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Abstract
Csikós and Horváth proved in J Geom Anal 28(4): 3458-3476, (2018) that if a con-
nected Riemannian manifold of dimension at least 4 is harmonic, then the total scalar
curvatures of tubes of small radius about an arbitrary regular curve depend only on the
length of the curve and the radius of the tube, and conversely, if the latter condition
holds for cylinders, i.e., for tubes about geodesic segments, then the manifold is har-
monic. In the present paper, we show that in contrast to the higher dimensional case,
a connected 3-dimensional Riemannian manifold has the above mentioned property
of tubes if and only if the manifold is a D’Atri space, furthermore, if the space has
bounded sectional curvature, then it is enough to require the total scalar curvature con-
dition just for cylinders to imply that the space is D’Atri. This result gives a negative
answer to a question posed by Gheysens and Vanhecke. To prove these statements,
we give a characterization of D’Atri spaces in terms of the total scalar curvature of
geodesic hemispheres in any dimension.
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1 Introduction

By Hotelling’s theorem [10], in the n-dimensional Euclidean or spherical space, the
volume of a solid tube of small radius about a curve depends only on the length of the
curve and the radius of the tube. Gray and Vanhecke [6] extended Hotelling’s theorem
to rank one symmetric spaces. Csikós and Horváth [3], [4] showed that Hotelling’s
theorem is true also in harmonic manifolds, and conversely, if a Riemannian manifold
has the property that the volume of a solid tube of small radius about a geodesic seg-
ment depends only on the radius of the tube and the length of the geodesic, then the
manifold is harmonic. Using the Steiner-type formula of Abbena, Gray, and Vanhecke
[1], the above characterization of harmonic spaces provided further similar character-
izations of harmonicity in which the condition on the volume of solid tubes is replaced
by analogous conditions either on the surface volume, or on the total mean curvature
of the tubular hypersurfaces. If the dimension of the manifold is at least 4, harmonic-
ity can also be characterized by an analogous property of the total scalar curvature
of the tubular hypersurfaces. It was left open in [4] whether the restriction on the
dimension is necessary in the case of total scalar curvature. Gheysens and Vanhecke
[5, p. 193] pointed out that the 3-dimensional case is different. They also posed the
question whether vanishing of the total scalar curvature of tubes about curves in a
3-dimensional Riemannian manifold implies that the manifold is harmonic. Recall
that a 3-dimensional connected Riemannian manifold is harmonic if and only if it is
of constant sectional curvature.

The goal of the present paper is to fill this gap and characterize 3-dimensional
Riemannian manifolds, in which the total scalar curvature of tubular surfaces of small
radii about regular curves, or only about geodesic segments depends only on the length
of the central curve and the radius of the tube. One of our main theorems, Theorem
4.1 says that a 3-dimensional Riemannian manifold has this property for tubes about
arbitrary regular curves if and only if the space is a D’Atri space, furthermore, the
total scalar curvature of tubes in a 3-dimensional D’Atri space is constant 0.

Recall that a Riemannian manifold is said to be a D’Atri space if the local geodesic
reflection with respect to an arbitrary point is volume-preserving. Every harmonic
manifold is a D’Atri space, but the family of D’Atri spaces is strictly larger than
that of harmonic manifolds even in dimension 3, as shown by the classification of
3-dimensional D’Atri spaces by Kowalski [11]. In particular, by Theorem 4.1, the
answer to the above mentioned question of Gheysens and Vanhecke is negative.

It is a natural question to ask whether the D’Atri property of a 3-dimensional
Riemanianmanifold is implied by theweaker assumption that the total scalar curvature
of tubular surfaces of small radius about geodesic segments depends only on the length
of the geodesic and the radius of the tube. In Theorem 4.2, we show that the answer is
yes, if we assume additionally that themanifold is complete and has bounded sectional
curvature, for example if it is compact, or homogeneous. However, the following
question remains open.

Question 1 Can we omit the assumptions on completeness and boundedness of the
sectional curvature in Theorem 4.2?
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The proof of Theorems 4.1 and 4.2 will be based on Theorem 3.1, which provides
some characterizations of D’Atri spaces in terms of the scalar curvature functions of
geodesic spheres. It claims, for example, that a Riemannian manifold is a D’Atri space
if and only if any two geodesic hemispheres lying on the same geodesic sphere have
the same total scalar curvature. There is a strong conjecture proposing that all D’Atri
spaces are locally homogeneous. If it is true, then it would complete the classification
problem of harmonic manifolds by J. Heber [9]. The conjecture is true in dimension 3
and is supported by a theorem of P. Günther and F. Prüfer [8] claiming that in a D’Atri
space, the volume of small balls depends only on the radius, but not on the center. A
positive answer to the following question would be a further support to the conjecture
and would sharpen Theorem 3.1.

Question 2 Do small geodesic spheres of the same radius have equal total scalar
curvature in a connected D’Atri space?

2 Notations

All manifolds in this paper are assumed to be smooth, connected, and of dimension at
least 3.

Let (M, 〈 , 〉) be a Riemannian manifold of dimension n. The symbols ∇, R, ρ,
and τ will denote the Levi-Civita connection, the curvature tensor, the Ricci tensor,
and the scalar curvature function of M , respectively. For a two-dimensional linear
subspace σ ⊂ Tp M , the sectional curvature in the direction of σ will be denoted by
K (σ ). Let T̊ M ⊆ T M be the domain of the exponential map exp : T̊ M → M of M ,
expp : T̊p M → M be the restriction of exp to T̊p M = Tp M ∩ T̊ M . The injectivity
radius at p will be denoted by inj(p).

For p ∈ M and r > 0, we shall denote by Bp(r) ⊂ Tp M and Sp(r) ⊂ Tp M the
closedball and the sphere of radius r centered at the origin0p ∈ Tp M , respectively.The
unit sphere Sp(1) will be denoted simply by Sp. Denote by SM = ⋃

p∈M Sp ⊂ T M
the total space of the unit sphere bundle of the tangent bundle.

Associated to a non-zero tangent vector v ∈ Tp M \ {0p}, we shall consider the
hemisphere

S+(v) = {w ∈ Tp M | 〈w, v〉 ≥ 0, ‖w‖ = ‖v‖}.

When r < inj(p) and ‖v‖ < inj(p), we can take the exponential images

Sp(r) = exp(Sp(r)), S+(v) = exp(S+(v)).

The set Sp(r) is the geodesic sphere of radius r centered at p. Analogously, the set
S+(v) will be called a geodesic hemisphere.

For a smooth regular curve γ : [a, b] → M and r > 0, set

T•(γ, r) = {v ∈ T M | ∃t ∈ [a, b] such that v ∈ Tγ (t)M, v ⊥ γ ′(t), and ‖v‖ ≤ r},
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and

T◦(γ, r) = {v ∈ T M | ∃t ∈ [a, b] such that v ∈ Tγ (t)M, v ⊥ γ ′(t), and ‖v‖ = r}.

Assume that r is small enough to guarantee that T•(γ, r) ⊂ T̊ M and the exponential
map is an immersion of T•(γ, r) into M . Then we define the solid tube of radius r
about γ by

T•(γ, r) = exp(T•(γ, r)),

while the tubular hypersurface, or shortly the tube of radius r about γ is defined as

T◦(γ, r) = exp(T◦(γ, r)).

Tubular hypersurfaces about geodesic segments will be called cylinders.
Speaking of geodesic spheres and hemispheres, tubes, and cylinders of small radius

r , “small” will always mean that r satisfies the requirements given above in the defi-
nition of these geometric shapes.

The scalar curvature of the geodesic sphereSp(r) at the point expp(v) for v ∈ Sp(r)

will be denoted by τ S(v).
The total scalar curvature of a compact submanifold, possibly with boundary, of a

Riemannianmanifold is the integral of the scalar curvature function of the submanifold
over the submanifold with respect to the volume measure induced by the Riemannian
metric. The definition can be extended in an obvious way to immersed submanifolds
having self-intersections.

When T is a tensor field of type (k, 0) and Y , X1, . . . , Xk are arbitrary vector
fields, then the expression∇Y T (X1, . . . , Xk) can be understood in two different ways,
namely as

(∇Y T
)
(X1, . . . , Xk) or as ∇Y

(
T (X1, . . . , Xk)

)
. We shall use the conven-

tion that whenever the clarifying brackets are missing, ∇Y T (X1, . . . , Xk) should be
understood as

(∇Y T
)
(X1, . . . , Xk).

3 D’Atri spaces and the total scalar curvature of hemispheres

Recall that the volume density function θ : T̊ M → R is defined by the formula

θ(v) = ‖Tv expp(e1) ∧ · · · ∧ Tv expp(en)‖,

where v ∈ T̊p M , (e1, . . . , en) is an orthonormal basis of the Euclidean linear space
Tv(Tp M) ∼= Tp M , and Tv expp denotes the derivative map of the exponential map
expp at v.

For any given unit tangent vector u ∈ SM , the coefficients ak(u) in the Taylor
series

∑∞
k=0 ak(u)rk of the function θ(ru) can be expressed explicitly in terms of the

curvature tensor of M . The initial terms are
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θ(ru) = 1 − ρ(u,u)

6
r2 − ∇uρ(u,u)

12
r3 + O(r4), (1)

see [2, Cor. 2.4].

Definition 3.1 ARiemannianmanifold M is aD’Atri space if for any point p ∈ M , the
local geodesic symmetry in p is volume-preserving, or equivalently, if for all p ∈ M ,
there is a ball Bp(r) ⊂ T̊p M such that θ(v) = θ(−v) for all v ∈ Bp(r).

The definition implies at once, that in a D’Atri space, all the odd coefficients
a2k+1(u) in theTaylor series of the function θ(ru)must vanish. The identitya3(u) ≡ 0,
also called the third Ledger condition L3, means that the Ricci tensor of M is cyclic
parallel, i.e., it satisfies the identity

∇Xρ(Y , Z) + ∇Y ρ(Z , X) + ∇Zρ(X , Y ) = 0.

It was proved by Z. I. Szabó [13, Ch. 2, Thm. 1.1], that any Riemannian manifold
with cyclic parallel Ricci tensor, in particular, every D’Atri space is a real analytic
Riemannian manifold, consequently in such manifolds, the function θ(ru) coincides
with the sum of its Taylor series

∑∞
k=0 ak(u)rk when r is small. This also gives the

equivalence of the D’Atri property to the vanishing of all the odd coefficients a2k+1.
The following technical lemma provides a characterization of spaces with cyclic

parallel Ricci tensor.

Lemma 3.1 The following two statements are equivalent for an n-dimensional Rie-
mannian manifold:

(i) ∇Xρ(X , X) ≡ 0 and ∇τ ≡ 0.
(ii) ∇Xρ(X , X) + c∇Xτ‖X‖2 ≡ 0 for some constant c �= −2/(n + 2).

Proof It is clear that (i) �⇒ (i i), consider the converse. Polarizing (i i) we get

(∇Xρ(Y , Z) + ∇Y ρ(Z , X) + ∇Zρ(X , Y )
)

+ c
(∇Xτ 〈Y , Z〉 + ∇Y τ 〈Z , X〉 + ∇Zτ 〈X , Y 〉) ≡ 0.

To prove (i) at a particular point p ∈ M , choose an orthonormal frame E1, . . . , En
around p, substitute Y = Z = Ei into the above identity and take sum for i . Using
the identity 2div ρ = ∇τ , this gives

0 ≡
n∑

i=1

(
∇X ρ(Ei , Ei ) + ∇Ei ρ(X , Ei ) + ∇Ei ρ(Ei , X)

)
+ c

(
n∇X τ + 2

n∑

i=1

∇〈X ,Ei 〉Ei τ
)

=
( n∑

i=1

∇X ρ(Ei , Ei )
)

+ 2div ρ(X) + c(n + 2)∇X τ

=
( n∑

i=1

∇X ρ(Ei , Ei )
)

+ (c(n + 2) + 1)∇X τ.
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Introducing the notation ω
j
i (X) = 〈∇X Ei , E j 〉 and using the skew symmetry

ω
j
i (X) + ωi

j (X) = ∇X 〈Ei , E j 〉 = 0,

we also have

∇Xτ =
n∑

i=1

∇X
(
ρ(Ei , Ei )

) =
n∑

i=1

∇Xρ(Ei , Ei ) + 2
n∑

i, j=1

ρ(ω
j
i (X)E j , Ei )

=
n∑

i=1

∇Xρ(Ei , Ei ).

Hence (c(n + 2) + 2)∇Xτ ≡ 0, which yields ∇τ = 0 and (i). ��
In the special case when c = 0, implication (i i) �⇒ (i) yields an important statement.

Corollary 3.1 The scalar curvature of a connected manifold with cyclic parallel Ricci
tensor is constant.

The following consequence of the Steiner-type formula of E. Abbena, A. Gray, and
L. Vanhecke [1] will play a crucial role in the proof of the main theorem of this section.

Lemma 3.2 The volume density function, and the scalar curvature of geodesic spheres
are related by the formula

(
ρ(γ ′

u(r), γ ′
u(r)) + τ S(ru) − τ(γu(r))

)
θ(ru)

= ∂2r θ(ru) + 2(n − 1)∂rθ(ru)
1

r
+ (n − 1)(n − 2)θ(ru)

1

r2
, (2)

where u ∈ Sp M is an arbitrary unit tangent vector, γu is the unit speed geodesic with
initial velocity γ ′

u(0) = u, 0 < r < inj(p).

Proof Choose an arbitrary open subset U = expp(rU ) ⊂ Sp(r) of a geodesic sphere,
where U ⊂ Sp is an open subset, and compute the volume VU (h) of the one-sided
parallel domain

⋃
r≤s≤r+h expp(sU ) of height h over U in two different ways for

0 < r < r + h < inj(p). First, computing the volume by integrating the density
function θ over the corresponding domain in the tangent space, we obtain

VU (h) =
∫

U

∫ h

0
θ((r + t)u)(r + t)n−1 dt du

=
∫

U

∫ h

0

{
θ(ru)rn−1 + ∂r

(
θ(ru)rn−1)t + ∂2r

(
θ(ru)rn−1) t2

2
+ O(t3)

}
dt du

=
∫

U

{
θ(ru)rn−1h + {

∂r θ(ru)rn−1 + (n − 1)θ(ru)rn−2}h2

2

+ {
∂2r θ(ru)rn−1 + 2(n − 1)∂r θ(ru)rn−2 + (n − 1)(n − 2)θ(ru)rn−3}h3

6
+ O(h4)

}
du.
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On the other hand, the Steiner-type formula of E. Abbena, A. Gray, and L. Vanhecke
[1, Thm. 3.5] tells us that

VU (h) =
∫

U

{
h − H(ru)

h2

2
+ (

ρ(γ ′
u(r), γ ′

u(r)) + τ S(ru)

−τ(γu(r))
)h3

6
+ O(h4)

}
rn−1θ(ru) du,

where H(ru) is the trace of the Weingerten map of Sp(r) at γu(r) relative to the
normal vector γ ′

u(r).
As the two integrals expressing VU (h) are equal for any open subset U ⊂ Sp and

any 0 < r < inj(p), the integrands must be equal pointwise. Equating the coefficients
of h3 in the expansions of the integrands yields the desired identity. ��

Now we prove the main theorem of this section.

Theorem 3.1 For a Riemannian manifold (M, 〈 , 〉), the following statements are
equivalent:

(i) M is a D’Atri space.
(ii) The product τ Sθ is an even function, i.e., τ S(v)θ(v) = τ S(−v)θ(−v) whenever

both sides are defined.
(iii) The total scalar curvatures of any two geodesic hemispheres lying on an arbitrarily

given geodesic sphere are equal.

Proof Firstwe show the implication (i) �⇒ (i i). Expressing the function r �→ τ S(ru)

for an arbitrary fixed unit tangent vector u ∈ SM with the help of Lemma 3.2, we
obtain

τ S(ru) = ∂2r θ(ru)

θ(ru)
+ 2(n − 1)

∂rθ(ru)

θ(ru)

1

r

+(n − 1)(n − 2)
1

r2
+ τ(γu(r)) − ρ(γ ′

u(r), γ ′
u(r)). (3)

If M is a D’Atri space, then θ is an even function, M has cyclic parallel Ricci tensor,
that is ∇Xρ(X , X) ≡ 0, and the scalar curvature τ of M is constant. Having cyclic
parallel Ricci tensor implies that the function ρ(γ ′

u, γ
′
u) is constant on the domain of

γu. Hence the right hand side of (3), and consequently both τ S(ru) and τ S(ru)θ(ru)

are even functions of r .
To prove that (ii) implies (i), we first prove that that (ii) implies the Ledger condition

L3. Choose an arbitrary unit tangent vector u ∈ SM and consider the functions θ(ru),
τ S(ru) and τ S(ru)θ(ru). According to [2, Thm. 4.4], we have the power expansion

τ S(ru) = (n − 1)(n − 2)

r2
+

(

τ − 2(n + 1)

3
ρ(u,u)

)

+
(

∇uτ − n + 2

2
∇uρ(u,u)

)

r + O(r2),
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which, combined with (1), yields

τ S(ru)θ(ru) = (n − 1)(n − 2)

r2
+

(

τ − n2 + n + 6

6
ρ(u,u)

)

+
(

∇uτ − n2 + 3n + 14

12
∇uρ(u,u)

)

r + O(r2).

The coefficients of odd powers of r have to vanish in the power expansion of an
even function, so if τ Sθ is even, then the coefficient ∇uτ − n2+3n+14

12 ∇uρ(u,u)

of r in its expansion must vanish for every u ∈ SM . By Lemma 3.1, this
gives that M satisfies the L3 condition and has constant scalar curvature, hence
C(u) = ρ(γ ′

u(r), γ ′
u(r)) − τ(γu(r)) is constant on the domain of γu. Another impor-

tant corollary of the third Ledger condition is that M is a real analytic Riemannian
manifold, therefore the functions θ(ru) and τ S(ru)θ(ru) can be written as the sum of
their Laurent series

θ(ru) =
∞∑

k=0

ak(u)rk, τ S(ru)θ(ru) =
∞∑

k=−2

bk(u)rk

for small values of r �= 0. Substituting these Laurent series into (2) and equating the
coefficients of rk , we obtain the following recursive equation for the coefficients ak

assuming that we are given the coefficients bk

ak+2 = 1

(k + n + 1)(k + n)
(Cak + bk).

This relation allows us to prove by an easy induction that if τ Sθ is an even function,
then θ is even as well, i.e., a2k+1 = 0 for all natural number k. The base case a1 = 0
is automatically fulfilled by (1). Assume a2k−1 = 0. Then equation

a2k+1 = 1

(2k + n)(2k + n − 1)
(Ca2k−1 + b2k−1) = 0

completes the induction step and (i) ⇐⇒ (i i) is proved.
Condition (ii) implies (iii) in an obvious way, since for any v ∈ Sp(r), the total

scalar curvature of a hemisphere S+(v) is equal to the integral
∫

S+(v) τ S(w)θ(w) dw,

which is exactly half the total scalar curvature of the sphere Sp(r) if τ Sθ is an even
function. The converse (i i i) �⇒ (i i) follows from a classical result of harmonic
analysis on the sphere, as (iii) means that the hemispherical transformation of the
restriction of the function τ Sθ onto any sphere Sp(r) of small radius r is constant and
this implies by [7, Prop. 3.4.11] that these restrictions are even functions. ��
Corollary 3.2 The scalar curvature function τ S of any geodesic sphere of small radius
in a D’Atri space is an even function.
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Question 3 Assume that τ S is an even function for a Riemannian manifold. Does it
follow that the manifold is a D’Atri space?

4 D’Atri spaces of dimension 3 and the total scalar curvature of tubes

In this section,we strengthenTheorem3.1 in the 3-dimensional case. Thedistinguished
role of dimension three is due to theGauss–Bonnet theorem, controlling the total scalar
curvature of surfaces.

Theorem 4.1 For a 3-dimensional Riemannian manifold (M, 〈 , 〉), the following con-
ditions are equivalent:

(i) M is a D’Atri space.
(ii) The total scalar curvature of any geodesic hemisphere is equal to 4π .

(iii) The total scalar curvature of a tube of small radius about any regular curve is 0.
(iv) The total scalar curvature of a tube of small radius about any regular curve depends

only on the length of the curve and the radius of the tube.

Proof Theorem 3.1 implies (i i) �⇒ (i). The total scalar curvature of a geodesic
sphere of small radius in M is 8π by the Gauss–Bonnet theorem. If M is a D’Atri
space, then by Theorem 3.1, the total scalar curvature of a geodesic hemisphere and its
complementary hemisphere are equal, so they are both equal to 4π . Thus, (i) �⇒ (i i)
is proved.

To prove (i i) �⇒ (i i i), consider a tube T◦(γ, r) of small radius r about a regular
parameterized curve γ : [a, b] → M .Wemay assumewithout loss of generality that γ
is of unit speed. The union of the tube T◦(γ, r) and the hemispheres S+(−rγ ′(a)) and
S+(rγ ′(b)) is the image of a piecewise smooth C1-immersion of a “capsule” home-
omorphic to a sphere into M so its total scalar curvature is 8π by the Gauss–Bonnet
theorem. On the other hand, assumption (i i) impies that the total scalar curvature of
the union S+(−rγ ′(a)) ∪ S+(rγ ′(b)) is also 8π , therefore the total scalar curvature
of the tube T◦(γ, r) must be 0. Conversely, assume that the total scalar curvature of
any tube vanishes. Then computing the total scalar curvature of the immersed cap-
sule constructed above we obtain that the sum of the total scalar curvatures of the
geodesic hemisheres S+(−rγ ′(a)) and S+(rγ ′(b)) equals 8π . Let u ∈ SM be an
arbitrary unit vector and choose the regular curve γ so that −γ ′(a) = γ ′(b) = u.
Then S+(−rγ ′(a)) = S+(rγ ′(b)) = S+(ru), therefore S+(ru) must have total
scalar curvature 4π for any small radius r . Thus, (i i i) �⇒ (i i) is proved.

Condition (iv) is obviously weaker than (i i i). If condition (iv) holds, then there
exists a function f : (0, r0) → R such that the total scalar curvature of a tube of small
radius r about any regular curve γ : [a, b] → M of length lγ equals f (r)lγ . Choosing
an arbitrary smoothly closed regular curve γ , the tubes of small radii about γ are
immersed tori, so their total scalar curvature vanish by the Gauss–Bonnet theorem.
This means that the function f must vanish around 0, hence (iv) �⇒ (i i i). ��
Theorem 4.2 Assume that the 3-dimensional Riemannian manifold (M, 〈 , 〉) has the
property that the total scalar curvature of a cylinder of small radius r about any
geodesic segment γ depends only on the radius r and the length of γ .
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(i) Then there is a number a ∈ R and a smooth function b : SM → R such that for
any geodesic curve γu with initial velocity γ ′

u(0) = u ∈ SM, we have

K (ν(t)) = at2 + b(u)t + K (ν(0)), (4)

where K (ν(t)) is the sectional curvature in the direction of the normal plane
ν(t) ⊂ Tγu(t)M of γu at γu(t).

(ii) If we assume also that M is complete and the sectional curvature of M is bounded,
(e.g., if M is compact, or homogeneous), then M is a D’Atri space.

Proof The initial terms of the power expansion of the total scalar curvature Tγ (r) of
a tube of small radius r about a unit speed curve γ : [a, b] → M̃ were computed
explicitely by L. Gheysens and L. Vanhecke [5, Thm. 5.1] in any n-dimensional Rie-
mannian manifold M̃ . Their formula has the form

Tγ (r) = cn−2rn−4
∫ b

a
{(n − 3)(n − 2) + A(n)r2 + B(n)r4 + O(r6)} dt,

where cn−2 is the volume of the unit sphere in the (n − 1)-dimensional Euclidean
space,

A(n) = − n − 3

6(n − 1)
{(n − 4)τ + (n + 2)ρ11}(γ (t)),

B(n) = 1

n2 − 1

{n2 − 9n + 2

72
τ 2 + n2 + 3n + 17

45
‖ρ‖2 − (n + 1)(n + 2)

120
‖R‖2

− (n − 3)(n − 4)

20
�τ − (n + 6)(n − 3)

40
�ρ11 + 11n2 − 27n + 142

120
∇2
11τ

+ (n − 4)(n + 1)

36
τρ11 − 7n2 + 21n − 46

180

∑

i, j≥2

ρi j R1i1 j − n2 + 3n − 58

120
ρ2
11

− 7n2 + 21n + 194

120
∇2
11ρ11 − (n + 1)(n + 2)

36

∑

i, j≥2

R2
1i1 j

+ n2 + 3n + 62

180

∑

i≥2

ρ2
1i − (n + 1)(n + 2)

60

∑

i, j,k≥2

R2
1i jk + n2 − 3n + 8

6
∇γ ′′τ

− n2 + 3n + 14

6
∇1ρ1γ ′′ − n2 + 3n + 14

12
∇γ ′′ρ11

}
(γ (t)),

and the tensor coordinates are taken with respect to an orthonormal frame E1 =
γ ′, E2, . . . , En along γ .
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In particular, c1 = 2π , A(3) = 0, and using the identity ‖R‖2 = 4‖ρ‖2 − τ 2, valid
in any 3-dimensional Riemannian manifold, a straightforward computation shows that

B(3) = 1

6

{
∇2
11τ − 2∇2

11ρ11 + ∇γ ′′τ − 4∇1ρ1γ ′′ − 2∇γ ′′ρ11
}
(γ (t)).

In the special case when γ is a geodesic curve, all the terms containing the acceleration
γ ′′ disappear, thus, for the total scalar curvature Tγ (r) of a cylinder of small radius
about a geodesic segment γ : [a, b] → M lying in a 3-dimensional manifold M , we
have

Tγ (r) = 2π
∫ b

a

{{∇2
11τ − 2∇2

11ρ11
}
(γ (t))

r3

6
+ O(r5)

}
dt .

This formula implies that if the total scalar curvature of a cylinder depends only
on the radius and the length of the axis of the cylinder, then the coefficient â ={∇2

11τ − 2∇2
11ρ11

}
(γ (t)) of r3/6 must be a constant independent of the geodesic γ

and the parameter t . Set a = â/4.
Now let γu, (u ∈ SM) be an arbitrary unit speed geodesic in M , and let E1 = γ ′

u,
E2, E3 be a parallel orthonormal frame along γu, σi j (t) ⊂ Tγu(t)M the plane spanned
by Ei (t) and E j (t). Then the sectional curvature in the direction of the normal plane
ν = σ23 can be expressed as

K (ν) = K (σ23) = (
K (σ12) + K (σ23) + K (σ31)

) − (
K (σ12) + K (σ31)

)

= 1

2
τ ◦ γu − ρ(E1, E1).

Differentiating this equation twice with respect to the curve parameter, and using the
fact that the vector field E1 = γ ′

u is parallel along γu, we obtain

K (ν)′′ =
(
1

2
∇2
11τ − ∇2

11ρ(E1, E1)

)

= â

2
= 2a.

Thus K (ν(t)) must be a polynomial function of t of degree at most 2 with leading
term at2. In particular, (4) holds with a suitably chosen coefficient b(u). This proves
(i).

To prove (i i), assume M has bounded sectional curvature. Then for any choice of
γu, K (ν(t)) is a bounded polynomial function defined on the whole real line, hence it
is constant. Consequently, it has vanishing derivative

d

dt
K (ν(t)) =

(
1

2
∇1τ − ∇1ρ(E1, E1)

)

= 0.

Evaluating this equation at t = 0, we obtain 1
2∇uτ − ∇uρ(u,u) = 0 for any u ∈ SM

and by Lemma 3.1, we conclude that M satisfies the Ledger condition L3. H. Pedersen
and P. Tod [12] proved that 3-dimensional Riemannian manifolds satisfying the third
Ledger condition are D’Atri spaces, so M is a D’Atri space. ��
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