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Abstract
As part of the “text-as-data” movement, Natural Language Processing (NLP) pro-
vides a computational way to examine political polarization. We conducted a meth-
odological scoping review of studies published since 2010 (n = 154) to clarify how 
NLP research has conceptualized and measured political polarization, and to charac-
terize the degree of integration of the two different research paradigms that meet in 
this research area. We identified biases toward US context (59%), Twitter data (43%) 
and machine learning approach (33%). Research covers different layers of the politi-
cal public sphere (politicians, experts, media, or the lay public), however, very few 
studies involved more than one layer. Results indicate that only a few studies made 
use of domain knowledge and a high proportion of the studies were not interdisci-
plinary. Those studies that made efforts to interpret the results demonstrated that 
the characteristics of political texts depend not only on the political position of their 
authors, but also on other often-overlooked factors. Ignoring these factors may lead 
to overly optimistic performance measures. Also, spurious results may be obtained 
when causal relations are inferred from textual data. Our paper provides arguments 
for the integration of explanatory and predictive modeling paradigms, and for a 
more interdisciplinary approach to polarization research.
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Introduction

Language polarization – conceptualization and operationalization

As textual data sources grow in number and size, Natural Language Processing 
(NLP) is gaining ground in many social science subfields, including research on 
political polarization. In contrast to votes or polls, texts allow their authors to 
express a more nuanced opinion. Internet textual data reflect observed behav-
ior as opposed to polls, and computational methods provide access to these vast 
amounts of data.

To review the most diverse approaches of polarization research, we wanted to 
refer to political polarizations in a broader sense. Indeed, characteristically dif-
ferent definitions of polarization can be found in the literature. Even one of the 
classic papers [1] treats polarization as multidimensional in character. According 
to the authors, polarization can be measured as (1) the dispersion of opinions, (2) 
the bi-modality of opinions, (3) the close association between different social atti-
tudes, or (4) the correlation between social attitudes and salient individual char-
acteristics. Lelkes [2] distinguishes two other forms: perceived polarization and 
affective polarization. A recent writing on the polarization of the digital sphere, 
Yarchi et al. [3], in addition to definitions already mentioned, distinguish interac-
tional polarization that focuses on whether homophilic interactions are dominant 
over heterophilic ones (exploiting the network nature of the digital sphere). We 
included polarization not only around political ideologies, but also around public 
policy issues.

When searching for relevant studies, we also included “partisanship” as an 
alternative to "political polarization” in the search terms. Originally, partisanship 
was understood as affective or rational party identification [4], hence it could be 
causally linked to polarization, although it was not considered to be equivalent to 
it. Recently, however, many authors have been using partisanship and polarization 
as interchangeable concepts (e.g., [5]).

Turning to language polarization: Fiorina and Adams’ [6] comprehensive paper 
is one of the seminal works on political polarization, with over 1000 citations, 
listing different kinds of empirical evidence used to study political polarization, 
but not listing linguistic features. Linguistic manifestations of political polariza-
tion (language polarization for short from now on) has entered the scientific dis-
course at a later point, mostly in the last decade. The term “political polarization” 
has been first used at the largest conference of computational linguists (Annual 
Meetings of the Association for Computational Linguistics) in 2012.

When measuring language polarization, one either tries to adapt existing meas-
urement practices of political polarization to textual data, or they develop a new 
approach. The former solution is possible for several traditionally used polariza-
tion measures. For example, DiMaggio et  al.’s [1] measures, that are based on 
the distribution of a numerical variable, can be adapted if the textual data can 
be converted into numerical data in some appropriate way. As we will see in the 
review, affective polarization [2] and interactional polarization [3] can be also 



291

1 3

Journal of Computational Social Science (2023) 6:289–313	

defined on textual data. In other cases, it is not possible to directly match the 
approach applied to texts with that applied to non-textual data, see e.g., topic 
choice, which, as the review shows, is often the focus of NLP analysis.

As the review will show, NLP methods most often introduce new ways for meas-
uring polarization. The approaches differ according to the underlying conceptualiza-
tion of political position and the data available. A focus of the review is on inves-
tigating whether researchers are indeed identifying traces of political polarization 
when they detect differences in language use between ideological sides—a question 
that arises in supervised classification.

The aims of our paper

We provide a methodological scoping review on how researchers have used NLP to 
study language polarization. We identify data sources and computational techniques, 
and review the different conceptualizations and operationalizations of polarization.

Our review captures several features that describes the difference between the 
research paradigms of social science and computer science-based NLP. These two 
approaches can be best identified as explanatory and predictive in nature [7, 8]. 
Whether the research is embedded in theory, whether qualitative approach is also 
used, whether the study address causality, or whether the results are interpreted, all 
can be linked to this duality. Social scientists traditionally prioritize explanations, 
invoking causal mechanisms derived from theory. However, computer scientists are 
more concerned with developing accurate predictive models, leaving interpretability 
aside. The degree of integration of the two approaches is also characterized in the 
review.

The overarching aim of this scoping review is to provide a starting point for 
future research by synthesizing approaches, potential flaws, and solutions. We would 
also like to give social science researchers who are unfamiliar with NLP a picture of 
the ongoing research.

The review’s methodology

We decided to write a scoping review because of the multidisciplinary nature of the 
papers to be reviewed, and because of the differences in terminology across disci-
plines. We performed the searches using Google Scholar, and included studies pub-
lished between January 1, 2010 and June 29, 2021. Our initial search terms were 
political “polariz(s)ation” AND “natural language processing”, then added syno-
nyms to both terms (for the detailed methodology of the review see the Supplement).

As is usually the case with scoping reviews, because of the undefined nature of 
the search terms, and because of searching anywhere within the article, we got many 
irrelevant hits, so a range of hard and soft exclusion criteria was defined. We syn-
thesized our findings in a narrative report. Due to space limitations, technical details 
have been moved to the Supplementary Material.
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Results

Summary

After deleting duplicates, our search returned 3078 unique hits, to which we added 6 
more papers manually. Of the initial 3084 records, we identified 154 relevant studies 
(see Table S1 in the Supplement).

According to Fig. 1, the number of publications has risen during the past decade. 
Table  1 presents top 10 countries of the paper’s focus, and countries the authors 
are affiliated with. (Full information can be found in the Supplement, Table S2.) As 
Table 1 presents, more than half of the studies were conducted using US data and 
the US is also the most publishing country affiliated with half of the studies. The US 
dominance is probably a phenomenon that manifests itself throughout the scientific 
literature, and most explicitly in the areas with a strong methodological basis. Simi-
lar results suggesting US dominance were found by recent bibliometric analysis on 
carbon emissions from transport sector [9], on effects of COVID-19 pandemic on 
mental health [10], or in a more technical area, on NLP in medicine [11], finding US 
dominance of 29%, 21% and 63%, respectively.

Only a tenth of the studies were single-authored. Figure  2 demonstrates the 
research collaboration among countries (full information can be found in Table S4 
of the Supplement). The network shows co-authorship relations. The size of a node 
indicates the number of studies affiliated to the country, the width of the edges is 
proportional to the number of publications produced in collaboration, and colors 

Fig. 1   The included studies by year of publication
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Table 1   Top countries of the 
paper’s focus, and top countries 
the authors are affiliated with 
(with frequency of occurrence)

Country of paper’s focus Affiliation country

USA 91 USA 81
United Kingdom 9 Italy 14
Italy 6 United Kingdom  13
Spain 6 Germany 11
Canada 5 Qatar 10
Germany 5 Canada 8
India 3 Spain 7
Scotland 3 India 6
Turkey 3 Ireland 5
Ukraine 3 France 4

Fig. 2   Co-authorship network of countries
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represent continents. Countries have been indicated by their corresponding three-
letter abbreviation according to the ISO 3166 standard.

Figure 2 shows that in absolute numbers, the US leads in collaborations, GBR 
is second, and overall European and Asian countries are also very active. However, 
in terms of proportions (Table S4), it can be seen that 80% of US studies had no 
authors from other countries, while almost all of the non-US authors are collabora-
tors, typically with a US co-author. These findings underline the US-centricity of the 
research topic.

Figure  3 represents co-authorship network of disciplines, its edges and nodes 
are defined in a similar way to Fig. 3, with disciplines instead of countries. Vertical 
edges at the bottom of the figure correspond to collaborations between authors from 
the same disciplines. (Table S4 and S5 in the Supplementary Material present full 
information and also describe the science classification method).

Two-thirds of the studies were assigned to Social Sciences and the same propor-
tion to Technology. The number of non-interdisciplinary studies is very high: about 
one-fifth of the articles were written by social scientists only, and a further 40% 
(!) were written only with collaborators from the field of Technology. By merging 
Physical Sciences and Life Sciences & Medicine with Technology, we can conclude 
that 45% of the articles were co-authored exclusively from these areas, without sub-
ject matter collaborator.

As Table S1 shows, the range of sources is very diverse, with four fifths of the 
papers appearing in a source that is listed only once in the database, which indicates 
the multidisciplinary nature of the topic.

Figure 4 presents a word cloud of the studies’ abstracts, the figure clearly shows 
the research focus.

Fig. 3   Co-authorship network of disciplines
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Data

Data sources

This section describes the data sources that the studies used. Choice of data 
source has an impact on the end result, we therefore registered the type of data 
sources (see Table 2 for the top 10, the full list is in the Supplement, Table S3.). 
According to Table 2, more than 40% of the studies used Twitter data. We agree 
with a reviewer’s comment that when interpreting this result, different aspects of 
data usability should be taken into account. Twitter is the most accessible source 
of politically relevant texts in most countries. It is also much less time-consuming 
and requires less technical expertise to use than other sources. However, in addi-
tion to accessibility, the fruitfulness of the data should also be taken account—
there are research questions for which the use of other sources, such as parlia-
mentary speeches, may be much more justified.

Data sources also differ in the time period they cover, with longer time periods 
allowing for changes to be detected (see Table 2). Longer time scales also provide 
a basis for benchmarking the degree of polarization detected in the present. For 
example, Jensen et  al. [12] found that although the political discourse became 
more polarized in the late 1990s, polarization remained low relative to the late 
19th, and much of the twentieth century. Tracing changes over time is also pos-
sible by measuring changes in polarization not over a ‘common’ historical time 
span, but over the course of individual lives. For example, Iliev et al. [13] exam-
ined the legislative rhetoric of US Senators as a function of their time in office.

Fig. 4   Word cloud of the studies’ abstract
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Layers of political discourse

Language polarization can appear at different layers of the political public sphere, 
including the official channels of political communication (e.g., parliamentary 
speeches); the different types of media, and also the user-generated contents (e.g., 
social media,). In the following, we will make a distinction between professional 
(official sources and the press) and non-professional (lay) communication. A fourth 
layer emerged during our reviewing process: the expert layer (e.g., texts written by 
judges). In this domain, ideological expressions are considered inappropriate, so it 
is a particularly intriguing question whether ideology can be detected by computa-
tional tools.

According to Table  2, most of the papers were concerned with the lay pub-
lic (n = 71); they all used only social media data. The majority of them researched 
tweets or posts; exceptions were KhudaBukhsh et  al. [14], who studied the com-
ments sections of YouTube channels, or Wu et al. [15], who analyzed Twitter bios.

Studies that were concerned with the official layer (n = 60) were mostly based 
on legislative speeches. Exceptions were, for example, Gross and Jankowski [16], 
who used a dataset of local party manifestos in Germany, or Wang and Tucker [17], 
whose dataset consisted of press releases issued by members of the US Congress.

The expert sphere was studied by a smaller number of studies (n = 9). Among 
them were Jelveh et al. [18], who detected latent ideological bias in academic papers 
in economics, Diaf et al. [19], whose dataset consisted of business cycle report sec-
tions issued by German economic research institutes, and Hausladen et al. [20], who 
studied the ideological direction of US Circuit Court decisions.

Table 2   Top 10 data source, layers of political public sphere examined and length of period covered in 
the studies (with frequencies)

*Presidential/presidential candidates’ speeches, campaign speeches, public statements, presidential can-
didacy announcements, **party manifestos, candidate manifestos, party platforms, press releases, coali-
tion agreements, ***judges’ written opinions, business reports, scientific papers)

Type of data source Which layers of the political 
public sphere are examined

Length of period 
covered

Twitter 66 Lay only 63 Present data or 
period shorter than 
2 years

105

Congressional/Parliament speeches 32 Official (politicians) only 50 2–5 years 9
News sites 22 Media only 19 5–10 years 11
Speeches outside Congress* 8 Expert only 5 10–20 years 8
Written public political docu-

ments**
7 Media and lay 4 20–50 years 10

Facebook 6 Official and media 4 50–100 years 2
Reddit 5 Official and lay 3 100 + years 9
Blogs 4 Official and expert 2
Texts produced by non-political 

experts***
4 Official and media and expert 2

Newspapers 3 Official and media and lay 1
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Studies very rarely involved more than one layer of the public sphere (only 9%). 
Serrano-Contreras et al. [21] studied comments made on YouTube videos uploaded 
by politicians. This approach could be generally used to examine the reactions 
of one layer to another. Karamshuk et al. [22] studied both the media and the lay 
public during the Ukrainian–Russian conflict of 2013–14, but the two layers were 
researched separately.

Similarities between the polarization of different layers (e.g., whether partisan 
terms diffuse from one to the other) was rarely investigated. An exception was Hof-
mann et  al. [23], who measured differences between the language of the political 
parties and their media representation. Acree [24], going even further, compared the 
structure of the layers he studied and showed that ideology represented in the expert 
discourse is rich and varied, but professional political debate compresses ideological 
expression into a single (left–right) dimension. Yan et al. [25, 26] studied three dif-
ferent layers, the expert sphere (conservative and liberal wikis), alongside with the 
media and politicians. Their main research question was to what extent the polari-
zation of the three layers differed [25] and how well the models can be transferred 
across domains [26]. In the latter, they showed that models based on the Congres-
sional Record have some success in classifying articles from the media, that is, there 
is a diffusion process between the Congress and the media.

Key lessons learned from data

Some papers call attention to an often-overlooked problem: the importance of the 
nature of the data. The way the data were collected and filtered, the context in which 
they were created, and the genre of the texts are all important factors that determine, 
for example, the performance of the model, or whether a machine learning model 
can be transferred from one database to another (a problem called transferability, or 
cross-domain generalizability).

Cohen and Ruths [27] proved that using politically discriminative hashtags to 
define the corpus (which is a standard research practice) favors including an artifi-
cially enriched population of politically polarized users, who can therefore be more 
easily classified by the model. Their result also suggests that previously reported 
performances had been systematically overoptimistic. They also showed that clas-
sifiers cannot be used to classify users outside the range of political orientation on 
which they were trained.

In other words, groups of people with different political activities also use very 
different languages. Therefore the common implicit assumption according to which 
the most extreme cases exhibit the same phenomenon, only in a more detectable 
way, does not stand. E.g., Diermeier et al. [28], Morini et al. [29], and Grover et al. 
[30] follow this assumption implicitly when selecting more explicit/extreme cases, 
as well as Cotelo et  al. [31], who only included in their analysis clearly codable 
tweets that were given the same political label by the coders.

Yan et al. [25] achieved a result similar to that of Cohen and Ruths [27] on three 
text corpora of different genres from different public spheres. They studied differ-
ent layers of political discourse, and found that although the models perform well 
on within-dataset, their ability to generalize from one dataset to another is poor. 
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Another of their important results show that the success of prediction is not only 
domain-specific but also time-specific: effectiveness of prediction decreases as the 
test data is further removed in time from the training data. This raises questions 
about Diermeier et al.’s [28] methodology, whose training set consists of speeches in 
the 101st-107th Senates, and the test set comes from the 108th Senate.

Potthast et al. [32] made the important finding that the language of news sites is 
in fact not so much divided along right and left ideological lines, but rather along 
the mainstream/hyper-partisan dichotomy, i.e., along stylistic lines. Hirst et al. [33, 
34] also detected poor transferability when classifying across two Canadian Parlia-
ments (with the Liberal Party governing in the first case, and the Conservative Party 
in the second). It is partly this result that led them to the realization that party status 
(being in opposition vs. being government) is an often-overlooked factor when clas-
sifying texts by ideology.

Methods

Text analytic methods

For the benefit of readers who are not familiar with text analytic methods, in the 
Supplement, we give a brief intuitive outline of the methods most used in the stud-
ies. Some of them are specific to political science (Wordfish, Wordscores, Words-
hoal), others are general, widely used NLP methods (topic model, word embedding, 
supervised machine learning, sentiment analysis).

Operationalization of polarization

When operationalizing polarization, measurement of political positions must first be 
determined, then, based on it, measurement of polarization must be defined. Typi-
cally, one of the following two approaches were used to define the political position 
of a given text: ideological scaling or classification.

Scaling was mostly done using standard political science approaches (Word-
scores, Wordfish, or Wordshoal, n = 8). Gross and Jankowski [16], using Wordfish 
on a dataset of local party manifestos in Germany, identified dimensions of party 
conflict. Medzihorsky et al. [35], using Wordfish, were able to show that the 2012 
US Republican candidates moved farther away from the more traditional Republican 
ideology. Wordshoal was used, for example, by Goet [36].

Another approach to scaling comes from ideal point models (the DW-NOMI-
NATE, [37], also belongs here). The models estimate political positions for legisla-
tors from legislative votes. The purpose of generalizing these models is that they 
can also incorporate texts. Nguyen et al. [38] introduced the hierarchical ideal point 
topic models, which uses not only votes but also associated bill text and the lan-
guage of the legislators themselves and incorporates topic of the bills. Gerrish and 
Blei [39] develop the issue-adjusted ideal point model, which accounts for the con-
tents of the bills. The idea is that the votes on a bill depend on a legislator’s general 
position, adjusted for the bill’s content.
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When using scaling, degree of polarization can be approximated from the dis-
tribution of positions. In this context, an explicit measure is defined by Goet [36], 
which captures the consistency with which MPs fall within their party label across 
multiple policy issues. A score of “1” represents perfect polarization, with zero 
overlap between left and right wing parties.

Scaling has been used more by political science authors, while others used clas-
sification (51 studies used classification, mostly a supervised version). Classification 
in this context is a method that tries to identify the position of an author based on 
the words he or she has used. These studies, explicitly or implicitly, consider polari-
zation as a classification problem. High classification performance suggests that lan-
guage used on one political side is homogeneous, and different from language used 
on other sides. A polarization metrics can be defined: the greater the classification 
model’s ability to identify the position of the author, the greater polarization there 
is. Works written most explicitly in this approach are Goet [36] and Green et  al. 
[40]. Following this approach, Bayram et al. [41] analyzed House of Representatives 
floor speeches, and detected a clear upward trend in classification performance, indi-
cating that polarization have become more obvious in the language of the speeches. 
In their highly cited paper, Gentzkow et  al. [42], building on methods developed 
by Taddy [43, 44], recommend a polarization measure that follows a similar logic. 
They specify a multinomial model of speech with choice probabilities that vary by 
party, and polarization is measured by how easily an observer who knows the model 
can guess a speaker’s party just from the speaker’s choice of a single phrase. Kelly 
et al. [45] developed this method further.

In addition to scaling and supervised classification, other less common methods 
were also used. Samantray and Pin [46] used the ideological divergence indicator 
developed by Lelkes [2] that characterizes the level of polarization based on bi-
modality of the distribution of a numerical variable. The latter variable traditionally 
comes from opinion polls, here it is generated as a feature of texts. Darwish [47] 
used a polarization measure on Twitter data following Garimella et al. [48], measur-
ing the amount of controversy from characteristics of the conversation graph. Budhi-
raja and Pal [49] represented each politician as a word embedding vector based on 
the content of their tweets, then identified polarization as the partitioning of the 
resulting point cloud by party. Villa-Cox et  al. [50], generalizing KhudaBukhsh 
et  al. [14], interpreted polarization through machine translation. Their framework 
assumes that two sub-communities are speaking in two different languages and 
obtains single-word translations. Number of disagreed word-pairs present a quantifi-
able measure of polarization. Other proposals have been also made to operationalize 
polarization, see Gross et al. [51], and Acree et al. [52].

Methods used for examining changes over time

Most studies investigating changes over time simply divide the time interval into 
several sections, and carry out the same analysis on each section separately. Other 
studies combined NLP with traditional time modeling statistical methods. For exam-
ple, Tsur et al. [53] applied time series regression on topic affiliations resulting from 
the topic model. Gross and Jankowski [16] used linear mixed-effects models with 
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the dependent variable being the positions estimated by Wordfish. Hofmann et al. 
[23] employed time series modeling using generalized additive models to compare 
the lexical differences between parties.

There were studies using the structural topic model (STM), an NLP model that 
directly incorporates time. Farrell et al. [54], for example, analyzed texts written by 
US organizations about climate change over a 20-year period, and applied STM to 
examine how corporate funding ties influenced the change in topics over time.

Other authors, for example Gross et al. [51], Acree et al. [52], and Iliev et al. [13] 
developed their own statistical models to identify temporal changes in ideological 
positions.

Classification models

Unsupervised classification  The main advantage of unsupervised classification is 
that it does not require any prior labeling of users, therefore there is no need for 
domain knowledge. Stefanov et al. [55] and Darwish et al. [56] used unsupervised 
user stance detection on Twitter. After projecting users onto a low-dimensional space, 
they applied clustering, which allowed them to find core users who were representa-
tive of the different stances. Another example for unsupervised classification is clus-
ter analysis, applied for example by Giglietto et al. [57].

Supervised classification  We have reviewed the relevant studies according to several 
criteria: nature of the target variable, way of annotation, use of structural information, 
and nature of classification features.

According to different definitions of political position, different target variables 
were used: stance [58], party [15], or ideology [59]. Specific target variable was 
used, for example, by Gerrish and Blei [39], who predicted the vote cast based on 
a legal text. The paper is unique in that it predicts the reaction to a text, not the 
author’s ideological position. Cotelo et al. [31] used stance on two parties instead 
of using it on only one (with positive, negative or neutral stances on each) as target 
variables, and defined the task as classifying tweets into any of the nine combinato-
rial categories.

The creation of labels for supervised learning (or “annotation”) is also an impor-
tant issue, as obtaining labeled texts can itself be challenging. A manually labeled 
corpus to predict the ideological direction of US circuit court decisions was used by 
Hausladen et al. [20], with annotation being obviously a challenge in this case. If the 
annotation task is easy to teach, crowdsourcing can be used, like in the case of Wang 
and Tucker [17], who used Amazon’s Mechanical Turk.

In many other cases, manual annotation is not necessary, because the labels can 
be obtained from external data. This is obviously the case with politicians’ texts. 
A less trivial example was given by Jelveh et al. [18], who investigated academic 
articles written by American economists, and determined the author’s politi-
cal leaning based on their political campaign contributions and petition signing 
activities. Zubiaga et  al. [60] classified the stance of Twitter users on the inde-
pendence movement in Catalonia, and their labels relied on users’ self-reported 
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territory that they claim to be citizens of, which is directly indicative of their 
stance toward the independence movement.

In other cases, the label is inherited from larger units of analysis by smaller 
ones. Kulkarni et al. [61] used the classification of news sources provided by All-
Sides.com (an American company that assesses the political leaning of prominent 
media outlets), and applied labels to articles according to their sources. Karam-
shuk et  al. [22] applied manual labeling on news sources, and labeled Twitter 
users based on the news sources they shared. Rao et al. [62] continued the chain 
of inheritance even further, carrying over the labels from web domains to users, 
and then from users to other users based on retweet patterns. However, Kobayashi 
et  al. [63] pointed out that the above inheritance-based solutions assume that 
Twitter users prefer to follow media and politicians whose ideological positions 
are similar to their own, and these assumptions are not necessarily true.

In addition to the texts, some papers also exploited the structural information 
on the database for classification. This is especially feasible for social media data, 
where a network of relationships between users is available. It had been com-
monly found that involving structural information increases classification accu-
racy [31, 64]. Wang et al. [65] classified tweets and found that the best model is 
one that integrates texts and pictures. However, it is worth noting that if the pri-
mary goal is to study language polarization (instead of defining the “best” classi-
fier), the importance of language itself should be examined. What may be a rel-
evant question, however, is the fraction of linguistic information that constitutes 
total polarization.

Another relevant question is what features were used, if text-based classification 
was applied. Most often a bag-of-words approach or n-grams were used, ignoring 
syntax [41, 52]. Newer models model the compositional aspect of language, e.g., by 
applying a neural network framework [61, 66].

Several papers used pre-defined text properties as features in addition to the raw 
text. Potthast et al. [32] conducted a study of hyper-partisan news, and employed dif-
ferent stylometric features, such as readability scores, ratios of quoted words, num-
ber of paragraphs, etc. Hashtags proved to improve classifiers’ performance in sev-
eral studies [64]. As hashtags are brief and information rich, they may reduce noise.

Word embedding was used for creating features in some studies [22, 60, 62, 65]. 
Zubiaga et al. [60] used word embedding for dimension reduction: word embedding 
representation of the content of a user’s timeline was used as a feature. Karamshuk 
et al. [22] illustrate another important application of word embedding: their starting 
dictionary consisted of terms considered to be indicators of partisan rhetoric, and 
these words were then matched to the most similar ones according to their word 
embedding representation to get the final feature set.

Other studies used the output of a topic model [58, 62], author-level text features 
[27], or media-level features [67]. Baly et al. [67] illustrate how to utilize texts from 
a variety of different sources: the authors’ aim was to classify the political ideol-
ogy of news articles, and they determined media-level features based on the word 
embedding representation of (1) the bios of the medium’s Twitter followers, and (2) 
the content of the Wikipedia page describing the medium, and (3) Web-traffic infor-
mation about the medium’s website.
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Topic modeling

One in six studies applied topic modeling. The main topics and the words typical 
of the topics were often used for frame analysis [68]. According to Tsur et al. [53], 
topic co-occurrence can also approximate the way topics are framed. In other cases, 
see e.g., Sinno et al. [69], topic modeling was used only for technical reason to cre-
ate a topically coherent corpus by omitting articles that were not related to the rel-
evant topics.

Structural topic models are advantageous because they allow the incorporation of 
document metadata that affects how the topics vary by document. Including finan-
cial metadata allowed Farrell et al. [54] to test the effects of corporate funding on 
how organizations discuss climate change.

Others proposed the introduction of new types of topic models, e.g., Thonet et al. 
[70], Trabelsi and Zaiane [71], and Koylu et al. [72].

Sentiment analysis

One in six studies applied sentiment analysis. Most often dictionary-based senti-
ment analysis was used [20, 73, 74]. Grover et al. [30] for example examined moral, 
affective, and cognitive differences in language use between the two opposing sides 
of the debate over immigration in the US, using the LIWC dictionary. Among those 
using non-dictionary methods are Wang and Tucker [17], who used supervised 
machine learning models to assign sentiment scores to press releases.

Word embedding

One in eight studies applied embedding, mostly word embedding methods. An 
often-used application of word embedding was mentioned above in "Classification 
models", where it was used to extend the initial feature set with similar terms in 
meaning. This method was used in an unsupervised context as well [49] to get a 
polarization dictionary.

Another inspirational use of the model is exemplified by Brigadir et al. [75], or by 
Bonikowski et al. [76]: in their case word embedding vector space is used to detect 
changes in the meaning of certain characteristic terms. Brigadir et al. [75] consid-
ered changes in word semantics, both over time and between ideological positions. 
Bonikowski et al. [76] examined campaign speeches of US presidential candidates 
Classification models in 2016, by focusing on, for example, the word embedding 
neighborhood of the term “dangerous,” which illustrates what the candidate views 
as the most pressing concerns (for example, whereas in case of Trump “refugees” is 
close to “dangerous” in meaning, in Clinton’s case it is close to “prejudice”).

KhudaBukhsh et al. [14] showed a powerful and interpretable application of word 
embedding, using word embedding-based machine translation on discussion section 
of YouTube channels of four prominent US news networks. They showed, that the 
two sub-communities of CNN and Fox News speak two different languages: what 
the former label for example, as “biden” and “kkk,” the latter label as “creep” and 
“blm,” respectively.
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Finally, word embedding was also used for user clustering, e.g., Rashed et al. [77] 
represented users in an embedding space based on their texts, and the representa-
tions were then projected onto a lower dimensional space to which cluster analysis 
was applied.

Role of domain knowledge in the analysis

Recent studies, both academic and business, highlighted the importance of build-
ing domain knowledge into data science [78, 79]. Domain knowledge is important 
at each step of a data science project, including research question formulation, data 
collection, preprocessing, modeling, result interpretation and validation. There-
fore, we reviewed whether the authors used domain knowledge at any stage of their 
research, for example whether they tried to interpret the classification results beyond 
the assessment of model performance.

If the analysis is specified along substantive questions domain, knowledge is 
needed to formulate these questions. Stecula and Merkley [80] for example dis-
played relevant subtleties in the analysis of framing climate change when they 
defined three types of frames based on previous research. Decadri and Boussalis 
[81] studied the link between populism/party membership and speech complexity in 
Italy, with substantive hypotheses, a dictionary of Italian populist rhetoric, and well-
chosen metadata.

It is worth noting that in the case of the latter two, the studies were co-authored 
not only by computer scientist but by domain experts as well. Some examples show 
that if there are only computer scientists among the authors, the interpretation is 
often missing, and the research questions are rather technical [82]. And vice versa: if 
there are only social scientist co-authors, the methodology is fairly simple, although 
the paper is rich in content: the research questions are explained, the meta-variables 
are well-chosen, and the results are embedded in an existing scientific discourse [51, 
52].

The role of domain knowledge is the most important one at the interpretation 
step, and especially in supervised classification. Without interpretation, predictive 
models are black boxes [83]. Understanding why the model made a certain decision, 
and finding the terms that are the most indicative of e.g., conservative versus liberal 
positions, bring us closer to the understanding of polarization, and help us position 
the results in the scientific discourse. Three out of five studies that used classifi-
cation focused only on optimizing classification performance, and did not discuss 
which linguistic features played a role in the classification [65, 67, 84]. However, 
there were also articles that went through the interpretation in detail. Diermeier 
et al. [28] investigated the most distinctive linguistic features in the US Congress, 
with conclusions such as the one that cultural references are more important than 
economic references in distinguishing conservative from liberal speeches. Another 
example is Gentzkow et al. [42], who also very thoroughly went through the inter-
pretation of partisan phrases.

In case of Hirst et  al. [33, 34], the main lesson of the paper came from model 
interpretation: they observed that some of the most distinctive terms of the first 
analysis (with the Liberal Party as governor) “swapped sides” when turning to the 
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second analysis (with the Conservative Party as governor), which provided evidence 
that the classifier really picked up features that are related to the government/opposi-
tion dimension, instead of political ideology. In other words, the model’s real func-
tioning was revealed by the interpretation.

On the interpretability of classification models, it is worth mentioning Praet et al. 
[86] and Goet [36]. Praet et al. systematically explored the efficiency and interpret-
ability of classification models. Their results showed a clear trade-off between inter-
pretability and discriminative power, e.g., an expert-driven model showed the worst 
prediction and the best interpretability. According to Goet [36], classifiers ignore 
dimensionality (contrary to scaling methods), and when we use these models, we 
sacrifice our ability to make substantive claims about the drivers of polarization. We 
have seen, however, that the interpretation of the most distinctive words provides 
some answer to this question, if not as explicitly as in the case of scaling.

It is not only in the case of classification that the question of which words had an 
impact arises. Medzihorsky et al. [35] used Wordfish to follow the ideological shift 
of the Republican Party, and identified the most widely used terms and the extent 
to which they discriminate on the shift dimension. Rashed et  al. [77], using clus-
ter analysis, interpreted semantic differences between clusters based on their most 
prominent terms. Rumshisky et al. [85] gave a detailed interpretation of important 
“drifter” words that (according to word embedding) changed their meaning the most 
during the period under examination.

Domain knowledge is also important in the validation phase of studies, when the 
researcher judges the conceptual validity of the results. Goet [36] is an important 
reference as it provides criteria for evaluating text-based measures of polarization 
that can be easily followed in practice. According to his criteria, a valid text-based 
measure, for example, should correspond well to our a-priori expectations, e.g., out-
liers in our estimates should reflect what we know historically about polarization 
in the given context. However, validation is completely missing from many of the 
reviewed papers. Some studies using topic modeling included a validation phase, 
where the researchers qualitatively assessed the effectiveness of the models [54, 87]. 
Another way of validation was used in classification studies for example by Taddy 
[43], Diermeier et al. [27], Bayram et al. [41], Rashed et al. [77], and Gerrish and 
Blei [39]. Their approach was to detect the outlier/mispredicted cases, and to exam-
ine them qualitatively. For example, Gerrish and Blei [39], when studying the text 
of US bills to predict the lawmakers’ vote, detected Rep. Ron Paul as an outlier, and 
found that he voted more conservatively than expected on healthcare issues. Valida-
tion also involves the most critical question that arises when approaching polari-
zation with supervised classification, namely whether ideological differences really 
underlie the perceived linguistic differences. We will return to this when we discuss 
causality.

The use of qualitative methods

In examining use of qualitative methods, it should be noted that studies using only 
qualitative text analysis or simple quantitative approach were excluded from the 
review, so our question was precisely whether a qualitative approach was used in 
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addition to NLP. We have included this issue in our analysis because social research 
using mixed methods is generally considered to be more valid: it allows for a deeper 
examination of the phenomenon, supports generalization, increases confidence that 
findings are not driven by a particular method, and aids interpretation.

Most of the studies reviewed did not use qualitative methods. Some of those that 
did, used it in the validation phase. For example, the validation of topic models 
requires considerable qualitative work, as the researchers can only assess the inter-
pretability and the effectiveness of the models by actually reading the most relevant 
texts representing each topic [54, 87]. Yarchi et al. [3] presented a new method that 
combines NLP with manual content analysis to understand the topics. Taddy [88], 
on the other hand, is a counterexample, where the model is completely detached 
from the text, with the analysis not going back to the text during the interpretation of 
the topics.

Other studies applied a qualitative approach to support interpretation: Rho et al. 
[89] for example used discourse analysis to analyze all comments that contain the 
top relevant terms computationally detected beforehand. Similarly, Grover et al. [30] 
carried out a qualitative analysis of tweets containing terms that were found to be 
important by LIWC analysis.

“Close reading,” i.e., a thoughtful interpretation of texts, was explicitly men-
tioned as the method used by Bonikowski et al. [76] and Sinno et al. [69], for exam-
ple. In the latter work, close reading was used to understand the motivations behind 
annotators’ decisions.

Dornschneider and Todd [90] was among the few studies in which a qualitative 
approach dominated. They conducted interviews and used sentiment analysis com-
bined with qualitative discourse analysis. In the work of Budak et al. [91], machine 
learning was used only for technical reasons, to identify the relevant documents, and 
the essence of the research was given by a close reading of the articles.

Addressing causality during the NLP analysis

Though the problem of causation has been extensively studied in empirical social 
science, it is often neglected in text classification, even though erroneous causal 
inference does not only concern interpretation, but also compromises the robustness 
of models.

The most basic causal approach is to refer to timely prevention. E.g., Jensen et al. 
[12] found that polarized phrases increase in frequency in Google Books before 
their use increases in congressional speeches. Although they emphasized that causal 
inference is beyond the scope of their paper, they suggest that their finding is con-
sistent with an autonomous effect of elite discourse on congressional speech.

The most common (even if not explicitly stated) causal problem that arises 
in the study of ideological polarization is the question of potential confounders, 
i.e., whether ideological differences are indeed the cause of the detected differ-
ences in language use. Very few studies have explicitly mentioned or tried to 
address this problem. Lin et  al. [92] investigated the bitterlemons.org website, 
which published articles on issues related to the Israeli–Palestinian conflict on a 
weekly basis with an Israeli and Palestinian editor and guest. The authors applied 
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supervised classification to predict perspective (Israeli or Palestinian). As per-
spective was better predicted on editors, the authors suggested that there might 
exist differences between the writing styles of Israeli and Palestinian editors, and 
it is this that the models had found, not political perspectives. To test this hypoth-
esis, they conducted experiments in which they trained their algorithm on editors 
and tested it on guests, and vice versa.

Hirst et  al. [33, 34] discussed a similar analytic issue. They classified party 
affiliation across two Canadian Parliaments and revealed that what their models 
were sensitive to was not expressions of ideology but rather expressions of attack 
and defense used in a position of opposition and in a position of governing. That 
is, according to their result, party status (opposition/government) is a confounder 
when classifying parties.

Both Lin et  al. [92] and Hirst et  al. [33, 34] suspected a third variable that 
influenced both the dependent variable and the independent variable, causing a 
spurious association, but their suspicion was only confirmed in the latter case. 
In the former case, an effect modification was revealed: only the models’ perfor-
mance level differed depending on the editor/guest role (the moderator variable), 
but the same linguistic features distinguished perspectives within both roles. The 
logic of confounding and effect modification is illustrated in Fig. 5 below.

Very few articles have applied recent approaches to causality. The exceptions 
include Landeiro and Culotta [93], who use the statistical framework of Judea 
Pearl, and Widmer et al. [94], who apply the instrumental-variables framework.

Fig. 5   Classification with the 
presence of a confounder/a 
moderator. Moderators lie on 
the causal pathway (bold line), 
while confounders do not
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Conclusions

Our review has its limitations. “Political polarization” includes a wide range of 
definitions, and how “natural language processing” is referred to also varies by 
disciplines. Although we have attempted to capture these concepts in several dif-
ferent ways, we may have still missed some relevant papers.

Of the initial 3084 hits, we identified 154 relevant studies. The number of 
papers has risen during the past decade. Most studies focused on the US (n = 91), 
and the cross-national validity of their results has rarely been tested. About 40% 
(n = 66) utilized Twitter data, and one in three studies employed supervised 
machine learning for predicting ideology/stance.

Some studies demonstrated that the characteristics of political texts depend 
not only on the political position of their authors, but also on other often-over-
looked factors that are not independent of the former (such as the authors’ politi-
cal engagement, whether their party is in a governing position or in opposition, 
the texts’ style, genre, or date). Ignoring these factors during data collection, or 
distinguishing texts based solely on political position, can lead to serious errors, 
such as overly optimistic association measures, and confounded associations. 
Some studies suggested that the same issue lies also behind transferability prob-
lems, i.e., the corpora that are assumed to be homogeneous are in fact different.

Although the number of studies has grown rapidly in the last years, only a 
minority of them used domain knowledge to gain insights. Those that did, showed 
the need for expert interpretation at different points in the analysis (interpreting 
the most important features, detecting outliers, comparing different models, etc.).

Most studies did not employ the method of close reading, and did not dis-
cuss potential problems arising if causal inference is made on textual data. High 
proportions of studies were non-interdisciplinary in the sense that they were 
authored without subject matter involvement (45%), or, conversely, they were 
authored only by social scientists (20%). These observations may be a conse-
quence of the institutionalization of computational research methods outside the 
social sciences.

However, we have found several inspiring examples for methodological 
approaches without these shortcomings. We have seen combined use of several 
types of databases: ones with extra-textual information like user structure, those 
with metadata of texts, and those that combine polling data with social media data. 
We have seen that research cover different layers of the political public sphere (poli-
ticians, experts, media, or lay public). However, very few studies involved more than 
one layer, although it can be used to study diffusion processes between the layers.

Many of the points raised by the review are likely to apply to the use of NLP 
in the social sciences in general, and not just to the study of political polarization. 
These may include the infrequent use of domain knowledge and mixed methods, 
the frequent lack of interpretation, the low number of interdisciplinary papers, or 
the two often conflicting aspects of the data, ease of access and fruitfulness.

Arguments have arisen in recent years that fields adapting artificial intelligence 
are facing a reproducibility crisis [95]. Among the papers pointing to the causes 
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of the crisis, there were quite a few [5, 96] that argued that the meeting of com-
puter science and applied sciences is more than just adapting large data reposi-
tories and tools to analyze them. This meeting also represents a convergence of 
different fields with different methodological paradigms, and the quality of the 
research depends on how these paradigms are productively integrated.

We can conclude that the potential of NLP in political polarization research is 
very high indeed. However, our paper also provides arguments for the integration 
of explanatory and predictive modeling paradigms, and for a more interdiscipli-
nary approach to polarization research.
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