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Abstract
It is often claimed that humanity has stopped evolving because modern medicine erased all selection on survival. Even if 
that would be true, and it is not, there would be other mechanisms of evolution which could still led to changes in allelic 
frequencies. Here I show, by applying basic evolutionary genetics knowledge, that we expect humanity to evolve. The results 
from genome sequencing projects have repeatedly affirmed that there are still recent signs of selection in our genomes. I give 
some examples of such adaptation. Then I briefly discuss what our evolutionary future has in store for us.
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I think that we’ve stopped 
evolving.
- Sir David Attenborough – Radio 
Times, 2013
Good nutrition and human 
medicine have
removed the selection pressure 
driving human
evolution
- Frans de Waal – Our inner ape 
(pp. 225)

Introduction

The question whether humans are still evolving keeps resur-
facing. While I have not seen any peer-reviewed publication 
claiming that human evolution has stopped, one can read 
such statements in books and hear them in interviews by 

prominent scientists and naturalists much too often. It is also 
a public belief, including among biology students. The lit-
erature only refers to this general feeling and then reaffirms 
that evolution has not stopped in humans (Ayala 2015). In 
this review, I would like to address this question so that a 
bit less confusion floats around in the scientific community 
as well as in the public.

Here I will use change in the allele (genotype, genetic 
variation) frequencies of populations over time as the defini-
tion of evolution (Futuyma and Kirkpatrick 2017; Gillespie 
1998; Hall and Hallgrímsson 2008; Noor 2018). Change 
in frequencies of heritable traits over time is a definition 
(Jablonka and Lamb 2005) more in line with the extended 
evolutionary synthesis (Pigliucci 2007). By this latter defini-
tion, cultural evolution would also be included, but people 
already agree that there is plenty of cultural evolution in 
our species.

When it comes to evolution, one wants to see big changes, 
visible changes, something befitting a good movie. A club-
wielding caveman with a heavy brow-ridge and no forehead 
versus a modern man clad in Armani is a good enough con-
trast. A fish crawling out to conquer land is one too. Tiny 
lizards becoming gigantic dinosaurs (or mutating to become 
Godzilla) are also fine. Bacteria evolving to be able to feed 
on a novel sugar source (Blount et al. 2008), some small 
passerine changing its beak (Grant and Grant 2002) to be 
able to crack bigger seeds, or a bat virus changing host is 
not that fantastic a story.

Our general image of mutations is also of dramatic 
extremes: It either produces misshapen figures like 
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Quasimodo or superhumans like X-men. Mutants need 
to exhibit something truly novel: superfast regenera-
tion, telepathy, control over metals, eyes that shoot laser 
beams, or spider-sense (whatever). The expectation of mis-
shapen form is—unfortunately—well founded. The sudden 
appearance of superhuman abilities is less so. Beneficial 
mutations (as we will see later) most often manifest in 
minuscule changes to peptides that allow us to avoid some 
pathogen, slight changes to the developmental program 
that, for example, allows the production of lactase into 
adulthood, etc. Again, evolution is infuriatingly unspec-
tacular. Or is it? It allowed us to imagine and manufac-
ture spectacular things from the seven wonders of ancient 
times, through beautiful works of art to the marvels of 
the digital age. (Do you remember the last time you had 
to use transparencies for a lecture, or used snail mail to 
correspond with some friends or relatives?)

One also wants evolution to be fast. Fast enough to be 
observable in our lifetime. This can be done in a labora-
tory with an organism like Escherichia coli, Drosophila 
melanogaster, or Caenorhabditis elegans, but do we truly 
expect humans to evolve that fast? My grandparents had 
seen three generations of their progeny (I hope I will live 
long enough to see my great-grandchildren), and there are 
undoubtedly people who have seen four or five generations 
of humans. Can we expect any visible change in such a 
short time? Even in the laboratory, it takes more than 2–5 
generations to see some effect even if very strong selection 
pressure is administered.

In this review, I will demonstrate that the fact that 
humans are still evolving can be understood by applying 
the knowledge of basic evolutionary genetics. Human evo-
lution might not be as spectacular as some imagine, but 
it is still an ongoing process that was shaping our life, is 
shaping our life, and will be shaping our life as long as 
humans exist.

The evolutionary genetics view of human 
evolution

Let us take an ideal population in which infinitely numerous 
members experience no mutation, no selection, they do not 
migrate and when they reproduce sexually, they are matched 
up randomly with a member of the other sex (panmixis). 
There is no evolution in such population. This is one of the 
fundamental basics of evolutionary genetics. Any popula-
tion of evolutionary units which deviates from this idealized 
population can undergo evolution. Our task is to discern if 
these characteristics are true or not for humanity in 2022 
(or at any other date you might read this paper). We will go 
through each of them individually.

Panmixis

Panmixis means that mating is random, i.e., the probabil-
ity of any two individuals of the opposite sex forming a 
pair is the same irrespective of their genetic makeup. Per-
sonal experience tells me that we are not paired by some 
matchmaking lottery, on the contrary, pair forming is very 
much assortative. Assortative mating can be defined as the 
non-random coupling of individuals on the basis of resem-
blance in one or more phenotypic characteristics (Buss 
and Barnes 1986). Spouses are similar in various traits 
(Price and Vandenberg 1980; Watson et al. 2004), such 
as ethnicity, socioeconomic status, religion, and politics. 
They also moderately correlate in educational attainment 
(Mare 1991), intellectual traits (Plomin 1999), vocational 
interest, and personality variables. Correlation might be 
low for anthropometric characteristics, but it is significant 
as assortative mating is also evident on the level of genet-
ics (Conley et al. 2016, Robinson et al. 2017). Thus, the 
assumption of panmixis is violated.

Assortative mating (the lack of panmixis) does not 
necessarily change allelic frequencies, albeit genotype 
frequencies might change. Positive assortative mating 
(mating by similar individuals) increases homozygosity 
and thus decreases genetic diversity. Negative assortative 
mating (mating by dissimilar individuals), on the other 
hand, increases heterozygosity and thus increases genetic 
diversity. When non-random mating is directional in the 
sense that a certain trait is preferred by most people, then 
it can lead to sexual selection.

Mating can be assortative with respect to space, i.e., 
members of couples come from geographical proximity, as 
opposed to some random location that would be assumed 
under global panmixis. We often find that genetic and spatial 
distance correlate, even on the scale of Europe (Novembre 
et al. 2008). We generally find finer population structure 
within countries [France (Saint Pierre et al. 2020), Spain 
(Bycroft et al. 2019), the Netherlands (Abdellaoui et al. 
2013), Ireland (Gilbert et al. 2017), and UK (Leslie et al. 
2015)] that correlate with geography. Estonia is a good 
example. Estonia is a Baltic country with 1.3 million inhab-
itants spread over 45,339   km2. The genetic differences 
between Estonians and their place of origin correlate to a 
great degree (Nelis et al. 2009). As another example, in 
Mexico, the pre-Columbian population structure still pre-
vails (Moreno-Estrada et al. 2014), even among the cos-
mopolitan population. This means that indigenous people 
moved very little in the intervening hundreds of years, which 
seems to be the case in South American countries as well 
(Chacón-Duque et al. 2018; Homburger et al. 2015).

Historical and cultural isolation can also result in bar-
riers to gene flow. We can observe the genetic isolation 
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of ethnic groups, like the bigoudens in Brittany (Salmon 
et al. 1986), the Pomaks of northern Greece (Panoutsopou-
lou et al. 2014), and the people in the Val Borbera valley 
(Italy) (Colonna et al. 2013) without geographical barrier. 
Language minorities in the Eastern Alps show reduced 
genetic diversity and genetic isolation (Capocasa et al. 
2013). Papua New Guinea is also an example of cultural 
and linguistic differences strengthening genetic isolation. 
Genetic diversity is higher there than in any comparable-
sized Eurasian area (Bergström et al. 2017), and some 
of the isolations are continuous since the settlement of 
the island more than 50 thousand years ago (Pedro et al. 
2020). Similarly, the caste system in India genetically iso-
lates people who otherwise live in the same place (Bam-
shad et al. 2001). Isolation is a cultural mandate so strong 
that the genetic trace of caste isolation is evident among 
the Pakistani in the UK (Overall 2009). Analogously, in 
Brazil, very little admixture is observed among people of 
different ancestry (Kehdy et al. 2015).

One of the consequences of assortative mating is that 
while any local population could be in Hardy–Weinberg 
equilibrium, the global human population is certainly not 
because of population structure (c.f. Wahlund effect). If, as 
evident from the above, humanity for the most part is still a 
collection of populations connected by very infrequent gene 
flow, the global census population size is a poor indication 
of the possible drift humanity experiences.

Infinite population

The 8 billion humans inhabiting Earth seems to be a very 
large population, however, from the point of view of drift 
the size of populations that actually breeds matters. Drift is 
a change in allelic frequencies of neutral [or nearly neutral 
(Ohta 1992)] variants due to stochasticity in the popula-
tion dynamics. A new variant could fixate in 4N

e
 genera-

tions (where N
e
 is the effective population size, the size of 

a panmixing population that drifts to the same degree as 
an actual observed population). Human effective population 
size estimates range from a few hundred to a few hundreds of 
thousands (Bergström et al. 2020; Park 2011; Tenesa et al. 
2007). At the higher end of those estimates, populations are 
large enough so that drift to fixation would take more years 
than the entire history of our species so far. But at the lower 
bound, it is just a few tens of thousands of years, and the 
effect of drift can be seen in a shorter period of time. The 
geographic, ethnic, or cultural isolates mentioned earlier 
have low effective population sizes. For example, some of 
the higher castes in the Indian district Jaunpur exhibit effec-
tive population sizes in the lower part of that range (Zerjal 
et al. 2007). The Pomaks of northern Greece and the Cre-
ateans are isolated compared to the inland Greek popula-
tion, and some variations drifted to high frequencies among 

them (Panoutsopoulou et al. 2014). There is an extensive 
fine-scale population structure in Galicia (Spain), result-
ing in local drift (Bycroft et al. 2019). Thus, there are still 
populations that can experience substantial drift over short 
periods of time.

Estimating drift based on census population size is chal-
lenging. Effective population sizes are always lower than 
census population sizes, but the factor could vary. Effective 
population size was found to be about half the census popu-
lation size for a current cohort and a third for populations 
a few generations ago (Browning and Browning 2015). For 
Denmark, the estimated effective population size is around 
half-million, one-tenth of its census population size. The 
population seems to be quite homogenized, with only little 
trace of geographical origins (Athanasiadis et al. 2016).

There are two main causes of low population numbers 
which then makes drift stronger in a population, whose 
effect then can be observed hundreds of years later. One is 
a population bottleneck due to some catastrophic event, the 
second is the founding of a new population in some other 
geographic area. There are ample examples of the founder 
effect. Effective population sizes have clear minima around 
12 generations ago in the Americas (Browning et al. 2018), 
which are caused by diseases of European origin among 
the indigenous people, and voluntary or involuntary migra-
tion in the case of European and African people. There are 
other recent examples of the founding effect on the genetic 
makeup of certain populations. Among the Boers of South 
Africa the prevalence of porphyria variegata (Dean 1968) 
is around 0.4% (Botha and Beighton 1983) which is many 
orders of magnitude higher than in other populations. Dean 
traced its origin back to a single couple (Dean 1968) living 
in the seventeenth century. Another example is the peopling 
of the Pingelap atoll which happened around 1775 when 
some suffered a shipwreck on it. There was a mutation 
among the survivors which causes a certain color-blindness. 
This condition has a prevalence of 1:20,000 in humanity as a 
whole, but around 10% there due to the presence of an allele 
in the founding population, and not much intermixing ever 
since (Brody et al. 1970).

Geographic and cultural assortative mating results in a 
fine-scaled population structure that might result in local 
populations experiencing drift. Such small local populations 
are often the result of migration, which is another character-
istic of an ideal population that does not hold for humanity.

No migration

Migration has no bearing on the overall allelic frequency of 
humanity on Earth, as there is no human-inhabited another 
planet to migrate to and from. On the local level, however, 
migration affected the genetic make-up of populations. 
Major migratory events have shaped human history. Some 
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of them are ancient (Nielsen et al. 2017), like the peopling of 
Europe first by hunter-gatherers, then by early farmers, and 
then by steppe people. And some are recent, for example, 
the colonization of the Americas.

The peopling of Europe is characterized by waves of 
migration. The first anatomically modern humans that 
reached Europe have no progeny today (Fu et al. 2016). The 
next wave of hunter-gatherers populated Europe 37–14 thou-
sand years ago. These early western hunter-gatherers had a 
lasting genetic legacy, especially in northwestern Europe 
(Haak et al. 2015). In the northeast, we also find traces of the 
early northeastern hunter-gatherers (Lazaridis et al. 2014). 
Then in the Upper Neolithic, around 7000 years ago, farmers 
migrated from the Fertile Crescent to Europe (Brandt et al. 
2013; Mathieson et al. 2018). After that, in the early bronze 
age, steppe pastorals came to Europe (Haak et al. 2015). 
Present-day Europeans, for the most part, are mixtures of the 
descendant of these three major waves of migration.

The Americas were initially peopled from northeast 
Asia through Beringia. The ethnic makeup of the continent 
changed drastically in the last 12–17 generations following 
its discovery and colonization by Europeans. At present, in 
the USA, less than 1% of the population is native Ameri-
can, the rest having European (including Middle Eastern and 
North African) (72.4%), African (12.6%), or Asian (4.8%) 
ancestry. Ancestries of these populations could still be traced 
back to well-defined regions in Europe, Africa, and Asia 
(Han et al. 2017). In South America, the genetic composition 
aligns well with recorded history, but it can help uncover 
less documented migratory events such as that of converted 
Jews (Chacón-Duque et al. 2018) or the exact origin of the 
slaves (Schroeder et al. 2015). The different waves of immi-
gration to Brazil can be inferred from the genetic makeup of 
the population (Kehdy et al. 2015). In the earlier colonized 
northern part, whites can trace their ancestry to Iberia, and 
the ancestors of the black population lived in central western 
Africa the area most of the Caribbean and North American 
slaves originate from. In the south, there are considerably 
more people of East African (Bantu from Mozambique) 
ancestry, and the European immigration of the nineteenth 
century (e.g., from Germany) can also be clearly observed.

Military expansion can also left its mark on the genetic 
composition of local populations. The expansion of the 
Mongol Empire (Zerjal et al. 2003) lefts its Y chromosomal 
trace across inner Asia [but see (Wei et al. 2018) who argue 
that it is the result of ordinary migration taking place ear-
lier]. Muslim rule of the southern part of the Iberian Penin-
sula can be observed in the genomes of the locals (Bycroft 
et al. 2019). And ancient Rome became a truly cosmopoli-
tan place with people from all over the empire living there 
(Antonio et al. 2019).

Migration is an ongoing process, and its volume is higher 
than previously estimated. In any given year since 1990, 

0.226–0.258% of the global population migrate (Azose 
and Raftery 2019). That translate to 12–20 million people 
moving annually. This is considerable gene flow between 
localities.

No mutation

Human mutation rate is estimated to be 1.29 ×  10–8 muta-
tions/base/generation; 4.27 ×  10–10 mutations/base/year or 
roughly 70 mutations per our entire genome per generation 
(Jónsson et al. 2017). This figure alone, obtained by compar-
ing the genomes of parent–offspring pairs, is enough to dem-
onstrate that mutations happen. Around 140 million babies 
are born annually, which could roughly mean 9.8 billion 
new mutations entering the human population. Most of them 
are neutral or deleterious, but as the volume of novel muta-
tions increases, the possibility of hitting on a beneficial one 
increases too. We are not going to see the beneficial effect 
anytime soon, as they go unnoticed. (People do not go to 
the physician if they feel too well, nor will they complain 
about it.)

We can also look at the human mutation rate in com-
parison with mutation rates observed in other animals and 
eukaryotes. Species can have different mutation rates for var-
ious reasons (Bromham 2009). The mutation rate in humans 
(in mutations/base pairs/generation) is greater than in other 
well-studied species, such as D. melanogaster (Arthropod, 
Animal), C. elegans (Nematoda, Animal), Arabidopsis thali-
ana (Plant), or Saccharomyces cerevisiae (Fungi) (Lynch 
2010). Our per-generation mutation rates might be higher 
than those of other species (albeit not higher than those of 
our closest relative, see Table 1), but animals with longer 
generation times have lower substitution rates (substitutions/
year) (Welch et al. 2008). And the number of mutations per 
base per year rates are lower for primates compared to C. 
elegans or D. melanogaster. While there is a considerable 
number of de novo mutations per generation, a generation 
for us is 26–30 years long (Fenner 2005; Moorjani et al. 
2016; Tremblay and Vézina 2000). The neutral rate of evo-
lution, which is driven by the mutation rate, is quite slow 
for humans and apes in general (Chintalapati and Moorjani 
2020).

No selection

I left selection to be discussed last on purpose. Selection 
is seen as something not affecting us because there is little 
difference in survival. Indeed, modern medicine has greatly 
increased human longevity (Wang et al. 2020, 2012). The 
world had become a safer and healthier place for the most 
part (Murray et al. 2020). But there are some worrying 
trends: Ambient air pollution has increased and there is 
more danger of high temperatures (due to global warming) 
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(Murray et al. 2020). The former is expected to increase and 
is a leading cause of death (Burnett et al. 2018). The latter 
might not have increased substantially on a global scale, 
but some places experience unbearable hot waves and their 
frequency and intensity are on the rise (Seneviratne et al. 
2014). There is also an increase in drug and alcohol abuse, 
and sugar and red meat consumption (Murray et al. 2020); 
however, that probably does not exert any significant selec-
tion on humanity. All in all, from a technological point of 
view, there could be a considerable decrease of diseases and 
other ailments.

But there are huge differences in access to and affordabil-
ity of health care (Peters et al. 2008) among countries and 
among citizens living in the same country. Consequently, 
longevity has not increased at the same rate for every coun-
try (Wang et al. 2020). So different survival rates still exist. 
The oft-repeated mantra of modern medicine freeing us from 
selection rest on the belief that if there is a medical solution 
to a problem, it will be solved for every human being suf-
fering from said condition. The COVID-19 pandemic has 
demonstrated that such techno-optimism is unfounded. At 
the time of writing this paper in March 2021, effective vac-
cines have been available for months now, but still, only a 
small fraction of the global population has been immunized. 
The medical solution exists, and for billions, the remedy is 
not even in sight.

Most of humanity experience the same selection pressure 
as our ancestors for thousands of years: pathogens, lack of 
food, and the dangers of birth. Admittedly, there is a trend in 
the global causes of mortality away from infectious diseases, 
malnutrition, and birth-related deaths toward non-commu-
nicable causes (Lozano et al. 2012; Vos et al. 2020). But it 
is just a trend, even if everything goes well, we are decades 

if not more away from a world where everyone has access 
to quality healthcare. Till that time, there is still selection 
for genetic variants that help combat, for example, patho-
gens. The textbook example of heterozygote advantage of 
the allele variant causing sickle cell anemia if homozygous 
(Allison 1954) still present in millions of people as malaria 
still selects for its retention (Elguero et al. 2015; Piel et al. 
2010). New malaria variants, however, can cause severe dis-
ease despite the protective effect of the HbS allele (Band 
et al. 2022). Coevolution between a host and a parasite is an 
ongoing selection pressure on both species.

Non-intuitively, the removal of a selection pressure can 
also cause evolutionary change. We only stress the benefi-
cial effect of modern medicine on survival, but we are quiet 
about the evolutionary consequence. People who are cured 
of lethal or very deleterious hereditary diseases can procre-
ate and thus pass on their defective genes. Muller in the 
1950s (1950) argued that if modern medicine lessens the 
selective pressure on deleterious mutations, then they will 
increase in frequency. Some decades ago evolutionary biolo-
gists still openly warned the public about the danger of being 
too good at curing people (Ayala 1986). Recently I have 
not really encountered this argument, but Francisco Ayala’s 
colloquium paper in PNAS (Ayala 2015) is a refreshing 
exception. Given that humans have a long generation time, 
doubling the incidence of a hereditary disease might take 
some thousands of years, but there are quite some of these 
diseases, thus the burden can add up (Kondrashov 1995; 
Lynch 2010). On the other hand, we can hope that gene 
therapies can offer a remedy.

Fitness is determined by survival and the number of off-
spring. (Number of offspring is labeled as fecundity in popu-
lation biology and fertility in human demography. I will use 

Table 1  Mutation rates of humans and selected primate and model species

Mutations/
base/genera-
tion

Mutations/base/year Mutations/
genome/gen-
eration

References

Human 1.29 ×  10–8 4.27 ×  10–10 74.4 Jónsson et al. (2017, Kong et al. (2012)
Chimpanzee (Pan troglodytes) 1.2 ×  10‒8 4.6 ×  10–10 35 Venn et al. (2014)
Western gorilla (Gorilla gorilla) 1.74 ×  10‒8 9 ×  10−10 Besenbacher et al. (2019)
Sumatran orangutan (Pongo abelii) 1.66 ×  10‒8 6.64 ×  10–10 Besenbacher et al. (2019)
Owl monkeys (Aotus nancymaae) 0.81 ×  10‒8 1.23 ×  10–9 0.502 Thomas et al. (2018)
Gray mouse lemurs (Microcebus murinus) 1.64 ×  10−8 4.37 ×  10−9 67 Campbell et al. (2021)
Mouse (Mus musculus) 5.4 ×  10−9 28 Uchimura et al. (2015)
Drosophila melanogaster 8.4 ×  10–9 8.4 ×  10–8 1.99 Haag-Liautard et al. (2007)
Caenorhabditis elegans 1.29 ×  10–8 2.00 ×  10–6 2.1 Denver et al. (2004)
Saccharomyces cerevisiae 3.3 ×  10‒8 4.01 Kondrashov and Kondrashov (2010, Lynch 

et al. (2008)
Chlamydomonas reinhardtii 3.23 ×  10‒10 0.389 Ness et al. (2012)
Arabidopsis thaliana 7.1 ×  10‒9 5.5 ×  10−9 7.09 Exposito-Alonso et al. (2018, Ossowski et al. 

(2010)
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fecundity which is more often used in evolutionary biology.) 
While we often stress reproductive output when it comes 
to other organisms, we are obsessed with survival when it 
comes to our own species. There is still differential survival 
among humanity, even among people who have access to 
the wonders of modern medicine. But does that differential 
survival drive human evolution? Life expectancy is higher 
than 50 years in every country, and mostly it is higher than 
60 years. Consequently, everyone can expect to live past 
their reproductive years. (Physiologically, men remain virile 
throughout their life, but most will not have new children 
in their 50s onward). Indirect fitness benefits can still be 
accrued in this period. But that is minuscule compared to 
selection pressure through differential fecundity.

Global population estimates for the twenty-first century 
(Abel et al. 2016; Ezeh et al. 2020; Kc and Lutz 2017) pre-
dict that while most parts of Earth will experience a decline 
in population, Africa (especially sub-Saharan Africa) could 
triple its population. These are the more optimistic scenar-
ios; some projections do not show any global decline. In 
the last decade, estimates had to be modified upward (KC 
2020). Armed conflicts and economic hardship in these areas 
increase the birth rate (Kebede et al. 2019). [The current 
pandemic is also expected to increase the birth rate in poor 
countries (Aassve et al. 2020).] Hardship has the exact oppo-
site effect in middle- or higher-income countries, like Hun-
gary: The birth rate is expected to drop further. The COVID-
19 pandemic so far busted births all across the developed 
world. So, while some countries’ populations shrink, others 
still grow by 2% a year. That is clear differential fecundity, 
especially if we consider that survival statistics are better in 
the more developed countries as opposed to those experi-
encing high annual growth rates (Wang et al. 2020, 2012).

Differential fecundity also leads to strong selection within 
populations. Ayala (1986) points out that as the mean off-
spring number decreases the variance of offspring number 
becomes more important. Consequently, small differences 
in offspring count (now nearly 100% of the children are 
expected to become mature adults) can have large fitness 
consequences. Analyzing historical data on fecundity, age at 
first reproduction turns out to be a very important determi-
nant of fitness (Helle et al. 2005; Käär et al. 1996). More so 
than the length of the reproductive period (Byars et al. 2010; 
Sanjak et al. 2018) (i.e., in a constant or growing population, 
if someone have the same number of children, then from a 
fitness point of view, it is worthwhile to have them early than 
late or paced out). Age at first reproduction had negligible 
heritability in a preindustrial society (Pettay et al. 2005) but 
was found to have moderate one in contemporary women 
(Kirk et al. 2001). Age at first reproduction has less variation 
in societies without contraception [e.g., Allal et al. 2004; 
Ramirez Rozzi 2018)], so it is mostly culturally dictated. In 
western societies, childbearing is more of a choice than a 

mandate, and beside cultural influences, genetic disposition 
could have larger influence. We readily find genetic varia-
tions relating to reproductive behavior and the number of 
children (Barban et al. 2016). The heritability of these traits 
changes rapidly depending on the prevailing cultural envi-
ronment (Briley et al. 2015), and thus, current trend might 
not continue in the future. But at the moment, a high number 
of children, especially if they come early, offers considerable 
selective advantage (Byars et al. 2010; Milot et al. 2011; 
Sanjak et al. 2018).

I have demonstrated that the human population is far from 
ideal, and therefore evolution could happen in it. In the next 
sections, I review some examples of recent adaptations to 
local environments, then discuss phenotypic changes that 
are not the result of evolution, and lastly ponder upon what 
the future might hold for humanity.

Local adaptations

Humanity belongs to one species, but since our spread out 
of Africa, there was not a single selective force that left a 
mark on all of our genomes: There is little signs of recent 
selective sweeps (Hernandez et al. 2011). We were already 
living in subdivided populations at our species’ inception 
(Scerri et al. 2018) and then went on to populate new con-
tinents with various habitats. The challenges (main drivers 
of mortality) were roughly the same as discussed earlier: 
pathogens, malnutrition, and birth-related problems. We 
can observe signs of selection related to these challenges 
in ancient genomes (Mathieson et al. 2015) as well as in 
contemporary ones (Akey 2009; Field et al. 2016; Hancock 
et al. 2011, 2010; Lachance et al. 2012). But the pathogens 
and the available food sources vary in different parts of the 
globe, so adaptations are mostly local (Fan et al. 2016). 
Here, I will give some examples of such local adaptations. 
They can be observed as during the last thousands of years 
some genetic variants rose to prominence in certain popu-
lations living in specific environments. Adaptation is an 
ongoing process, but it takes time before subtle changes in 
allelic frequencies (especially if it involves many loci) can 
be detected, correlated with the local environment, and then 
the causative link discovered.

Climatic and environmental adaptation

The abiotic environment can exert a selective force on a 
species. Our species had evolved on the savannahs and then 
moved into temperate and artic environments, to which we 
were not adapted. The solution was in part genetic, but in the 
most part cultural. Despite cultural adaptation and niche con-
struction (Odling-Smee et al. 2003, 2013) there are exam-
ples of genetic adaptations to local environments. Aboriginal 
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Australians seem to be selected to withstand the desert cold 
(Malaspinas et al. 2016). East Asians have a mutation in the 
ABCC11 gene which determines earwax type and, in this 
case, causes it to be dry compared to the wild-type wet one 
(Yoshiura et al. 2006). This genetic variant was selected for 
in the last 2000 or so generations (Ohashi et al. 2011), most 
probably as an adaptation to cold environments.

High-altitude poses a peculiar challenge to humans: 
Every breath we take contains less oxygen compared to 
those in the lowlands. People adapted to lower altitudes need 
to let their bodies get accustomed to the thinner air, and they 
will still burn more calories, take more breaths, and still have 
lower blood oxygen levels than locals. People in the Tibetan 
(Simonson et al. 2010), Andean (Bigham et al. 2009), and 
Ethiopian (Alkorta-Aranburu et al. 2012; Scheinfeldt et al. 
2012) highlands are adapted to their high-altitude homes. All 
three populations adapted to similar environments in differ-
ent ways (Beall 2006, 2007; Bigham et al. 2010). Adaptation 
to high altitudes could have been quick. Recent findings in 
the Tibetan plateau date human settlement to 30–40 thou-
sand year ago (Zhang et al. 2018), which is very close in 
time to the human migration out of Africa and toward East 
Asia. An archaeological find in the Andes (4355–4480 m 
above sea level) are dated 12.4–11.8 thousand years old 
(Rademaker et al. 2014), 2000 years younger than the old-
est known South American site (Dillehay et al. 2008).

Pathogen defense

While the environment and the scarcity of food were the 
main limiting factors in temperate and artic environments, 
pathogens limited the population growth of hunter-gatherers 
in tropical and subtropical areas (Tallavaara et al. 2018). 
Pathogens also exerted considerable selective force through-
out history; for example, the Black Death took a heavy toll 
on the population of Europe. It is not surprising that selec-
tive changes are often associated with immune-related 
regions in our genomes (Fumagalli et al. 2011; Pagani et al. 
2016). Pathogen is a catchall category and populations had 
to deal with their own local pathogens. For example, Euro-
peans have some immune-associated gene changes that 
predate the Neolithic transition (Olalde et al. 2014), and it 
is probably a sign of selection for resistance against local 
pathogens. In some more recent examples, we know with 
higher confidence the kind of disease certain variants are 
selected for. In urban areas, the frequency of a resistance 
allele (SLC11A1 1729 + 55del4) is elevated, which conveys 
resistance to tuberculosis and leprosy (Barnes et al. 2011). 
Resistance to Lassa hemorrhagic fever in West Africa has 
been selected for (Andersen et al. 2012). The plague pro-
duced convergent evolution in central European populations 
of very different ancestry (Laayouni et al. 2014).

Human rhinovirus C (Lamson et  al. 2006) normally 
causes a common cold, but in some cases, it can exacerbate 
childhood asthma. This only happens if the 529th position 
in the cadherin-related family member 3 protein is a tyros-
ine and not the commonly found cysteine (Bochkov et al. 
2015). However, the original variant found in tetrapods is 
the tyrosine-bearing one (Bønnelykke et al. 2014), which 
is mostly replaced in human populations due to it being a 
risk factor (Palmenberg 2017). The original variant still has 
around 30% frequency in some African populations, but its 
prevalence is less than 5% in Asia.

Sleeping sickness caused by the unicellular eukaryote, 
Trypanosoma brucei, is a widespread disease in Africa. We 
all harbor a gene (APOL1) that helps us fight this parasite 
(Thomson et al. 2014). While now some of us live in areas 
not affected by this disease, our ancestors came from Africa, 
and resistance was selected for. But not all subspecies of T. 
brucei can be successfully fought with the wild-type gene 
(DeJesus et al. 2013; Uzureau et al. 2013). There are the var-
iants G1 and G2 harboring two point-mutations or a deletion 
(respectively) which confers resistance to T. b. rhodesiense, 
but also causes kidney disease if someone only has these 
variants in their genome (Genovese et al. 2010). This is yet 
another example of heterozygote advantage (Ko et al. 2013), 
which would maintain polymorphism at this locus.

Emerging diseases can still exert selection. If (or should 
I say, when) a new deadly pathogen emerges, there might be 
no available medical remedy, and we could only rely on our 
innate and adaptive immune response.

Dietary adaptation

The ability to digest milk (lactose) in adulthood is a prime 
example of adaptation to changing food availability. For 
mammals, milk is only available from their mother, but 
animal husbandry allowed us to harness the milk of other 
animals (cattle, horse, water buffalo, camel, sheep, and goat) 
as a source of nourishment. Dairy products were developed 
early everywhere where pastoral lifestyle was adopted (Ever-
shed et al. 2008; Orlando 2018; Outram et al. 2012, 2009; 
Salque et al. 2013; Wilkin et al. 2020). In European cat-
tle herders and later in some African populations, lactase 
persistence appeared and quickly rose to high frequencies 
(Jeong et al. 2018; Ségurel and Bon 2017). Now its fre-
quency is around 99% in norther Europe, around 70% in cen-
tral Europe, and as low as 30% in southern Europe (Storhaug 
et al. 2017). Not every population practicing herding and 
consistently consuming dairy products for the last thousands 
of years developed lactase persistence [for example, Mon-
golians Orlando 2018; Wilkin et al. 2020)]. Most probably 
the mutation in the MCM6 gene allowing it (Tishkoff et al. 
2007) has not appeared, and thus, lactase persistence could 
not be selected for.
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The Neolithic revolution, i.e., agriculture presented us 
with a more abundant, but very one-sided source of calories: 
starch in the seeds of cereals. There was selection for the 
efficient utilization of this nutrient source. The salvia amyl-
ase gene copy number (AMY1) varies between 2 and 15 even 
within one population. As humanity transitioned to a more 
starch-based dietary regime, there was a selection toward 
a higher copy number (Perry et al. 2007). Those living on 
high starch diet have mostly 6 or more copies of the gene 
(70% of them), while only 37% of those have such a high 
count among people still living on a more hunter-gatherer 
type of diet.

Food (calories) might be abundant, maybe too abundant 
in developed countries, but there are still 800 million people 
not having access to enough calories, and two billion lacking 
some essential nutrients from their daily food. Unfortunately, 
for too many people, food (the lack of it) is still a selection 
pressure.

Sometimes we see evolution where there 
is none

I have listed some examples of adaptations. These are 
the most well-known examples, but there are many more, 
and we will uncover even more as we unravel the effects 
of genetic variation. There are, however, observable phe-
notypic changes that are most probably not the results of 
evolution. Sudden phenotypic changes are often–errone-
ously–attributed to evolution. Evolution can be quick, but if 
so, it requires extremely strong selection pressure, which is 
seldom demonstrated.

The average height of adults has considerably increased 
in the last 150 years, and it is still increasing (Cole 2003; 
Freedman et al. 2000; Fudvoye and Parent 2017). The trend 
is attributed to better living conditions and access to quality 
food and healthcare (Cole 2003; Fudvoye and Parent 2017; 
Zong et al. 2015). There are signs of selection on height in 
the past [at least in northern European populations (Turchin 
et al. 2012)]; however, at the moment selection on height for 
men is minimal (Sanjak et al. 2018), and there is actually 
a selection for shorter women (Byars et al. 2010; Sanjak 
et al. 2018). Height is not a character that is exclusively 
expressed in either women or men. Thus, a stronger selection 
on women to be shorter compared to a weaker selection on 
men to be taller will have the net effect of decreased height. 
But now, the secular trend still dominates.

Developmental changes due to changing environments 
can cause phenotypic change. There was a recent report 
(Lucas et al. 2020) that the frequency of retaining the median 
artery of the forearm postnatally is increasing. The preva-
lence increased from approximately 10% in 1880 to 30% 
by the end of the twentieth century. This is a considerable 

increase, but I doubt it to be an evolutionary change. First, 
its heritability has not been confirmed. Second, such a quick 
increase in frequency in 120 or so years would mean very 
strong selection pressure. What would that pressure be? If 
people would be dying because of the lack of it, it would be 
more than an anatomical curiosity. And how could an artery 
in the arm that most people do not have led to more kids? 
There could be pleiotropic effects, I admit, but that requires 
further studies. Too quick changes without obvious selective 
pressure are always suspicious.

Short-sightedness reached very high frequencies in cer-
tain parts of the globe: 70–90% in Singapore, 30–40% in 
Europe but around 10% in Africa. It was not so two genera-
tions ago. Short-sightedness is more prevalent in the cities 
as compared to rural areas, and it is more prevalent among 
those working on something close (like most white-collar 
jobs) (Foster and Jiang 2014; Goldschmidt 2003). There are 
two prevailing, not mutually exclusive theories of the cause 
for the increased prevalence of myopia (Dolgin 2015; Foster 
and Jiang 2014). One posits that the developing eye accom-
modates the most commonly used distance, and for most 
kids growing up in schools that is a very close distance. 
The other theory says that people do not spend enough time 
outdoors and they lack ambient natural light. More time out-
doors help reduce the development of myopia (Rose et al. 
2008; Wu et al. 2013). Thus, environmental and cultural 
factors are responsible for the phenotypic change and not 
changing genes (allelic frequencies). Here I should also 
address the myth that short-sighted people would not have 
survived as hunter-gatherers. First, the traditional method of 
hunting is not about accurate archery but about endurance 
(Bramble and Lieberman 2004). Second, even in a hunter-
gatherer society, the worth of a man is more than just his 
hunting skill: For example, good storytellers are as valuable 
as good hunters, and they can even be totally blind and still 
be an important asset for their community (Wiessner 2014). 
Third, the gathering part of being a hunter-gatherer does not 
require accurate sight at farther distances.

I have given these examples as warnings that an adap-
tive explanation of a trait (or change in a trait) has to be 
substantiated.

Quo vadis humanity?

If there is evolution in our species, then we can also ask 
where does it lead? First of all, the immediate challenges 
we face are not evolutionary, and something we cannot 
genetically adapt for. The effect of climate change will be 
felt in the next decades, less than one generation from now. 
In a hundred years or so (a bit more than three human gen-
erations) unmitigated global warming might result in a hot 
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Earth, in which most of Earth’s surface will be uninhabitable 
to humans (Steffen et al. 2018).

I do not fear for our species: as Peter Ward wrote in his 
book Future Evolution “for the biological life span of the 
planet, humanity is essentially extinction-proof” (Ward 
2001). This does not mean that our civilization, our way of 
life is extinction-proof. Civilization could very well collapse, 
and then, we are back to the selective forces acting on our 
species for the most part of our history. If we somehow man-
age to avert catastrophic climate change, and Earth’s climate 
is stabilized at some warmer but not too warm point, then 
current evolutionary trends could continue, and new ones 
might enter the scene.

Selection leads to adaptation, and lack of selection might 
erase adaptation. The lack of selection or decreased selection 
on a variant in itself might change its frequency and thus 
leads to evolution. Novel mutations coupled with an expo-
nentially growing population result in a growing number of 
rare variants that arose in the last 100 generations (Coventry 
et al. 2010; Keinan and Clark 2012). These rare variants 
are hard to detect, and some could be deleterious and still 
present in the population because selection had not enough 
time to weed them out.

Another controversial issue is the evolution of intelli-
gence. There is clear evidence that education attainment as 
a phenotypic trait is negatively correlated with the number 
of children one has (Beauchamp 2016). Intelligence has a 
genetic foundation (Deary et al. 2009) and considerable her-
itability (Krapohl et al. 2014). There are claims that there is 
an evolutionary trend toward reduced intelligence (Meisen-
berg 2010), but others contest this claim by showing that 
genetic markers associated with intelligence do not nega-
tively correlate with the number of children (Conley et al. 
2016). The prospect of falling intelligence is worrisome.

Space travel, the colonization of our solar system, and 
ultimately the colonization of other solar systems will result 
in a new bout of human evolution. When we will “boldly go 
where no man has gone before,” then similarly to the peo-
pling of the continents, the founding effect will be strong. 
Even if a large contingent of humans is sent, and it was 
calculated that a multi-generational voyage to another planet 
might need as many as 30,000 individuals to maintain suf-
ficient genetic diversity to found a colony (Smith 2014), that 
population will not have all the genetic diversity of human-
ity. If we also consider that people are groupish and new 
colonies will be founded by ethnically and/or a geographi-
cally limited set of people, then some drift is unavoidable. 
Once we reach our goal, there will be a new planet and a 
novel environment posing new selection pressures. Human-
ity then will again diverge.

Evolution can also be seen as a process leading to novel 
species. Will humanity split into two or more species? We 
are one species now according to the biological species 

concept. And we might be a different species in millions 
of years, but the real question is will we ever split into two 
or more human species? Before we jump further into the 
realm of science fiction, we should take a look at the past. It 
is actually strange to have only one Homo species on Earth, 
as for most of the existence of our genus, there were more 
than one species of human present on this planet. Our own 
species, appearing some 200 thousand years ago (Aubert 
et al. 2012; McDougall et al. 2005) bears the genetic mark 
of introgression with other human species (Hammer et al. 
2011; Prüfer et al. 2017; Vernot et al. 2016). This is not 
surprising, as speciation might take as much as 1–3 million 
years (Avise et al. 1998), and the diverging lines are hybrid-
izing, in mammals, for 2–4 million years (Fitzpatrick 2004). 
So in the foreseeable future, we do not expect to see any new 
human species.

Humanity is still evolving, and no amount of advanced 
technology will stop that. As a species, we can as well adapt 
to a post-apocalyptic world as to one in which we live more 
in harmony with Mother Nature. The choice is ours. The rest 
is done by the blind watchmaker.
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