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The Relevance of Goodness-of-fit, Robustness and
Prediction Validation Categories of OECD-QSAR Principles
with Respect to Sample Size and Model Type
Péter Király,[a] Ramóna Kiss,[a] Dániel Kovács,[a] Amine Ballaj,[a] and Gergely Tóth*[a]

Abstract: We investigated the relevance of the validation
principles on the Quantitative Structure Activity Relation-
ship models issued by Organization for Economic and Co-
operation and Development. We checked the goodness-of-
fit, robustness and predictivity categories in linear and
nonlinear models using benchmark datasets. Most of our
conclusions are drawn using the sample size dependence
of the different validation parameters. We found that the
goodness-of-fit parameters misleadingly overestimate the
models on small samples. In the case of neural network and
support vector models, the feasibility of the goodness-of-fit
parameters often might be questioned. We propose to use
the simplest y-scrambling method to estimate chance

correlation. We found that the leave-one-out and leave-
many-out cross-validation parameters can be rescaled to
each other in all models and the computationally feasible
method should be chosen depending on the model type.
We assessed the interdependence of the validation param-
eters by calculating their rank correlations. Goodness of fit
and robustness correlate quite well over a sample size for
linear models and one of the approaches might be
redundant. In the rank correlation between internal and
external validation parameters, we found that the assign-
ment of good and bad modellable data to the training or
the test causes negative correlations.

Keywords: regression · sample size · modelling · external validation · internal validation

1 Introduction

Modelling in science seems to be essential to understand,
predict and prefigure nature and processes. Since science
should provide relevant and reproducible findings, it is
necessary to validate models. The quantitative measures of
this process are called validation parameters. Validation is
usually performed using some basic principles (sometimes
called standards), however, the concrete steps of a
validation show great differences due to the general use of
model building. Furthermore, there are also differences in
the denomination or nomenclature of the processes, some-
times there are misleading differences even within a single
field of application. At a workshop on QSAR (Quantitative
Structure Activity Relationship) held in Setubal in 2002, the
first international attempt at clarifying nomenclature and
basing validation on a theoretically and methodologically
sound foundation was made. These Setubal principles were
the basis for a project which provided a regularization
issued as OECD (Organization for Economic and Co-
operation and Development) principles[1] in 2004 and a
“Guidance document on the validation of (Quantitative)
Structure-Activity relationships[(Q)SAR] models” in 2007[1] .
It is discussed in some publications[2,3,4] and in a recent
comprehensive study of Gramatica.[5] The latter is an
excellent overview of good practices concerning all the 5
OECD principles: 1) a defined endpoint 2) an unambiguous
algorithm 3) a defined domain of applicability 4) appropri-

ate measures of goodness-of–fit, robustness and predictivity
5) a mechanistic interpretation, if possible. The 4th OECD
principle and the corresponding parts in the guidance
clearly define the terms internal and external validations
with providing the corresponding aims. In internal valida-
tion, the goodness of fit and robustness are assessed while
external validation evaluates the predictivity of models.

A model might contain hyperparameters and
parameters.[6,7] We use the term hyperparameter for the
different settings used to select the mathematical or
operational form of the model. Sometimes, they are called
meta- or tuning parameters, as well. For example, the
number of latent variables or the optional standardization
of data in biased linear regression methods are hyper-
parameters. In the case of, e.g., artificial neural networks
(ANN), the structure of the network, the number of neurons
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in the hidden layers, the activity function, the optimization
algorithm and their internal settings (tolerance limit, initial
learning rates, etc…) are hyperparameters. On contrary, the
simple ‘parameter’ term denotes the weights, slopes and
intercept optimized in a direct or iterative calculation
according to a well-defined objective function and oper-
ation algorithm.

The OECD guidance classifies the data used in the
parameter optimization as internal ones. Usually, we use
the training set denomination for them. If not the entirety
of the available data is used for the parameter optimization,
there is a possibility to form an external test set to be used
in external validation. According to the guidance, the
internal set is used for two validation purposes: assessing
goodness of fit and robustness. The validation parameters
of goodness of fit are related to how well the model
reproduces the response variables on which the parameters
were optimized. The robustness is usually calculated by
cross-validation or bootstrap methods, where subsets or
resampled sets of the training set data are used. In the case
of cross validation, a reduced training set is used with
smaller number of fitted data, nfitted, than the number of
data in the training set, ntrain. In the case of bootstrapping,
nfitted and ntrain are usually equal but resampling with
repetition is allowed. In OECD terms, an external test set is
defined as a set of data that are not used during the
optimization of model parameters. Rather, an external test
set is used to quantify predictivity. External test set based
model selection from a pool of models with different
hyperparameters is also a possibility.

However, the OECD 4th principle and the guidance do
not state the weight of these three aspects in the overall
quantification of model performance and how to select
from the set of models having different hyperparameters.
Of course, one might find recipes in the literature and their
criticism as well.[2,5,7–18]

In our antecedent study[19] we showed how the relation
among goodness-of-fit, robustness and predictivity valida-
tion parameters varied with respect to the sample size of
the training set and the features of the datasets in the case
of ordinary multivariate linear least-squares regression
(MLR). We showed on several datasets, that the goodness-
of-fit parameters overrate models on small samples. We
found that if there are no repetitions in the data, leave-one-
out cross-validation parameters and leave-many-out ones
coincide on graphs, if the data are shown with respect to
the fitted number of data during the cross-validation
procedure. We found that x- any y-randomization methods
are equivalent in the estimation of chance correlation.
Using rank correlation, we found that internal and external
validation parameters provide rather independent informa-
tion from each other, but in the case of internal validation,
goodness-of-fit and robustness measures highly correlate
above an intermediate sample size for most of our datasets.
Our results also question some elements in the large
variability of methods and parameters in validation.

Our previous study raised the question whether the
results are valid for other modelling methods, as well. In
our actual study we show the extension of the MLR case to
partial least squares regression with multiple responses
(PLS2), to simple artificial neural network models (ANN) and
to support vector machine regression (SVR). We focus on
the common and the different features of the methods with
respect to the OECD 4th principle. The extension of our
previous work to different model types can be summarized
as checking the 4th principle with respect to the 2nd

principle, where the question is the model type. In our
study, we do not discuss the 1st principle (endpoint), the 3rd

principle (domain of applicability) and the 5th principle
(interpretation). We think that the 5th principle will be in the
forefront during the next years to interpret the advanced
models (ANN, SVR…) and to fill model parts and features
with chemical and biological content.[20,21]

Our investigation might be formulated also using the
bias-variance tradeoff. The tradeoff can be investigated
pairwise concerning the model types. If linear relations are
satisfactory for describing a model, e.g., MLR provides large
variance for correlated variables, while PLS introduces a
reasonable bias and reduces significantly the variance. If the
correct number of latent variables is used, the error of
predictivity decreases. In the case of ANN and SVR we will
see, that both methods might provide close to perfect
reproduction of training data. This implies high variance
and overfitting in general, but the final performance of the
models is rather good, because these methods are often
able to correctly generalize the features of the training set.
The bias-variance tradeoff can be linked also to the sample
size dependence, where data derived on small sample sizes
are overfitted ones with large variance. This lack of general-
isation decreases using large training set sizes. We note,
that the bias-variance tradeoff is an analogue of the
precision/accuracy concept in analytical chemistry, but in
analytical chemistry it is often possible to independently
reduce both bias and variance.

As we mentioned, there is a high variability in the
protocols as well as in the validation parameters. Most
studies concerning validation parameters compare large
numbers of different parameters (e.g., Q2

F1, Q
2
F2, Q

2
F3,

[22–24] F-
types,[25] Roy-Ojha types,[26] CCC,[27–29] etc… Both in our
previous study and here, we faced this large amount of
validation parameters. Finally, we decided to use here only
two groups of them. The first group represents intensive
parameters, we chose the coefficient of determination
family, R2-Q2

LOO-Q
2
LMO-Q

2
F2. The second group contain exten-

sive parameters, we show the results on the root mean
square deviation (RMSE) like ones. We know that this
restricted selection might bother several experts, but we
think that the main aspects of the validity following the
OECD QSAR validation guidance with respect to the
modelling method and sample size can be understood in
this way. We think that our investigation would be
confusingly detailed, if further groups and variants of
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validation parameters would have been included here. If
someone is interested in a wide bibliography and detailed
discussion of the validation parameters, we refer to the
reference lists of comprehensive studies.[19,30]

In our previous study with MLR one aim was to check
the performance of several validation parameters. In the
case of the goodness of fit, there are no large differences
between QSAR and other scientific applications, the most
popular ones are R2 (without adjustment) and RMSE. In the
case of robustness in QSAR, mostly cross-validation is used
in leave-one-out (LOO), leave-many-out (LMO) and k-fold
ways. Double cross validation can be used also in QSAR
(discussed, e.g., by Baumann and Baumann[31]) In this study
we used only simple LOO and LMO. On the contrary, there
is a large variety of predictivity parameters. For example,
Roy et al. proposed to use mean absolute error (MAE) and
showed an enhanced stability of Q2

F2 values calculated on
data with omission of given percentiles from the tails.[32]

Chirico and Gramatica[29] proposed to use CCC (correlation
concordance coefficient) of Lin.[27,28] In this study we
selected Q2

F2 and RMSEtest to remain within the R2-RMSE
families for predictivity, as well. We did not switch to MAE
to avoid mismatch of root mean square and absolute value
like errors. We investigated CCC in our previous paper,[19]

and we found that the advantages reported in the original
papers of Lin were based on a confusion between R2 and
the square of Pearson’s correlation coefficient (see supple-
mentary information in [19]). It reduces our confidence
despite the suggestions of [29]. We were assured in our
MLR study, that Q2

F3 is a more stable measure than Q2
F2. It

prevents the use of tricks during the test set allocation and
provides a stability for small test/train ratios. In spite of
these, we finally decided to use Q2

F2: a) It is easily
interpretable, because the ratio contains sums of squares.
For example, a zero value implies that the model has as
much relevance as the use of mean values. b) It is generally
used outside the QSAR field known as R2

test, or R2
pred. c) For

Q2
F3 we proposed a correction to the degrees of freedom in

the denominator, that is under discussion. d) Q2
F3 violates

the total independence of the training and test sets or the
corresponding validation parameters. e) We show on the
graphs the robust median values of 500–1000 Q2

F2 values,
that should be free of several disadvantages mentioned by
other authors.

Before the discussion of our own work, we must make a
remark on a special practice in the field of neural network
research which also concerns validation. In the field of
artificial neural network research,[33] the terms are different.
The term'hold out’ is used for a method, where they divide
the sample to a training and a test set, then the parameters
are optimized on the training set and test set is used only
to tune the hyperparameters and assess the methods, but
as everything is close to ready and all hyperparameters are
determined, then the parameters of the final model are
optimized on the merged data of the training and the test
sets. The final merging of all data for the final model

optimization is usually there in ANN applications, irrespec-
tive of the recipe used, e.g., repeated hold out, bootstrap,
resampling, cross-validation, k-fold cross validation or
parallel split to training, validation and test sets.[33] This final
merging of all data is encouraged as there is usually a lack
of sufficient amount of data in most of the ANN studies. In
our study, we never merged the test and the training sets
in accordance with the OECD guidance.

2 Details of the Calculations

2.1 Datasets

We performed our calculations on datasets accessible in
open repositories. Most of these are related to QSAR and
they are stored in a the QSAR databank repository.[34] Two
data sets are accessible at UCI machine learning repository
and Kaggle,[35,36] one of them is data on an electric power
plant and the other one is related to material science. There
is a combined meteorological-air pollutant dataset from
Budapest in 2007 (AIR), the data are collected by prof. Imre
Salma. These latter three datasets, unlike the other ones,
are not related to QSAR. OECD principles have significance
beyond QSAR modelling, especially principles 2, 4 and 5 are
general. Therefore, we show our results also on the latter
three datasets in order to go slightly beyond QSAR. The
datasets are summarized in Table 1. We needed datasets as
large as possible in order to investigate the sample size
dependence, therefore, we merged the sets of the original
studies, if there were any subsets. The details of the
predictor and response variables can be found in the
original articles and at the description pages of the
repositories. In the case of the unpublished AIR dataset, the
response variables were the daily air-pollutant concentra-
tions. The predictor variables were the meteorological data
from the actual day, the air-pollutant concentrations of the
last two days and some calendar data to keep account of
weekdays and months. The categoric data were one-hot
encoded. In the case of the MLR, ANN, and SVR models
always a single response variable was used in the models.
In the case of PLS2, a single model was built for all response
variables. We did not use, assess, or interpret the models,
their parameters and the experimental conditions of the
original articles. We applied the datasets as numerical data
on which we built new models after random resampling for
a given sample size.

2.2 Model Types

2.2.1 MLR

We use the MLR abbreviation for the multivariate linear
regression using ordinary least-squares optimization. Some
of the results were obtained in our previous study.[19] In the
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case of MLR, unweighted least-squares regression was
applied and we used all of the predictor variables.

2.2.2 PLS2

The PLS2 abbreviation refers to the partial least-squared
regression with more than a single response variable. It
means, latent variables are formed both in the predictor
and in the response spaces. PLS is an iterative method,
where at first the predictor-response latent vector pairs are

Table 1. Datasets. M=MLR, P=PLS2, A=ANN and S=SVR in modelling.

ID Number of inde-
pendent variables

Number of
observations

Range of
sampling

Descriptors Response Modell
type

Ref.

AIR
y1-y6

(6 dep.) 38 363 30–350 calendar, pollution, meteorolog-
ical

air pollutant concentra-
tions

P see text

CE 15 248 100–250 general/molecular parameters cetane number A, S [34,37]

CO
y1-y3

(3 dep.) 7 103 30–90 composition, aging concrete compressive
strength, slump, slurry

P [35,38]

COC 8 1030 30–500 composition and aging concrete compressive
strength

M [35,36,39]

DEG 4 460 30–400 molecular parameters degradation by OH radi-
cals

M [34,40]

FBA 9 632 30–500 molecular parameters biotransformation half
lives in fish

M [34,41,42]

FBB 5 627 30–500 molecular parameters bioconcentration factor in
fish

M [34,43]

FPGD 13 631 125–375 molecular parameters flash point A, S [34,37]

FPMD 12 631 125–375 general parameters flash point A, S [34,37]

LFL 6 1169 30–1000 molecular parameters lower flammability limit
temperature

M [34,44]

PP 9568 30–1000 operating conditions of a com-
bined cycle powerplant

electric power output M [35,36,45]

SSA 4 643 molecular parameters soil sorption coefficient M [34,41,46]

SSB 4 643 30–500 molecular parameters soil sorption coefficient M [34,41,46]

TF
TB

(2dep.) 26 400 30–350 molecular parameters boiling point
flash point

P, A, S [34,47]

TOXA 2 501 30–400 molecular parameters tetrahymena toxicity M [34,48]

TOXB 6 449 30–400 molecular parameters fathead minnow toxicity M [34,49]

TOXC
TOXD
TOXE

3 404 30–200 molecular parameters algal toxicity M
M
M

[34,50,51]

TOXF 23 566 100–500 general parameters fathead minnow toxicity A, S [34,52]

TOXG 28 566 100–500 molecular parameters fathead minnow toxicity A, S [34,52]

UFL 5 865 30–750 molecular parameters upper flammability limit
temperature

M [34,53]
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identified sequentially using a maximal covariance criterion
and least-squares regression is used to determine the
corresponding regression parameters. The further latent
variable pairs are searched using the residual predictor and
response matrices. The most important question is the
number of the latent vectors. At first, we focused on the
generalization of the repeated double cross validation
method of Filzmoser et al.[54] from single response to multi-
response cases. Unfortunately, the method using the
Parsimony factor did not determine uniquely the number of
the latent variable pairs for the multi response cases. Finally,
we selected the number of latent variables via a compro-
mise in validation parameters obtained in internal and
external ways. This choice was different than the use of R2

suggested by OECD. We checked the effect of stand-
ardization. We found that the performance of the models
was better, if both predictor and response matrices were
standardized in the cases, when the scale of the variables
were different. Usually, it significantly reduced the number
of latent variables and helped to obtain similar convergence
feature of validation parameters with respect to the number
of latent variables. Some examples of our investigation on
the criterion of Filzmoser et al., on the effect of stand-
ardization and on our decision on the number of latent
variables can be found in the supplementary material
Figures S1, S2, S3 and in [55].

2.2.3 ANN

Artificial neural networks are efficient non-linear tools to
perform classification or regression. Here we focus on
simple structured ANN with one input, one hidden and one
output layers, when the method can be interpreted as a
nonlinear function approximation. Our models do not enter
the field of deep learning. Partly, our datasets are not large
enough to be used in deep learning studies and we would
like to limit the size of our study on the simplest ANN cases
without going into the details of sophisticated deep
learning architectures. There is a large number of hyper-
parameters already for single hidden layer structures. The
first hyperparameter is the number of neurons in the
hidden layer. It was not easy to find a rule of thumb using
validation parameters, since there was not any optimal
choice between the different neuron sized models compar-
ing their cross-validation or external test performances. In
our investigation we focused on the sample-size depend-
ence of the validation parameters, therefore, we were not
able to select the number of neurons only with respect to
the performance on the entire dataset. Finally, we fixed the
number of the neurons in a way to have around as many
weights to optimize as there were independent cases in the
datasets at the smallest sample size used. We slightly
modified this, if the proposed model was larger or smaller
than the original model for the given dataset in the
literature. The second hyperparameter is the choice of the

activation function. We used logistic, tangent hyperbolic
and relu ones. The choice of the optimizer also effects the
performance of the models. We used the LBFGS (limited-
memory Broyden – Fletcher – Goldfarb - Shanno algorithm),
Adam (a first-order gradient-based optimization of stochas-
tic objective functions, based on adaptive estimates of
lower-order moments[56]) and the SGD (stochastic gradient
descent[57]) methods implemented in the Python scikit-learn
library.[57] The common hyperparameter of the optimizers is
the tolerance limit for the iterations, while there are several
further hyperparameters for each of them (1,5-9,3-6 with
respect to the three methods). Depending on the resolution
of the values, there is a huge number of combinations for
these hyperparameters even on a single dataset. This
means, in the case of a given dataset we usually perform
the optimization of the weights on the order of 106. (In
details: Adam 23328 models/dataset, SGD 6480 models/
dataset, LBFGS 12 models/dataset; for each hyperparameter
combination 150 optimizations of the weights for calculat-
ing Q2

F2 (5 and 10 times more for 5 and 10 fold cross
validations, even if the number of the neurons in the
hidden layer was fixed previously.) These hyperparameter
scans seemed to be mandatory because we always found
models with significantly better performance than those of
the ones with default hyperparameters. Some aspects of
the grid search and the choice of hyperparameters are
detailed in the supplementary material in Figures S4 and
S5. We should mention, that in the hyperparameter
optimization we simultaneously used the validation param-
eters obtained on the external test set and the Q2

LMO values
of 5–10 fold cross validation. As it is detailed in the
introduction, the QSAR nomenclature is slightly different
than those of the neural network community. In the
supplementary material Figure S6 we discuss, that both sets
seemed to be adequate ones in our case.

2.2.4 SVR

As 4th modelling method we chose support vector regres-
sion. The performance of the method seems to be similar to
ANN and different regression tree ones in the literature. We
used the method with Gaussian radial basis function as
kernel. There are some hyperparameters of the method,
which of we performed grid search over kernel coefficient,
epsilon parameter, regularisation parameter, shrinking,
stopping and tolerance (Figure S7).

We mentioned, that we did not control directly the
number of the support vectors in the models, we let its
determination by the epsilon-support vector regression
implementation [58]. Our grid search over the hyper-
parameters concerned this epsilon parameter and it had
some effect on the number of the support vectors. If we
used a fix epsilon, the number of the vectors were able to
change both in percentage with respect to the sample size
and in nominal values. Usually we obtained models, where
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the number of the support vectors were around the 50–
60% of the sample size, depending strongly on epsilon. In
the case of randomization, where there is no possibility of
generalization of any model, the number of the support
vectors approaches the number of cases.

2.3 Calculations

The calculations were performed with codes in R and
Python developed by us. We intensively used the pls
package in R and scikit-learn libraries in Python.[57,59]

The hyperparameters were separately optimized for
each dataset. The selected data were divided into training
and test sets with 80/20 ratio. Depending on the model
type (PLS2, ANN, SVR) and the data set, 150–1000
repetitions were performed for each combination of the
hyperparameters. The training set was used in the internal
validation (goodness of fit, robustness). The test set was an
external one to assess predictivity. In the case of PLS2, the
number of the latent variables was determined for each
dataset. In the case of the ANN and SVR models, 5–25
reasonable hyperparameter combinations were selected to
be used in the sample-size dependence calculations for
each dataset. In some cases, M refers to the model numbers
in the figures.

The sample size series were determined according to
the number of available cases for each dataset. The smallest
sample sizes were mostly fixed to be larger than the
number of parameters in the optimization process. The
models were underdetermined in a few cases of ANN and
SVR, here the number of weights at the smallest samples
was slightly larger than the number of cases. 500–1000
sample sets were randomly selected for each sample size of
a given dataset. The sets were divided into training and test
sets with 80/20 ratio. Repetition was not allowed within one
set.

The leave many out cross-validation was performed
with random subdivision of the training data into m-folds.
Each sample set was divided into folds only once and for a
given model the cross validation was not repeated with
another subdivision.

The dependence of the validation parameters on chance
correlation was calculated separately for the predictor and
the response variables. We used y-scrambling, where the
response variables were reassigned to other cases ran-
domly. In the case of y-randomization, we generated
random y responses from the distribution of the true
responses. In the case of x-randomization, the elements of
the predictor matrix were randomly generated from
distributions corresponding to the given original x variable
vector.

The definitions of the calculated validation parameters
are shown in Table 2. The goodness of fit was assessed by
R2 and RMSE. Robustness was quantified by Q2

LOO, Q
2
LMO and

RMSELOO. The latter was calculated by leave-one-out cross-

validation. The predictivity was measured by the Q2
F2 metric.

It seems to be the most popular intensive validation
parameter (external) from the Q2

F1-Q
2
F3 set. RMSEtest was

calculated on the external test set, as well. In the case of
the MLR models, non-zero intercepts were allowed, there-
fore 0< =R2< =1, Q2

LOO< =R2 and Q2
F2< =1 were the

limits. In the case of the other models, R2, Q2
LOO, Q

2
F2< =1

was the only theoretical limit and all intensive validation
parameters might be negative, as well [19]. The figures in
the next sections show the median of the validation
parameters calculated on the 500–10000 sample sets at a
given size. The trends were similar for the medians and the
means of data, except a case, where it will be mentioned in
the discussion.

The correlations among the different validation parame-
ters are calculated not between the validation parameters,
but between their respective ranks in order to be less
sensitive to nonlinear effects. In this way, the rank
correlations emphasize the monotonous relationship be-
tween two validation parameters and not necessarily a
linear one.

Table 2. Validation parameters and notation.

Notation Definition

n, ntest, ntrain number of cases in the sample, in
the test and training sets

p number of model parameters
(without the intercept [60])

yi, y the i-th and the average exper-
imental response

byi;by the i-th and the average mod-
elled response

byi=i , byi=j a cross-validated response: leave-
one-out and leave-many-out
cases

RSS, residual sum of squares
Pn

i¼1&clineb yi � byið Þ2

MSS, model sum of squares
Pn

i¼1&clineb byi � byð Þ
2

TSS, total sum of squares
Pn

i¼1&clineb yi � yð Þ2

PRESS, cross validated residual
sum of squares

Pn
i¼1&clineb yi � byi=i

� �2

R2, coefficient of determination 1 � RSS
TSS

RMSE, root mean squared error ffiffiffiffiffi
RSS
n

q

Q2
LOO, leave-one-out cross valida-

tion R2
1 � PRESS

TSS

Q2
LMO; leave M out cross valida-

tion R2, j is the model where the
i-th data is not used

1 �
Pn

i¼1
yi � byi=j
� �2

TSS

RMSELOO
ffiffiffiffiffiffiffiffi
PRESS

n

q

Q2
F2, (R

2 for test set) [22]
1 �

Pntest

i¼1
yi � byi
� �2

Pntest

i¼1
yi � ytestð Þ2

RMSEtest as RMSE on test set
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3 Results and Discussion

The aim of this manuscript is to show the common and the
different features of the model types with respect to the
OECD 4th principle. To obtain these, we mostly show the
trends with respect to the sample size.

The most common measure of goodness of fit is the
coefficient of determination. R2 is shown for the four
modelling methods in Figure 1. Results of three models are
shown on the graphs. In the case of ANN, two models
belong to the same dataset. In the PLS2 case, two variables
of the AIR dataset and an average result of the TF-TB
datasets are shown. The trends are strictly monotonically
decreasing in all cases, except two of the ANN models. In
the case of ANN, mostly we got clear trends, but we
obtained a minimum for FPMD model 7 and 15 (M7, M15
on the graph). The higher R2 values at small sample sizes
reflect the effect of possible overfitting. This is an artifact
that may disturb any simple conclusion based on the
magnitude of a single validation parameter. No models
trained on smaller sample sizes should be preferred just
because of higher values for such a metric with false trend.
We emphasize the scale on the ANN and especially on the
SVR case. These models have a very high flexibility to
reproduce many kinds of data, but as we see later, this
flexibility need not cause robustness and predictivity with
similarly high measures. We got smaller R2-s only for the
badly modellable TOXF and TOXG datasets. In the case of

SVR, the extreme goodness of fit is partly the result of the
increased number of support vectors.

This extraordinary flexibility can be seen in Figure 2,
where we show the results of different randomization
processes to estimate chance correlation. In the case of
MLR, random responses of all sorts were weakly modellable.
PLS2 was able to model random responses as long as the
number of parameters was high with respect to the number
of cases to be reproduced. Apparently for small sample
sizes, the search for maximal covariances is able to provide
latent predictor and response variables that show a high
degree of chance correlation even with random responses.
Both in MLR and PLS2 the ability for modelling random
responses decays exponentially with increasing sample size.
On the contrary, the decay is slow and resembles a linear
trend in the case of ANN and SVR. In the case of ANN,
reasonably efficient fitting of random responses is still
possible even at medium sample sizes. In the case of SVR,
the model is able to reproduce (goodness of fit is shown
here) or to find any hidden a chance correlation, if x was
randomized. We obtained R2-s over 0.9 for chance correla-
tion in many SVR cases. Since this high level of chance
correlation does not seem to be really present in the
randomized data, we might say that these very flexible
techniques might create chance correlation, if the number
of the support vectors approaches the sample size (cf.
Figure S7). The other difference between MLR and the other
types of modelling methods is the behaviour with respect
to y and x randomizations. In the case of MLR, the three

Figure 1. Goodness of fit. R2 dependence on the sample size. From left to right: MLR, PLS2, ANN and SVR.

Figure 2. Chance correlation. R2 of randomized data. From left to right: MLR, PLS2, ANN and SVR.
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methods provide similar results. The computationally
simplest y-scrambling (shuffling) is as effective as the two
other random methods. In the case of mean values, they
are identical, in the case of median values, there was a
hardly detectable difference between the two random value
generation and scrambling. In the case of the other three
model types, there are significantly different R2-s on
predictor and response randomized data. In our PLS2
datasets, we have always more predictor variables than
responses. We think, that it is slightly easier to find some
detectable chance correlation among more variables, when
the x latent vectors are used. In the case of less variables, as
in y-randomization, the possibility of finding a highly
correlated latent y vector to existing internally correlated x
vectors is less probable. In the case of ANN, we always find
a substantial difference for x and y randomizations. Maybe,
again the difference between the number of x variables and
the single y variable is one reason, but it might go to the
enormous flexibility provided by ANN, partly by the large
number of weights and possibility of non-linear function fit
feature of ANN. In the case of SVR, the close to one R2 of
randomized x-data clearly shows the incredible classifica-
tion/regression power of the support vector systems for
many datasets. The correlation within the predictor varia-
bles seems to be crucial. In the case of x randomization,
both the inter-predictor and the predictor-response correla-
tions are removed. Here the task is to model totally random
data. If y is shuffled or randomized, the remaining
correlations in the predictor variables contradict to the
random y-s. This contradiction results in a weaker correla-
tion between predictor-response data pairs and thus worse
reproduction of the training responses.

These results on “created“ chance correlations at small
sample sizes or at x randomization support the idea, that
goodness-of-fit validation at high performance methods,
like ANN or SVR, might have only a restricted relevance
contrary to the OECD 4th principle and guidance. Since
model performance is generally assessed via the estimation
power of the response variables, we think that y-random-
ization and y-scrambling are the adequate ways to measure
chance correlation, if there are reasonable inter-predictor
correlations. In the case of successful MLR models, inter-

predictor correlations are negligible. The choice between y
and x randomizations is optional. In the other cases, the
random x approach totally destroys the data structure and
creates a uniform variable space distribution independently
from the original data. In the case of normalized data, it
creates a spherical data cloud in Euclidean variable space,
destroys the difference between Mahalanobis and Eucli-
dean variable spaces. The data become feature- and shape-
less up to a level, where it is not an adequate reference,
when we are interested in the estimation power on y-s. Our
conclusion is to use randomization only on y and to be
effective do it by scrambling. The RMSE-like randomization
values are shown in Figure S8.

The second aspect of validation in the OECD guidance is
robustness. It is defined as a part of internal validation,
where several models are built on a part of the training set
or on resampled parts of the training set. The most
common method is cross validation, but it can be
performed by properly designed bootstrap, as well. The
simplest cross validation is the leave-one-out approach,
where data are omitted one by one from the model
building and the calculated response of the omitted case is
used in the calculation of the validation parameter. It is an
internal method, because the final model is always the one,
where all cases of the training set are used in the parameter
optimization.

The sample size dependence of Q2
LOO-s is shown in

Figure 3. Contrary to R2, there is no artifact here for small
sample sizes, the robustness of the models is weaker for
models derived on small training sets. Theoretically, the
infinite sample size limit of Q2

LOO is R2,[8,12] but the number of
cases in our data sets was not large enough to reach this
limit. This limit is close to unreachable at our sample sizes
due to the high flexibility of ANN and SVR. The goodness-
of-fit and the robustness curve limits are approached, if the
model performance is overall excellent.

We show in our preliminary study,[19] that leave-one-out
and m-fold cross validations can be rescaled to each other,
if we plot the results with respect to the number of the
cases used in the fit during the cross-validation model
building (nfitted) instead of the training set size (ntrain). We
checked it for the other model types, and we found that in

Figure 3. Robustness. Q2
LOO dependence on sample size. From left to right: MLR, PLS2, ANN and SVR.
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all the 4 types of models the different m-fold Q2
LMO values

are very close to the Q2
LOO curve, if nfitted is used on the

abscissa (Figure 4). The same scaling of the RMSE-like data
can be seen in Figure S9. In the case of linear models, Q2

LOO

can be calculated without performing extra determination
of the model parameters, the corresponding hat matrix
elements can be used to calculate PRESS (Table 2). In the
case of ANN and SVR one needs as many new optimizations
as cross-validated models one would like to have. Computa-
tionally this means, that for the linear models the leave-
one-out scheme is preferred, while the m-fold versions for
ANN and SVR. Our results suggest that it is always enough
to calculate only the computationally feasible cross valida-
tion, because the results might be scaled to each other. Of
course, not only the behaviour of the median values, but
also the possible range (uncertainty) of the validation
parameters is important. It can be seen in the supplemen-
tary material (Figure S10), that we need not withdraw our
conclusion taking into account this aspect. The use of
leave-one-out scheme instead of the leave-many-out one in
the linear models and the use of leave-many-out scheme
instead of the leave-one-out one for ANN and SVR did not
increase the uncertainty of the assessment. We should note
here, that in experimental applications usually we have
repetitions in the data, e.g., in analytical chemistry at least
three measurements are performed on the same sample.
We show in the supplementary material in Figure S11, how
it changes our proposed scheme, if we use leave-case-out
or leave-sample-out schemes. Anyway, our scheme works

well, if we simply use the averages of the same sample
measurements instead of the individual measurements.

The third validation element of QSAR models is external
validation serving the purpose of assessing predictivity.
External means, that a test set is created from the data that
are not used in the optimization of the model parameters.
This does not hold for the hyperparameter optimization. If
there are more models, in the selection of the final one we
might use the results on the independent test set. We show
the Q2

F2 values in Figure 5. The trends are correct in a sense,
that models developed on small training samples perform
in average weaker than models optimized on large datasets.
We can see that the performance of the ANN and SVR
models do not converge in this sample size to the R2 values
of Figure 1. We performed calculations to check test/train-
ing splitting, If a Kennard-Stone [61] like algorithm is used
to do the split, the elements of a pair of repeated
measurements are divided to both sets. We show in the
supplementary material (Figure S12), how rhapsodically on
different data sets it changes the trends, e.g. Q2

F2-s becomes
similar to the misleading R2 ones. It means, one should
know, that the use of Kennard-Stone splitting highly bias
the trends with respect to the simple random splitting and
the validation parameters should be interpreted slightly
differently.

As we mentioned, in the case of an optimal model we
usually think that R2, Q2

LOO and Q2
F2 approximate each other

quite well above a certain sample size. This behaviour is
present for most MLR and PLS2 models. In the case of ANN

Figure 4. Robustness. Scaling of Q2
LOO and Q2

LMO, if the data are shown with respect to nfitted. From left to right: MLR, PLS2, ANN and SVR.

Figure 5. Prediction. Q2
F2 dependence on sample size. From left to right: MLR, PLS2, ANN and SVR.
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or SVR, the limit of goodness of fit was always reasonable
higher than the other ones. The values of Q2

F2 are higher in
most cases than that of Q2

LOO in our graphs, where the
medians of 500–10000 models are shown. In some cases,
the Q2

F2 and the Q2
LOO curves are ordered oppositely, if

averages are depicted. The difference between the two
estimates of expected value (mean and median) is probably
related to the presence of badly modelled outliers. This
suggests to use the median, that is the robust measure. Our
result that robustness in average is sometimes weaker than
predictivity might be related to the so-called masking
effect. For examples concerning this paragraph we refer to
the graphs in the supplementary material, Figure S13. We
should mention, that in the case of some SVR data, we
found some models whose behaviour was different from
that of the other ones. At maximal sample sizes they
provided as good Q2

F2-s as the other ones, but at small
sample sizes their predictivity decreased reasonably. The
number of the support vectors were close to the maximum
in these models, similarly as we saw in the randomization
section. For the stable models the number of the support
vectors was usually around the half of the maximum.
Therefore, we propose to always check the number of
support vectors as a warning signal in the case of SVR
models (see again Figure S7)

Up to now we have justified our results using intensive
validation parameters in the manuscript, extensive parame-
ters have been shown in the Supplementary material. Now,
a set of examples is shown for the extensive parameters in
Figure 6. Here, mostly we show only the sample size
dependence of one model to avoid crowded graphs. We
found that the same conclusions can be drawn based on
the RMSE family of validation parameters as on the R2

family. In the case of MLR one can see that the common
limit of the three measures is reached. Such a limit does not
exist within the sample size accessible in our datasets for
PLS2, ANN and SVR. The weakest convergence is for SVR (cf.
Figure 1–2) One can see, as well, that the goodness of fit
RMSE misleadingly assess small sample models as appa-
rently better than the large ones. Our findings on x- and y-
randomization and on the scaling of leave-one-out and
leave-many-out cross validations have been justified in the

supplementary material for RMSE-like validation parameters
(Figures S8 and S9).

When we started our investigation on sample size
dependence a few years ago, our idea was initiated by
scientists who debated quite a lot around the feasibility of
internal or external validations. We think, that one way to
check the independent information content of the different
validation parameters is their correlation for a set of given
models. Since the most popular measure of correlation, the
so-called correlation coefficient is inherently designed to
indicate the strength of a linear relationship between two
vectors, we use rank correlation, that shows rather the
monotonic relation between the two validation parameters.
If we are interested in overall correlation of the three
validation aspects, we might calculate the rank correlation
over all models developed for all datasets, irrespective of
the hyperparameters and the used sample size. Another
approach is, if we use classes of the models, where a class is
formed by the repeated set of models on a given dataset
with the same hyperparameters and sample size.

The first idea is summarized in Table 3, where some of
the rank correlation pairs are shown for datasets with
different models. Here, the data are calculated among the
six validation parameters (three intensive and three exten-
sive ones).

Since the response variables in the different datasets
might have different magnitudes, the RMSE-like validation
parameters were calculated on standardized data. In the
case of PLS2, ANN and SVR these were the settings anyway.
In the case of MLR it did not change the results, only the
magnitude of the RMSE-s became comparable. If we check
the data in Table 3, the intensive-extensive pairs for the
same aim (goodness of fit, robustness, prediction) are
highly correlated. This means, that there are no significant
differences, if we use only one of them. In the case of the
rank correlations between the two aspects of internal
validations, they are rather significant for all of the 4 pairs in
the case of MLR (0.83–0.90) and they are still high for PLS2
(0.67–0.74). But these rank correlations are between 0.32
and 0.38 for ANN and SVR. Comparing the goodness of fit –
predictivity pairs, the results show less correlation, 0.55–
0.65 for MLR and PLS2 and 0.31–0.33 for ANN and SVR
cases. On the contrary, the third pair (robustness-predictiv-

Figure 6. RMSE-like validation parameters. From left to right: MLR, PLS2, ANN and SVR.
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ity) correlates better (0.65–0.74), specifically it is around
0.74 for ANN. Altogether, we found differences with respect
to the methods. The two internal validation purposes
correlate well for the linear models, implying that they are
practically redundant. In the cases of ANN and SVR, the
goodness of fit does not correlate to the others, but this is

not because of the importance of goodness-of-fit measures
of these methods because of the irrelevance of goodness-
of-fit as a validation aspect for these methods (c.f. Figures 1
and 2 and their discussion). External validation seems to
provide new information mostly, but in the case of ANN it is
close enough to cross validation, implicating that it is
enough to use one of them during, e.g., the hyper-
parameter tuning.

The second type of rank correlations is shown in
Figure 7. In Figures 1–6 we showed the median of a set of
500–10000 models built for one dataset using a given
sample size and hyperparameters. The variability of the
models is a result of the random selection of the sample
(and in the case of ANN of the non-unique results of the
numerical optimization, as well). We call our correlations
within a set intra-class correlation. The models within a set
are only partly independent of each other. If the sample
size is close to the dataset size, the assignment of a given
case to the training or to the test part is related to the so-
called allocation problem. It is known in the literature of
design of experiment, that there are data allocations that
provide reasonably better validation parameters for both
training and test parts. Some aspects of this topic are
summarized, e.g., in one of our previous studies [62].

The intra-class rank correlations depend rather on model
type and dataset (Figure 7). Each figure shows 15 rank
correlation curves, three of which represent intensive-
extensive validation parameter pairs for the same aim, e.g.,
R2 and RMSE. There is a more or less significant correlation
for most of these pairs. In the case of MLR, the rank
correlation is weaker than in the case of PLS2, and it is close
to � 1 for ANN and SVR. This means, that in the case of MLR
we might use both intensive and extensive parameters, but
in the case of ANN and SVR their information content is
very similar within the intra-class concept. The rank
correlation parameters assessing goodness of fit and
robustness clearly show an increasing trend and at large
sample size close to perfect correlation for MLR and PLS2.
This means, that at small sample sizes the two internal
validations provide less dependent information, but over a
sample size, depending on the dataset, one of them is
superfluous. In the case of ANN and SVR the correlation is

Table 3. Rank correlations of all models for different model types.

MLR PLS2 ANN SVR

intensive/extensive pairs

R2/RMSE � 0.93 � 0.97 � 0.99 � 0.98

Q2
LOO/RMSELOO � 0.95 � 0.94 � 0.99 � 0.98

Q2
F2/RMSEtest � 0.87 � 0.85 � 0.96 � 0.95

goodness of fit/robustness

R2/Q2
LOO 0.90 0.71 0.34 0.38

RMSE/RMSELOO 0.89 0.74 0.33 0.36

R2/RMSELOO � 0.71 � 0.32 � 0.35

Q2
LOO/RMSE � 0.83 � 0.67 � 0.32 � 0.35

goodness of fit/predictivity

R2/Q2
F2 0.59 0.31 0.31

RMSE/RMSEtest 0.65 0.59 0.32 0.30

Q2
F2/RMSE � 0.60 � 0.55 � 0.30

R2/RMSEtest � 0.65 � 0.61 � 0.32 � 0.33

robustness/predictivity

Q2
LOO/Q

2
F2 0.65 0.76 0.74 0.69

RMSELOO/RMSEtest 0.68 0.74 0.74 0.66

Q2
LOO/RMSEtest � 0.68 � 0.75 � 0.74 � 0.68

Q2
F2/RMSELOO � 0.66 � 0.76 � 0.74 � 0.69

Figure 7. Sample size dependence of intra-class rank correlations. From left to right: MLR, PLS2, ANN and SVR.
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usually weaker, but we found a strong dataset and hyper-
parameter dependence even for the trends of the curves
(Figure S14) It is not surprising, since we mentioned earlier,
that goodness of fit provides very limited information on
these models, while robustness (as defined in OECD) is one
of the most popular aspect used for model selection, e.g.,
for ANN.[7] The last group of rank correlations are the
internal-external ones. Here, our results are strictly reduced
to our intra-class relation and they are driven by the
allocation problem. At small sample size the allocation of
the training and the test parts are independent from each
other and the correlation of internal and external validation
parameters within a group of similar models almost
vanishes. Increasing the sample size, there is a chance that
the assignment of badly modellable and regular cases are
exchanged in the training and test sets. Furthermore, in the
case of the intensive parameters the range of the data in
the two sets also has a large effect, as it highly affects the
divisor in the sum of square term (see Table 2, [24,62]). The
overall effect of this is clearly visible in the enhanced
negative rank correlations (Figure 7 and S14) and on the
exchange in the quartiles of internal and external good
parameters (Figure S15)-

4 Conclusions

The aim of our study was to assess the QSAR-OECD
validation principle on types of modelling algorithms. The
OECD 4th principle defines three aspects of validation:
internal validation for goodness of fit and robustness and
external validation for predictivity. Herein, we extended our
previous study on the sample size dependence of MLR
models [19]. We modelled mostly QSAR data accessible in
repositories by MLR, PLS2, ANN and SVR techniques. Most
of our conclusions are drawn on the basis of the behaviour
of different validation parameters with respect to sample
size. As our conclusion, we summarize some rules of thumb
on validation in Table 4 which were provided in our study.

Similarly to the MLR case, the goodness-of-fit parame-
ters (R2, RMSE) misleadingly overestimate the models on
small samples than on reasonable sample sizes, which is an
understandable yet important example of the bias-variance
trade-off. In the case of ANN and SVR (and at small sample
sizes of PLS2) goodness of fit does not seem to be
important, since these very flexible methods are able to
reproduce training set data almost perfectly. This is valid
also for randomized and scrambled data, ANN and SVR are
able to find or more precisely to create chance correlation
in random data, especially in the case of random predictor
variables. This result was obtained, when we tested the
sample size dependence of randomization methods. Addi-
tionally, in the case of MLR x- and y-random generation of
data from the original data distributions are as effective as
the simple shuffling of y values. The latter is proposed to be
used as the numerically simplest solution. In the case of

PLS2, ANN and SVR the predictor and the response random-
izations are different, the methods are able to find more
chance correlation, or they are able to create an artifact of
chance correlation. In the SVR case, modelling might be so
effective, that the goodness of fit R2 is close to one for
several x-randomized data, if the number of the support
vectors is not limited.

We checked via the sample size dependence, that our
rescaling law proposed for LMO metrics in the MLR article is
valid for PLS2, ANN and SVR. We found, that the leave-
many-out cross-validation parameters can be mapped on
the leave-one-out curves by simply using the number of
fitted data in the cross-validation process instead of the
number of cases in the total training set. This means, that
the computationally cheaper versions should be used,
leave-one-out cross validation for MLR and PLS and leave-
many-out schemes for ANN and SVR. This finding remained
justified, when we additionally checked the variance (range)
of the individual Q2

LOO and Q2
LMO parameters, where we

were not able to differentiate between Q2
LOO and Q2

LMO

according to their statistical uncertainty.
We assessed the interdependence of the different

validation parameters by calculating their rank correlations
for the models. We performed this in two ways. In general,
we merged the results of all models on all datasets and
calculated the rank correlations between the validation
parameters. In another approach, the rank correlations are
calculated on subgroups of models built on the same
sample size with the same hyperparameters. The latter we
call as intra-class rank correlation and here it was possible
to check the sample size dependence. Results obtained by
this second method were also related to the so-called
allocation problem as the sample size approximated the
dataset size. We found that goodness of fit and robustness

Table 4. Proposed validation scheme. Validation parameters in
bold are the suggested ones.

Internal External Be careful
model goodness

of fit
robustness
(with cross
validation)

predictivity

MLR R2

and/or
RMSEtraining

not neces-
sary at large
sample size
Q2

LOO

(�Q2
LMO)

and/or
RMSELOO
(�RMSELMO)

Q2
F2

and/or
RMSEtest

–

PLS2 to standardize x-y
at determination of
the number of la-
tent variables

ANN maybe,
R2

and/or
RMSEtraining

Q2
LMO

(�Q2
LOO)

and/or
RMSELMO
(�RMSELOO)

to standardize
to optimize hyper-
parameters
to check number of

SVR
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correlate quite well over a sample size for MLR and PLS2.
This means that for reasonably large models one of the two
validation aspects is redundant. In the correlation of
internal and external validation parameters, we found that
the assignment of good and bad modellable data to the
training or the test causes negative correlations in accord-
ance with our previous results on allocation.[62]

We checked the validity of our findings related to cross
validation parameters, if there are repeated measurements
in the data. We found that cross validation with simple
random selection of cases upsets the trends and provides
unfeasible validation parameters. The Q2

LOO or Q2
F2 parame-

ters changed their trends similar to the misleading R2 one.
We propose to use cross validation with leaving out all
measurements related to a sample or to use their averages.
We found that Kennard-Stone test/training splitting drasti-
cally effects the trends with respect to random splitting.
The changes are rather accidental for the different data
sets.
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