the train of thought, that

we presented in Chapter 4, FedAvg can approximately be viewed as MBGD training, with

extremely large batch sizes. Following this assumption the experiments of Chapter 4 and 6

correspond to testing techniques in the setup of FL, that are widely used to facilitate single

node training, such that stateful optimization methods and hyperparameter-tuning.

Performance degradation - Stateful optimization Our second direction of research,

that has been presented in Chapter 4, aimed at increasing the performance of federated

learning, using stateful optimization methods as RMSProp, Adam, or AdaGrad. These

have been originally designed to overcome similar problems for single machine MBGD,

through adapting the step sizes of the optimization, and/or reducing the variance of the

update directions. When these methods were applied at central aggregation [126], we

experienced significant improvement in the speed of learning. Curiously faster training

also happens when these methods were applied at the nodes only [64], that presumably

helped the local training to find better optima given the local data sets. This eventually

seems to help the performance of the averaged model as well.

Communication bottlenecks- Peer-to-peer FL In our experiments that have been pre-

sented in Chapter 6 we presented a way to turn FedAvg into a peer-to-peer process, by

effectively passing the role of the coordinator from node to node, and collecting the in-

dividual updates into a buffer, before they get averaged and applied to the parameters.

This method (at least in our setup) was able to produce similar performance to baseline

of FedAvg, while strongly reduced the computation and communication burden of the

training. With allowing extreme hyper-parametrization of FedAvg (namely the pushing

the number of participating nodes down to a single one, and having the possibility to do

so with the number of local training epochs too), apart from the iid-ness assumption over

batches, we can virtually reproduce a single node MBGD training 6. Thus apparently

reducing the effective batch sizes of updates in FL could balance out the negative effect of

updates computed on the skewed data sets form a very few, or even from a single node.
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There is an opinion recently in the scientific community, according to which the methods

of NN training need fundamental improvement. In these opinions, the insufficiency of

recent training methods is residing in the phenomenon, that NN models eventually act

as feature encoders, basically memorizing the training data, and they behave as kernel

machines [59].

Following these assumptions, the presence of adversarial examples, the threat of

membership inference and model inversion attacks, or the under-performance of models in

real-world environments [50] are all symptoms of this insufficiency, namely the inability

to model properly the underlying data manifolds. Since we are not able to communicate

properly what we actually want the models to learn, they tend to find shortcuts, that is

features, that are the easiest to learn and produce the best performance on the training data

[78, 108, 77, 71]. These phenomenons also show, that recent accuracy-based performance

evaluations and/or regularization techniques are just simply not sufficient to force the

networks to generalize well enough, and thus learn the features, that a human would expect

to work properly.

We believe therefore, that the future directions of progress in NN training and FL

will reside in methods that results in more simple, explainable models, that will also

need way less training data (for example following the ideas of [96]). Also better training

methods might rely less on specific training examples, thus revealing less information

specific to those, both during inference (membership inference) and training time (gradient

decryption).
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(2017). Distributed optimization with arbitrary local solvers. Optimization Methods
and Software, 32(4):813–848.

[154] Mairal, J., Koniusz, P., Harchaoui, Z., and Schmid, C. (2014). Convolutional kernel
networks. In Advances in neural information processing systems, pages 2627–2635.

[155] Maniezzo, V. (1994). Genetic evolution of the topology and weight distribution of
neural networks. IEEE Transactions on neural networks, 5(1):39–53.

[156] Masters, D. and Luschi, C. (2018). Revisiting small batch training for deep neural
networks. arXiv preprint arXiv:1804.07612.

[157] McMahan, H. B., Moore, E., Ramage, D., Hampson, S., et al. (2016).
Communication-efficient learning of deep networks from decentralized data. arXiv
preprint arXiv:1602.05629.

[158] McMahan, H. B., Ramage, D., Talwar, K., and Zhang, L. (2017). Learning differen-
tially private recurrent language models. arXiv preprint arXiv:1710.06963.

[159] Minka, T. P. (2013). Expectation propagation for approximate bayesian inference.
arXiv preprint arXiv:1301.2294.

115



BIBLIOGRAPHY

[160] Mitchell, T. M. et al. (1997). Machine learning. 1997. Burr Ridge, IL: McGraw
Hill, 45(37):870–877.

[161] Mohri, M., Sivek, G., and Suresh, A. T. (2019). Agnostic federated learning. arXiv
preprint arXiv:1902.00146.

[162] Moritz, P., Nishihara, R., and Jordan, M. (2016). A linearly-convergent stochastic
l-bfgs algorithm. In Artificial Intelligence and Statistics, pages 249–258. PMLR.

[163] Nazer, B. and Gastpar, M. (2007). Computation over multiple-access channels.
IEEE Transactions on information theory, 53(10):3498–3516.

[164] Nesterov, Y. (1983). A method of solving a convex programming problem with
convergence rate o(1/k2). In Sov. Math. Dokl, volume 27.

[165] Nesterov, Y. (2012). Efficiency of coordinate descent methods on huge-scale
optimization problems. SIAM Journal on Optimization, 22(2):341–362.

[166] Nesterov, Y. and Nemirovskii, A. (1994). Interior-point polynomial algorithms in
convex programming. SIAM.

[167] Nishio, T. and Yonetani, R. (2018). Client selection for federated learning with
heterogeneous resources in mobile edge. CoRR, abs/1804.08333.

[168] Oullette, R., Browne, M., and Hirasawa, K. (2004). Genetic algorithm optimization
of a convolutional neural network for autonomous crack detection. In Proceedings of
the 2004 congress on evolutionary computation (IEEE Cat. No. 04TH8753), volume 1,
pages 516–521. IEEE.

[169] Polson, N. G., Sokolov, V., et al. (2017). Deep learning: a bayesian perspective.
Bayesian Analysis, 12(4):1275–1304.

[170] Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration
methods. USSR Computational Mathematics and Mathematical Physics, 4(5):1–17.

[171] Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. (2016). Xnor-net: Imagenet
classification using binary convolutional neural networks. CoRR, abs/1603.05279.

[172] Reale, A., Kiss, P., Ferrari, C., Kovács, B., Szilágyi, L., and TÓTH, M. (2018).
Application functions placement optimization in a mobile distributed cloud environment.
Studia Informatica, (2):37–52.

[173] Reale, A., Kiss, P., Tóth, M., and Horváth, Z. (2019). Designing a decentralized
container based fogcomputing framework for task distribution and management. Inter-
national Journal of Computers and Communications, 13:1–7.
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Appendix A

Background

A.1 Convex optimization

A.1.1 Convex functions

A C ⊆ Rn set is a convex set if for any x,y ∈C

tx+(1− t)y ∈C, ∀ 0≤ t ≤ 1. (A.1)

A convex combination of x1, . . . ,xn ∈ Rn is any linear combination:

θ1x1 + . . . ,θkxk, where ∑
i

θi = 1 (A.2)

A convex hull of C is all linear combination of elements in C.

A function f : Rn→ R is convex function, if dom( f )⊆ Rn is convex, and

f (tx+(1− t)y)≤ t f (x)+(1− t) f (y), for 0≤ t ≤ 1 and ∀x,y ∈ dom( f ) (A.3)

Visually this can be described as the line of the function lies below any line segment joining

f (x) and f (y).

A concave function is a function, whose negative is convex.
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A f is proper convex function, if it takes a finite value at least at one point x ∈C, and

lower bounded: f (x)>−∞, ∀x ∈C.

A.1.2 Subgradients and Gradient(steepest descent)

A vector y ∈ Rn is a subgradient of a convex function f at x ∈C if

f (z)≥ f (x)+ ⟨z− x,y⟩, ∀z ∈C. (A.4)

That is equivalent to f having a supporting hyperplane with a slope y.

The set of subgradients of a convex function f at point x∈ dom( f ) is called subdifferential

and denoted as ∂ f (x).

A function f is differentiable at point x if there is only a unique subgradient at x, and

in this case ∂ f (x) = ∇ f (x) (that is it is equal to the gradient). A function f : Rn→ R is

convex if and only if it has non-empty subdifferential set everywhere.

First order optimiality condition for a proper convex function f : x∗ ∈ argminx∈C f (x) ⇐⇒

0 ∈ ∂ f (x∗).

Iterative Descent algorithms In iterative decent methods start form an initial point

x0,and construct a sequence: {xt}, were f (xt+1)< f (xt).

min
x

f (x)s.t.x ∈ Rn (A.5)

A vector d is a descent direction at x if

f (x;d) = lim
τ↘0

f (x+ τd)− f (x)
τ︸ ︷︷ ︸

directional derivative

= ∇ f (x)T d < 0 (A.6)
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Using a descent direction at xt and a ηt > 0 stepsize:

xt+1 = xt +ηtdt (A.7)

The most important example is gradient descent (GD) also called steepest descent, where

xt+1 = xt +ηt∇ f (xt). (A.8)

That is dt =−∇ f (xt).

A.1.3 Second order derivative - Curvature

For function f : Rd → R at a point x ∈ Rn, if all second partial derivatives exist and

continuous over the dom( f ), the local curvature can be described by the Hessian matrix

H:

H = (
∂2 f

∂xi∂x j
)i, j =



∂2 f
∂x2

1

∂2 f
∂x1∂x2

. . . ∂2 f
∂x1∂xd

∂2 f
∂x2∂x1

∂2 f
∂x2

2
. . . ∂2 f

∂x2∂xd
...

... . . . ...
∂2 f

∂xd∂x1

∂2 f
∂xd∂x2

. . . ∂2 f
∂x2

d


If a function f : Rd → R is convex (that is f (λx1 + (1− λ)x2) ≤ λ f (x1) + (1−

λ) f (x2)),λ ∈ [0,1],∀x1,x2) then the Hessian H = ∇2 f is always positive semidefinite:

xT Hx≥ 0,∀x ∈ Rd

Curvature and GD Curvature in some way describes how different is a function from

linear. When the regions of the parameter-space are very different, with a fixed learning

rate the convergence of the GD becomes slow: in high curvature regions the small step size

makes faster progress but the same time in low curvature regions it becomes really slow.

On the other hand large learning rate leads to good progress in low curvature regions, but

may end up in oscillation at high curvature (See Figure A.1).
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Figure A.1 Step size and learning rate in GD [? ]

The oscillation in higher dimension also turns into a zigzagging behaviour, where we

repeatedly overshoot the optimum in the update direction d (= ∇ f (x) in gradient descent).

A.1.4 Momentum or Heavy Ball method

The idea of momentum [170] is to use a buffer to smooth the trajectory, that can be

understood as adding inertia to a ball that moving down on an uneven terrain (Fig A.2).

This inertia is includes all the past descent directions and influences the direction of the

descent step. In a single update rule the momentum step can be :

Figure A.2 Zigzagging behaviour of SGD and its mitigation by momentum [42]

xt+1 = xt−
vt+1︷ ︸︸ ︷

ηt∇ f (xt)+αt(xt−xt−1)︸ ︷︷ ︸
momentum term

, (A.9)
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or according to the more common formulation separating into two steps:

vt+1 = µvt−ηt∇ f (xt) (A.10)

xt+1 = xt−vt+1 (A.11)

Nesterov’s Accelerated Gradient descent Nesterov’s accelerated gradient [207][164]

methods makes a simple change on momentum algorithm, that in practise has proven to

help at a significant extent in a lot of cases. Instead of computing the gradient and then add

momentum term to it, it takes to gradient in the position after adding the momentum(Figure

A.3):

vt+1 = µvt−ηt∇ f (xt +µvt) (A.12)

xt+1 = xt−vt+1 (A.13)

Figure A.3 Momentum (top) and Nesterov’s accelerated gradient[207]
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A.1.5 Stochastic Gradient Descent methods

In ML training our goal is to minimize the risk, or expected loss f (y,m(x)) of a model

(that is a classification or regression function) m(x):

R f ,P(m) = E[ f (y,m(x))] =
∫

X×Y
f (y,m(x))dP(x,y) (A.14)

The actual goal in training however, what can we hope to achieve is to find model m such

that it minimizes

m̃ = argminm
1
n

nTest

∑
i=1

f (yi,m(xi)), (xi,yi) ∈DTest (A.15)

for the test examples (xi,yi) But since at training the test examples are unknown, what we

do is minimize empirical risk for training examples (xi,yi) :

argmin
m

nTrain

∑
i=1

f (yi,m(xi)) (xi,yi) ∈DTrain (A.16)

For A.16 the gradient descent method would look as follows:

xt+1 = xt−ηt

n

∑
i=1

f (xt). (A.17)

Since this can be very expensive,the idea of SDG is to pick an example xit uniformly

random, and execute update with that single gradient:

xt+1 = xt−ηt f (xit ). (A.18)

For a randomized picking of the index E[∇ f (xit )] = ∇ f (x), thus the stochastic gradient i

an unbiased estimate of the full gradient.

Minibatch Stochastic Gradient Descent (MBSGD) As a compromise between the

costly full gradient descent and SGD that involves high variance we commonly use

MBSGD, that in practice often improves convergence rate of SGD. In MBSGD before the
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update the gradients of a random subset It ⊂ 1, . . . ,m of the dataset are evaluated, and the

mean applied on the parameters:

xt = xt−1−
ηt

b ∑
i∈It

∇ fi(xt−1) (A.19)

where b is the size of the minimatch.

A.1.6 Accelerated Stochastic Methods

Randomized Coordinate descent [165] in each iteration t picks a coordinate j of the

parameter vector w, and performs update with stepsize ηton that single coordinate based

on the partial derivative w.r.t w jt :

wt+1 = wt−η jt ∇ jt f (wt)ejt (A.20)

Generalized linear models where with certain sparsity evaluation of partial derivative

∇ j f (w) very efficiently, as in [178]. Further works for proximal setting, single processor

parallelism [30] [179] and acceleration [139], all of these connected into a single algorithm

[65].

A.2 Variance reduced algorithm

Variance reduced methods in first place aim at reducing the inherent bias and variance of

the algorithms class of stochastic mini batch gradient descent :

Bias(g(xt)) = E[g(xt)]−∇ f (xt) (A.21)

Var(g(x)) = E[g(xt)−E[g(xt)]]2 ≤ E[g(xt)]2 (A.22)
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Since the variance is large, we usually apply decaying ηt step size, that keeps the path

closer to the ideal decent direction, on the other hand however it makes the convergence

slow. As in [15] is pointed out, variance reduced algorithm as SAG, SVRG can actually

perform better as learning algorithms than SGD in certain sittings.

Variance reduction Having an estimator X for a parameter θ, estimator X is unbiased if

E[X ] = θ. With a modified estimator Zdef
= X−Y , with Y such that E[Y ]≈ 0, the bias of Z

will be also close to 0:

E[Z] = E[X ]−E[Y ]≈ θ. (A.23)

And

Var(X−Y ) = Var(X)+Var(X)−2Cov(X ,Y ), (A.24)

Thus through creating an estimator Y for which E[Y ] ≈ 0, and that is highly correlated

with X , the variance can be reduced significantly.

This general template has been followed at the construction of SAG, SAGA, SVRG

and SDCA algorithms.

Stochastic Average Gradient (SAG) [182][188] has been developed based on the idea

of incremental gradients [23]. The main goal in SAG is reducing the variance the stochastic

gradient algorithm by in a way hybridizing full gradient descent and stochastic gradient

descent. SAG essentially maintains a table for gradients gi
t = ∇ fi(wt) per data points

xi, (i = 0, . . . ,n), that is initialized by the staring point w0. In each iteration then the

gradient is updated at a random point xi, while the other gradient values will stay the same,
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and the full updated will be calculated by averaging over all gi:

git = ∇ fi(wt ,xi), if i = ik (A.25)

git = git−1, if i ̸= ik (A.26)

wt = wt−1−ηt
1
n

n

∑
i=1

g(i)t (A.27)

That can be implemented slightly more efficiently:

wt = wt−0−ηt

git
t

n
−

git
t−1

n
+

old table average︷ ︸︸ ︷
1
n

n

∑
i=1

g(i)t−1


︸ ︷︷ ︸

new table average

. (A.28)

Thus the stochastic gradient in SAG:

git
t︸︷︷︸

X

−

git
t−1−

n

∑
i=1

g(i)t−1︸ ︷︷ ︸
Y

 , (A.29)

where E[X ] = ∇ f (wt). However E[Y ] ̸= 0, thus it is a biased estimator. On the other hand

Y and X are correlated, that is X −Y → 0 as k→ ∞. Since wt−1 and wt converge to the

optimum w∗, thus git
t −git

t−1→ 0, and ∑
n
i=1 g(i)t−1→ ∇ f (w∗) = 0. Thus the l2 norm of the

overall estimator, and with that its variance decays to zero as well.

SAGA An follow up amendment for SAG is SAGA [52], that replaces the biased gradient

estimator of SAG with an unbiased one:

git
t︸︷︷︸

X

−

git
t−1−

1
n

n

∑
i=1

g(i)t−1︸ ︷︷ ︸
Y

 , (A.30)
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where E[Y ] ̸= 0, so this is unbiased. The variance moreover similarly to SAG goes to zero

as well.

Stochastic Variance Reduced Gradient (SVRG) SVRG [117] working in a similar

way to SAG and SAGA, with the difference that instead of maintaining a table of all

gradients it only stores an average of them, that is the full gradient g̃ = ∇ f (w̃r) of the loss

f at an initial point w̃r. The stochastic update then is computed similarly to SAGA for

random points xit and:

wt = wt−1−ηt (∇ fit (wt−1)−∇ fit (w̃r)+ g̃) (A.31)

The algorithm runs in in two nested loops, in the outer loop the new estimation of the

optimum w̃r will be updated from the result of multiple execution of the inner loop

w̃r+1 = wt , then the full gradient will be recomputed g̃ = ∇ f (w̃r), and starts the inner loop

again.

A.2.1 Dual methods

Dual spaces

In linear algebra a functional is a linear mapping from a vector space V into its field of

scalars V→ F (a field F for example C,R)

The dual space V∗ of a vector space V is the space of all continuous linear functionals on

that space V∗ = L(V,F) . The elements of the dual are the linear functionals.

Dual optimization

Dual optimization is at first place used for constrained optimization, that is when we are

looking for optimal values of a function f within a restricted domain space.
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The Lagrange dual problem can be used when we cannot solve the primal as ∂ f (x)
∂x = 0,

because we have to take into account the feasible region of the constraints.

min
x

f (x) (A.32)

subject to hi(x)≤ 0, i = 1, . . .m (A.33)

l j(x) = 0, j = 1, . . . ,r (A.34)

(A.35)

In Lagrange multiplier method we add constraints as a perturbation the original

problem(inequalities h(x) ≤ 0 with weights λ ≥ 0, and equalities l(x) = 0 with weights

ν≥ 0 )):

L(x,λ) = f (x)+λ
T h(x)+ν

T l(x) (A.36)

Since equalities l(x) can be transformed to inequalities by adding l(x)≥ 0 and −l(x)≥ 0,

it is common to omit this part and use only h(x) to denote the constraint set.

Taking the minimum of this Lagrangian of the problem (Equation A.36) w.r.t. the

original variables x gives us the Lagrangian dual function g(λ) in terms of the Lagrange

multipliers λ:

g(λ) = inf
x∈D

L(x,λ) (A.37)

where D= dom( f ) is the domain of f without any constraints.

Then, the optimum of the dual g∗ will be :

g∗ = max
λ

g(λ), s.t.λ≥ 0 (A.38)

Weak duality The g∗ is a lower bound for f , since we decrease f in any case with the

constraints terms(adding λhs having h≤ 0 and λ > 0. The dual g() is at the minimum in
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f so in any case the dual problem gives a lower bound. The task therefore is to give best

lower bound that is equivalent to maximize g.

Strong duality

In some cases f ∗ = g∗, this is called strong duality.

Slater constraint qualification : Strong duality holds for a convex problem in a form:

min f (x) (A.39)

s.t.hi(x)≤ 0, i = 1, . . . ,m (A.40)

Ax = b, (A.41)

if it is strictly feasible, that is there is at least one point in the domain for f0 that strictly

satisfies the conditions. Formally:

∃x ∈ intD :hi(x)< 0, i = 1, . . . ,m (A.42)

Ax = b (A.43)

Complimentary slackness If strong duality holds x∗ optimal primal and (λ∗,ν∗) optimal

dual

f0(x∗) = g(λ∗,ν∗) = inf
x

(
f0(x)+

m

∑
i=1

λ
∗
i fi(x)+

m

∑
i=p

ν
∗hi(x)

)
(A.44)

≤ f0(x∗)+
m

∑
i=1

λ
∗
i fi(x∗)+

m

∑
i=p

ν
∗hi(x∗) (A.45)

≤ f0(x∗) (A.46)

thus ≤ holds as =,

• and x∗ minimizes L(y,λ∗,ν∗),

• moreover λ∗i fi(x∗) = 0 for i = 1,2, . . . , that is:
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– λ∗i > 0⇒ fi(x∗) = 0

– fi(x∗)< 0⇒ λ∗i = 0

(kind of a stopping criterion)

Karush-Kuhn-Tucker(KKT) conditions If for a problem with differentiable fi,hi strong

duality holds, and x, λ, ν are optimal, then they also satisfies KKT conditions, and these

conditons are sufficient:

• primal constraints:

hi(x)≤ 0, i = 1, . . . ,m, (A.47)

l j(x) = 0, j = 1, . . . , p (A.48)

• dual constraints λi ≥ 0, i = 1, . . . ,m

• complimentary slackness: λihi(x) = 0, i = 1, . . . ,m

• and gradient of the Lagrangian vanishes:

0 ∈ ∂x

(
f (x)+

m

∑
i=1

λihi(x)+
p

∑
j=1

ν jl j(x)

)
(A.49)

that is, if f is differentiable: (A.50)

∇x f (x)+
m

∑
i=1

λi∇xhi(x)+
p

∑
j=1

ν j∇xl j(x) = 0 (A.51)

if f strongly convex dual is smooth.

Lagrangian in the dual space This f ∗ is already defined in the dual space, that is the

space of all functional over the vector-space V : f ∗ : V → F, where F is afield, as C or R.

And this is what conjugates do.
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Conjugate

In convex analysis the basic idea of using duality is to think of a convex function, or

the epigraph of the function as a convex set, that is an intersection of the supporting

hyperplanes(Figure A.4).

Figure A.4 The epigraph of function f , with a supporting hyperplane (From: [180]).

These supporting hyperplanes are described by affine functions, that are majorized by

f :

∀x, l(x) = ⟨α,x⟩−a, (A.52)

with l(x)≤ f (x) (A.53)

Fenchel conjugate To recover these supporting hyperplanes, we can use f ∗, the so-

called Fenchel-conjugate of f . This conjugate is a function, that for each slope α assigns a

(the y-interception of the hyperplane) providing us all these hyper-plane equation.
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That is for a given slope α the "best" choice for a:

f (x)≥ ⟨α,x⟩−a,∀x ∈V (A.54)

⇐⇒ a≥ ⟨α,x⟩− f (x),∀x ∈V (A.55)

⇐⇒ a≥ sup
x∈V
⟨α,x⟩− f (x) (A.56)

And the best minorant hyperplane with slope α:

f ∗(α) = sup
x∈V
⟨α,x⟩− f (x), (A.57)

if this suprenum is finite. If f ∗(α) = ∞ that means that there is no minorant hyperplane for

f with the given slope. f ∗ is called the (Fenchel-)conjugate or Legendre-transform of f .

(See Figure A.5 for a geometrical intuition.)

Figure A.5 Left: A hyperplane with slope a.Right:Fenchel conjugate f ∗(α) of a convex
function f (x): the y−intercept for the supporting hyperplane with slope a(From: [180]).

Useful properties of conjugate For a conjugate of f : R→ R the conjugate

f ∗(y) = max
x

yT x− f (x) (A.58)

• The conjugate is always convex.
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• A useful formulation multiplying by −1:

− f ∗(y) = min
x

f (x)− yT x (A.59)

• if f is closed convex function, then f ∗∗ = f and

x ∈ ∂ f ∗(y) ⇐⇒ y ∈ ∂ f (x) ⇐⇒ x ∈ argmin
z

f (z)− yT z, (A.60)

since

x ∈ argmin
z

f (z)− yT z ⇐⇒ 0 ∈ ∂ f (x)− y ⇐⇒ y ∈ ∂ f (x) ⇐⇒ y ∈ ∂ f ∗(y)

(A.61)

(other direction follows from f ∗∗ = f )

• If f is strictly convex, then f ∗ is differentiable and ∇ f ∗(y) = argminz f (z)− yT z.

These properties are pretty useful since it is possible optimize the dual(conjugate), without

the direct computation of the gradient, that is very helpful if the conjugate cannot be

obtained in a closed form.

Compute the Fenchel conjugate The Fenchel conjugate

f ∗(α) = sup
x∈C

[⟨x,α⟩− f (x)]. (A.62)

can be expressed fairly simply (at least for locally convex functions) as function of α.

Maximizing term xT α− f (x) w.r.t x, x can be expressed by the dual variable al pha.

f ∗(α) = max
x
{xT

α− f (x)} (A.63)
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For example:

f (x) = x2−2x+2 (A.64)

f ∗(α) = sup
x∈R

(αx− f (x)) = sup
x∈R

(αx− x2 +2x−2︸ ︷︷ ︸
:=g(x,α)

) (A.65)

(A.66)

since g(x,α) is concave (in x), its minimum can be given by setting ∇xg(x,α) = 0, then

express x with α

∇xg(x,α) = α− (2x−2) = α−2x+2 = 0 (A.67)

x =
α

2
−1 (A.68)

(A.69)

plugging this back into f ∗(α):

f ∗(α) = α(
α

2
−1)− (

α

2
−1)2 +2(

α

2
−1)−2 (A.70)

=
α2

2
−α− α2

4
+α−1+α+2−2 =

α2

4
+α−1 (A.71)

(A.72)

Lagrangian and Fenchel dual For convex optimization with affine equality constraints:

min
x

f (x), s.t. Ax = b (A.73)

the Lagrangian is given by

L(x,u) = f (x)+uT (Ax+b), (A.74)
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and the dual is, by minimizing the Lagrangian in x:

g(u) = min
x

L(x,u) = min
x

f (x)+uT (Ax−b) (A.75)

= min
x

f (x)− (−AT u)T x︸ ︷︷ ︸
def of f ∗ with slope −AT b

−uT b (A.76)

=− f ∗(−AT u)−uT b (A.77)

using the definition of conjugate from which the dual problem to solve is :

max
u
− f ∗(−AT u)−uT b. (A.78)

whose subgradient(subdifferential) is thus simply

∂g(u) = A∂ f ∗(−AT u)−b = Ax−b, (A.79)

with x ∈ argminz f (z)+uT Az.

Fenchel Dual of Regularized convex linear model

arg min
w∈Rd

f (Xw)+ r(w)) (A.80)

introducing equality constraints: (A.81)

arg min
v=Xw

f (v)+ r(w) (A.82)

, where f : Rd → R, is a convex loss functions. The dual of Equation A.82 will take a

special form that makes optimization easier:
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L(v,w,z) = f (v)+ r(w)+ zT (Xw− v) Lagrangian (A.83)

D(z) = inf
v,w
{ f (v)+ r(w)+ zT (Xw− v)} Lagrangian dual (A.84)

inf w.r.t. v: (A.85)

inf
v
{ f (v)− zT v}=−sup

v
{vT z− f (v)}=− f ∗(z) (A.86)

inf w.r.t. w: (A.87)

inf
w
{r(w)+ zT Xw}=−sup

w
{−zT Xw− r(w)}=−r∗(XT z) (A.88)

(A.89)

That gives the dual objective:

argmax
z∈Rn

D(z),where (A.90)

D(z) = f ∗i (−z)− r∗(XT
α), (A.91)

A.2.2 Dual first order methods

Dual gradient ascent Using the formulation for the subgradient ∂g(u) = Ax− b, and

KKT stationary condition gives the possibility to develop a subgradient method to optimize

the dual variable u (maximizing the dual objective in u). This method is applicable for the

case of strictly convex f , where f ∗ is differentiable and thus ∂ f ∗(x) = ∇ f ∗(x), based on

which we can use Dual gradient ascent method, without the need to compute an expression

explicitly for the dual function or for the conjugate:

1. start with an initial guess u0
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2. repeat for t = 1,2, . . .

xk = argmin
z

f (z)+(uk−1)
T Az this is KKT stationary condition (A.92)

uk = uk−1 +ηk(Axk−b) Since (Axk−b) = ∇g(uk−1) (A.93)

Stochastic Dual Coordinate Ascent (SDCA): SDCA[190] has been developed for solv-

ing generic ridge regularized optimization problem for x1, . . .xn data points in xi ∈ Rd

arg min
w∈Rd

F(w) =

[
1
n

n

∑
i=1

fi(wT xi)+
λ

2
||w||2

]
(A.94)

(or arg min
w∈Rd

f (Xw)+ r(w))) (A.95)

(introducing constraints:arg min
v=Xw

f (v)+ r(w))), (A.96)

where fi : R→ R, i = 1, . . . ,n are scalar convex loss functions. That is we maximizing the

negative convex conjugates of the original problem.Taking w∗ for the optimum of (A.94) a

w solution is defined to be εF -suboptimal, if F(w)−F(w∗)< εF . For SVM SGD sjown

to reach an εF -suboptimal solution in time O(1/λεF) log(1/λεF)) for given λ stepsize

parameter. according the arguments of authors of [190], solving a problem with the most

common SGD has a number of drawbacks:

• No clear stopping criterion

• it tends to be aggressive at the beginning

• reaches a moderate accuracy quite fast but convergence then becomes rather slow

around the optima.

To address these issues, at least for the convex case it is possible to use Dual Coordinate

Ascent(DCA) for the dual of the problem (A.94):
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arg max
α∈Rn

D(α),where (A.97)

D(α) =

1
n

n

∑
i=1
− f ∗i (−αi)−

λ

2

∥∥∥∥∥ 1
λn

n

∑
i=1

αixi

∥∥∥∥∥
2

︸ ︷︷ ︸
from A.91

 , (A.98)

Or more generally: (A.99)

D(α) = f ∗i (−α)− r∗(XT
α), (A.100)

In (A.98) each αi is associated with a single training example xi, and in each iteration of

DCA a dual objective will be optimized with respect to single coordinate, that is using a

single training example.:

argmax
αi

[
− f ∗i (−αi)−

λ

2

∥∥∥∥ 1
λn

αixi

∥∥∥∥2
]

(A.101)

Then defining

w(α) =
1

λn

n

∑
i=1

αixi, (A.102)

for strong duality F(w∗) = D(α∗) with (A.103)

w∗ =
1

λn

n

∑
i=1

α
∗
i x(i) , α

∗
i =− f ′(w∗T x(i)), (A.104)

thus w(α∗) = w∗ with α∗ is defined as the optimal solution of (A.98). Since we know that

F(w)≥ D(α)∀w ∈ Rdandα ∈ Rn, the duality gap F(w(α)−D(α) is an upper bound for

the primal sub-optimality F(w(α))−F(w∗). So if we want to solve for ε accuracy we just

need to check whether this gap is smaller than ε.

Since in the dual formulation each coordinate of the dual variable α ∈ Rn is associated

with a single training example x, in DCA optimization we need to optimize D(α) w.r.t. a
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single coordinate in each iteration, while the leftovers can be kept constant. SDCA choose

the coordinate to update uniformly at random:

1. Let w0 = w(α0)

2. repeat for t = 1,2, . . .

∆α
i = max

δα

− f ∗i (−(αi
t−1 +δα))− λn

2
||wt−1 +

δαxi

λn
||2 (A.105)

αt = αt−1 +δα
i (A.106)

wt = wt−1 +
1

λn
∆α

ixi (A.107)

A.2.3 Alternating Direction Method of Multipliers (ADMM)

Dual decomposition of the Lagrangian Elements of the primal variable vector x can

be decomposed into B blocks: x = [x1, . . . ,xB] ∈ Rn, and thus the primal problem with

xi ∈ Rni can be transformed into the following form:

min
x

B

∑
i=1

fi(xi) s.t.Ax = b. (A.108)

Naturally the constraints cannot be decomposed similar way, but we can partition coefficient

matrix A accordingly: A = [A1, . . . ,AB], where Ai ∈ Rm×ni ,

x ∈ argmin
z

f (z)+uT Az = argmin
z

B

∑
i=1

( fi(zi)+uT Aizi) (A.109)

⇐⇒ xi ∈ argmin
zi

fi(zi)+uT (Aizi) (A.110)

Thus actually the optimization objective also decomposed according to the blocks. Using

this the dual decomposition algorithm works in the following way:

For k = 1,2, . . .

1. x(k)i ∈ argminzi fi(zi)+(u(k−1))T (Aizi), i = 1,2, . . . ,B

2. u(k)i = uk−1 +ηk

(
∑

B
i=1 Aix

(k)
i −b

)
144



Background

A big advantage of dual decomposition is that it allows parallelized updates of each blocks,

by (1) first broadcasting u to each process, that optimizes xi, and then (2) collecting the

local optimization results update u.

Augmented Lagrangian A disadvantage of Dual Gradient Ascent method is that it

requires strong convexity of f to ensure convergence. Augmented Lagrangian method

(or method of multipliers) has better convergence guarantees by transforming the primal

problem:

min
x

f (x)+
ρ

2
∥Ax−b∥2

2 s.t. Ax = b. (A.111)

This is the same problem, since it only means adding 0 = ∥Ax−b∥ in the feasible region.

For ρ > 0 and a full column-rank A matrix this objective is fully convex that ensures

convergence of the dual gradient ascent method.:

For k = 1,2 · · · :

1. x(k) = argminz f (z)+(u(k−1))T Az+ ρ

2∥Az−b∥2
2

2. u(k) = u(k−1)+ρ(Ax(k)−b)

with a stepsize η = ρ. Since choosing this value results in the stationarity condition in the

primal problem, assuming that Ax(k)−b→ 0 as k→ ∞:

x(k) = argmin
z

f (z)+(u(k−1))T Az+
ρ

2
∥Az−b∥2

2 (A.112)

⇐⇒ 0 ∈ ∂ f (x(k))+AT (u(k−1)+ρ(Ax(k)−b)) = ∂ f (x(k))+AT u(k) (A.113)

However, while the augmented Lagrangian method gives better convergence properties

thank to strong convexity, it excludes the property of decomposability.

Alternating Direction Method of Multipliers (ADMM) ADMM method has been

designed to combine the advantageous properties of the dual decomposition and augmented
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Lagrangian method. For that the first task is to bring the problem in the form (if it is

possible):

min
x,z

f (x)+g(z) s.t.Ax+Bz = c (A.114)

Then we can augment the the objective:

min
x,z

f (x)+g(z)+
ρ

2
∥Ax+Bz− c∥2

2 s.t.Ax+Bz = c s.t.Ax+Bz = c (A.115)

for some ρ > 0. then the augmented Lagrangian:

Lρ(x,z,u) = f (x)+g(z)+ (A.116)

+uT (Ax+Bz− c)
ρ

2
∥Ax+Bz− c∥2

2 (A.117)

The augmented Lagrangian method would jointly minimize this over x and z:

(
x(k),z(k)

)
= argmin

x,z
Lρ(x,z,u(k−1)) (A.118)

ADMM instead splits the minimization into two steps: first over x, then z (or in reversed

order) using the updated value of the previous step:

For k =1,2,. . . :

• x(k) = argminx Lρ(x,z(k−1),u(k−1)

• z(k) = argminx Lρ(x(k),z,u(k−1))

• u(k) = u(k)−1 +ρ(Ax(k)+Bz(k)− c)

The update in this algorithm does not depend on gradients anymore, since the minimization

happened before separately.
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A.2.4 Some second order methods

Newton-type methods

Newton method is originally designed for zero finding,by iteratively progressing to the

point where the value of a function f is 0.:

xt+1 = xt−
f (xt)

f ′(xt)
(A.119)

Figure A.6 Newton method for finding 0 [119]

For optimization it can be simply applied substituting f with its derivative, yielding a

second order method :

xt+1 = xt−
f ′(xt)

f ′′(xt)
(A.120)

Figure A.7 Second Order Newton method 1
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Newton type methods yield asymptotic super-linear convergence using a better, quadratic

approximation of the loss. A function that is locally convex in a neighbourhood of a can

be approximated by second order Taylor polinom q(x). Based on this, for an x being close

enough to to a we can make the following approximation:

f (x)≈ f (a)+

=∇ f (a)T︷︸︸︷
gT (x−a)+

1
2
(x−a)T

=∇2 f (a)︷︸︸︷
H (x−a)︸ ︷︷ ︸

xT Hx−2aT Hx+aT Ha

(A.121)

with b = x = g−Ha, and c stands for the leftover terms (A.122)

f (x)≈ q(x) =
1
2

xT Hx+bT x+ c. (A.123)

The loss f (Eq. A.123) can be exactly optimized by setting x to be the minimum of q(x)

(assuming that that the Hessian is invertable):

0 = ∇q(x) = Hx+b⇒ x =−H−1b =−H−1g+a (A.124)

(A.125)

To see that it is also a minimum if the second derivative is positive semidefinite:

∇
2q = H (A.126)

Thus the second derivative of q is also a second derivative of f . As long as f is a convex

function (at least around a), then it is positive semidefinite, so it is a minimum.

So the algorithm:

• initialize x0 ∈ Rn

• iterate:

xt+1 = xt−H−1g, where g = ∇ f (xt), and H = ∇2 f (xt)
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Damped newton method The so-called Damped newton method instead of jumping to

the minimum of the approximation as above, uses an η learning rate:

xt+1 = xt−η∇
2[ f (xt)]

−1
∇ f (xt), (A.127)

or (A.128)

xt+1 = xt−ηy, (A.129)

Line search There are two basic iterative approaches in optimization to find a local

minimum x∗ of an objective function f : Rn→ R:

• line search

• trust regions

Line search is about finding a descent direction, along which f can be reduced, and then

computes a step size to be taken in that direction. The descent direction can be computed

by various methods as GD and quasi-newton methods. Step size can be determined exactly

or inexactly.

make an initial guess x0, k = 0 Repeat

1. compute a descent direction dk

2. choose αk to more or less minimize in α ∈ R+ h(α) = f (xk +αdk)

3. update xk+1 = xk +αdk

until ||∇ f (xk+1)||<threshold

Exact line search Finding αk stepsize can be given exactly: by solving h′(α) = 0(as in

conjugate gradient method) or loosely by asking a sufficient decrease in f .

So a way to find this is to calculate the first and second derivative and apply newton

method:

h′(α) = ∇ f (xk +αdk)dk directional derivative (A.130)

h′′(α) = ∇
2 f (xk +αdk)dk curvature along dk (A.131)
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applying newton for reach iteration a takes a lot of time to calculate these derivatives. Even

if it is a unidimensional problem ∇ f and ∇2 f are not.

For example So quadratic approximation a method that only uses h, and not h′ or h′′.

Wolfe condition In inexact line search Wolfe-conditions provide an efficient way to

compute acceptable α, that reduces f sufficiently.

Wolfe conditions can be used as requirements for an α for being a good guess:

1. Armijo rule:

f (xk +αkdk)≤ f (xk)+ c1αkdT
k ∇ f (xk) (A.132)

2. curvature condition

−dT
k ∇ f (xk +αkdk)≤−c2dT

k ∇ f (xk) (A.133)

where 0 < c1 < c2 < 1,c1 is usually very small, and c2 way bigger ( Nocedal and

Wright[228]: c1 = 10−4,c2 = 0.1)

(We can ensure dk to be a descent direction if dT
k ∇ f (xk)< 0, as in the case of gradient

descent dk =−∇ f (xk))

Preconditioned steepest descent The essence descent methods is generating an algo-

rithm that fits the optimization problem:

1. find the direction descent direction

2. how far in the direction - step size

The most natural choice for the descent direction is the gradient as it is in GD, however

as discussed before it tends have s zigzag behaviour, depending on local curvature of the

function.

Ideally for each direction we would like to go to the Cauchy point, that is the minimum

along the descent direction.
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If the curvature of a function is very different in specific directions, that leads to

slow convergence of descent methods because it increases zigzaging. By Multiplying the

variables by a preconditioner we would like to achieve the Curvature to be about the same

around a single step

Taking a matrix Ht , that is symmetric and positive definite (this is the only thing

required) we can calculate Cholesky factorization Hk = LkLT
k , where Lk is a lower rectan-

gular matrix, that can be seen as square root of H. This matrix can be used to change the

variables:

x′ = LT
k x. (A.134)

We can then apply the steepest descent iteration in the new variables:

x′k+1 = x′k−αt∇ f̃ (x′k), (A.135)

where f̃ = f (x′), the function in the new variables.

With the correspondences

x = L−T
k x′, and f̃ (x′k) = f (L−T

k x′), (A.136)

we can calculate ∇ f̃ (x′k) :

∇ f̃ (x′k) = L−1
k ∇ f (L−T

k x′) (A.137)

Thus steepest descent iteration can be calculated the following way:

x′k+1 = x′k−αkL−1
k ∇ f (L−T

k x′). (A.138)

Then we can go back to the original variables applying A.136:

LT
k xk+1 = LT

k xk−αkL−1
k ∇ f (xk) (A.139)
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Then multiplying everything with L−T
k :

L−T
k LT

k︸ ︷︷ ︸
I

xk+1 = L−T
k LT

k︸ ︷︷ ︸
i

xk−αk L−T
k L−1

k︸ ︷︷ ︸
H−1

k

∇ f (xk) (A.140)

Thus what we obtain, is the preconditioned steepest descent in the original variables:

xk+1 = xk−αkH−1
k ∇ f (xk). (A.141)

To prove that −αkH−1
k ∇ f (xk) is actually a descent direction, we can calculate the direc-

tional derivative in the direction dt(inner product between the gradient and the direction)

∇ f (xk)
T dt , for dt =−H−1

k ∇ f (xt):

∇ f (xk)
T dk =−∇ f (xk)

T H−1
k ∇ f (xk) (A.142)

Here H−1
t is positive definite, because Hk is positive definite. When a positive definite

matrix pre- and post-multiplied by a non-zero vector, then it will be positive(by definition

of positive definiteness),and with the minus the derivative will be negative indeed. As a

result it must be a descent direction in xk.

For Hk the only restriction is that it should by symmetric positive defininte, thus PCG is

actually a family of methods.

Descent and Newton If Newton method works it works pretty well. So it might be advan-

tageous to combine somehow the robustness of descent methods with the fast convergence

of Newton method.

For a dk direction, both are of type

xk+1 = xk +αk (A.143)
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Descent method:

xk+1 = xk−αkDk∇ f (xk) (A.144)

dk =−Dk∇ f (xk) minus the gradient multiplied by PSD preconditioner (A.145)

Newton:

xk+1 = xk−∇
2 f (xk)

−1
∇ f (xk) αk = 1 (A.146)

dk =−∇
2 f (xk)

−1
∇ f (xk) minus the gradient multiplied by inverse of Hessian

(A.147)

It can be seen, that in both case matrix times minus the gradient. Thus newton method can

be seen as a descent method as well, which works however only if the inverted Hessian

H = ∇2 f (xk)
−1 is PSD.

(also descent allows to use any step size in the direction, in Newton αk = 1)

If this is not the case, that is the Hessian is not PSD, then we have use something else,

that in similar to H:

1. Dk = I steepest descent algorithm - slow compared to Newton

2. include curvature information Dk diagonal preconditioner:(TODO notation)(for psd

it is enough to have elements in the diagonal to be positive)

Dk(i, i) =
(

maxε,
∂2

∂x2
i

f (xk)

)−1

(A.148)

for ε > 0 to have sufficiently positive, thus Dk(i, i)≥ 1
ε
> 0

3. more sophisticated : "inflating "∇2 f (x):

Dk = (∇2 f (xk)+ τI)−1 (A.149)

where τ is given such that Dk PSD. Its advantages is that it uses the full Hessian.
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Conjugate Gradient Descent [95]

When we do exact line-search along the gradient, each time we try to find the minimum

xtalong the direction dt = ∇ f (xt−1). If this descent directions are not orthogonal to dt−1,

that means that there is a component that belongs to the previous direction,that is we could

have travelled further more along dt−1. This is again the zigzag. So in n dimension the idea

is to search in n conjugate directions. In this case progress made in one direction does not

affect the progress made in the other. So only search in n dimensions to find the optimal

points. Two vectors are conjugate or Q-orthogonal if defining an inner product with Q

Hessian ⟨u,v⟩= uT Qv = 0, and a set of pairwise Q-orthogonal vectors form a basis of Rn.

So for an n dimensional function we can transform the function to the following form:

l(x) =
1
2

xT Qx− xT b+ c, (A.150)

whose gradient is ∇l(x) = Qx−b, so if we minimize it Qx = b.

CGMethod : For use the Conjugate gradient method we need {d1, ...}∈RnQ-orthogonal

vectors, since they form a basis x∗= ∑
n
i=1 αidi, since dkQdi = 0 for k ̸= i,αk =

dT
k b

dT
k Qdk

, thus

after calculating αi-s we have found the minimum x∗ = ∑
n
i=1 αidi. What is needed to start

the method is to find di orthogonal vectors.

Qx∗ =
n

∑
i=1

αiQdi (A.151)

where Qx∗ = b at the minimum, thus b = ∑
n
i=1 αiQdi a linear combination of Q-times the

original Q-orthogonal vectors. Multiliyng both side by one of these original vectors:

dT
k b =

n

∑
i=1

αidT
k Qdi by orthoganility ofdi and dk for i ̸= k (A.152)

dT
k b = αkdT

k Qdk (A.153)

αk =
dT

k b
dT

k Qdk
(A.154)
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Having the αs allows to calculate the minimum value of f directly.

How to calculate the n Q othogonal vevtors? Could use Qv = λv, eigenvectors, that is

inefficient. Instead generate them dynamically from an initial guess x1:

d1 =−∇ f (x1) = b−Qx1 (A.155)

αk =
−∇ f (xk)

T dk

dT
k Qdk

⇒ xk+1 = xk +αkdk (A.156)

βk =
∇ f (xk+1)

T Qdk

dT
k Qdk

⇒ dk+1 =−∇ f (xk+1)+βkdk (A.157)

That is di-s are the gradient directions, while αi-s are the corresponding stepsizes.

When we do this iteratively we will find a solution close enough to x∗

A.2.5 Bregmann divergence and mirror descent

Projected Gradient Descent (PGD) Projected gradient method can be viewed as a

generalization of GD that is usable for constrained optimization as well. If first takes a step

in the direction of the negative gradient

yt+1 = xt−ηt∇ f (xt); (A.158)

then projects it back to the feasible region C:

xt+1 = argmin
x∈C
∥yt+1− x∥. (A.159)

In a single step:

xt+1 = argmin
x∈C

=

{
f (xt)+ ⟨∇ f (xt),x− xt⟩+

1
2ηt
∥x− xt∥2

2

}
(A.160)

that can be interpreted as keeping the new new point in a proximity of the old one, and

making the gradient step along the tangent with the slope of the sub-gradient (Figure
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A.8). In other words, we assume that in the proximity of the current approximation xt the

gradient or tangent line is close enough to the real function, but as we go further there is a

high uncertainty, which we want to penalize.

Figure A.8 Projected Gradient descent [43]

To sum up, in PGD the proximity term ∥x− x(t)∥2
2 is based on the assumption, that the

discrepancy between the f and its tangent might be well approximated by this homogeneous

penalty. Since this belief often does not hold, mirror descent uses a generalization of the

proximity term, the so-called Bregman-divergence

Bregman-divergence Bregman divergence (first used in [31]) is a generalization of

squared Euclidean distance:

∥x− y∥2 = ⟨x− y,x− y⟩= ∥x∥2−∥y∥2−⟨ 2y︸︷︷︸
∇∥y∥2

,x− y⟩ (A.161)

Here 2y equals to the derivative of ∥y∥2, moreover ∥y∥2+⟨2y,x−y⟩ is equal to the equation

of the tangent line at y, thus the whole expression measures the difference between the

function f (x)= ∥x∥2 and its tangent line at y evaluated at x (Figure A.9). The non-negativity

of this distance in any point x and y is equivalent with the distance measure being convex.

Thus for a φ strictly convex and differentiable function on C:

φ(z)≥ φ(x)+ ⟨z− x,∇φ(x)⟩, ∀z, (Convexity definition). (A.162)
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Figure A.9 Geometric interpretation of Euclidean distance from [175] Red line is the
tangent of ∥x∥2 at y, and length of the blue line is the distance d2(x,y) = ∥x− y∥2

.

we can derive a distance function Dφ, and these distance measures (or divergences) are

called together Bregman-divergence:

Dφ(z,x) = φ(z)−φ(x)−⟨∇φ(x),z− x⟩. (A.163)

Examples that can be derived in this form could be :

• Mahalanobis distances, a "distorted Euclidean norm": φA = 1
2xT Ax, for a matrix

A ∈ Rn

• KL-divergence: φKL = ∑
n
i=1 pi log pi(negative Shannon entropy)

The goal of using the in optimization divergence is to adjust the step-size of the gradient

descent based on a "distance" along a function φ that fits better the local curvature of

function f to be minimized, potentially incorporating knowledge about some constraints

as well .

Mirror descent Mirror descent (Figure A.10) is essentially a projected gradient descent

that instead of squared Euclidean distance uses a Bregman-divergence Dφ to penalize going

to far from the current point. The concrete function φ should be chosen such way, that it

• fits to the local curvature of f

• fits to the geometry of the constraint set C
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• makes sure that projection in the step argminzDφ(z,x) can be computed easily.

Figure A.10 Mirror descent with Bregman divergence from [43]

A.2.6 Quasi Newton methods

Quasi newton methods are approximating the inverse Hessian Bt using gradients (gdef
= ∇ f ),

thus saving the not negligible cost of explicitly calculating the Hessian and its inverse, as it

is done in Newton methods and conjugate gradients .

The main steps of these Quasi Newton methods thus:

1. Compute an approximate Newton direction: dt =−Btgt

2. line search (inexact): ηt = argminη f (wt +ηtdt)

wt+1 = wt +ηtdt

3. Compute gradient at wt+1: gt+1 = ∇ f (wt+1)

4. Update the approximate inverse Hessian :

BT+1 = UpdateFormula(Bt ,wt+1−wt︸ ︷︷ ︸
def
=pt

,gt+1−gt︸ ︷︷ ︸
def
=qt

) (A.164)

For quadratic functions, exact Hessian and exact line-search quasi newton methods become

equivalent to conjugate gradient. From the definition of Hessian: H = dg
dx → H ·dx = dg
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follows the secant equation

H pt = qt (A.165)

Rank one update for keeping the update of the Hessian simple (rank one thus can be a

product of vectors: u and v)

Ht+1 = Ht +uvT . (A.166)

This update should satisfy the secant equation:

(Ht +uvT )pt = qt (secant equation) (A.167)

u(vT pt) = qt−Ht pt (A.168)

u =
1

V T pt
(qt−Ht pt), (A.169)

where v can be any vector, still the secant equation will be satisfied with the resulted u. We

can put additional requirements on v. Since the Hessian is symmetric, we want the update

to be symmetric as well. This means u and v should be collinear. Using this

u =
1

vT pt︸︷︷︸
scalar

(qt−Ht pt) (A.170)

v = qt−Ht pt and u =
1

vT pt
v (A.171)

Ht+1 = Ht−
1

vT pt
vvT (A.172)

Then what we want to approximate the newton step in the inverse B = H−1

H ·dx = dg ⇒ H pt = qt ⇒ Bqt = pt , B = H−1 (A.173)

v = pt−Btgt (A.174)

Bt+1 = Bt−
1

vqt
vvT (A.175)
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For Rank two update: Broyden–Fletcher–Goldfarb–Shanno (BFGS) In BFGS [145],

U , and V two rank, that is two column matrices, with which we can satisfy more require-

ments, not only the secant equation but also we want the approximate inverse Hessian to

be close to previous one:

||Bt+1−Bt ||W →min (A.176)

Bt+1 > 0 (A.177)

for closeness: "W -norm": ||A||W = ||W 1/2AW 1/2||F (where for PSD W :W 1/2 = A, for AA =

AT A =W ).

If we use W ≈ H results in the BFGS methodm while for the coice W ≈ H−1 David-

Fletchel-Powel (DFP) method.

Limited memory BFGS (LBFGS) L-BFGS [33] is a verison of BFGS, that does not

require storing if the Hessian on its inverse thus applicable for solving problem with huge

number of variables.

Bt+1 = Bt−
1

vqt
vvT BFGS (A.178)

dt = Btgt = ( B0︸︷︷︸
:=αI

+U1V T
1 +U2V T

2 + . . .)gt (A.179)

Where we don’t actually need Bt only the product with gt :

dt = αgt +U1(V T
1 gt)+U2(V T

2 gt)+ . . . (A.180)

Stochastic Quasi Newton methods To mimic the LBFGS methods a range of stochastic

algorithm has been proposed as in [27] and [131][128][231], that are seeking to model

local curvature information using inexact gradients coming from SGD procedure. [162]

tries to combine these with SVRG, while [87] makes an attempt to utilize stochastic matrix

inversion techniques to develop stochastic LBFGS that can be used along with SVRG.
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A.3 Information theory and Bayesian Learning

The most fundamental concept of information theory is the amount of information some

data sample carries. The Shannon information content of an event x is defined : I(x) =

− log(p(x)), for x ∈ X(X all events), that is if an event occurs with the higher probability,

means the lower the information content, or the smaller surprise factor.

A common practice is to measure information content with bits, that means using base

2 logarithm. I(x) = 1 for example for equally probably binary events p(X = "head") =
1
2 → I = log2(

1
2) = 1bit

Shannon Entropy describes expected information content of random variable X ∼ p

drawn from a distribution p. For discrete random variables it is defined as:

H(X) = Ex∼p[I(x)] =−∑
x∈X

p(x) log2(p(x)). (A.181)

That is for continuous random variables equivalent with:

H(X) = Ex∼p[I(x)] =−
∫

p(x) log2(p(x))dx (A.182)

Cross Entropy measures the relative entropy between two distribution, calculated by

summing over all events the product of the probability of an event x according to distribution

p with the negative log of its probability according to the other distribution q:

Hp(q) =−∑
x

q(x) log2(p(x)) = Ex∼q[− log p(x)] (A.183)

As a loss function cross entropy measures the difference between q predicted distribution

and p ground truth, so the better the approximation of p, the closer the two entropy is.
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Morover it is easy to see that:

Hp(q)≥ Hp(p) (A.184)

Kullback-Leibler divergence (KL-divergence) describes how much one distribution

diverges from another, that can be used to measure how much information we lose when

we approximating a complex true distribution with our model distribution.

KL-divergence can be calculated by multiplying the probability of an event happening

in reality (p distribution) with the difference of the of the logs of this real-world with its

predicted probability in q:

DKL(p||q) = E[p(x)(log p(x)− logq(x))]
N

∑
i=1

p(xi)(log p(xi)− logq(xi)) (A.185)

=
N

∑
i=1

p(xi) log
p(xi)

q(xi)
(A.186)

Properties of KL-divergence:

1. non negative - p(x) = q(x)→ log p(x)
q(x) = 1→ KL(p||q) = 0

2. non symmetric "relative distance"

Information loss also can be derived by the difference between the cross entropy Hp(q)

and the ideal entropy H(q):

Hp(q)−H(q) =−∑
x

q(x) log2(p(x))− (−∑
x

q(x) log2(q(x)) (A.187)

= ∑
x

q(x) log2(q(x)−∑
x

q(x) log2(p(x)) (A.188)

= ∑
x

q(x)(log2(q(x))− log2(p(x)))) (A.189)

= ∑
x

q(x) log2(
q(x))
p(x)

) (A.190)

= KL(q||p) (A.191)
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From Equation A.184 it follows, that optimizing cross entropy equivalent with optimiz-

ing KL divergence.

Conditional entropy H(Y |X) is the entropy of Y given X known

H(Y |X) = ∑
x∈X

p(x)H(Y |X = x) =− ∑
x∈X ,y∈Y

p(x,y) log
p(x,y)
p(x)

. (A.192)

That is, it quantifies the amount of information needed to describe the value of a random

variable Y when X is observed.

We use the term Categorical cross entropy in machine learning when evaluating

the model performance on a C-way classification task. In a typical case when we want

to predict a class of the input data the target is a categorical or generalized Bernoulli

distribution given the input as a one-hot vector. To convert the output of the model into a

probability distribution over the possible classes we usually use softmax function on the

unnormalized model output often called as logit vector : S(xi) =
exi

∑
C
j=1 ex j

Thus the categorical cross entropy loss for a single data point (x,y):

CE =−
C

∑
c=1

yc log(ŷc) =−
C

∑
c=1

yc log

(
eŷc

∑
C
j=1 eŷ j

)
(A.193)

for yi is the true label of sample , while ŷi is the predicted, for N samples and C possible

classes. If the target is a one hot vector this is simplified down to

CE =− log

(
eŷt

∑
C
j=1 eŷ j

)
(A.194)

for index t denotes the coordinate corresponding to the true label, since yc = 1 for the

true label t, and yc = 0 in any other case.

Likelihood and probability Likelihood is the likelihood of the parameters given the

data that is the probability of the data given the parameters.

L(w) ∝ p(y|w,σ2) (= p(y|θ)) with a Gaussian prior.
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In a stochastic process, when we have a parameter θ that describes the process, the

probability of outcomes/events O is p(O|θ). When we want to model a real world process

we have the observed outcomes the goal is to estimate θ. The natural way to approximate

θ is to choose one that maximizes the probability of observing O:

max
θ

P(O|θ)def
== max

θ

L(θ|O) (A.195)

Thus likelihood measures how good the parameters fit to the observed data, while

probability, how probable is to draw a given sample given the parameters.

Log-likelihood In ML we try to maximize likelihood of the parameters, that is the

probability of the data given the parameters p(D|θ) = ∏(x,y)∈D p(y|x,θ). that is in fact

equals to l(θ|D) = ∏(x,y)∈D(θ|x,y), as it is stated in Equation A.195.

Since being the probability (and thus likelihood) independent across all the training

examples, that is often a reasonable assumption, we usually can decompose the likelihood

into product of likelihood over all examples Thus for for N samples the likelihood and log

likelihood :

L(θ|D) = L(D|θ) =
N

∏
i=1

p(yi|xi,θ) (A.196)

When one seeks to find the best parameters θ with some method that is based on

gradients, the product becomes slightly inconvenient, thus a much easier method to work

with the logarithm of the likelihood.

LL(θ|D) =
N

∑
i=1

log(p(yi|xi,θ)) (A.197)

Since the natural logarithm is a monotonically increasing function the optimization will

lead to the same optimum:
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θ
∗ = argmax

θ

L(θ|D) = argmax
θ

n

∑
i=1

logL(θ|xi,yi) (A.198)

Cross Entropy and Log-Likelihood let p be the true distribution, and q the predicted

distribution with yi is the target probability distribution for xi feature vector of the ith

sample

p(y|xi) =

 1 ŷi = yi

0 otherwise

Thus for a sample xi the cross entropy loss Hi(p,q) = −∑yi∈Y p(yi|xi) log(q(yi|xi)).

The loss computed from Equation A.3 reduces to Hi(p,q) =− log(q(yi|xi)) (see Equation

A.194, thus the expected cross entropy becomes H(p,q) =−∑i∈N log(q(yi|xi)), that is in

fact the equals the negative log likelihood. Thus maximizing the log likelihood is equivalent

to minimizing cross entropy.

The derivativeof the softmax function, that can be used in an gradient based maximum

likelihood estimation, that is the predicted distribution for w.r.t. the logit vector a: (wrong

notation)q(yi|xi) = S(xi) =
eai

∑
C
j=1 ea j

qi =
eai

∑
C
j=1 ea j

(A.199)

∂qi

∂a j
=

∂
eai

∑
C
j=1 ea j

∂a j
(A.200)

Applying Quotient rule if f (x) = g(x)
h(x) , f ′(x) = g′(x)h(x)−g(x)h′(x)

h2(x) :
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For i = j:

∂
eai

∑
C
k=1 eak

∂a j
=

eai ∑
N
k=1 eak− ea jeai

(∑N
k=1 eak)2

(A.201)

=
eai(∑N

k=1 eak− ea j)

(∑N
k=1 eak)2

(A.202)

=
eai

(∑N
k=1 eak)

(∑N
k=1 eak− ea j)

(∑N
k=1 eak)

(A.203)

= qi(1−q j) (A.204)

For i ̸= j:

∂
eai

∑
C
k=1 eak

∂a j
=

0− ea jeai

(∑N
k=1 eak)2

(A.205)

=
−ea j

(∑N
k=1 eak)

(eai)

(∑N
k=1 eak)

(A.206)

=−q jqi (A.207)

Cross entropy loss indicates distance between the models output and and the target

distribution: H(y,q) = ∑i yi log(qi), for y target vector and q prediction. It is widely used as

an alternative of squared error, when output activations can be understood as a probability

of the different hypotheses might be true, that is a distribution over the possibilities. It is

used as the loss function for NN, with softmax output activation functions. So the derivative

of the Cross entropy loss w.r.t. activation ∇a f (x,y) using the prediction calculated by the

softmax:
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f (x,y) =−∑
i

yi log(qi) (A.208)

∂ f (x,y)
∂ai

L =−∑
k

yk
log(qk)

∂ai
(A.209)

=−∑
k

yk
log(qk)

∂qk

∂qk

∂ai
(A.210)

=−∑
k

yk
1
ak

∂qk

∂ai
(A.211)

(A.212)

From the derivative of softmax w.r.t pre-nonlinearity activation :

∂L
∂ai

=−yi(1−qi)−∑
k ̸=i

yk
1
qk
(−qk pi) (A.213)

=−yi(1−qi)+∑
k ̸=i

ykqi (A.214)

= qi(yi +∑
k ̸=i

yk︸ ︷︷ ︸
=1

)− yi (A.215)

= qi− yi (A.216)

A.4 Bayesian Learning

Bayesian view of ML/DL In Bayesian perspective[24] NN/ML probabilistic model

P(y|x,w), given an input x ∈ Rd the model assigns a probability to each possible output

y ∈ Y, using a set of parameters w.

Bayesian learning techniques build on Bayes theorem in looking for the best hypothesis

H for explaining the evidence E:

p(H|E) = P(E|H)P(H)

P(E)
. (A.217)
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In ML terms of ML this looks as follows:

p(w|x) = P(x|w)P(w)

P(x)
(A.218)

or going even more specific, we want to model p(y|x,w), where task is

• classification y ∈C for C a set of classes,and p(y|x,w) is a categorical distribution

• or regression y being a continuous variable and the model describing a Gaussian

distribution.

The most fundamental problem in ML is Density estimation , that is selecting a

probability distribution p(x) and its parameters that best explains our data x. It is actually

an unsupervised method, that can be used for supervised tasks.

Being p(x) known enables to

• identify outliers

• fill in missing data

• make quatization - shorter code to x with high p(x)

• compute association rules from consitionals p((xi) j,(xi)k)

• latent factor

• perform clustering

Or with joint density estimation p(xi,yi)

• supervised learning

• feature relevance

Since estimating density p(x) (or p(x|w))it is usually quite challenging, a range of tricks

are being used focusing on different aspects of Bayes theorem.
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Maximum Likelihood Estimation Given a data set D = {x(i),y(i)} we want to max-

imize the likelihood of the parameter w (that is to find the set of parameters (w) that

maximize the likelihood function, e.g. result in the largest likelihood value):

max
w

p(D|w), for (A.219)

p(D|w) = ∏
i

p(y(i)|x(i),w) (A.220)

For training such a model the optimization method used is negative log likelihood, that is

in classification (categorical distribution) corresponds to the cross entropy error function,

while for regression problems (Gaussian distribution) to mean squared error (MSE).

The way to learn weights by maximum likelihood estimation is to maximize the log

likelihood of observing D:

wMLE = argmax
w

logP(D|w) = argmax
w ∑

i
logP(yi|xiw) (A.221)

This is typically done by GD assuming that P(D|w) is differentiable in w.

However, MLE provides us with point estimation, and ignores uncertainty of the values

of the weights, that might lead to overfitting, that is in fact happens too often in NNs.

Maximum a Posteriori (MAP) To tackle the problem of overfitting the most popular

way is to apply regularization, in which case the optimization process will be similar to

searching for a Maximum a Priory estimation, by introducing prior on the weights, such as

we want the weights to be relatively low and mostly 0 (normal distribution N(0,σ2))

MAP is about "approximating" the distribution omitting the usually intractable partition

function/marginal likelihood p(D), since that is a constant:

P(w|D) =
p(D|w)p(w)

p(D)
∝ p(D|w)p(w) (A.222)

Thus the maximum a posteriori estimation:
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wMAP = argmax
w

logP(w|D) = argmax
w

logP(D|w)+ logP(w). (A.223)

With Gaussian prior MAP results in L2 regularization, while Laplace prior yields L1

regularization.

The optimization methods for finding a MAP estimate are basically the same as in

MLE adding a log prior probability.

Posterior Inference With a full posterior distribution P(w|D),we can make predictions

that takes into account the uncertainty of the weights as well:

p(y|x,D) =
∫

p(y|x,w)p(w,D)dw, (A.224)

where the parameters w are marginalized out, thus turning prediction into an expectation,

or in other words into a average over an ensemble of predictors weighted by the posterior

probabilities for their parameters w.

The problem is however, that computing analytically the this posterior p(w|D) is

intractable. The idea of variational inference is therefore to approximate somehow the

posterior with a variational distribution q(w|θ), with a known functional form with

parameters θ, that will estimate the distribution of over w.

From a Bayesian perspective the correct way is to do posterior inference these are

Bayesian NNs. First approaches where Laplace method (low complexity) and MCMC

(long convergence and difficult to train), now Variational inference methods are considered

state-of-the-art [24].
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Figure A.11 Bayesian inference vs point estimation, borrowed from [104]

A.5 Training from Bayesian perspective

Given a model m the probabilistic prediction of a target variable is p(y|m)=
∫

p(y|θ,m)p(θ|m)dθ.

Even for the case, when θ is a Gaussian this is a very hard problem to solve. Morover

the possible presence of some latent variables z results in additional dimensions that need

to be marginalized out p(y|m) =
∫ ∫

p(y,z|θ,m)p(θ|m)dzdθ

Solving these very high dimensional integrals is analytically not thus we need numerical

methods to approximate the posteriors and marginal likelihoods. There are a number of

methods developed for making these approximations as:

• Laplace approx

• Bayesian Information Criterion

• variational approximation

• expectation propagation

• MCMC

• exact sampling

Here we will only focus on the state-of-the art so-called variational approximations,

that are considered accurate and econmomical:

• Expectation propagation

• Variational Inference
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Expectation Propagation (EP)

We assume that the data D= {x(1), . . . ,x(N)}, is drawn iid from some distribution. We

want to have a model p(x|θ), with prior p(θ). The pararameter posterior, that we want to

find during the training involves then the likelihood of each individual datapoints:

p(θ|D) =
1

p(D)
p(θ)

N

∏
i=1

p(x(i)|θ), (A.225)

using the iid assumptions over datapoints : ∏
N
i=1 p(x(i)|θ) = p(D|θ). Ignoring the normal-

izing constant we can rewrite this, as

p(θ)
N

∏
i=1

p(x(i)|θ) =
N

∏
i=0

fi(θ), (A.226)

with f0(θ)
def
= p(θ) and fi(θ)

def
= p(x(i)|θ), for some functions f of θ, thus the first factor is

the prior and the others correspond to the contributions of each data points. So the posterior

is product of a bunch of functions over θ.

The goal is to approximate this with simpler terms: q(θ) = ∏
N
i=1 f̃i(θ).

Since fi(θ) can be complicated and multiplying them together is very hard, and for

complicated distributions each data point adds some complicated thing to the posterior.

It might be a solution to approximate with some distribution with which it is easier

to work as Gaussians or exponential distributions in general, where multiplication and

division are relatively simple.

To find the appropriate approximation to the true likelihood is fi(xi|θ), possible ways

could be:

• minq(θ)KL(∏N
i=0 fi(θ)||∏N

i=0 f̃i(θ)) -intractable - globally minimize KL divergence

- this would be the best approximation, exact mean and variance of true posterior.

• min f̃i(θ)KL( fi(θ)|| f̃i(θ)) simple non-iterative, inaccurate. for each factor only go

through once. but each one produces some error, that will be multiplied together.
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• min f̃i KL( fi(θ)∏
N
i ̸= j f̃ j(θ)|| f̃i(θ)∏

N
i̸= j f̃ j(θ)) simple iterative, accurate→ EP - iter-

ates approximating terms but multiplies by all the other approximating terms - can be

applied to many things from graphical models, belief propagation, kernel machines

etc..

So the EP algorithm for an exponential prior over θ, and sequential updating order

looks the following:

• having an original input model f0(θ) . . . fN(θ)

• initialize f̃0(θ) = f0(θ, . . . , f̃N(θ) = fN(θ)

• repeat

– For i=1...N do

* Deletion q\i←
q(θ)
f̃i(θ)

* Projection f̃ new
i ← argmin f (θ)KL( fi(θ)q\i(θ)|| f (θ)q\i(θ))

* Inclusion q(θ)← f̃ new
i q\i(θ)|

So the essence of EP it is about updating our model, that gives the estimation of the

likelihood in each step to get closer to the actual likelihood. This corresponds to take a

single example into consideration in each step and fit the model to give the true likelihood

for the point.

Minimization is done via matching moments. Since in the inclusion step multiplying

together probability distributions, the new exact moments will be incorporated into the

common distribution, thus improving the shared estimated parameters.

Evidence Lower Bound (ELBO) If cannot compute a posterior distribution p(z|x) =
p(z,x)
p(x) = p(z|x) , we can approximate with q(z), using KL divergence to evaluate quality of
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the estimation:

KL(q(z)||p(z|x)) =−∑q(z) log
p(z,x)
p(x)

1
q(z)

(A.227)

=−∑q(z) log
p(z,x)
q(z)

1
p(x)

(A.228)

=−∑q(z)[log
p(z,x)
q(z)

+ log
1

p(x)
(A.229)

=−∑q(z)[log
p(z,x)
q(z)

− log p(x) (A.230)

=−∑q(z) log
p(z,x)
q(z)

+∑q(z) log p(x)

(A.231)

KL(q(z)||p(z|x))+∑q(z) log
p(z,x)
q(z)︸ ︷︷ ︸

def
=L:lower bound

= ∑q(z) log p(x)︸ ︷︷ ︸
=log p(x)

(A.232)

KL︸︷︷︸
always≥0

+ L︸︷︷︸
always≤0

= log p(x)and f ixed︸ ︷︷ ︸
always≤0︸ ︷︷ ︸

L≤−KL

(A.233)

Since x is given we are looking for p(z|x) through manipulating KL and the lower boundL.

Thus the idea of evidence lower bound method for approximating p(z|x) with q(z), is

instead of minimizing KL we equivalently can maximize L, that is much easier task, since

it works only with jkoint probability instead of conditional:

L= ∑q(z) log
p(x,z)
q(z)

(A.234)

KL =−∑q(z) log
p(x|z)
q(z)

(A.235)

Thus the term variational means using variation inference that is a method that approx-

imates maximum likelihood, when probability density is complicated and
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To sum up, ELBO uses evidence lower bound as a proxy, for example using KL

divergence:

log(p(x))≤ Eq[log(p(x,Z))]−Eq[log(q(Z))]︸ ︷︷ ︸
L- ELBO

. (A.236)

The point is to optimize this ELBO there are also other type of divergences as in [243].

Bayesian Neural Networks The essence of Bayesian deep learning is to look at the

network as a conditional model pw(y|x) parametrized by weights w, that returns an y when

some input x is given.

Training NN/ML models from Bayesian perspective means calculating P(w|D), the

posterior distribution of weights given the training data,

P(w|D) =
p(D|w)p(w))

p(D)
(A.237)

(A.238)

The prediction using the Bayesian model then is done by taking an expectation of the

distribution of ŷ given the parameters wand data x:

P(ŷ|x) = EP(w|D)[P(ŷ|x,w)] (A.239)

=
∫

p(ŷ|x,w)p(w|D)dw. (A.240)

That means that each possible configuration of weights corresponds a different prediction

of the unknown label, weighted by the parameter posterior. This is equivalent to using

an ensemble of uncountably infinite number of NNs. This is however intractable for

reasonably sized NN.

To answer this problem form Hinton and Van Camp [100] and Graves [89] is to use

variational approximation to the Bayesian posterior. Variational learning is about finding

parameters θ of a distribution of weights q(w|θ) that minimizes KL divergence with the
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true Bayesian posterior on the weights:

θ
∗ = argmin

θ
KL[q(w|θ)||P(w|D)] (A.241)

= argmin
θ

∫
q(w|θ) log

q(w|θ)
P(w)P(D|w)

dw (A.242)

= argmin
θ

KL[q(w|θ)||P(w)]−Eq(w|θ)[logP(D|w)] (A.243)

The cost function defined above is called the variational free energy or expected lower

bound:

F(D,θ) = KL[q(w|θ)||P(w)]︸ ︷︷ ︸
prior dependent - "complexity cost"

− Eq(w|θ)[logP(D|w)]︸ ︷︷ ︸
data dependent "likelihood cost"

(A.244)

= Eq(w|θ) logq(w|θ)−Eq(w|θ) log p(w)−Eq(w|θ)[log p(D|w)] (A.245)

where all three terms are expetations w.r.t. the variational distribution q(w|θ), thus the cost

function can be approximated by drawing samples w(i) from q(w|θ).

F(D,θ)≈ 1
N

N

∑
i=1

[logq(w(i)|θ)− log p(w(i))− log p(D|w(i))] (A.246)

Using a Gaussian variational posterior θ = (µ,σ), with µ mean vector and σ standard

variation vector (whose elements are from the diagonal covariance matrix, since weights

are assumed to be uncorrelated). The NN thus will be parametrized by θ instead of w.

Bayes by backprop [24]The training consists of a forward and backward pass, in the

forward one we draw a sample from variational posterior q(w|θ) as a Monte Carlo estimate

of the expectation. This will be used to evaluate the cost function F(D,θ) with eq A.246.

Here the first two term are data independent and can be evaluated layer wise, while the last

term is evaluated at the end of the fw pass. In the backward pass gradients of µ and σ are

calculated.
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For the backpropagation we must use the so-called reparametrization trick [124]to be

able to learn µ and σ.

Figure A.12 semantics of VAE2

Figure A.13 VAE reparamtrization trick, with φ being the distribution to learn (?)3

For a Gaussian variational posterior over the weights w we can define ε as a sample

from a standard Gaussian distribution, that will be combined by a deterministic, differen-

tiable function g:

ε∼N(0,I) (A.247)

w = g(θ,ε) = µ+σ⊙ ε, for ⊙ =element-wise multiplication (A.248)

To ensure the standard deviation σ to be positive, it can be parametrized by ρ point-wise:

σ = log(1+ exp(ρ) (A.249)
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thus the variational posterior parameters : θ = (µ,ρ), and

w = µ+ log(1+ exp(ρ))⊙ ε (A.250)

With

f (w,θ) = logq(w|θ)− logP(w)P(D|w) (A.251)

This deterministic function moves the probabilistic part "out of the way" of the backward

step, and thus for g(θ,ε) = t(µ,σ,ε) the derivatives can be calculated: The gradients with

respect to the mean µ and the standard deviation parameter ρ will be :

∆µ =
∂ f (w,θ)

∂w
+

∂ f (w,θ)

∂µ
(A.252)

∆ρ =
∂ f (w,θ)

∂w
ε

1+ exp(−ρ)︸ ︷︷ ︸
(g(h(x))′=G′(h(x))·h′(x)

+
∂ f (w,θ)

∂ρ
(A.253)

The updates of the variational parameters:

µ← µ−α∆µ (A.254)

ρ← ρ−α∆ρ (A.255)

The term ∂ f (w,θ)
∂w is shared for the gradients of mean and variance parameter ρ and are

exactly the gradients found by the traditional backpropagation algorithm on an NN.

Variational inference To sum up the idea of variational inference, we approximate the

intractable posterior weight distribution p(w|D) with some qϕ(w) , thus optimization aims

to find ϕ parametrs to minimize KL divergence KL(qϕ(w)||p(w|D)). This is equivalent to

maximizing the variational lower bound

L(ϕ) =−KL(qϕ(w)||p(w))+LD(ϕ), (A.256)
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with denoting the expected log-likelihood as LD(ϕ) = ∑(x,y)∈DEqϕ
[log p(y|x,w)].

Since the (conditional) marginal log-likelihood

L(φ)+KL(qϕ(w)||p(w|D)) = ∑
(x,y)∈D

log p(y|x), (A.257)

which is constant w.r.t. φ, thus maximizing the lower bound w.r.t. φ will minimize

KL(qϕ(w)||p(w|D)). Stochastic gradient variational Bayes method introduced (SGVD)

in [124] is based on the reparametrization trick, that is on parametrization the randomized

model parameters w∼ qφ, as w = g(ε,φ) , with a differentiable function g, and a random

noise variable ε ∼ p(ε). With this reparametrization a differentiable,mini-batch based

Monte Carlo estimator of the expected log likelihood can be formed as follows:

LD(φ)≈ LSGVB
D (φ) =

N
M

M

∑
i=1

log p(yi|xi,w = g(ε,φ)), (A.258)

where (xi,yi)M
i=1 is a mini-batch of data with M random data points . If the KL diver-

gence part of the variational lower bound cannot be computed analytically to compute

DKL(qφ(w)||p(w)) using MC as well Thus having an unbiased estimate the gradient

∇φLD(φ) ≈ ∇φLSGVB
D (φ) ill be also unbiased thus after a random initialization of φ, the

optimization can be performed using stochastic gradient ascent on L(φ).

In [123] Kingma et. al introduced a range of methods, that can make bayesian trainig

even more effective, namely local reparametrization and variational dropout.

Local reparametrization trick According to the theory stochastic gradient based meth-

ods should eventually converge to some local optimum, high variance of the gradients can

have a very disadvantageous effect on practical performance.
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Then variance of the log likelihood in SGVB is given by

Var[LSGVB
D (φ)] =

N2

M2

(
M

∑
i=1

Var[Li]+2
M

∑
i=1

M

∑
j=i+1

Cov[Li,L j]

)
(A.259)

= N2
(

1
M

Var[Li]+1
M−1

M
Cov[Li,L j]

)
, (A.260)

Where the variances and covariances are w.r.t. the data distribution and also the noise

distribution :

Var[Li] = Varε,xi,yi[log p(yi|xi,w = g(ε,φ))]. (A.261)

Here as the minibatch size M grows, the dominant term will become the covariance. And

since for the purpose of efficient training the forward and backward passes are executed

over the whole mini-batch, for the entire minibatch ε will be sampled only once, that

results in a not negligible effect on the covariance.

Thus to increase the performance of variational inference method, [123] proposes

local reparametrization, that yields Cov[Li,L j] = 0, through sampling random activations

directly instead of adding noise to the weights.

Variational Dropout Dropout is regarded the most efficient regularization technique

for NN training. The idea behind the method shortly is, that the strong tendency of NNs

for overfitting can be reduced by randomly randomly disabling neurons, thus forcing the

network to learn more general features.

Formally, for a fully connected layer with input activations forward pass with droupout

is computed as follows:

B = (A⊙ξ)θ. (A.262)

Here A is an M×K matrix of input features,θ is the K×L weight matrix B M×L output

matrix, and ξi, j ∼ p(ξi, j) random variables. For p(ξi, j) [99] originally proposed a Bernoulli

distribution with 1− p probability, and p stands for droupout rate.
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In [200] has been later proved that it can work with continuous noise as well, as with a

Gaussian distribution, for example: N(1,α), α = p/(1− p).

[123] then reinterprets this continuous noise as a variational method introducing the

varational dropout, and also provide a way to adapt p(ξ) to the data, that is to train the

parameters of their dropout distributions.

In [223] Wang et. al proposes that instead of applyingA.262, activation can be directly

drawn from an approximate or exact marginal distribution with good empirical results,

even ignoring dependencies between neurons of B

They argue that this Gaussian noise comes naturally from the Bayesian nature of

the network. With weights W where the posterior distribution of the weight is given by

factorized Gaussian: qφ(wi, j) = N(θi, j,αθ2
i, j)

qφ(bm, j|A) = N(γm, j,δm, j) (A.263)

with γm, j =
|K|

∑
i=1

am,iθi, j, and δm, j = α

K

∑
i=1

a2
m,iθ

2
i, j. (A.264)

where K is the number of datapoints.

Derivation of γ and δ In original dropout b(i) = a(i)W, a(i), where a column vector of

activation for datapoint i.
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This can be replaced by stochastic operator:

b(i) = (a(i)⊙ (d(i)/(1− p)))W (A.265)

for a single activation: (A.266)

b(i)k = ∑
j

Wjka(i)j d(i)
j /(1− p)d(i)

j ∼ Bernoulli(1− p), p dropout rate

(A.267)

E[d(i)
j ] = (1− p) (A.268)

E[d(i)
j /(1− p)] = 1 (A.269)

Var[d(i)
j /(1− p)] = Var[d(i)

j ]/(1− p) (A.270)

thus the expected value and variance forb(i) : (A.271)

E[b(i)k ] = E

[
∑

j
Wjka(i)j d(i)

j /(1− p)

]
(A.272)

= ∑
j

Wjka(i)j E
[
d(i)

j /(1− p)
]

(A.273)

= ∑
j

Wjka(i)j (A.274)

Var[b(i)k ] = Var

[
∑

j
Wjka(i)j d(i)

j /(1− p)

]
(A.275)

= ∑
j

Var
[
Wjka(i)j d(i)

j /(1− p)
]

(A.276)

= ∑
j

W 2
jk(a

(i)
j )2Var

[
d(i)

j /(1− p)
]

(A.277)

= p/(1− p)∑
j

W 2
jk(a

(i)
j )2 (A.278)

(A.279)

Equation A.263 then can be derived from the local reparametrization (that is sampling

activations B directly).
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Learning the dropout rate The posterior qφ(W) can be decomposed into parameter

vector θ, that corresponds to the mean ,and a multiplicative noise term that is determined

by α. Any posterior over W with a multiplicative noise can be seen as a dropout posterior.

NN training maximizes expected likelihood Eqα
[LD(θ)].

From the optimization of variational lower bound:

Eqα
[LD(θ)]−KL(qα(w), p(w))) (A.280)

where p(w) should be independent from θ, thus [123] argues that that prior should be log

uniform: p(log(|wi, j|)) ∝ c.

The objective in term A.280 explicitly depends on θ and α. α than can be adaptive, by

maximize A.280 w.r.t. α.

A.6 Attacks on privacy

Vulnerabilities of models are strongly connected to semantics of ML process, especially in

the case NNs. A strong opinion these these days that actually all NNs work as Encoders,

or more or less equivalently they basically memorize the training data.

A.6.1 Poisoning

In a poisoning attack someone, who has access to the training data can bias the model, and

train it to expose unexpected behaviour. This means that we alternate the data to change

the behaviour of the learned model.

1. It is connected to adversarial examples,

2. The goal is to trick the model to give a given answer for specific data

3. To make it undetectable, the attacker should avoid degrading the overall performance.
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Figure A.14 Adversial example in medical imaging NN [66]

An example for this method is the pixel-wise backdoor presented in [90], that results in

the canonical example of adversarial and backdoor attacks, in which a stop sign is tricked

to be classified as a speed limit. This can be achieved by

• adding poisoned data during training

• modified test data during inference.

Figure A.15 Adversial example in self-driving [90].

Backdoor vs adversarial examples Adversarial transformation are applied on test ex-

amples exploiting boundaries between the different classes. Backdooring[41] shifts these

boundaries intentionally to misclassify certain inputs.
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Backdoor attacks in FL: Trough naive data poisoning it is hard to achieve success, since

the effect might vanish by the aggregation. However [16] proposes model replacement

attacks, in which it aims at completely replacing the global model (wt+1) with a malicious

one w̃:

w̃ = wt +
η

n

K

∑
k=1

(w(k)−wt) (A.281)

for which it needs to solve

w̃m =
n
η

w̃−
(

n
η
−1
)

wt−
K

∑
k=1
k ̸=m

(wk
t+1−wt)≈

n
η
(w̃−wt)+wt . (A.282)

That is the point is to scale up the updates to survive the model averaging, moreover it

is designed to be a single-shot attack.

Result:

The attacker forces the model to behave as he wants, by hiding some patterns in the input

to be processed.

Defense

It is virtually impossible to detect this attack.

Summary

Even if there is no real defense, the motivation for this kind of attack would be unclear.

Even if the attacker, that is the node is able to achieve the trained model to behave as

it wishes, it is only true for tampered examples. The only goal might be to discredit the

trained model and the method, but there is no too much chance that anyone else can learn

the built-in backdoor, so it is self-revealing.
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A.6.2 Data reconstruction from the gradients

Under some circumstances from the updates an adversary can reconstruct the data.

Single data-point For single gradients a method is introduced in [11][10]. The update

in SGD training of NNs works in the following way (w parameter vector including bias

vector b):

w = w−η∇w f (A.283)

For a single neuron classifier with wk denoting the weights for the kth input feature

and b the bias: (Here for squared loss, but works for cross-entropy as well )

∆wk =
∂ f (W,b,x,y)

∂wk
=

∂∥φ(Wx+b)− y∥2

∂wk
= 2(φ(Wx+b)− y)φ′(Wx+b)) · xk

(A.284)

Where
∂Wx+b

∂wk
=

∂∑
d
i=1 wT

i xi +b
∂wk

= xk for the last term (A.285)

∆b =
∂ f (W,b,x,y)

∂b
=

∂∥φ(Wx+b)− y∥2

∂b
= 2(φ(Wx+b)− y)φ′(Wx+b) ·1

(A.286)

Thus one can notice, that dividing these two equations gives us back the value of the

input at coordinate k: xk = ∆wk/∆b.

This reconstruction method has been tested for single layer fully connected NNs (Figure

A.16 left image), and proven to be working, even if only part of the gradients is known by

the server(middle image), or with weight regularized loss(rightmost image).

On the other hand this method cannot be used for CNNs given the number of features

are much higher than the number of features

Deep leakage from Gradient (DLG) [255](and improved deep leakage, iDLG[250])

uses a different method, namely they run optimization on the pixels of a randomly generated

image (or text) matching the gradients on the random image to those of the real data point.

Denoting the NN with m(w), the gradient obtained by backpropagation from the loss
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Figure A.16 Reconstruction from single gradient in fully connected NN [11]

function f is

∆wdef
=

∂ f (m(x),y)
∂w

(A.287)

To reconstruct a single data point x then, starting from a random input x̃ and random

target ỹ the following method can be used:

for t = 1, . . . :

1. ∆w̃← ∂ f (m(x̃),ỹ)
∂w

2. ∆←∥∆w̃−∆w∥2

3. x̃← x̃−η
∂∆

∂x̃

4. ỹ← ỹ−η
∂∆

∂ỹ

The efficiency can be boosted by extracting extracting the true label in a single step as it is

proposed in iDLG [250]. To get the ground truth label (in case of y is one hot vector) it is

enough to find the output index of that has a negative gradient.

Classification is usually trained via cross-entropy loss, where for the correct class c,

and the logits y = [y1, . . . ]:

f (x,c) =− log
eyc

∑ j ey j
. (A.288)
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Thus

gi
def
=

∂ f (x)
∂yi

=−
∂ logeyc− log∑ j ey j

∂xi
(A.289)

=

 −1+ eyi

∑ j ey j < 0, if i = c

eyi

∑ j ey j > 0, otherwise.
(A.290)

Although this gradients w.r.t. to the output y(= a(L)) cannot be seen from the update

(we only update the weights, thus they are not included in the update), we still can compute

it from the gradients for the weights that lead to the output ∇w(L). For the the incoming

weights of the ith output:

∇w(L)
i =

∂ f (x,c)

∂w(L)
i

=
∂ f (x)

∂yi
· ∂yi

∂w(L)
i

(A.291)

= gi ·
∂(w(L)

i a(L−1)+b(L)i )

∂w(L)
i

(A.292)

= gi ·a(L−1) (A.293)

The correct class then can be identified by picking the output, whose incoming weights

has a gradient vector that pushes those in a different direction than the other:

c = i, iff ∇w(L)
i

T
·∇w(L)

j ≤ 0, ∀ j ̸= i. (A.294)

Another method has been presented in [177], that works for convolutional NNs as well,

but also seems like they only recover a single image. In this the authors use a GAN to

recover the update from a single client at a compromised server.

Reconstruction of a batch of data The DLG method [255] also reported to be working

(the label guess of iDLG is not yet), when an aggregated gradient is given over a mini-batch
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of data points B= {(x1,y1, . . .}:

∆wdef
=

b

∑
i=1

∂ f (m(xi),yi)

∂w
(A.295)

In this case the method is modified to optimize a single data-point in each step:

for t = 1, . . . :

1. j = t mod b

2. ∆w̃← ∑
b
i=1

∂ f (m(x̃i),ỹi)
∂w

3. ∆←∥∆w̃−∆w∥2

4. x̃ j← x̃ j−η
∂∆

∂x̃ j

5. ỹ j← ỹ j−η
∂∆

∂ỹ j

The result of these method is illustrated in Figure A.17.

Figure A.17 Batch leakage [250]

In [76] the authors analyse the above methods with respect to their usability in different

learning scenarios, and also make the following observations:

• The methods in [11][10] have limits for general NNs (few layers, non CNN etc)

• DLG is reported in the paper to be working for batch sizes of 8 and resolution of

64×64.
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• For p number parameters and d input pixel if p < d reconstruction is as complex as

image recovery from incomplete data. Even if p > d non-linearities cause problems

• For fully connected layers : input for those can always be computed analytically

(assuming that grad ̸= 0)

The main contribution of the work instead of euclidean matching argminx ∥∇θ fθ(x,y)−

∇θ fθ(x∗,y)∥2. Thus they decompose a parameter gradients into norm magnitude and

direction , magnitude captures the phase of training, how far we are from the optimum

[76] proposes the cost function for the optimizing the distance of the gradient to use

cos distance, adding total variance[183](TV (x)) as prior on the image:

d(x,y) =
⟨x,y⟩
∥x∥∥y∥

(A.296)

Thus the objective, that aims at finding images that lead to similar change in model

prediction as an unobserved ground truth image(this is equivalent to euclidean distance if

the magnitude of both gradient is normalized to 1):

arg min
x∈[0,1]p

1− ⟨∇θ fθ(x,y),∇θ fθ(x∗,y)⟩
∥∇θ fθ(x,y)∥∥∇θ fθ(x∗,y)∥

+αTV (x) (A.297)

This attack has no restriction on architecture, and works across multiple epoch training,

or local gradient averaging up to 100 images. The method also works on trained networks

as well where previous approaches might fail due to low magnitude of the gradients

Even if the averaged gradients are composed into update vector after multiple epochs,

they still experience some leakage.

Thus to sum up both the most secure way is to mask updates completely - secure

aggregation
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Result:

If the training uses frequent updates computed from gradients over few data points, and/or

small epoch number the training data can be reconstructed completely.

Defense

1. secure aggregation or Homomorphic encryption ( LWF, Pailler,[11] ) to obfuscate

the distinct updates

2. differential privacy to change appearance of training data in the update

3. multiple local epochs

.

Summary

Gradient recovery methods aim at completely reconstructing the training data, thus these

can be considered the most harmful attacks in an FL system. The methods we found up to

know in the literature promise a rather limited success in a real federated learning scenario

(long local training at the nodes, multiple pass over the training data for each update ),

the possibility of developing more powerful attacks in the future makes it necessary to

address the problem. The good new is in our intuition, the existing countermeasures as

secure aggregation and deferentially private transformations seem to be sufficient to handle

the problem.

A.6.3 Membership inference - Black box

[114] presents an analysis for inferring presence of records in the training data in realistic

scenarios. The most important works that they have collected can be grouped into five

group:

1. Membership inference [197][150][185][238]
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2. Attribute inference [68],[67][238]

3. Property inference [13][70]

4. Model stealing [151] [211]

5. Hyperparameter stealing [219] [233]

All these attacks are connected to the definition of differential privacy, since they build

on differences in the work of models that either used ore not used specific data points in

the training.

In general evaluation of the attacks are building on the privacy budget of the learning

algorithms, thus application of deferentially private transformation can be understood as

balancing between effectiveness of membership attacks, and usability of final model.

We found two important ideas for the attacks:

• The first general membership attack is presented in [197]. The attack trains shadow

models that are similar to the attacked one, that is performing a similar task over a

similar data-sets. These models are fed by different input data, and over their outputs

a binary classifier attack model will be trained whose task is to decide whether the

input as part of the training data or not. (Figure A.18)

• The method of [238] simplifies this method at a great extent. Omitting the shadow

and attack model, the decision is made based on the expected value of confidence

over the data points.

Membership inference In a Membership Inference Attack (Exp(Att,A,n,D)) (def in

[238]) the adversary is given a data point z = (x,y) and the task to decide, whether it has

been included in the training data (z ∈ S) or not(z ∈D\S).

Formally the attack is a membership experiment Exp.Att is the attack n is the size of

training data S, Training algorithm A that produces model a = A(S). The attack proceeds

the following way:

• Sample a training dataset S∼Dn

192



Background

• choose a bsin0,1 uniformly random

• Draw a z

– z∼ S if b = 0

– z∼D if b = 1

• if Att(z,a,n,A,D) = b return 1(success), otherwise 0

Membership advantage is the way to measure the performance of Att:

Adv(Att,A,n,D) = 2.Pr(Exp(Att,A,nD) = 1)−1, (A.298)

that goes form 0(0.5 Exp success with random coin flip) to 1 total success.

[113] presents a comparison of performance of different MIAs under various DP

mechanisms, while [19] gives theoretical upper bound on the success an adversary can

achieve in MIA.

Uncertainties in performance evaluation

As [105] points out in many case the guarantees and empirical performance measurements

are not sufficient. The theoretical upper bounds of this effectiveness given by differential

privacy and empirical or theoretical lower bounds of the attacks are building on the very

artificial setup, that is implicitly present in A.298 :

• In this scheme z that has been drawn from D can also be part of S. Other works use

therefore z∼D\S for b = 1 [196]

• Assumption of independence of records in the input, which is unrealistic, thus

privacy levels do not give realistic evaluation of risks [144][6]. When samples have

dependency leaking one reveals information on the other one [214].

• [114] more realistic scenario, unbalanced case: Pr(b = 0) ̸= Pr(b = 1)

• The attacker has access to the same data distribution.
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These assumptions leads to the theoretical bounds uncertain.

Figure A.18 membership inference with shadow models [197]4

Missing attributes

The essence of attribute inference attack [68][238] is to use the data distribution, that is

modelled by our ML model to infer the most probable values of the missing attributes x′,

conditioned on the known attributes x:

argmax
x′

Prm(x′|x) = argmin
x′,y

f ((x′,x),y). (A.299)

This method might be even more powerful, if we already know that someone belongs

to the training data. Intuitively since the loss has been minimized on the given example,

we can be almost certain that the attribute that minimizes the loss of the model is the true

value. (If we do not know that, we still can believe that the input with the predicted missing

attribute can be some outlier with respect to the model distribution )

Specifically in the field of medicine, one of the first application of the attack presented

in [68] shows, that one could identify "genetic markers based on warfarin dosage output".

Building on white-box information [229], it is possible to achieve more challenging attacks

as well such as recovering faces from training data[67].

Result

Successful MIAs attacks might lead to leakage sensitive data of the patients.
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Defense

The way to reduce the success rate of the attack is the blurring out the contribution of

individual data points with Differentially private transformations

Summary

These attacks on one hand might reveal some users being included in the training data set.

This, in combination with a data catalog that allows detailed screening of data on its own

might lead to leakage of sensitive information. With a bit of simplification:

1. filter the dataset using some medical conditions

2. check whether the person of interest is in the training data

Attribute inference also can be used for detecting sensitive data. We can assume that

someone is included in the training set, then take the following steps:

1. Publicly available data - construct a base vector

2. (Filtering conditions - add to the base vector)

3. Remaining - possibly using the prediction vector as well - use the optimization to

maximize the probability that the constructed record was in the training data.

The countermeasure we can take is applying deferentially private transformations

during the training, that usually promises some guarantees w.r.t maximal success rate of

the attacks. These theoretical guarantees are building however on simplifying assumptions,

that can change actual success rate in both directions

A.7 Predecessors of FedAvg – Distributed Learning for

Convex Problems

As the amount of data to be processed exceeded the storage capacities (or memory) of the

most powerful machines, new training methods have been developed to support parallel
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processing. These data parallel methods focus on efficiency of communication of training,

that aims at minimizing overall empirical loss across the training data for convex loss

functions. The one extremity of distributed training is one-shot averaging [245] where

the local sub-problems are solved perfectly, then the global optimum is given by a single

average step. The other extreme is parallel SGD [256] where, after every single per-data-

point optimization step, the local updates are averaged. In [192], the performance and the

fundamental limitations of SGD-based methods have been studied in terms of runtime,

communication costs and number of samples used. They found that the best convergence

guaranties can be given for accelerated gradient descent [164] with the biggest possible

batch sizes. Over the family of SGD-based methods, under some conditions on the problem

(mostly convexity of the loss), a range of other methods based on duality or curvature

information can be used as well.

In general this class of algorithms is aiming at training better models in fewer synchro-

nisation steps, varying the local solvers and aggregation methods, exploiting the convexity

of the loss function.

A.7.1 Distributed Approximate Newton (DANE)

DANE [193] solves locally available general sub-problems exactly to minimize com-

munication needs, similarly to one-shot averaging. This method, in base case, can only

work if the local sub-problems are the same, in which case, naturally, we would not need

distributed training. On the other hand, if this is not the case, then nothing guarantees that

the global optimum will be the average of the local solutions. The actual task for workers,

therefore, is to solve a problem in each iteration which is perturbed by a quadratic term

of the form −(ak
t )

T w+ µ
2∥w−wt∥2. Thus the optimization follows the following steps in

each iteration:

wk
t+1 = argmin

w
f k(w)− (ak

t )
T w+

µ
2
∥w−wt∥2 (A.300)

wt+1 =
1
K

K

∑
k=1

wk
t+1 (A.301)
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Here, the idea is to choose ak
t such that w∗, the optimal parameter value of the original

task, should be also the solution of the perturbed local problem:

∇ f k(w)−ak
t +µ(w−wt) = 0 (A.302)

Thus, the perturbation ideally would be the vector that points from the global optimum w∗

to the optimum of f k, i.e.

ak
t = ∇ f k(w∗)+µ(w∗−wt)≈ ∇ f k(w∗). (A.303)

Since the actual w∗ is unknown, the authors suggest, instead, to use

ak
t = ∇ f k(wt)−η∇ f (wt), (A.304)

where ∇ f (wt) = ∑
K
k=1 ∇ f k(wt). The local problem, thus, becomes

wk = argmin
w
{ f k(w)− (∇ f k(wt)−η∇ f (wt))

T w+
µ
2
||w−wt ||2}. (A.305)

By adding the term f k(wt−1)+ ⟨∇ f k(wt−1),wt−1⟩, that does not affect the optimization

since it does not depend on w, the local objective in Equation A.305 can be rewritten as

wk
t = argmin

w
{ f (wt−1)+ ⟨∇ f (wt−1),w−wt−1⟩+

1
η

Dk(w,wt−1)}, (A.306)

where Dk denotes the Bregman divergence (A.2.5) for the regularized local objective

f k(w)+ µ
2∥w∥

2 given as

Dk(w,wt−1) = D f k(w,wt−1) +
µ
2
||w−wt−1||2

(A.307)

= f k(w)− f k(wt−1)−⟨∇ f k(wt−1),w−wt−1⟩ +
µ
2
∥w−wt−1∥2.

(A.308)
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The first two terms in the Equation A.306 relate to a linear approximation of the loss

function around the current solution wt−1 that is common to all machines (does not depend

on k) and the difference between the nodes is in the local loss function f k. This update is,

in fact, a mirror-descent step (see Section A.2.5 and the Figure A.19) that minimizes in

each round the estimation of w based on the local data and the current common estimate

of the loss function.

Figure A.19 Mirror descent with Bregman divergence from [43](the upper indices t denotes
the iteration counter) for the optimization of function f w.r.t. variable x

For η,µ → ∞ the update becomes a standard gradient descent with learning rate

η̃ = η

µ . While for η = 1, if the local objectives are equal, i.e. f k(w) = f (w), then wk
t+1 =

argminw f k(w) = argminw f (w) = w∗. That is, DANE converges in a single, Newton-type

iteration to the empirical minimum.

DANE has a number of drawbacks which make it hardly applicable for settings of FL,

though. It assumes that minimization of the local objective (Equation A.305) should be

exact. It also assumes the access to iid data. Moreover, according to [193], for large number

of nodes K it requires using strong regularization constant µ that involves significantly

slower convergence.
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A.7.2 Distributed Optimization for Self-Concordant Empirical Loss

(DiSCO)

In [247], authors are aiming at exploiting the super-linear convergence of Newton methods

(in the form of implementing inexact damped Newton method for distributed setting). An

advantage of applying Newton methods is that these have much weaker dependence on

condition number of the Hessian (κ = µmax
µmax

for µ eigenvalues), in other words, on how

different is the sensitivity of the function for small changes in the input in different direc-

tions. In exact Newton methods the update is given by ∇ f (wt)
∇2 f (wt)

def
= ∆wt . For the distributed

problem the obvious implementation would be to compute the update as

wt+1 = wt−η

(
K

∑
k=1

∇
2 f (k)(wt)

)−1( K

∑
k=1

∇ f (k)(wt)

)
(A.309)

However, in this case the communication of Hessians in each round can involve a pro-

hibitively large communication cost.

The DiSCO algorithm [247] bypasses this problem by using a distributed inexact

damped Newton method where in each iteration t, given a non-negative sequence of

expected precision {εt}, the task is

• to find an approximate update direction vt , such that ∥∇2 f (wt)vt−∇ f (wt)∥ ≤ εt

• Compute δt =
√

vT
t ∇2 f (wt)vt

• Update to approximated optima wt+1 = wt− 1
1+δt

vt

Thus, the key of implementing distributed inexact Newton methods is to find the direction

of the inexact Newton step vt for which we need the gradient ∇ f (wt) and Hessian ∇2 f (wt):

||∇2 f (wt)vt−∇ f (wt)||2 ≤ εt , (A.310)

That is equivalent to solve approximately ∇2 f (wt)vt = ∇ f (wt) for which [247] uses a

distributed version of Preconditioned Conjugate Gradient Descent (PCG) (See Sections
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A.2.4, A.2.4, A.2.6 and A.2.4 ). PCG achieves better convergence rate through (1) modify-

ing the shape of the function to optimize (preconditioning, introduced in Section A.2.4) and

(2) finding better update directions (conjugate gradient, introduced in Section A.2.4). The

method can be very fast5 if the data is distributed in iid fashion and, then, communicates

only first order information (thus, the update vector has a size of only O(d))).

To achieve this, in the outer loop, the coordinator executes the PCG method starting

from the average of the exact solutions of the local regularized problems

w0 =
1
m

K

∑
k=1

w(k)
0 (A.311)

w(k)
0 = argmin

w

{
f k(w)+

ρ

2
∥w∥2

2

}
(A.312)

Based on this, the coordinator computes the preconditioner P = H1 +µI = ∇2 f1(w)+µI,

that is the Hessian of the loss at the first node in the starting point. Using preconditioner P,

an initial direction is computed as v0 = P−1∇ f 1(w0).

In each round t the direction vt , along with the recent parameters wt , is broadcasted to

the nodes which compute the exact values for ∇ f k(wt) and ∇2 f k(wt)vt is sent back to the

coordinator. Then, the server computes the global product ∇2l(wt)vt = ∑
K
k=1 ∇2 f k(wt)vt ,

together with wt+1 and vt+1, using PCG and starts the next loop until having a good enough

solution.

A.7.3 Accelerated Inexact Dane (AIDE)

An inexact version of DANE and its accelerated variant are presented in [174] where

the local sub-problem should be solved only to fulfill ||w(k)
t − ŵ(k)

t || ≤ γ∥wt−1− ŵ(k)
t ∥,

denoting by w(k)
t an approximate solution of the local problem (Equation A.305) and by

w(k)
t the exact solution with wt =

1
K ∑

K
k=1 w(k)

t . To solve the local problem one can use for

instance Stochastic Variance Reduced Gradient method (SVRG, see section A.2).
5They propose to use DiSCO for self-concordant loss functions. An f : Rn→ R function is said to be

self-concordant [166] for means that the third derivative is controlled by the second derivative (for example
linear regression).

200



Background

A.7.4 Communication Efficient Distributed Coordinate Ascent (Co-

CoA)

All of the above presented methods build on “iid-ness”, while CoCoA provably converges

over any distribution.

The main idea of CoCoA [112] and CoCoA+ [153] is that if the training examples are

dispersed across multiple worker nodes, then applying dual optimization is a natural choice

since, in this setting, the different nodes are working on different subsets of dual variables

and the weight update ∆w is eventually a linear combination XT ∆α of the refinements ∆αi

of coefficients αi belonging to data points xi (Appendix A.2.1). Thus, CoCoA is built on

Stochastic Coordinate Ascent, that is applying Randomized Coordinate Ascent (Section

A.2.2) [190] on the Fenchel dual space (Sections A.2.1 and A.2.1). The original problem

is to minimize a convex loss function on linear predictors with r(w) convex regularization

term

arg min
w∈Rd

f (Xw)+ r(w) (A.313)

can be turned, by introducing equality constraints, into

arg min
v=Xw

f (v)+ r(w), (A.314)

where f : Rd→R is a convex loss function. The dual of Equation A.314 will take a special

form that makes optimization easier (see Section A.2.1 for details)

arg max
α∈Rn

D(α),where (A.315)

D(α) = f ∗i (−α)− r∗(XT
α), (A.316)
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That is, we can maximize easier the negative convex conjugates of the original problem.The

convex conjugate of f is f ∗i : R→ R, standing for disjoint sets of αi dual variables

f ∗i (α) = max
w
{wα− f (w,xi)}. (A.317)

To find the actual convex conjugate (Fenchel dual) function we have to express α from w

by finding the maximum of the Equation A.317 in w of the (always) concave conjugate

function

∇w (wα− f (w,xi)) = 0⇒ α = ∇w f (w,xi), (A.318)

and, then, plug it back into f . Thus, the original minimization task with L2 regularization

(r(w) = ∥w∥2)

arg min
w∈Rd

λ

2
∥w∥2 +

n

∑
i=1

fi(wT xi) (A.319)

will be equivalent to maximizing the dual

arg max
α∈Rn
−λ

2
∥XT

α∥2−
n

∑
i=1

f ∗i (αi). (A.320)

From the first term comes a convenient mapping w(α) = XT α due to the optimality

conditions [190]. This mapping shows that each coordinate of the dual vector α corresponds

to a single data point.

The main idea of CoCoA is that each worker node k optimizes disjoint sets of (dual)

variables α[k], α = (α[1] . . .α[K]) ∈ Rn, producing an update vector ∆wk
t+1 = X[k]∆α(k) =

XT αt−XT (αt +∆α
(k)
t ), after the node k has found the exact solution α

[k]
t = α

[k]
t−1 +∆α

(k)
t

by arbitrary solver for on the local dual sub-problem over the available data set X [k]. Then

various ∆wk
t coming from different machines k will be aggregated and redistributed, i.e.

wt+1 = wt +η∑
K
i=1 ∆wk

t .
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This is expected to reduce conflicts between the updates belonging to the same machine

but allows to use any local solver for the local sub-problem.

Other advantages of working with this dual problem, over the primal, is that solving

the problem for one coordinate completely makes the learning rate unnecessary and it has

a clear stopping criterion stemming from duality gap P(w(α))−D(α)< ε.

That gives indeed stronger convergence properties as it has been shown in [112],

using SDCA as internal optimizer. However, in practice, for more complex problems (not

necessarily convex) as [130] reports, it does not perform very well.

A.7.5 Federated SVRG: The hybrid of CoCoA, DANE and SVRG

(FSVRG)

The connections of DANE with SVRG have been analysed in [174] where the authors have

shown that a modified version of DANE is in fact equivalent to a distributed version of

SVRG. The key idea here is to use the SVRG update loop in the inexact DANE to solve

the local problems approximately. Applying the stochastic update rule of SVRG actually

proceeds in direction of the local solution of DANE for µ = 0 proximity regularization:

• DANE local objective (repeating the Equation A.305)

wk = argmin
w
{ fi(w)︸ ︷︷ ︸

f k(w)

−(
constant w.r.t. w︷ ︸︸ ︷

∇ fi(wt)︸ ︷︷ ︸
∇ fi(w̃)

− η︸︷︷︸
1

∇ f (wt)︸ ︷︷ ︸
∇ f (w̃)

)T w+
µ
2
||w−wt ||2︸ ︷︷ ︸

=0

} (A.321)

• For µ = 0 and η = 1, renaming the actual global optimum wt to w̃ at data point i, a

step of the steepest descent algorithm for the DANE local objective is

−(∇ fi(w)−∇ fi(w̃)+∇ f (w̃)) (A.322)

• This vector happens to be the stochastic update direction computed in the inner loop

of SVRG for the ith single data point
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wt = wt−1−ηt (∇ fit (wt−1)−∇ fit (w̃r)+ g̃)︸ ︷︷ ︸
update direction

(Equation A.31 in Appendix A.2),

(A.323)

since the actual global optimal value w̃ in the SVRG stochastic local update cor-

responds to wt in the formulation of the DANE local solver, for the full gradient

∇ f (wt) = g̃, ∇ f k(wt) = ∇ fi(wt) and ∇ f (wt) = ∇ f (w̃)

Moreover, as pointed out in [130], DANE with SVRG style local updates can also be

interpreted as applying the idea of CoCoA to fix the drawbacks of DANE, namely, solving

the local sub-problems only to obtain a relative accuracy.

Based on these observations, authors of [130], who originally formulated the setup of

FL, propose Federated SVRG for solving the linear, L2 regularized problems (that is, in

the form minw f (Xw)+∥w∥2). In their method to such hybridization of DANE, SVRG

and CoCoA they also add

• Adjusting local step size to have similar scale of local update vectors: ηk = η/nk;

• Weighting the updates based on the proportion of data: nk

n (w
k
t+1−wt);

• Weighting the updates by a diagonal matrix Sk where the elements of the diagonal

are given by the proportion of local and global frequencies of non zeros at the given

coordinates of the input data;

• Weighting updates by a diagonal matrix A where the jth diagonal elements are given

by the inverse of the proportion of nodes, where the given coordinates appear with

non-zero value.

The method has been tested for predicting whether a given Google+ post will generate

comments, using regularized logistic regression. For this problem the Federated SVRG

highly outperformed CoCoA+ and distributed Gradient Descent, however, the method
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Algorithm 8 Federated Stochastic Variance Reduced Gradient

1: procedure FSVRG(step size η, data partition {Pk}K
k=1,

diagonal matrices A, Sk ∈ Rd×d for k ∈ {1, ...,K})
2: for s = 0,1,2, ... do ▷ Overall iterations
3: Compute ∇ f (wt) =

1
n ∑

n
i=1 ∇ fi(wt)

4: for k = 1 to K do ▷ Distributed loop
5: Initialize: wk = wt and ηk = h/ηk
6: Pick i ∈ {1,2, ...n}, uniformly at random
7: Let {it}nk

t=1 be random permutation of Pk
8: for t = 1, ...,nk do ▷ Actual update loop
9: wk = wk−ηk(Sk[∇ fit (wk)−∇ fit (wt)]+∇ f (wt))

10: end for
11: end for
12: wt+1 = wt +A∑

K
k=1

nk

n (w
k−wt)

13: end for
14: end procedure

is strongly tailored to the specific task by exploiting very different patterns in the data

generation at the nodes by the A and Sk matrices.

Moreover, since FSVRG, such as CoCoA and other similar sophisticated methods, is

building on the convexity of the objective function, the much simpler methods of FedSGD

and FedAvg are used in most of the cases since these are empirically proven to be more

efficient on a much bigger range of models.

A.8 Compression for FL

In [133] the authors propose an asymmetric communication pattern for reducing the

communication costs for image classification tasks with NN-s. The work builds on the

observation according to which internet connections are set up in an asymmetric way, that

is the up-link is usually much slower then down-link, thus the main goal is to reduce the

amount of data to be sent by the workers.

The paper examines two ways of compressing information to be aggregated:

1. Structured updates utilize the observations of [54] according to which, in case of

image classification, a significant portion of model parameters can be predicted based
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on the generally smooth transitions along the spatial position of input parameters.

With the structured updates approach the search space is going to be restricted, that

is, not all the parameters but only the parameters from lower dimension are trained:

(a) In a low rank matrix method, in each training round, the weight update matrix

Ht is factorized into a projection matrix Bi
t and a reconstruction matrix Ai

t

which is generated randomly in each round. At node i and at round t Hi
t = Ai

tBi
t

and only train the Bi
t projection matrix, while Ai

t can be sent to the server as a

random seed.

(b) The random mask technique means to restrict the update Hi
t to be sparse

according to predefined random sparsity pattern, what can be done by a random

seed, so only non-zero values and the random seed have to be communicated.

2. Sketched updates compute the whole update Hi
t and then compress or sub-sample

it to reduce the data to be communicated (Ĥi
t).

(a) Random sub-sampling [132] takes a random subset of trained parameters, then

sends it to the server along with the random seed. In theory, the aggregated

partial updates give an unbiased estimate of the global update direction, i.e.

E[Ĥt ] = Ht

(b) Probabilistic quantization assigns each parameter hi j ∈ Hi
t closer to one of

the boundaries of the interval it falls in, with a probability proportional to the

distance from them. For a 1 bit compression it is

ĥi j =


hmax,with probability

hi j−hmin

hmax−hmin

hmin,with probability
hmax−hi j

hmax−hmin

(A.324)

Naturally, this scheme can be generalized to more than 1 bit, in which case

representing the weights on b bits can create 2b intervals. The quantization

error can be further reduced by applying structured random rotations as is

suggested in [206].
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A.9 Quantization

In distributed training off NNs, the use of Quantization methods builds on the observation

that large NN parameters are sparse, thus, the updates are, not surprisingly, sparse too. In

general, they are viewed as a generalization of delayed update training, uploading the most

important directions the model should be changed in. These methods usually accumulate

gradient residuals for those coordinates that have not been sent, and when the aggregated

magnitude grows beyond the threshold they will be updated. That means that less important

parameters will be less frequently and less significantly updated, thus reducing the average

update size.

A general method for quantization with residuals can be formulated as

∇̃ ft = Q(∇ ft +∆ ft−1) (A.325)

∆ ft = ∇ ft−Q−1(∇̃ ft), (A.326)

where ∇̃ ft stands for the quantized gradient at time t, Q for the quantization function

and ∆ ft denotes gradient residual/quantization error. The simplest way for specification

of importance of coordinates is done simply by pruning along some thresholds τ by the

magnitude of the value at the coordinate.

Seide et al. [189] presents the method of 1-bit quantization for distributed SGD training

of NNs, which is one of the simplest, yet efficient method. They found that for speech

processing NNs even 1-bit quantization with τ = 0 can work (that is, dropping all negative

gradients, or equivalently replacing them by 0, and keeping all positive gradients replacing

them by 1).The re-quantization function, that is, reconstruction of the update value then

simply substitutes the mean of the values of its column in the weight matrix, multiplied by

the sign transmitted for that given coordinate.

Threshold quantization [203] replaces τ = 0 in 1-bit quantization with a magnitude

threshold τ> 0 and sends updates with a magnitude greater than τ. Every item of the update

is a 32-bit word from which one bit is the value 1 or 0, corresponding to an update length τ

or −τ and 31 bit for index in the parameter array. All the residuals, i.e. the remaining parts
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(above τ or under −τ) of the updated variables, and the values between τ and −τ will be

accumulated per index and submitted later when threshold is reached. Thus, eventually, all

the updates will be sent, only the weaker ones will be transmitted less frequently.

While with 1-bit quantization the compression is of a constant rate 32, when we assume

that the original vector consists of 32-bit floats, threshold quantization results in a volatile

size of the updates and brings the difficulties of picking the right threshold value. However,

it incurs a relatively fast convergence.

Trying to combine the upsides of this two methods, Dryden et al. [60]) propose an

algorithm to dynamically specify the values for τ, adjusting it to a fixed π proportion

of number of parameters to be uploaded. According to this, if k+ denotes the number

of positive update coordinates, in each round the π ∗ k+ largest values , and similarly

the pi∗ k− negative coordinates with the largest absolute values will be updated. For the

reconstruction on the server side, the mean of the updated values will be used per sign.

Thus, keeping the constant size of the updates, a faster convergence can be achieved.

In [4], first, the method of Dryden is modified using a single threshold on the absolute

values of the layers’ parameters (that is πth largest absolute values will be set to 1) and,

second, applying a global threshold building on layer normalization [14].

Another version of information compression is proposed in [20], where in both client-

server and server-client direction, simply the sum of signs over the gradients taken at the

different data points xi are communicated such as ∆w = w−ηsign
[
∑

nk

i=1 sign(∇ f (xi))
]
.

This majority vote like scheme can also be executed at the server at the time of aggregation

and, eventually, the aggregated update ηsign
[
∑

K
i=1 ∆w

]
can be applied at the worker nodes.

A.10 Ensembles and distillation

[9] addresses the problem of very large scale distributed NN training, where the most

used methods are versions of synchronous and asynchronous distributed stochastic MBGD

([51][40]). Adding more workers to the training can be utilized only for a limited extent to

speed up the process by distributing computation and storage needs. After a certain level
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infrastructural limits and increasing problems of divergence of local training starts hamper-

ing the process above the advantages. In the synchronous settings further improvement can

be achieved by increasing effective batch sizes, that results in less biased gradient estimates

[138] [120]. However, this improvement vanishes quickly with the growing number of

workers. The way to go, after this point, is to multiply the whole process by training an

ensemble of models. That, in exchange, leads to increasing test and inference times as well

as required computation capacities. To reduce these requirements arising from the use of

ensemble distillation [98] is proposed.

A safe enough way to produce high performance predictors is to train multiple high

capacity predictors on the training data and create an ensemble [56] that will make predic-

tions combining output vectors by weighted average or voting methods. This, on one hand,

is a simple way of combining models but, on the other hand, it might be cumbersome to

make predictions based on a big number of complicated models.

For the problem of forming large ensembles, [37] describes an efficient step-wise

ensemble selection method. The ensemble creation starts from an empty set and iteratively

adds models to the collection in a greedy way, that is, the model that yields the biggest

improvement for the ensemble will be included in each round.

A simple and elegant method to assemble the knowledge of the ensemble, called

Distillation has been presented in [32]. Distillation builds on the empirical fact that much

smaller models may have a similar expressing power to huge NNs or ensembles. The key

idea is that the new, simpler model should be trained to emit the soft probabilities (in case

of qualitative NNs the logits, i.e. the activation of the output layer before applying output

activation function) of the output of the ensemble. Soft probabilities or logits can carry a

lot more information on the distribution than the output after applying the softmax – if its

entropy is high enough. Exploiting that NNs are universal approximators, a logical choice

would be to use them for the compressed model. To transfer the knowledge however, the

method needs a sufficient amount of transfer data. This can be obtained from a validation

set splitted out from training data, or alternatively, some unlabelled set of data could be

used as well, for which the labels are easy to produce by the teaching ensemble.
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An improved and specialized version of this method is applied in [32], while [98]

presents the application of distillation for transfer the knowledge of single huge and

“cumbersome” NNs to a smaller, simpler model. If we assume that the cumbersome model

generalizes well, the knowledge the big model obtained, that is the way it generalize, can

be grabbed through the output vectors produced on individual data points. Maximising

the average log probability of the correct answer comes with the side effect of assigning

probabilities to the incorrect labels as well, that actually carries very important information.

According to the example provided in the paper, an image of a car might be misclassified

for a truck, but this probability will likely be much higher than the one for mistaking it for

a carrot.

Generalization using logit is introduced in [32] with using a temperated softmax

qi =
exp(zi/T )

∑ j exp(z j/T )
. (A.327)

If T = 1, Equation A.327 returns the probability qi for class i, as it is usually done in the

final layer of an NN. The higher the T , the smoother is the distribution of probabilities over

the classes. The labels for the transfer set should be produced with high T and the training

of the distilled model should be carried out with that value as well, while at inference stage,

naturally, T = 1 should be used.

If the correct labels are also available for the transfer set, they propose to use a combined

objective function according to empirical results with a much lower weight. Each training

example contributes to the cross-entropy gradient in the optimisation: with zi logit in the

distilled model and vi logit form the big model, that gives the soft target probability

∂C
∂zi

=
1
T

(
ezi/T

∑ j ez j/T
− evi/T

∑ j ev j/T

)
,

That is, the goal of distillation is minimizing difference between the temperated softmax

of the models. In an experiment with MNIST it was demonstrated that for simple NN the

method works, distillation of the same neural network from a 1.5 times bigger one (1200

ReLU vs 800 ReLU) yielded 50% performance improvement comparing to the direct
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training of the small network. Mutual learning [248] and Co-distillation [9]. are very simi-

lar techniques, aiming at preventing the pipeline complexity of two stage distillation[98]

(training an ensemble or a complex teacher model, then, distillation). According to their

idea, the distinction between training and distillation phase (or, between student and teacher

model) is unnecessary, since one can use a distillation term in the loss of the individual

models, that might be disabled at very beginning of training process. After a warming up

period thus the weight updates will be

w(i) = w(i)−η∇w(i)

[
f (w(i),x)+ψ

({
1

N−1 ∑
j ̸=i

m( j)(w( j),x)

}
,m(i)(w(i),x)

)]
,

where f is the loss of the model m(i) and ψ is a penalty term that penalizes the difference

form the average of the logits m(w( j),x) computed by the models w( j), that have been

trained in parallel on the same examples (or batches) x. They empirically found that

the presence of stale predictions (old parallel models) in the training process has an

infinitesimal influence compared to stale gradients in asynchronous SGD.

A.11 Peer-to-peer methods

In the gossip models, that have been introduced in [215] and [18], the main task is balancing

between local performance of the models at nodes, and a requirement of a kind smoothness

of the parameter space. The presented methods are peer-to-peer multi-task learning like

algorithms for collaboratively learn personalized models over a network of nodes. The set

of nodes in these works are represented as a graph, in which the neighbourhood matrix

N ∈ Rn×n contains the weights of edges, that describes similarities of nodes or “task

relatedness”. This can be based on user profiles or data itself. For normalizing relations, a

diagonal matrix D can be used with Dii = ∑
n
j=1 Ni j. In the algorithm, the primary objective

of the nodes is to obtain a model describing their data as well as possible:

wk
sol = minw∈Rn f k(w) =

nk

∑
j=1

f (w;xk
j,y

k
j) (A.328)
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Above this, the proposed systems seek to achieve a kind of smoothness over all the models

in the sense that more related task should have more similar models.

The idea of the first approach, called model propagation[215] is, first, to find the exact

optima at the nodes and, then, make the weights smooth over the edges. For that, to each

local model wk
sol a confidence value is assigned based on the amount of data they hold

(ck = nk/max jn j). This controls how far the model can drift away in the function of the

neighboring models. Thus the objective for model propagation algorithm is the following:

QMP =
1
2
(

K

∑
i< j

Ni j∥wi−w j∥2 +µ
K

∑
i=1

Diici∥wi−wi
sol∥

2), (A.329)

where µ is a trade off parameter between the grade of smoothness and the local accuracy.

This problem could be solved in closed form W∗ = α(I−α(I−C)−αP)−1CWsol for

Wsol = [w1
sol; . . . ;wK

sol] ∈ RK×p, α ∈ (0,1) such that µ = (1−α)/α and α = 1−α. To

compute this closed form optimum, however, we would need to know the global network

and all the solitary models. Therefore, in the peer-to-peer setup, the following two-step

iterative asynchronous process is proposed (with W̃ j
i (t) ∈ Rp denoting agent i’s last

knowledge on the other models at nodes j):

1. communication step: i selects a random neighbour j ∈Ni, and they exchange their

models, i.e.

W̃ j
i (t +1) = W̃ j

j(t) and W̃i
j(t +1) = W̃i

i(t) (A.330)

.

2. update step: for l ∈ {i, j} :

W̃l
l = (α+αc−1

l )(α ∑
k∈Ni

Nlk

Dll
W̃k

l (t +1)+αclwl
sol) (A.331)
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In the collaborative learning algorithm [215], learning and propagation are inter-

weaved, thus the objective

Qi
CL(Wi) =

1
2
(

K

∑
i< j

Ni j∥θi−θ j∥2 +µ
K

∑
i=1

Dii f i(wi), (A.332)

where the left side term is responsible for smoothness and the right side term aims at

preventing too high loss of local accuracy. For solving this, they use distributed version

of Alternating Direction Method of Multipliers (ADMM) ([29, 225]) (Section A.2.3) on a

Lagrangian formulation (Section A.2.1) of the problem:

Li
ρ(W̃i,Zi,Λi) = Qi

CL(W̃i)+ ∑
j∈Ni

[
Λ

i
ei(W̃

i
i−Zi

ei)+Λ
j
ei(W̃

j
i −Z j

ei) (A.333)

+
ρ

2
(∥W̃i

i−Zi
ei∥2 +∥W̃ j

i −Z j
ei∥)
]
. (A.334)

where ρ is a penalty weight for ensuring smoothness, matrix W̃i is a copy for all parameters

in the neighbourhood of node i, and the secondary variables Zi
ei and Z j

ei can be understood

as some preferences of node i for the values maintained at i itself (W̃i) and at j (W̃ j). Thus,

to minimize f i
ρ the nodes have to agree on each others’ parameters. The Λi

ei and Λ
j
ei are the

dual variables associated with the constraints that require these preferences to be as close

as possible while ρ > 0 penalizes the level of “disagreement”. The gossip based ADMM

proceeds by

1. i updates primal variables W̃i
i, W̃ j

i and, along with the old duals Λi
ei and Λ

j
ei, sends

them to j.

2. Upon receiving these, j updates the preference variables Zi
ei and Z j

ei and sends them

back to i.

3. Based on the previous steps, i finally updates the dual Λi
ei and Λ

j
ei.

To sum up, this gossip based collaborative method is based on enforcing a consensus on

the models on each other.
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A bit simpler, gradient based, method for peer-to-peer learning of personalized models

has been presented by Bellet et al. [18], where the objective to minimize (with the notation

used in [215]) is

QCL(Θ) =
1
2

K

∑
i< j

Ni j∥wi−w j∥2 +µ
K

∑
i=1

Diici f i(wi) (A.335)

This objective is very similar to the Equation A.332, apart from adding ci, the confi-

dence of agent i. When there is a high confidence at a node, it is more important to have

a good performance on its data. To optimize the Equation A.335, instead of ADMM, as

it was done in [215], they recommend a simple decentralized coordinate descent method

after arbitrary initialization of local models:

1. Update step: Coordinate descent

wi
t+1 = wi

t−
1
Li

∇wiQL(W(t)) = (1−α)wi
t+ (A.336)

α( ∑
j∈Ni

Ni j

Dii
w j

t −µci∇Li(wi
t)), (A.337)

where α = 1
1+µciLloc

i
∈ (0,1] for all j ∈Ni , and Li are some Lipsitz constants.

2. Broadcast step: wi
t+1 will be sent to nodes j ∈Ni

Above its simplicity, a big advantage of this method is that it can incorporate differential

privacy[63] as well, adding a Laplacian noise vector to the update step.

A.12 Variational Federated Multitask Learning

Variational Federated Multi-Task Learning (VIRTUAL) [47] has been developed to address

federated MTL for generic, non-convex models using a star shaped Bayesian network

(Figure A.20) with the server parameters θ in the center and local parameters φk at the

leaves. The idea is that, similarly to progressive networks [184], the local model reuses
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knowledge aggregated by the server through “gating” activation from the parallely running

server model

a(l+1)
k = σ(Ul

ka(l)k +αVl
k(σ(a

(l+1)
s ))), (A.338)

where Ul
k and Vl

k are the weight matrices belonging to the client and server activation a(l)k

and a(l)s , respectively, and α is a gating weight. These weights, all together, add up to local

parameters φk at machine k, that is, trained simultaneously with updates to be sent to the

coordinator.

Figure A.20 Variational inference model of [47]. Plates represent replicates over K clients
and Ni data-points at node i. (a) conditional dependence of y on the shared local model
parameters as well as on input x according to the discriminative model p(y(n)i |x

(n),θ,φi
i ). (b)

the dashed arrows denote the dependencies of the parameter posteriors on data point n of
client i (likelihood), (µs,σs) and (µc

i ,σ
c
i ) represent Gaussian priors on θ and φi.

The problem to be solved at the clients is to maximize the likelihood given the local

data set Di:

p(Di|θ,φi) =
n(i)

∏
k=1

p(y(k)i |x
(k)
i ,θ,φi). (A.339)

This factorization is equivalent with enforcing data points in Di to be conditionally inde-

pendent given θ and φ1, . . .φK . Assuming a prior p(θ,φ1, . . . ,φK) = p(θ)∏
K
i=1 p(φi), given

all the data-sets D1:K , the posterior to be found by the federated multi-task learning is the
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maximum of the expression

p(θ,φ1, . . . ,φK|D1:K) ∝
1

p(θ)K−1

K

∏
i=1

p(θ.φi|Di) (A.340)

Due to thus intractable posterior in A.340, VIRTUAL uses expectation propagation (EP,

see Section A.5) [159] to approximate it with a proxy posterior:

q(θ,φ1, . . . ,φK) = s(θ)c(φ1, . . . ,φK) = (
K

∏
k=1

sk(θ))(
K

∏
k=1

ck(φk)), (A.341)

Using variational methods, as it is described in [24] and [159], (see Section A.5), finding a

good approximation of the posterior is equivalent with finding the best available parameters

in the model.

EP optimization refines one factor at each step, first computing a refined posterior, by

replacing the refining factor of the proxy with the respective one from the true posterior.

Next, it finds the new sk(θ) and ck(φk) distribution over the server and client parameters,

respectively, that minimize the KL-divergence (Section A.3) between the full proxy and

refined one.

Thus, the optimization step t at client k the goal is to find new proxies (new approxima-

tions for the factors for the true distribution) sk
t and ck

t (φ
k) by minimizing the following

variational free energy function:

L(sk(θ),ck(φk)) = KL

(
sk(θ)

st−1(θ)

s(k)t−1(θ)
∥p(θ)

st−1(θ)

s(k)t−1(θ)

)
(A.342)

+KL(c(k)(φ(k))∥p(φ(k)))−Est(θ),c(k)(φ(k)) log p(D(k)|θ,φ(k)), (A.343)

where st(θ) = s(k)t (θ)∏ j ̸=k s j
t−1(θ), with the updated local factor s(k)t (θ) being the new

posterior over the server parameters, using which the next node will start the process again.

This can be optimized by gradient descent that uses Monte Carlo estimates of the

parameters with the re-parametrization trick [124] (see Section A.5).
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