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This paper studies a class of nonlinear elliptic PDEs, arising for stationary reaction-
diffusion models. The non-smooth nonlinearity gives rise to dead cores, that is, subdomains 
where the solution of the PDE vanishes. The paper gives a solid foundation for the 
numerical solution of the problem, including proper extensions of known maximum–
minimum principles, Céa lemma, and convergence estimation of the FEM for locally Hölder 
continuous operators. Based on these, we finally detect dead cores numerically in various 
typical situations.
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1. Introduction

In this paper we study the following nonlinear partial differential equation (PDE), derived from a stationary reaction-
diffusion problem:{

−�u + kuγ = 0,

u|∂� = u0 > 0,
(1)

where � is a bounded domain in Rd , 0 < γ < 1 and k, u0 > 0 are given constants.
The reaction-diffusion model behind (1) can be summarized as follows, based on the paper [2]. Let us consider an 

irreversible steady-state reaction which takes place in a bounded planar domain � ⊂ R2. Assume that the reagent used up 
in � is replaced through diffusion so that the steady-state can be reached. After eliminating the temperature, [2] writes the 
following problem for the concentration u of the reactant:

−�u + λ f (u) = 0 in �,

u = 1 on ∂�,

where the constant λ > 0 is the Thiele modulus [12], f (u) is the ratio of the reaction rate at concentration u to the reaction 
rate at concentration unity for u ≥ 0, which satisfies f (0) = 0 and f (1) = 1. In our case the function f (u) = uγ describes 
an isothermal reaction (the temperature of the system remains constant), where γ is called the order of the reaction. In 
our formulation (1) we do not consider unit concentration on the boundary but we will also study the relation of the three 
parameters γ , k, u0.
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As described in [2], it may occur that the density u becomes 0 in a closed region �0, called dead core, that is, here the 
solution of the nonlinear PDE vanishes. Since no reaction takes place here, the region �0 is wasted. Such a dead core can 
be formed only if u0 is small enough or k is large enough, that is the rate of the reaction stays high as the concentration 
decreases. Namely, in this case it might be impossible for the diffusion to draw some reactant fast enough from the external 
part of � so that it can reach the center of �0. The boundary of the dead core, called free boundary, is not known in 
advance.

Dead cores have attracted a lot of more recent interest regarding their theoretical background, rules of evolution, and 
also interesting numerical experiments have been made in 1D, see, e.g., [5,4,10,11,13] on such issues.

In specific cases it is important to show whether such a dead core exists, and if so, then to know its location and 
geometric properties. This aim is important, e.g. in case of a chemical reaction if the reaction uses a catalyst. Since no 
reaction takes place in the dead core, this means that the region is wasted and the amount allocated to the dead core can 
be saved if we know the location of the region.

The goal of the present paper is to give a solid foundation for the numerical solution of problem (1). Thereby we obtain 
a way to define and characterize dead cores and free boundaries that provides reliable numerical results. Since 0 < γ < 1, 
the function f is continuous but not differentiable at the origin. It is an important property which prevents us from a 
direct application of existing results to the numerical process. Instead, we must generalize various blocks of the solution 
process to the non-differentiable case. Namely, first we extend the well-known maximum and minimum principle for the 
nonlinear case motivated by our problem. Thus we can turn the problem to an operator equation from which the existence 
and uniqueness of the weak solution follows. Then we prove a Céa lemma related to the nonlinear Galerkin method and 
give its convergence estimation for locally Hölder continuous operators. Further, we derive regularity of the solution and 
prove fractional convergence of the finite element method. Finally, we detect dead cores and free boundaries in various 
typical situations with analytical and numerical calculations.

2. Maximum and minimum principle

We would like to prove that our original problem (1) has a unique solution and we would like to compute the numerical 
solution as well. In order to achieve these aims we need to rewrite our problem in the form of an operator equation. To 
allow this step we first have to reformulate our problem to the following form:{

−�u + k|u|γ −1u = 0,

u|∂� = u0,
(2)

where � is still a bounded domain, 0 < γ < 1 and k, u0 > 0 are constants. With this reformulation we extended the domain 
of definition, that is, now the formulas in the problem make sense for every function u, whereas in the original case only 
u ≥ 0 was allowed. If we can prove that the solution of (2) satisfies u ≥ 0, then it will imply that problems (1) and (2) are 
equivalent. In addition, we will prove the boundedness of the solution u.

2.1. The general maximum and minimum principle and its limitations

Maximum and minimum principles for general nonlinear boundary value problems were examined in [9]. Here we use 
its consequences for the maximum principle under Dirichlet boundary conditions for the problem

−div (b(x,∇u)∇u) + q(x, u) = f (x) in �,

u = g(x) on ∂�,
(3)

where � is a bounded domain in Rd , under the following assumptions:

(A1) b: � ×Rd → R, q: � ×R → R are continuously differentiable scalar functions in their domains. Further, f ∈ L2(�)

and g = g∗|∂� for some g∗ ∈ H1(�).
(A2) The function b satisfies

0 < μ0 ≤ b(x, η) ≤ μ1, (4)

where μ0, μ1 are positive constants independent of (x, η), and the diadic product matrix η · ∂b(x,η)
∂η is symmetric positive 

semidefinite and bounded.
(A3) Let 2 ≤ p1 if d = 2, or 2 ≤ p1 ≤ 2d

d−2 if d > 2. There exist constants α, β ≥ 0 such that for any x ∈ � and ξ ∈R

0 ≤ ∂q(x, ξ) ≤ α + β|ξ |p1−2, (5)

∂ξ
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Proposition 2.1. Let assumptions (A1)–(A3) hold and let u ∈ C1(�) ∩ C(�) be the weak solution of problem (3). If

f (x) − q(x,0) ≤ 0, x ∈ � (6)

almost everywhere, then

max
�

u ≤ max{0,max
∂�

g}. (7)

If g ≥ 0, then

max
�

u = max
∂�

g, (8)

and if g ≤ 0, then we have the nonpositivity property

max
�

u ≤ 0. (9)

Proof. Our problem (3) and the present proposition are special cases of problem (16) and Theorem 5 in the paper [9], 
respectively. �

We get the reformulated problem (2) from the general Dirichlet problem (3) if

• b(x, ∇u) ≡ 1 and q(x, u) = k|u|γ −1u,
• f (x) ≡ 0 and g(x) ≡ u0.

In order to use the above Proposition 2.1, we have to consider whether (A1)-(A3) hold in this particular case.

(A1) b: � ×Rd →R, b(x, η) ≡ 1 is continuously differentiable in its domain and q: � ×R →R, q(x, ξ) = k|ξ |γ −1ξ is also 
continuously differentiable in its domain except when ξ = 0. Thus now q is not continuously differentiable in its whole 
domain as in the original case. Further f ≡ 0 ∈ L2(�) and g = g∗|∂� , where g∗ ∈ H1(�) stands for the function g∗ ≡ u0
since the constant function is trivially in H1(�).

(A2) It holds for the function b ≡ 1 trivially.
(A3) Let p1 := γ + 1. Since d

dξ

(
k|ξ |γ −1ξ

) = kγ |ξ |γ −1 (∀ξ �= 0), thus assumption (5) is the following:

0 ≤ γ k|ξ |γ −1 ≤ α + β|ξ |γ −1 (ξ �= 0), (10)

which holds trivially for α = 0 and β = γ k, but only for ξ �= 0. Moreover, here 1 < p1 ≤ 2.

Altogether, in this case the function q is not differentiable in 0, moreover, p1 ≤ 2, thus (A1) and (A3) do not hold exactly. 
Hence we need to extend Proposition 2.1 to a more general form.

2.2. The extension of the maximum and minimum principle

Let us consider the problem{
−�u + q(x, u) = f (x),

u|∂� = g(x),
(11)

under the following assumptions:

(Â1) q: � × R → R, q = q(x, ξ) is continuously differentiable in its domain except when ξ = 0. Further f ∈ L2(�) and 
g = g∗|∂� , where g∗ ∈ H1(�).

(Â3) Let 1 ≤ p1 if d = 2, or 1 ≤ p1 ≤ 2d
d−2 if d > 2. There exist constants α, β ≥ 0 such that for any x ∈ � and ξ ∈R \ {0}

0 ≤ ∂q(x, ξ)

∂ξ
≤ α + β|ξ |p1−2 (ξ �= 0).

From the original assumptions (A2) trivially holds for problem (11), but assumptions (A1) and (A3) do not; this is why we 
had to introduce assumptions (Â1) and (Â3). Now we can prove the following result. For simplicity we only consider the 
case q(x, 0) = 0 suited to our original problem.
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Theorem 2.1. Let assumptions (A2), (Â1) and (Â3) hold, and let q(x, 0) = 0. Further, let u ∈ C1(�) ∩ C(�) be the weak solution of 
problem (11). If

f (x) ≤ 0, x ∈ � (12)

almost everywhere, then (7)-(9) hold.

Proof. The weak form of problem (11) is:∫
�

(∇u · ∇v + q(x, u)v)dx =
∫
�

f vdx ∀v ∈ H1
0(�) (13)

where the integrals are finite due to the assumptions. Let M := max{0, max
∂�

g}, and we introduce the piecewise C1 function 
v:

v := max{u − M,0}. (14)

Then we have v ≥ 0 and v|∂� = 0, further, u(x) = v(x) + M for any x ∈ �, where v(x) �= 0.
For this v , one can check on the one hand that the left-hand side of (13) satisfies∫

�

(∇u · ∇v + q(x, u)v)dx =
∫
�

(
|∇v|2 + q(x, u)v

)
dx ≥ 0.

Namely, since u(x) = v(x) + M for any x ∈ � where v(x) �= 0, thus ∇u · ∇v = ∇v · ∇v both on the subdomains for the cases 
v = 0 and u = v + M , i.e. on the whole �. Further, the function q increases monotonically in u because of assumption (Â3) 
and also it is equal to 0 at u = 0. Thus, if u < 0 then q(x, u) ≤ 0, but then v = 0, whereas if u > 0 then q(x, u) ≥ 0 and 
v ≥ 0. Altogether, we have q(x, u)v ≥ 0 on the whole �, hence the integral is indeed nonnegative.

On the other hand, assumption f ≤ 0 implies that for our v the right-hand side of (13) satisfies 
∫
�

f vdx ≤ 0. Therefore, 
altogether, we get∫

�

(
|∇v|2 + q(x, u)v

)
dx = 0.

Thus |∇v| = 0, therefore v is constant which is nonnegative by definition, i.e.

v(x) ≡ c ≥ 0 on �.

Because of the boundary condition v|∂� = 0 only v ≡ 0 is possible, i.e. (14) yields u ≤ M , i.e. we have proved (7). Finally, 
(8) and (9) are trivial consequences of (7). �

Similarly to the proposition above, the following minimum principle also holds:

Theorem 2.2. Let assumptions (A2), (Â1) and (Â3) hold, and let q(x, 0) = 0. Further let u ∈ C1(�) ∩ C(�) be the weak solution of 
problem (11). If

f (x) ≥ 0, x ∈ � (15)

almost everywhere, then

min
�

u ≥ min{0,min
∂�

g}. (16)

If g ≤ 0, then

min
�

u = min
∂�

g, (17)

and if g ≥ 0, then

min
�

u ≥ 0. (18)

Remark 2.1. The analogues of the above propositions hold in the same way for the case u ∈ H1(�), without requiring u
∈ C1(�) ∩ C(�). Then the maximum and minimum are replaced by ess sup and ess inf, respectively, as in [9]. We will see 
that the solution u ∈ H1(�) always exists.
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Now we can exploit the achieved results to our reaction-diffusion problem. With the help of Propositions 2.1 and 2.2, 
we can derive the two-sided bounds 0 ≤ u ≤ u0 for the rewritten problem (2).

Theorem 2.3. Let us consider problem (2):{
−�u + k|u|γ −1u = 0,

u|∂� = u0.

Then

0 ≤ u ≤ u0 .

Proof. We can use both the maximum and minimum principle from above, with q(x, ξ) := k|ξ |γ −1ξ because we have seen 
at the end of subsection 2.1 that (Â1) and (Â3) holds, and now q(x, 0) = 0 and f (x) = 0. Thus Propositions 2.1 and 2.2 yield

min{0,min
∂�

g} ≤ u ≤ max{0,max
∂�

g}.

Furthermore in our case g ≡ u0 > 0, thus

min{0, u0} ≤u ≤ max{0, u0},
0 ≤u ≤ u0. �

3. Operator properties

In what follows, it will be more practical to use the homogeneous boundary value problem, so it is worth reformulating 
the problem (2) to the following one:{

−�z + k|z + u0|γ −1(z + u0) = 0,

z|∂� = 0,
(19)

here obviously z = u − u0, i.e.

u = z + u0.

This problem is equivalent to (2) and, because of Theorem 2.3, also to problem (1). If z∗ is the solution of the homogeneous 
boundary value problem (19), then u∗ = z∗ + u0 will be the solution of our original problem.

3.1. Weak formulation

Well-posedness in weak form can be derived using the theory of monotone potential operators [3]. First, using the 
given boundary constant u0, we see that the nonlinearity q̂(ξ) := k|ξ + u0|γ −1(ξ + u0) is continuous, increasing and with 
p := γ + 1, c2 = k and some c1 > 0 we have

|q̂(ξ)| ≤ c1 + c2|ξ |p−1 ξ ∈R. (20)

The weak solution of the homogeneous problem (19) is a function z ∈ H1
0(�) for which∫

�

(
∇z · ∇v + k|z + u0|γ −1(z + u0)v

)
= 0 ∀v ∈ H1

0(�). (21)

Now, based on [7, Prop. 2.1], using the above properties of the function q̂ with growth condition (20), the well-posedness 
result holds:

Proposition 3.1. Problem (19) has a unique weak solution.

With the inner product 〈u, v〉H1
0
= ∫

�
∇u ·∇v , the weak form of (21) can be rewritten to the following nonlinear operator 

equations, where F : H1(�) → H1(�):
0 0
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〈F (z), v〉H1
0
≡

∫
�

(
∇z · ∇v + k|z + u0|γ −1(z + u0)v

)
= 0 ∀v ∈ H1

0(�), (22)

〈F (z), v〉H1
0
= 0 ∀v ∈ H1

0(�),

i.e. F (z) = 0. (23)

Letting 〈G(z), v〉H1
0
:= ∫

�
(q̂(x, z)v), ∀v ∈ H1

0(�), the operator F satisfies F = I + G , where I is the identity operator. Based 
on [7, Prop. 5.1] we can derive the following facts. The operator G is Hölder continuous with the parameter γ , since q̂ also 
has such properties. The identity I is trivially Lipschitz continuous. Thus I and G are also locally Hölder continuous, and we 
obtain the following:

Proposition 3.2. The above operator F in (22) is locally Hölder continuous on H1
0(�), i.e. for all R > 0 there exists a constant M̂ > 0

such that ‖F (u) − F (v)‖ ≤ M̂‖u − v‖γ (∀u, v ∈ H1
0(�), where ‖u‖, ‖v‖ ≤ R).

3.2. Extension of the Galerkin method

Let us consider an operator equation

A(u) = b, (24)

where H is a real Hilbert space and b ∈ H , and also A : H → H is a given nonlinear operator. Then the following facts are 
well-known. Let Hn ⊂ H (∀n ∈N+) be subspaces for which ∀u ∈ H

dist(u, Hn) := min{||u − vn|| : vn ∈ Hn} → 0 as n → ∞, (25)

and let us define the Galerkin solutions un ∈ Hn with the following projected equation:

〈A(un), v〉 = 〈b, v〉 ∀v ∈ Hn .

Then the residual vector rn = A(un) − b satisfies the Galerkin orthogonality rn⊥Hn . Further, if A is uniformly monotone 
and Lipschitz continuous, then the nonlinear Céa lemma holds and, using (25), this implies the convergence of the Galerkin 
solution:

||u∗ − un|| → 0 as n → ∞.

In our case we cannot use the above in exactly the same way since the function q(u) := |u|γ −1u (0 < γ < 1) is only 
Hölder continuous and not Lipschitz continuous, thus as we have seen, F is also only locally Hölder continuous. We have to 
examine how the above can be extended to the locally Hölder continuous case.

Let A : H → H be a nonlinear operator which is uniformly monotone and locally Hölder continuous: there exists a 
monotonically increasing function M̂ :R+ →R+ and constants m > 0, 0 < γ ≤ 1 such that

〈A(u) − A(v), u − v〉 ≥ m‖u − v‖2 and (26)

‖A(u) − A(v)‖ ≤ M̂(R)‖u − v‖γ ∀u, v ∈ H, ||u||, ||v|| ≤ R. (27)

With the former notation, let Hn ⊂ H be subspaces for which (25) holds.
We will need the following stability lemma:

Lemma 3.3. Let H be a real Hilbert space and A : H → H a nonlinear operator satisfying (26). Consider the operator equation (24), 
and also let b̃ := b − A(0). Let Hn ⊂ H be a given finite dimensional subspace and un ∈ Hn be the Galerkin solution, and also u∗ ∈ H
be the weak solution of the operator equation. Then

‖un‖ ≤ ‖b̃‖
m

and ‖u∗‖ ≤ ‖b̃‖
m

.

Proof. Let us consider the operator Ã defined by Ã(u) := A(u) − A(0), then Ã(un) = b̃ and Ã(0) = 0. Further, 〈 Ã(un), v〉 =
〈b̃, v〉, ∀v ∈ Hn .
Then, based on (26) with v = 0,

〈A(un) − A(0), un − 0〉 ≥ m‖un − 0‖2, i.e. 〈 Ã(un), un〉 ≥ m‖un‖2.

From this
116



B. Hingyi and J. Karátson Applied Numerical Mathematics 177 (2022) 111–122
‖un‖2 ≤ 〈 Ã(un), un〉
m

= 〈b̃, un〉
m

≤ |〈b̃, un〉|
m

≤ ‖b̃‖ · ‖un‖
m

,

which implies

‖un‖ ≤ ‖b̃‖
m

. (28)

The same proof can be repeated for u∗ instead of un . �
Theorem 3.1 (Nonlinear Céa lemma for locally Hölder continuous operator). If assumptions (26)-(27) hold, then the Galerkin solutions 
un ∈ Hn satisfy

‖u∗ − un‖ ≤
(

M

m
min{‖u∗ − vn|| : vn ∈ Hn}

) 1
2−γ

,where M := M̂

(‖b − A(0)‖
m

)
.

Proof. With arbitrary vn ∈ Hn

m‖u∗ − un‖2 ≤ 〈A(u∗) − A(un), u∗ − un〉 = 〈A(u∗) − A(un), u∗ − vn〉
≤ ‖A(u∗) − A(un)‖‖u∗ − vn‖ ≤ M(R)‖u∗ − un‖γ ‖u∗ − vn‖.

We used here that the residual vector rn = A(un) − b satisfies the Galerkin orthogonality rn⊥Hn , i.e. now 〈A(u∗) −
A(un), un − vn〉 = 0. The above implies

‖u∗ − un‖2−γ ≤ M(R)

m
‖u∗ − vn‖ . (29)

We also need to prove that M(R) ≤ M for the given constant, i.e. it is independent of the R for which R ≥ ‖u∗‖, ‖un‖. 
According to Lemma 3.3, we have indeed M̂(R) ≤ M̂

( ‖b−A(0)‖
m

)
= M . From this, taking min w.r.t. vn and rearranging (29), 

we obtain our statement. �
Corollary 3.1. Under condition (25) we have the convergence result

‖u∗ − un‖ ≤ C · (dist(u, Hn))
1

2−γ → 0,

where C > 0 is independent of n.

4. Numerical approximation of the nonlinear PDE

In order to solve (2), we use the rewritten problem (19), that is, equation −�z + q̃(z) = 0 with homogeneous boundary 
conditions. Then the solution of the original problem (2) is obtained by just adding the constant u0, that is, u = z + u0.

4.1. Construction of the finite element method (FEM)

In general, the FEM searches the numerical solution of problem (19) in a proper subspace Vh ⊂ H1
0(�). We have seen that 

the weak form of the problem is (21). According to the Galerkin method, the elements of Vh are in the form zh = ∑n
i=1 ciφi , 

hence the nonlinearity takes the form

q̃(zh) = q̃(

n∑
i=1

ciφi) := k|
n∑

i=1

ciφi + u0|γ −1(

n∑
i=1

ciφi + u0).

Substituting v := φ j in (21), we obtain

〈F (zh), v〉H1
0
= 〈F (

n∑
i=1

ciφi),φ j〉H1
0
=

∫
�

(
n∑

i=1

ci∇φi · ∇φ j + q̃(

n∑
i=1

ciφi)φ j

)
,

and thus (21) becomes the following:

n∑
i=1

∫
�

(∇φi · ∇φ j)ci +
∫
�

q̃(

n∑
i=1

ciφi)φ j = 0,

which is a system of nonlinear equations for c = (c1, . . . , cn).
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In what follows, we use first degree Courant elements on a standard uniform triangular grid. Then aij := ∫
�

∇φi∇φ j can 
be computed exactly, and we can use the simple numerical quadrature 

∫
�

q̃(z)φ j ≈ h2q̃(c j), where h is the mesh parameter 
for the grid and c j is the coefficient of the basis function φ j . Thus our system of nonlinear equations is the following:

0 = Ac + h2q̃(c), (30)

where A := (aij), c = (ci).

4.2. Fractional convergence of the FEM

Now we would like to estimate the order of convergence of the FEM. We can do this with the help of the nonlinear 
Céa Lemma 3.1 used for the convergence of the Galerkin method when dist(u, Hn) → 0. Further, we first need to prove the 
following regularity property.

Proposition 4.1. If the domain � is C2-diffeomorphic to a convex domain, then the weak solution of (1) satisfies u ∈ H2(�).

Proof. Let us rearrange problem (1):

{
−�u = −kuγ ,

u|∂� = u0.

Based on Proposition 2.3 we know that the function u is bounded, namely, 0 ≤ u ≤ u0. Therefore the function uγ and thus 
f := −kuγ are also bounded, hence also f = −kuγ ∈ L2(�). That is, u is the solution of the Poisson equation

{
−�u = f ,

u|∂� = u0

with a right-hand side f ∈ L2(�). The Kadlec theorem [6] states that if � is C2-diffeomorphic to a convex domain, then 
this solution satisfies u ∈ H2(�). �
Theorem 4.1. We have

|u − uh|H1 ≤ O (hβ), where β = 1

2 − γ
.

Proof. Let us apply Proposition 3.1 to the homogenized problem (19) in the space H = H1
0(�) under the norm |u|H1 =(∫

�
|∇u|2)1/2

, and for the subspace Hn := Vh:

|z − zh|H1 ≤ C · min
{|z − vh|H1 : vh ∈ Vh

} 1
2−γ .

Let us consider the interpolation of z to the subspace Vh , denoted by �h z ∈ Vh , then

|z − zh|H1 ≤ C |z − �h z|
1

2−γ

H1 .

With the former Proposition 4.1 we have seen that u ∈ H2(�), hence z = u − u0 ∈ H2(�). Since the triangulation is regular, 
we have the interpolation estimate |z − �h z|H1 ≤ ch|z|H2 , where c > 0 is independent of the triangulation and |z|H2 =(∫

�
|D2z|2)1/2

, see, e.g., [1]. Here

|z|H2 = |u|H2 and |z − zh|H1 = |u − uh|H1 ,

since u = z + u0 and uh = zh + u0 for the constant u0. Thus, altogether,

|u − uh|H1 = |z − zh|H1 ≤ C |z − �h z|
1

2−γ

H1 ≤ C̃ |z|
1

2−γ

H2 h
1

2−γ = C̃ |u|
1

2−γ

H2 h
1

2−γ ,

hence our statement is proved. �
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4.3. Gradient method and power order convergence

We briefly quote the Sobolev gradient method on the operator level based on [7]. As shown there, the gradient method 
converges for Hölder continuous nonlinearity, which is non-differentiable with unbounded gradients and hence a Newton 
type method could not be applied. This is an extension of the standard Sobolev gradient method for nonlinear elliptic 
problems [8]. In fact, we will apply it in finite dimension under the FEM.

Let z0 ∈ H1
0(�) be an arbitrary initial guess and yn := F (zn). The method defines a sequence

zn+1 = (1 − αn)zn − αn wn

where the stepsize is αn :=
(

γ +1
2M

) 1
γ ‖F (zn)‖ 1

γ −1 and wn is the weak solution of the PDE −�wn = q̃(zn) with homogeneous 
boundary condition. Then we have

Proposition 4.2. [7, Thm. 5.1] Let q̃ be Hölder continuous and increasing, further, let there exist p ≥ 1 such that |q̃(ξ)| ≤ c1 +
c2|ξ |p−1 . Then there exists a constant c > 0 such that the errors ek := ‖uk − u∗‖H1

0(�) satisfy min0≤k≤n ek ≤ cn− γ
γ +1 .

5. Detection of the dead cores

5.1. An analytical result in 1D

We examine the following boundary value problem:{
−u′′ + kuγ = 0,

u(0) = u(l) = u0

on the interval I = [0, l]. We have seen that there exists a unique solution, thus let us suppose that the solution has the 
following form on a left subinterval: u(x) = c(x0 − x)δ . Substituting this into the equations and with some calculation,

u(x) = c(γ ,k) · (x0 − x)δ(γ ) =
(

2(1 + γ )

k(1 − γ )2

) 1
γ −1

(x0 − x)
2

1−γ ,

x0 =

⎛
⎜⎜⎝ u0(

2(1+γ )

k(1−γ )2

) 1
γ −1

⎞
⎟⎟⎠

1−γ
2

=
(

u0

c(γ ,k)

) 1−γ
2

.

Due to symmetry, a dead core occurs if this function u reaches the level 0 before the center of the interval, which takes 

place if x0 < l
2 . Such a situation is illustrated in Fig. 1. In general, let �(γ , k, l) := c(γ , k) ·

(
l
2

) 2
1−γ

. We obtain that a dead 
core occurs if u0 is small enough, namely if

u0 < �(γ ,k, l).

We note that the existence of dead cores in 1D has been studied under more complex nonlinearities with numerical exper-
iments in [4,10,11].

5.2. Numerical experiments in 2D

In two dimensions there is no hope to have an analytical solution. We computed the numerical solution of problem (1)
using MATLAB, defining various parameters γ , k and l. First we solved the homogenized system (30), then for our original 
problem we used the formula u = z + u0.

5.2.1. Existence of the dead core
First we consider the domain � = [0, l] × [0, l], partitioned with a uniform mesh with mesh parameter h ≈ 0.0071. With 

fixed γ , k and l, the existence and size of the dead core depends on the magnitude of u0, similarly to the one-dimensional 
case. This is illustrated for γ = 1

2 , k = 30 and l = 2. First, the solution of our problem for u0 = 2 can be seen on Fig. 2: here 
the dead core exists and is a symmetric subdomain. Fig. 3 shows different cases of u0 for the same values γ = 1

2 , k = 30
and l = 2. It can be seen that there occurs no dead core above a certain value, namely, above u0 ≈ 5.85.
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Fig. 1. Dead core: γ = 1
2 , k = 3, l = 6, u(0) = u(6) = 1.

Fig. 2. The function u and the dead core: γ = 1
2 , k = 30, u0 = 2, l = 2.

Fig. 3. The disappearance of the dead core: the value of u0 is 0.25; 2; 5; 5.85 and 6 respectively.

5.2.2. The shape and location of the dead core
Now our goal is to study the geometric properties of the dead core in different typical situations. First, we define u0(x, y)

as a nonconstant function on the boundary of the same unit square domain as before. We can indeed allow u0 to be variable, 
assuming that it is a bounded function and that there exists g∗ ∈ H2(�) such that g∗|∂� ≡ u0. Then we can define q̂ as 
q̂(x, ξ) := k|ξ + g∗(x)|γ −1(ξ + g∗(x)), which also satisfies (20) uniformly in x, and the regularity u = z + g∗ ∈ H2(�) also 
remains true. Secondly, we define more general non-rectangular shapes of the domain �, but then let u0 be constant again.

In both cases we involve different values of u0, γ and k. We can observe that the shape of the dead core changes 
compared to the case of square domain and constant u0. We can find dead cores that are concave or have multicomponent 
B. Hingyi and J. Karátson Applied Numerical Mathematics 177 (2022) 111–122
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Fig. 4. γ = 1
2 , k = 80, u0(x, y) = 1

2 + sin(πxy) and u0(x, y) = 1
2 + xyex + xye1−y .

Fig. 5. γ = 1
2 , k = 80, u0(x, y) = x + y and γ = 1

4 , k = 60, u0(x, y) = 1 + cos( π
2 (x + y)).

Fig. 6. γ = 1
4 , k = 100, u0 = 0.25 and γ = 1

4 , k = 60, u0 = 0.5.

Fig. 7. γ = 1
4 , k = 60, u0 = 0.5 and γ = 1

2 , k = 80, u0 = 0.075.
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forms. Figs. 4 and 5 show the function u and the shape of the dead core in a square with l = 1 and with various u0, γ and 
k. Figs. 6 and 7 show dead cores on non-rectangular domains � when u0 is constant.
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